Solar activity was very low throughout the period. Region 2692 (N18, L=087, class/area=Eai/160 on 24 Dec) was the only numbered active region this period, but the region was without sunspots and unproductive through most of the week. No Earth-directed CMEs were observed this period.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit reached high levels on 27 and 29 Dec with moderate levels observed through the remainder of the period.

Geomagnetic field activity reached active levels on 26 Dec due to the influence of a negative polarity CH HSS. Quiet and quiet to unsettled levels were observed throughout the rest of the week.

Space Weather Outlook 01 January - 27 January 2018

Solar activity is expected to be at very low levels throughout the outlook period.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to reach high levels on 02-06, 14-19, and 23-24 Jan. Moderate flux levels are expected through the rest of the outlook period.

Geomagnetic field activity is likely to reach G1 (Minor) geomagnetic storm levels on 01 and 13 Jan, with active periods likely on 02, 08, 14, 20 and 27 Jan, due to the effects of multiple, recurrent CH HSSs. Quiet and quiet to unsettled geomagnetic field activity is expected throughout the remainder of the outlook period.

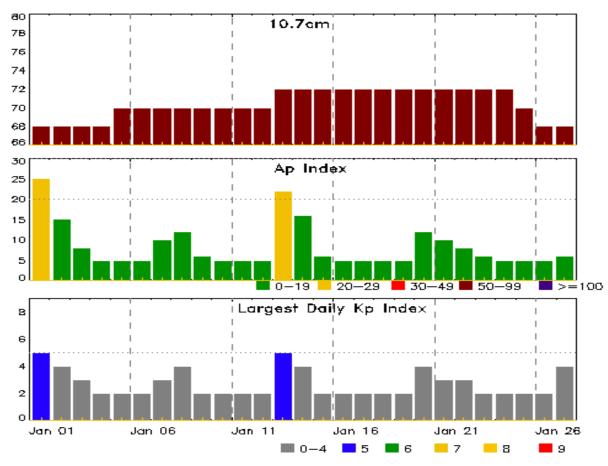
			Dun	<i>y 501</i>								
	Radio	Sun	Sunspot	Х	-ray	Flares						
	Flux	spot	Area	Back	ground	_	X-ra	у		0	otical	
Date	10.7cm	No.	(10 ⁻⁶ hemi.) F	lux		C M	Х	S	1	2 3	4
25 December	76	17	100	A5.4	0	0	0	0	0	0	0	0
26 December	72	14	30	A5.0	0	0	0	0	0	0	0	0
27 December	71	11	10	A4.8	0	0	0	0	0	0	0	0
28 December	71	0	0	A4.5	0	0	0	0	0	0	0	0
29 December	72	0	0	A4.4	0	0	0	0	0	0	0	0
30 December	70	0	0	A4.0	0	0	0	0	0	0	0	0
31 December	71	0	0	A3.8	0	0	0	0	0	0	0	0

Daily Solar Data

Daily Particle Data

	Proton Fl (protons/cm ²		-	Electron Fluence trons/cm ² -day -sr)			
Date	>1 MeV >10 Me	eV >100 MeV					
25 December	6.1e+05	1.5e+04	3.6e+03	5.1e+06			
26 December	6.5e+05	1.6e+04	3.5e+03	1.8e+07			
27 December	6.0e+05	1.6e+04	3.2e+03	5.1e+07			
28 December	3.0e+05	1.6e+04	3.7e+03	3.3e+07			
29 December	3.6e+05	1.6e+04	3.8e+03	4.0e+07			
30 December	4.3e+05	1.5e+04	3.5e+03	3.0e+07			
31 December	7.7e+05	1.6e+04	3.7e+03	2.6e+07			

Daily Geomagnetic Data


	Middle Latitude		H	High Latitude	Estimated			
	F	redericksburg	lericksburg College			Planetary		
Date	А	K-indices	А	A K-indices		K-indices		
25 December	9	3-1-3-3-1-1-2-2	10	2-1-4-3-1-3-2-1	10	3-1-2-3-1-2-3-2		
26 December	8	2-2-1-2-1-1-3-3	11	1-3-1-4-2-2-3-2	11	3-3-1-2-1-1-4-3		
27 December	6	2-2-2-1-1-2-1-2	8	2-1-1-3-2-3-1-2	7	2-3-2-1-1-2-2-2		
28 December	2	0-0-2-1-1-1-0-1	4	0-0-2-2-2-0-0	5	1-1-2-1-2-2-1-2		
29 December	3	1-1-0-1-1-1-2-1	2	0-0-0-1-1-1-2	4	1-1-0-1-1-1-2-1		
30 December	2	0-2-0-0-1-1-1-1	1	0-0-0-0-1-1-0-0	3	1-1-1-0-1-1-1-2		
31 December	2	0-1-0-0-1-2-1	2	0-0-0-1-1-1-1	3	1-0-0-0-1-2-2		

