Space Weather Highlights 06 May - 12 May 2019

Solar activity was at low levels on 06, 07, and 09 May due to C-class flare activity from Region 2740 (N08, L=307 class/area Dho/280 on 05 May. The largest of the flares was a C9.9/1N at 06/0510 UTC. Multiple eruptions were observed in coronagraph imagery, but only the halo CME from 06 May was geoeffective. The assymetric halo CME was first observed in SOHO LASCO C2 imagery at 06/2348 UTC. Additionally, a partial halo CME was first observed in LASCO C2 imagery at 12/2036 UTC and is determined to be Earth-directed and arrive at Earth on 17 May. Solar activity was at very low levels for the remainder of the summary period.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit reached high levels on 07, 11, and 12 May. Normal to moderate levels were observed throughout the remainder of the period.

Geomagnetic field activity reached active to G1 (Minor) storm levels on 11 May due to the arrival of a CME from 06 May. Impact was first observed by the DSCOVR spacecraft at 10/1655 UTC. Total reached a peak of 12 nT and Bz reached a maximum southward deflection of -11 nT. Solar wind averaged near 350 km/s throughout tranient passage. G1 (Minor) storm levels were observed during the 11/00-03 UTC synoptic period, with several active periods during the remainder of the UT day. Quiet to unsettled levels were observed for the remainder of the period.

Space Weather Outlook 13 May - 08 June 2019

Solar activity is expected to be at very low levels, with a slight chance of C-class flares throughout the period.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at moderate to high levels on 13-23 May, and 29 May - 08 June. Normal to moderate levels are expected on 24-28 May.

Geomagnetic field activity is expected to reach G1 (Minor) storm levels on 15 and 17 May due to CME arrival. Active conditions are expected on 29 May due to the influence of a recurrent coronal hole high speed stream. Quiet to unsettled conditions are expected for the remainder of the period.

				2								
	Rad	Radio Sur		Sunspot		/	Flares					
	Flu	x sp	ot A	Area Background			X-ray		Optical			
Date	10.7c	m N	o. (10 ⁻⁶	⁵ hemi.)	Flux		С	M X	S	1	2 3	4
06 May	76	25	300	B1.4	7	0	0	10	1	0	0	0
07 May	79	27	410	B1.2	2	0	0	6	1	0	0	0
08 May	75	24	320	B1.0	0	0	0	0	0	0	0	0
09 May	76	25	280	A9.4	1	0	0	2	0	0	0	0
10 May	76	24	270	A9.3	0	0	0	0	0	0	0	0
11 May	78	26	260	B1.0	0	0	0	0	0	0	0	0
12 May	76	24	280	A9.9	0	0	0	0	0	0	0	0

Daily Solar Data

Daily Particle Data

	Protor (protons/c	n Fluence m ² -day -sr)	(elec	Electron Fluence (electrons/cm ² -day -sr)				
Date	>1 MeV >10	MeV >100 MeV	>0.6 MeV	>2MeV >4 MeV				
06 May	8.6e+05	1.9e+04	3.6e+03	3.2e+07				
07 May	8.3e+05	1.8e+04	3.8e+03	3.0e+07				
08 May	8.3e+05	1.8e+04	3.7e+03	3.1e+07				
09 May	7.6e+05	1.9e+04	3.5e+03	6.5e+06				
10 May	9.0e+05	1.8e+04	3.4e+03	7.6e+06				
11 May	7.7e+05	1.7e+04	3.2e+03	8.9e+07				
12 May	9.4e+05 1.8e+04		3.6e+03	5.0e+08				

