Space Weather Highlights 04 December - 10 December 2017

Solar activity was at very low levels. Regions 2690 (N07, L=332, class/area Bxo/010 on 06 Dec) and 2691 (S03, L=221, class/area Axx/010 on 10 dec) were both relatively quiet and stable throughout the period. No Earth-directed CMEs were observed.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at moderate levels on 04-05 Dec and increased to high levels on 06-10 Dec following CH HSS influence.

Geomagnetic field activity was at quiet to active levels on 04-06 Dec with G1 (Minor) storm conditions observed on 05 Dec due to influence from a positive polarity CH HSS. Quiet to unsettled conditions were observed on 07 Dec as CH HSS effects waned. Quiet conditions prevailed for the remainder of the period.

Space Weather Outlook 11 December - 06 January 2018

Solar activity is expected to be at very low levels throughout the period.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to reach high levels on 11 Dec, 13-17 Dec, 19-21 Dec and 02-06 Jan following recurrent CH HSS events. Normal to moderate levels are expected at all other times during the period.

Geomagnetic field activity is expected to be at quiet to active levels on 11-13 Dec, decreasing to quiet to unsettled levels on 14 Dec due to positive polarity CH HSS effects. Quiet conditions are expected on 15-16 Dec. Unsettled to active conditions are expected on 17-21 Dec, with G1 (Minor) storm levels on 18 Dec due to recurrent positive polarity CH HSS influence. Quiet conditions are anticipated from 22-26 Dec, followed by unsettled to active levels on 27-28 Dec due to negative polarity CH HSS effects. A return to quiet conditions is expected on 29-30 Dec. Predominately unsettled to active conditions are expected on 31 Dec-03 Jan, with G1 (Minor) levels likely on 01 Jan, due to effects from a recurrent positive polarity CH HSS. Quiet conditions are expected for the remainder of the period.

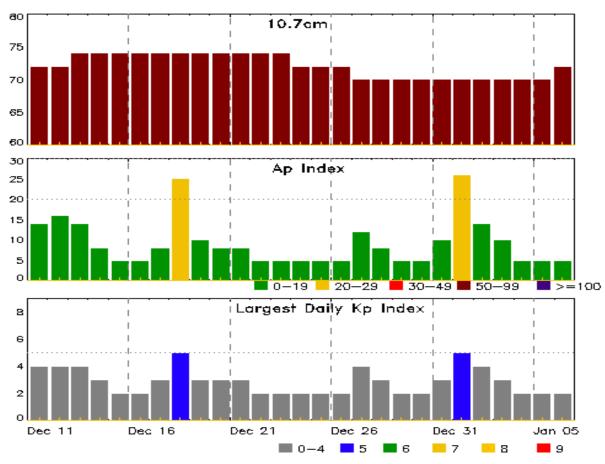
	Radio	Sun	Sunspot		X-ray		Flares							
	Flux	spot	Area	Ba	ckground		X-ray							
Date	10.7cm	No.	(10 ⁻⁶ hemi	.)	Flux		C M	Х	S	1	2 3	4		
04 December	68	0	0	A3.1	0	0	0	0	0	0	0	0		
05 December	68	0	0	A3.1	0	0	0	0	0	0	0	0		
06 December	68	13	10	A3.3	0	0	0	0	0	0	0	0		
07 December	68	11	10	A3.5	0	0	0	0	0	0	0	0		
08 December	70	0	0	A3.3	0	0	0	0	0	0	0	0		
09 December	71	0	0	A3.7	0	0	0	0	0	0	0	0		
10 December	72	11	10	A4.5	0	0	0	0	0	0	0	0		