Date & Time		Date & Time
of Issue UTC	Type of Alert or Warning	of Event UTC
26 Dec 1958	WARNING: Geomagnetic $K = 4$	26/1958 - 2359
26 Dec 2005	ALERT: Geomagnetic $K = 4$	26/2005
26 Dec 2324	EXTENDED WARNING: Geomagnetic K = 4	26/1958 - 27/0600
27 Dec 1600	ALERT: Electron 2MeV Integral Flux >= 1000pfu	27/1545
29 Dec 1803	ALERT: Electron 2MeV Integral Flux >= 1000pfu	29/1745
29 Dec 1854	WATCH: Geomagnetic Storm Category G1 predicte	d
31 Dec 2011	WARNING: Geomagnetic $K = 4$	31/2010 - 01/0600

Alerts and Warnings Issued

Twenty-seven Day Outlook

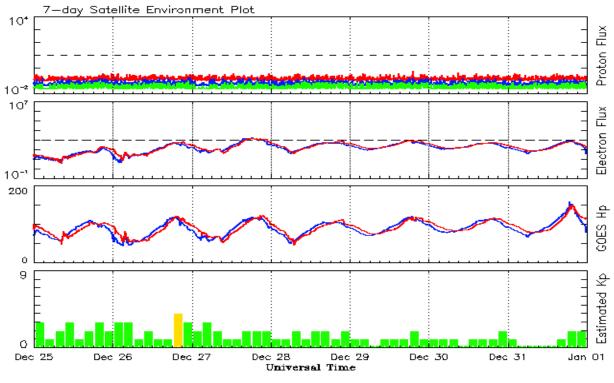
Date	Radio Flux 10.7cm	Planetary A Index	Largest Kp Index	Date	Radio Flux 10.7cm	•	Largest Kp Index
01 Jan	68	25	5	15 Jan	72	6	2
02	68	15	4	16	72	5	2
03	68	8	3	17	72	5	2
04	68	5	2	18	72	5	2
05	70	5	2	19	72	5	2
06	70	5	2	20	72	12	4
07	70	10	3	21	72	10	3
08	70	12	4	22	72	8	3
09	70	6	2	23	72	6	2
10	70	5	2	24	72	5	2
11	70	5	2	25	70	5	2
12	70	5	2	26	68	5	2
13	72	22	5	27	68	6	4
14	72	16	4				

				\boldsymbol{E}	nerge	tic Ev	ents					
		Time		X·	-ray	Opti	cal Informat	ion	Р	eak	Sweep	Freq
	HalfIntegImp/LocationRgnRadio Flux									Inter	nsity	
Date	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245	2695	II	IV
No E	vents O	bserve	d									
					Fla	re List	4					
								Optic	al			
		Tin	ne			X-ray	Imp/	L	ocation	Rg	gn	
Date	Beg	in N	Max	End		Class	Brtns	La	at CMD	#	ŧ	
25 Dec	071	1 0	716	0728		B1.6				269	92	
28 Dec	222	5 2	229	2233		B8.3				269	92	
29 Dec	0114	4 0	119	0121		B1.1						

				nue	Sion L) ((11111)	ur y								
	Locatio	on	Su	inspot C	haracte	ristics]	Flares	3			
		Helio	Area	Extent	Spot	Spot	Mag	X	K-ray			0	ptica	l	
Date	Lat CMD	Lon 1	0 ⁻⁶ hemi.	(helio)	Class	Count	Class	С	Μ	Х	S	1	2	3	4
		Regio	n 2692												
20 Dec	N16E45	86	70	4	Cao	6	В								
21 Dec	N18E30	88	70	8	Dao	8	В								
22 Dec	N18E16	89	70	8	Dao	8	В								
23 Dec	N18E03	87	90	10	Dao	12	В				1				
24 Dec	N18W09	87	160	12	Eai	12	В								
25 Dec	N18W23	88	100	11	Eao	7	В								
26 Dec	N18W35	87	30	6	Cro	4	В								
27 Dec	N17W46	85	10	1	Axx	1	А								
28 Dec	N17W60	86	plage												
29 Dec	N17W74	86	plage												
30 Dec	N17W88	87	plage												
								0	0	0	1	0	0	0	0
Crossed	West Lim	b.													