Daily Geomagnetic Data

		Middle Latitude		High Latitude		Estimated
		Fredericksburg		College		Planetary
Date	A	K-indices	А	K-indices	А	K-indices
06 May	5	1-0-0-2-3-2-2-1	5	1-1-0-3-2-2-1-1	5	1-1-0-2-2-1-2-2
07 May	5	1-2-1-1-2-2-2-1	4	2-2-1-0-2-1-1-1	5	2-2-1-1-1-2-1
08 May	2	0-1-0-0-2-1-1-1	1	1-1-0-0-0-0-1	3	0-1-0-0-1-0-0-1
09 May	8	1-2-3-2-2-2-2	7	2-2-3-3-1-0-1-1	7	1-2-3-2-1-1-2-2
10 May	7	1-2-1-1-2-3-3	5	2-1-2-2-0-2-2-1	7	2-2-1-1-1-2-3-3
11 May	19	4-4-4-3-2-2-3	63	5-4-6-7-7-5-3-2	25	5-4-4-4-2-3-4
12 May	5	2-1-2-1-1-1-2	4	2-1-2-2-0-0-1-1	7	2-1-1-0-0-1-2

Date & Time		Date & Time		
of Issue UTC	Type of Alert or Warning	of Event UTC		
06 May 0543	ALERT: Type II Radio Emission	06/0511		
07 May 1854	ALERT: Electron 2MeV Integral Flux >= 1000pfu	07/1835		
11 May 0152	WARNING: Geomagnetic $K = 4$	11/0152 - 0600		
11 May 0201	ALERT: Geomagnetic $K = 4$	11/0200		
11 May 0218	WARNING: Geomagnetic $K = 5$	11/0218 - 0600		
11 May 0223	ALERT: Geomagnetic $K = 5$	11/0220		
11 May 0544	EXTENDED WARNING: Geomagnetic K = 4	11/0152 - 1500		
11 May 1244	EXTENDED WARNING: Geomagnetic K = 4	11/0152 - 2100		
11 May 1248	WARNING: Geomagnetic $K = 5$	11/1250 - 1800		
11 May 1642	ALERT: Electron 2MeV Integral Flux >= 1000pfu	11/1625		
11 May 2055	EXTENDED WARNING: Geomagnetic K = 4	11/0152 - 12/0600		
12 May 0900	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	11/1625		
12 May 1412	WATCH: Geomagnetic Storm Category G1 predicte	ed		

Alerts and Warnings Issued

Twenty-seven Day Outlook

Date	Radio Flux 10.7cm	Planetary A Index	Largest Kp Index	Date	Radio Flux 10 7cm	Planetary A Index	Largest Kp Index
Dute	10.70	11 maon		Dute	10170111	11 mach	
13 May	76	5	2	27 May	69	5	2
14	76	5	2	28	68	10	3
15	76	5	2	29	69	12	4
16	76	5	2	30	70	8	3
17	76	5	2	31	72	10	3
18	72	5	2	01 Jun	74	5	2
19	72	5	2	02	76	5	2
20	72	8	3	03	77	5	2
21	68	5	2	04	77	5	2
22	68	5	2	05	77	5	2
23	67	5	2	06	77	5	2
24	67	5	2	07	77	5	2
25	67	5	2	08	77	5	2
26	67	5	2				