Daily Solar Data

Daily Particle Data

	-	Proton Fluen ons/cm ² -da			Electron Fluence (electrons/cm ² -day -sr)					
Date	>1 MeV	>10 MeV	>100 MeV		>0.6 MeV	>2MeV	>4 MeV			
04 December	9.9	e+06	1.6e+04	4.1	le+03	4.6e+06				
05 December	1.0	1.0e+08		3.7	7e+03	5.3e+06				
06 December	4.2	e+07	1.5e+04	3.5	5e+03	7.3e+07				
07 December	3.2	e+08	1.5e+04	3.7	7e+03	1.30	e+08			
08 December	1.3	e+07	1.5e+04	3.6	5e+03	1.40	e+08			
09 December	2.1e+07		1.6e+04	3.8	8e+03	1.40	e+08			
10 December	1.4	1.4e+08		4.1	le+03	1.30	e+08			

Daily Geomagnetic Data


	Mi	ddle Latitude	Н	igh Latitude	Estimated			
	Fr	edericksburg		College	Planetary			
Date	А	K-indices	А	A K-indices		K-indices		
04 December	6	0-0-2-2-3-2-2	15	0-0-1-3-5-3-4-3	11	0-0-2-1-2-4-3-4		
05 December	21	3-3-4-4-4-3-3	55	3-2-5-7-7-5-4-3	29	4-3-4-5-5-4-4-4		
06 December	13	3-4-3-2-2-3-2	22	2-4-4-5-4-4-2-1	16	3-4-3-2-3-3-3-2		
07 December	9	2-2-2-1-3-3-2-2	12	1-1-3-1-5-3-2-1	10	2-3-2-1-3-3-2-2		
08 December	4	1-1-2-1-1-1-1-1	8	2-1-2-3-4-1-0-0	5	2-2-2-1-2-1-1-1		
09 December	3	1-1-0-0-1-2-1-1	2	0-0-0-1-2-2-0-0	4	1-1-1-1-1-1-0		
10 December	2	0-0-2-0-1-0-0-1	2	0-0-2-0-2-0-0-1	2	0-0-1-0-1-1-0-1		

Date & Time of Issue UTC	Type of Alert or Warning	Date & Time of Event UTC			
04 Dec 0521	WARNING: Geomagnetic $K = 4$	04/0520 - 1500			
04 Dec 1620	WARNING: Geomagnetic $K = 4$	04/1620 - 05/0600			
04 Dec 1801	ALERT: Geomagnetic $K = 4$	04/1759			
05 Dec 0550	EXTENDED WARNING: Geomagnetic $K = 4$	04/1620 - 05/1500			
05 Dec 0818	WARNING: Geomagnetic $K = 5$	05/0818 - 1500			
05 Dec 1017	ALERT: Geomagnetic $K = 5$	05/1017			
05 Dec 1408	ALERT: Geomagnetic $K = 5$	05/1407			
05 Dec 1417	WARNING: Geomagnetic $K = 6$	05/1420 - 2100			
05 Dec 1417	EXTENDED WARNING: Geomagnetic $K = 4$	04/1620 - 06/0900			
05 Dec 1417	EXTENDED WARNING: Geomagnetic $K = 5$	5 05/0818 - 06/0300			
06 Dec 1359	ALERT: Electron 2MeV Integral Flux >= 1000pft	u 06/1340			
06 Dec 1917	WARNING: Geomagnetic $K = 4$	06/1920 - 2359			
07 Dec 0831	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	06/1340			
08 Dec 0856	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	06/1340			
09 Dec 0751	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	06/1340			
10 Dec 0500	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	06/1340			