Region Summary

Crossed West Limb. Absolute heliographic longitude: 87



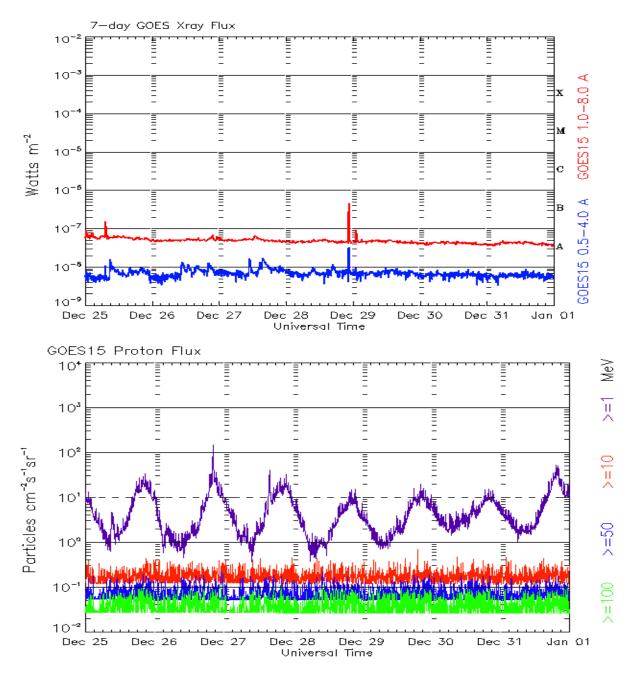
Summer Numbers Dadio Elux Coomognetic													
		Sunspot Numbers Radio Flux						Geomagnetic					
	Observed value			oth values			Smooth	Planetary					
Month	SEC RI	RI/SEC	SEC	RI		10.7 cm	Value	Ap	Value				
				2016									
January	50.4	34.2	0.67	51.4	32.6	5 103.5	99.9	10	12.3				
February	56.0	33.8	0.61	49.6	31.5	5 103.5	98.1	10	12.0				
March	40.9	32.5	0.80	47.7	30.2	2 91.6	96.6	11	11.8				
April	39.2	22.7	0.58	45.0	28.7	93.4	95.3	10	11.8				
May	48.9	30.9	0.64	42.1	26.9	93.1	93.2	12	11.7				
June	19.3	12.3	0.65	39.0	24.9	9 81.9	90.4	9	11.4				
July	36.8	19.4	0.53	36.5	23.1	85.9	87.7	10	11.2				
August	50.4	30.1	0.60	34.2	21.6	5 85.0	85.5	10	11.2				
September	37.4	26.8	0.72	32.1	19.9	87.8	83.7	16	11.3				
October	30.0	20.0	0.67	31.1	18.9	86.1	82.5	16	11.6				
November	22.4	12.8	0.57	29.4	17.9	9 78.7	81.1	10	11.6				
December	17.6	11.1	0.64	28.1	17.1	75.1	80.0	10	11.4				
				2017									
January	28.1	15.7	0.55	27.3	16.7	77.4	79.4	10	11.3				
February	22.0	15.8	0.71	25.5	15.9	9 76.9	78.7	10	11.3				
March	25.4	10.6	0.42	24.6	15.5	5 74.6	78.6	15	11.5				
April	30.4	19.4	0.64	24.3	14.9	80.9	78.4	13	11.5				
May	18.1	11.3	0.62	23.1	14.0) 73.5	77.7	9	11.3				
June	18.0	11.5	0.64	22.0		74.8	77.3	7	11.3				
July	18.8	11.0	0.59			77.7		9					
August	25.0	19.9	0.80			77.9		12					
September	42.2	26.2	0.62			92.0		19					
October	16.0	7.9	0.49			76.4		11					
November		3.4	0.44			72.1		11					
December	7.6					71.5		8					

Recent Solar Indices (preliminary) Observed monthly mean values

Note: Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 25 December 2017

The proton flux plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by the SWPC Primary GOES satellite, near West 75, for each of three energy thresholds: greater than 10, 50, and 100 MeV.


The electron flux plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV by the SWPC Primary GOES satellite.

The Hp plot contains the five minute averaged Hp magnetic field component in nanoteslas (nT) as by the SWPC Primary GOES satellite. The Hp component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

The Estimated 3-hour Planetary Kp-index is derived at the NOAA Space Weather Prediction Center using data from the following ground-based magnetometers: Boulder, Colorado; Chambon la Foret, France; Fredericksburg, Virginia; Fresno, California; Hartland, UK; Newport, Washington; Sitka, Alaska. These data are made available thanks to the cooperative efforts between SWPC and data providers around the world, which currently includes the U.S. Geological Survey, the British Geological Survey, and the Institut de Physique du Globe de Paris.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are 'global' parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

The x-ray plots contains five-minute averages x-ray flux (Watt/m²) as measure by the SWPC primary GOES X-ray satellite, usually at West 105 longitude, in two wavelength bands, 0.05 - 0.4 and 0.1 - 0.8 nm. The letters A, B, C, M and X refer to x-ray event levels for the 0.1 - 0.8 nm band.

The proton plot contains the five-minute averaged intergral flux units (pfu = protons/cnf - sec - sr) as measured by the primary SWPC GOES Proton satellite for each of the energy thresholds: >1, >10, >30, and >100 MeV. The P10 event threshold is 10 pfu at greater than 10 MeV.

Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

Notice: The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

http://spaceweather.gov/weekly/ -- Current and previous year http://spaceweather.gov/ftpmenu/warehouse.html -- Online achive from 1997 http://spaceweather.gov/ftpmenu/ -- Some content as ascii text http://spaceweather.gov/SolarCycle/ -- Solar Cycle Progression web site

http://spaceweather.gov/contacts.html -- Contact and Copyright information http://spaceweather.gov/weekly/Usr_guide.pdf -- User Guide