			E	nerge	tic Ev	ents					
Time			X	-ray	Optical Information			Р	eak	Sweep Freq	
		На	lf	Integ	Imp/	Location	Rgn	Radi	o Flux	Inte	nsity
Date	Begin	Max Ma	x Class	Flux	Brtns	Lat CMD	#	245	2695	II	IV
No E	vents Ob	oserved									
				Fla	re List	t					
							Optic	al			
		Time			X-ray	Imp/	L	ocation	Rg	gn	
Date	Begi	n Max	End		Class	Brtns	La	at CMD	#	ŧ	
06 May	0045	0049	0053		B2.6				274	10	
06 May	0504	0510	0512		C9.9	1N	N	08E49	274	0	
06 May	0723	0741	0754		C1.7	SF	Ν	10E51	274	0	
06 May	0835	0846	0858		C2.0	SF	N	09E47	274	0	
06 May	0900	0905	0913			SF	Ν	09E47	274	-0	
06 May	0928	0932	A0946			SF	N	09E46	274	0	
06 May	0955	1002	1005		C1.5				274	0	
06 May	1144	1151	1157		B2.5				2740		
06 May	1335	1354	1357		C7.3	SN	Ν	08E45	274	0	
06 May	1745	1749	1752		C1.0	SF	Ν	08E44	2740		
06 May	1833	1837	1841		B2.9	SF	Ν	08E43	274	0	
06 May	1914	. 1917	1919		B2.8	SF	Ν	08E43	274	0	
06 May	1927	1930	1932		B3.0	SF	Ν	08E43	274	0	
06 May	1941	1950	1952		C1.0	SF	Ν	08E43	274	0	
06 May	2012	2015	2017		B2.5				274	-0	
06 May	2039	2043	2045		B3.4				274	-0	
06 May	2216	2231	2239		B4.8				274	-0	
06 May	2310	2313	2316		B7.6				274	0	
06 May	2350	2353	2355		B3.4				274	-0	
07 May	0138	0145	0148		B6.5	SF	Ν	09E46	274	-0	
07 May	0343	0347	0352		B2.4	SF	Ν	09E46	274	-0	
07 May	0452	0457	0500		B3.4				274	0	
07 May	0718	0725	0727		B3.1	SF	Ν	09E46	274	-0	
07 May	0837	0841	0844		B2.0	SF	Ν	09E46	274	0	
07 May	0918	0923	0925		B5.0				274	0	
07 May	0929	0935	0939		B8.0				274	0	
07 May	0951	1048	1058		C1.2	SF	Ν	08E53	274	-0	
07 May	B1118	U1156	A1213		C1.4	1F	Ν	08E53	274	-0	
07 May	1330	1333	1338		B3.2	SF	Ν	08E53	274	-0	
08 May	2121	2129	2137		B1.9				274	0	
09 May	0540	0551	0556		C6.7	SF	Ν	09E13	274	-0	

Flare List										
	Optical									
	Time			X-ray	Imp/	Location	Rgn			
Date	Begin	Max	End	Class	Brtns	Lat CMD	#			
09 May	B0610	0616	0626		SF	N07E26	2740			
10 May	0839	0847	0856	B2.0			2741			
10 May	1729	1734	1740	B2.2			2741			
10 May	1826	1842	1848	B2.2			2740			

				Reg	gion S	Summ	ary								
	Location Sunspot Characteristics						Flares								
		Helio	Area	Extent	Spot	Spot	Mag	Χ	X-ray		Optical			1	
Date	Lat CMD	Lon	10 ⁻⁶ hemi.	(helio)	Class	Count	Class	С	Μ	Χ	S	1	2	3	4
Region 2740															
03 May	N12E80	307	260	4	Hhx	1	А	1							
04 May	N09E67	307	270	4	Hhx	2	А	1			1				
05 May	N08E54	307	280	4	Dho	4	BD				5				
06 May	N07E40	308	200	3	Cso	4	BD	7			10	1			
07 May	N08E28	306	240	5	Cso	6	В	2			6	1			
08 May	N08E14	307	160	4	Cao	3	В								
09 May	N08W00	307	120	3	Cao	4	В	1			2				
10 May	N08W13	308	110	3	Hax	3	А								
11 May	N08W27	308	100	3	Hax	3	А								
12 May	N08W40	308	70	3	Hax	2	А								
Still on Absolut	Disk. e heliograp	hic lon	igitude: 3	07				12	0	0	24	2	0	0	0
		Regi	on 2741												
06 Mav	N05E81	267	100	2	Hsx	1	А								
07 May	N05E66	268	170	2	Hsx	1	А								
08 May	N05E52	269	160	3	Hsx	1	А								
09 Mav	N06E38	270	160	3	Hsx	1	А								
10 May	N06E25	270	160	3	Hsx	1	А								
11 May	N06E11	270	160	3	Hsx	3	А								
12 May	N06W02	270	210	3	Hsx	2	А								
•								0	0	0	0	0	0	0	0