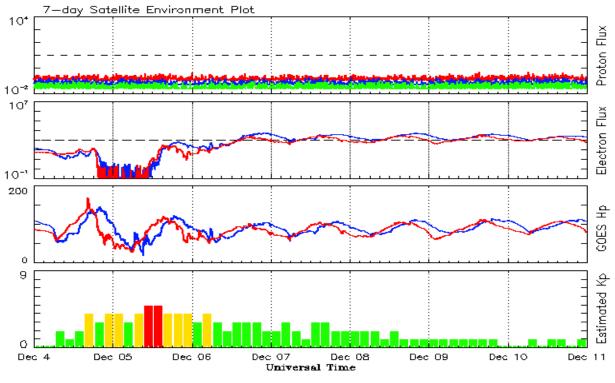
Alerts and Warnings Issued

Twenty-seven Day Outlook

Date	Radio Flux 10.7cm	Planetary A Index	Largest Kp Index	Date	Radio Flux 10.7cm	•	Largest Kp Index
11 Dec	72	14	4	25 Dec	72	5	2
12	72	16	4	26	72	5	2
13	74	14	4	27	70	12	4
14	74	8	3	28	70	8	3
15	74	5	2	29	70	5	2
16	74	5	2	30	70	5	2
17	74	8	3	31	70	10	3
18	74	25	5	01 Jan	70	26	5
19	74	10	3	02	70	14	4
20	74	8	3	03	70	10	3
21	74	8	3	04	70	5	2
22	74	5	2	05	70	5	2
23	74	5	2	06	72	5	2
24	72	5	2				

				E	nerge	tic Ev	ents						
Time X-ray Optical Information Peak Sweep												5 Freq	
			Half		Integ	Imp/	Location	Rgn	Radi	Radio Flux In			
Date	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245	2695	II	IV	
No Ev	No Events Observed												
	Flare List												
								Optic	al				
		Tin	ne			X-ray	Imp/	L	ocation	R	gn		
Date	Begi	in N	Max	End		Class	Brtns	La	at CMD	#	ŧ		
07 Dec	0320	0 0	323	0328		B1.0				269	90		
10 Dec	104	6 1	054	1113		B1.5							

				Reg	gion S	Summ	ary								
	Location Sunspot Characteristics								Flares						
		Helio	Area	÷						0	Optical				
Date	Lat CMD	Lon	10 ⁻⁶ hemi.	(helio)	Class	Count	Class	С	М	Х	S	1	2	3	4
	Region 2690														
06 Dec	N07W17	332	10	2	Bxo	3	В								
07 Dec	N06W32	334	10	1	Axx	1	А								
08 Dec	N06W46	335	plage												
09 Dec	N06W59	335	plage												
10 Dec	N06W72	335	plage												
								0	0	0	0	0	0	0	0
Still on Absolut	Disk. e heliograp	hic lon	gitude: 3	32											
		Regio	on 2691												
10 Dec	S03E42	221	10	1	Axx	1	А	0	0	0	0	0	0	0	0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														