Still on Disk. Absolute heliographic longitude: 270

	S		Radio	Flux	Geomagnetic							
	Observed values	Ratio	Smoo	Smooth values		enticton	Smooth	Planetary	Smooth			
Month	SEC RI	RI/SEC	SEC	RI	1	0.7 cm	Value	Ap	Value			
				2017				_				
May	18.1	11.3	0.62	23.1	14.0	73.5	77.7	9	11.3			
June	18.0	11.5	0.64	22.0	13.3	74.8	77.3	7	11.3			
July	18.8	10.7	0.59	20.8	12.6	77.7	76.8	9	11.0			
August	25.0	19.6	0.80	19.7	11.8	77.9	76.3	12	10.7			
September	42.2	26.2	0.62	18.6	11.0	92.0	75.9	19	10.3			
October	16.0	7.9	0.49	16.8	10.0	76.4	75.1	11	9.8			
November	7.7	3.4	0.44	15.7	9.2	72.1	74.6	11	9.5			
December	7.6	4.9	0.64	15.7	9.1	71.5	74.4	8	9.4			
2018												
January	7.8	4.1	0.51	15.0	8.5	70.0	74.0	6	9.3			
February	16.0	6.4	0.40	13.7	7.6	72.0	73.3	7	9.1			
March	6.0	1.5	0.25	11.5	5.9	68.4	71.9	8	8.6			
April	7.0	5.3	0.76	9.6	4.7	70.0	70.6	7	8.0			
May	15.0	7.9	0.53	9.2	4.5	70.9	70.2	8	7.6			
June	19.7	9.4	0.48	9.1	4.3	72.5	70.0	7	7.4			
July	1.3	1.0	0.77	9.4	4.3	69.7	70.0	6	7.3			
August	10.0	5.2	0.53	9.0	4.0	69.1	70.0	10	7.3			
September	5.7	2.0	0.35	8.7	4.0	68.3	70.1	9	7.3			
October	6.9	2.9	0.42	9.2	4.1	69.5	70.3	7	7.1			
November	7.3	2.9	0.48			68.9		6				
December	5.6	1.9	0.34			70.0		7				
				2019								
January	16.0	4.7	0.29			71.6		6				
February		0.5				70.6		7				
March	14.8	5.7	0.39			71.5		6				
April	11.5	5.5	0.48			72.4		6				

Recent Solar Indices (preliminary) Observed monthly mean values

Note: Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 06 May 2019

The proton flux plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by the SWPC Primary GOES satellite, near West 75, for each of three energy thresholds: greater than 10, 50, and 100 MeV.

The electron flux plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV by the SWPC Primary GOES satellite.

The Hp plot contains the five minute averaged Hp magnetic field component in nanoteslas (nT) as by the SWPC Primary GOES satellite. The Hp component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

The Estimated 3-hour Planetary Kp-index is derived at the NOAA Space Weather Prediction Center using data from the following ground-based magnetometers: Boulder, Colorado; Chambon la Foret, France; Fredericksburg, Virginia; Fresno, California; Hartland, UK; Newport, Washington; Sitka, Alaska. These data are made available thanks to the cooperative efforts between SWPC and data providers around the world, which currently includes the U.S. Geological Survey, the British Geological Survey, and the Institut de Physique du Globe de Paris.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are 'global' parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

The x-ray plots contains five-minute averages x-ray flux (Watt/m²) as measure by the SWPC primary GOES X-ray satellite, usually at West 105 longitude, in two wavelength bands, 0.05 - 0.4 and 0.1 - 0.8 nm. The letters A, B, C, M and X refer to x-ray event levels for the 0.1 - 0.8 nm band.

The proton plot contains the five-minute averaged intergral flux units (pfu = protons/cnf - sec - sr) as measured by the primary SWPC GOES Proton satellite for each of the energy thresholds: >1, >10, >30, and >100 MeV. The P10 event threshold is 10 pfu at greater than 10 MeV.

Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

Notice: The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

http://spaceweather.gov/weekly/ -- Current and previous year http://spaceweather.gov/ftpmenu/warehouse.html -- Online achive from 1997 http://spaceweather.gov/ftpmenu/ -- Some content as ascii text http://spaceweather.gov/SolarCycle/ -- Solar Cycle Progression web site

http://spaceweather.gov/contacts.html -- Contact and Copyright information http://spaceweather.gov/weekly/Usr_guide.pdf -- User Guide