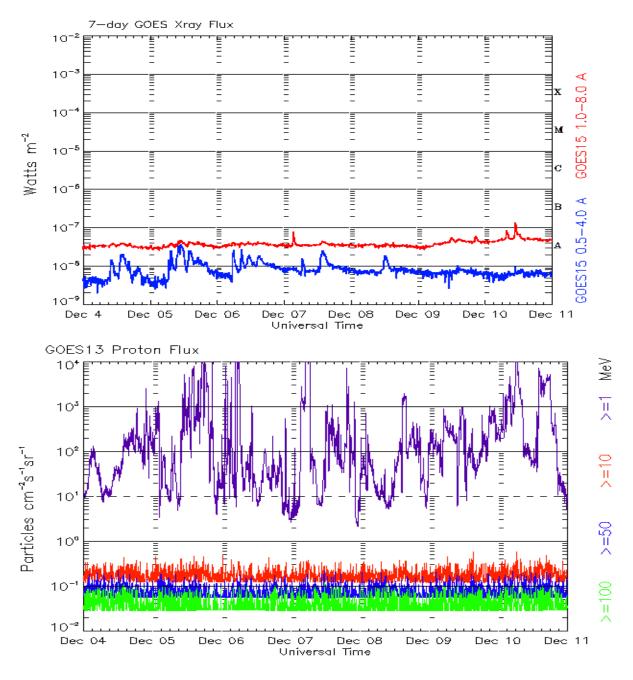
Observed montility mean values											
		Sunspot N			Radio		Geomagnetic				
	Observed values		Smooth values			Penticton		Planetary			
Month	SEC RI	RI/SEC	SEC	C RI		10.7 cm	Value	Ap	Value		
2015											
December	54.1	34.8	0.64	55.1	34.7	112.8	102.5	15	12.5		
				2016							
January	50.4	34.2	0.67	51.4	32.6	103.5	99.9	10	12.3		
February	56.0	33.8	0.61	49.6	31.5	103.5	98.1	10	12.0		
March	40.9	32.5	0.80	47.7	30.2	91.6	96.6	11	11.8		
April	39.2	22.7	0.58	45.0	28.7	93.4	95.3	10	11.8		
May	48.9	30.9	0.64	42.1	26.9	93.1	93.2	12	11.7		
June	19.3	12.3	0.65	39.0	24.9	81.9	90.4	9	11.4		
July	36.8	19.4	0.53	36.5	23.1	85.9	87.7	10	11.2		
August	50.4	30.1	0.60	34.2	21.6	6 85.0	85.5	10	11.2		
September	37.4	26.8	0.72	32.1	19.9	87.8	83.7	16	11.3		
October	30.0	20.0	0.67	31.1	18.9	86.1	82.5	16	11.6		
November	22.4	12.8	0.57	29.4	17.9	78.7	81.1	10	11.6		
December	17.6	11.1	0.64	28.1	17.1	75.1	80.0	10	11.4		
				2017							
January	28.1	15.7	0.55	27.3	16.7	77.4	79.4	10	11.3		
February	22.0	15.8	0.71	25.5	15.9	76.9	78.7	10	11.3		
March	25.4	10.6	0.42	24.6	15.5	74.6	78.6	15	11.5		
April	30.4	19.4	0.64	24.3	14.9	80.9	78.4	13	11.5		
May	18.1	11.3	0.62	23.1	14.0		77.7		11.3		
June	18.0	11.5	0.64			74.8		7			
July	18.8	11.0	0.59			77.7		9			
August	25.0	19.9	0.80			77.9		12			
September		26.2	0.62			92.0		19			
October	16.0	7.9	0.49			76.4		11			
November		3.4	0.44			70.1		11			

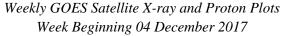
Recent Solar Indices (preliminary) Observed monthly mean values

Note: Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 04 December 2017

The proton flux plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by the SWPC Primary GOES satellite, near West 75, for each of three energy thresholds: greater than 10, 50, and 100 MeV.


The electron flux plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV by the SWPC Primary GOES satellite.


The Hp plot contains the five minute averaged Hp magnetic field component in nanoteslas (nT) as by the SWPC Primary GOES satellite. The Hp component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

The Estimated 3-hour Planetary Kp-index is derived at the NOAA Space Weather Prediction Center using data from the following ground-based magnetometers: Boulder, Colorado; Chambon la Foret, France; Fredericksburg, Virginia; Fresno, California; Hartland, UK; Newport, Washington; Sitka, Alaska. These data are made available thanks to the cooperative efforts between SWPC and data providers around the world, which currently includes the U.S. Geological Survey, the British Geological Survey, and the Institut de Physique du Globe de Paris.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are 'global' parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

The x-ray plots contains five-minute averages x-ray flux (Watt/m²) as measure by the SWPC primary GOES X-ray satellite, usually at West 105 longitude, in two wavelength bands, 0.05 - 0.4 and 0.1 - 0.8 nm. The letters A, B, C, M and X refer to x-ray event levels for the 0.1 - 0.8 nm band.

The proton plot contains the five-minute averaged intergral flux units (pfu = protons/cnf - sec - sr) as measured by the primary SWPC GOES Proton satellite for each of the energy thresholds: >1, >10, >30, and >100 MeV. The P10 event threshold is 10 pfu at greater than 10 MeV.

Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

Notice: The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

http://spaceweather.gov/weekly/ -- Current and previous year http://spaceweather.gov/ftpmenu/warehouse.html -- Online achive from 1997 http://spaceweather.gov/ftpmenu/ -- Some content as ascii text http://spaceweather.gov/SolarCycle/ -- Solar Cycle Progression web site

http://spaceweather.gov/contacts.html -- Contact and Copyright information http://spaceweather.gov/weekly/Usr_guide.pdf -- User Guide

