Solar activity was at very low levels. There were no observable flares reported and no Earth-directed coronal mass ejections observed during the period.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit reached high levels on 30 Oct - 01 Nov, moderate levels on 02 Nov, and normal levels on 03-05 Nov. The largest flux of the period was 3,668 pfu observed at 30/1610 UTC.

Geomagnetic field activity ranged from quiet to active levels. The period began under nominal solar wind conditions with wind speeds ranging between 260 to 320 km/s and total field measurements between 1 and 4 nT. The geomagnetic field was at quiet levels on 30 Oct - 01 Nov. At approximately 02/0100 UTC, wind speeds began to increase and total field became enhanced due to the arrival of a weak, negative polarity, coronal hole high speed stream (CH HSS). Wind speed continued to increase to a period high of 458 km/s at 04/1701 UTC, total field achieved a max of 14 nT at 02/1115 UTC and the Bz component of the interplanetary magnetic field dropped to a low of -7 nT at 02/1944 UTC as a result of this feature. The geomagnetic field responded with quiet to active conditions on 02-03 Nov. The remainder of the period was indicative of waning CH HSS influence with decreasing wind speeds and less enhanced total field. Quiet conditions were observed on 04-05 Nov.

Space Weather Outlook 06 November - 02 December 2017

Solar activity is expected to be at very low levels throughout the outlook period (06 Nov - 02 Dec) due to an absence of returning sunspots and a spotless solar disk.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is likely to be at high levels on 08-15, 17-18, 21-28 Nov with very high levels on 11-14 Nov due to recurrent CH HSS influence.

Geomagnetic field activity is expected to be at unsettled to active levels on 06-12, 15-17, 20-22, 29-30 Nov, with G1 (Minor) storm levels likely on 07-11, 20-22 Nov due to recurrent CH HSS effects.

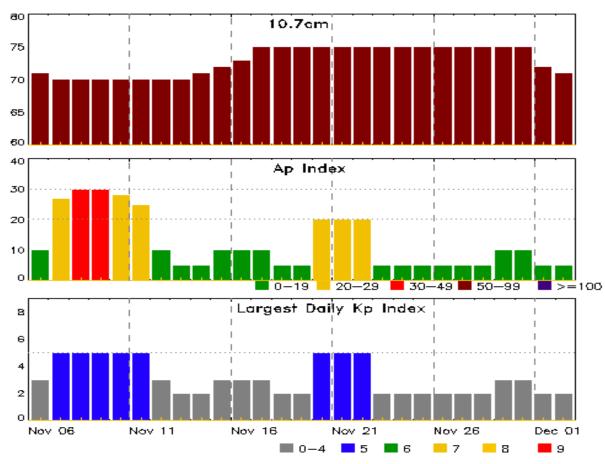
			Dun	5 200		•								
	Radio	Sun	Sunspot		X-ray		Flares							
	Flux	spot	Area	Bac	ckground		X-ray	y		O	ptical			
Date	10.7cm	No.	(10 ⁻⁶ hemi	.)	Flux		C M	Х	S	1	2 3	4		
30 October	76	22	10	A5.7	0	0	0	0	0	0	0	0		
31 October	75	11	0	A5.5	0	0	0	0	0	0	0	0		
01 November	73	0	0	A5.3	0	0	0	0	0	0	0	0		
02 November	74	0	0	A5.2	0	0	0	0	0	0	0	0		
03 November	73	0	0	A5.4	0	0	0	0	0	0	0	0		
04 November	72	0	0	A5.0	0	0	0	0	0	0	0	0		
05 November	71	0	0	A4.2	0	0	0	0	0	0	0	0		

Daily Solar Data

Daily Particle Data

	-	Proton Fluen tons/cm ² -da				Electron Flue etrons/cm ² -da		
Date	>1 MeV	>10 MeV	>100 MeV	-	>0.6 MeV	>2MeV	>4 MeV	
30 October	1.()e+07	1.5e+04	3.	3e+03	2.0e+08		
31 October	3.0)e+06	1.5e+04	3.	6e+03	1.7e+08		
01 November	7.4	4e+06	1.5e+04	3.	8e+03	6.9e+07		
02 November	2.2	2e+07	1.6e+04	1.6e+04 3.5e+03			e+06	
03 November	1.9	9e+07	1.5e+04	3.	5e+03	1.60	e+06	
04 November	4.()e+07	1.5e+04	1.5e+04 3.5e+03			e+06	
05 November	3.1	le+07	1.5e+04	1.5e+04 3.3e+03			e+06	

Daily Geomagnetic Data


	Mi	ddle Latitude	Hi	gh Latitude	Estimated		
	Fre	edericksburg		College	Planetary		
Date	A K-indices		A K-indices		А	K-indices	
30 October	1	0-1-0-0-1-0-0-0	0	0-0-0-0-0-0-0-0	3	1-1-0-0-1-0-0-1	
31 October	2	1-0-0-0-2-1-0-0	1	0-0-0-2-1-0-0-0	3	1-0-0-1-2-0-0-0	
01 November	2	1-0-0-1-1-1-1-1	2	0-0-0-1-3-0-0-0	4	1-0-1-1-1-1-1-1	
02 November	12	3-2-1-1-2-1-4-4	3	0-0-2-2-1-0-1-1	8	3-2-2-1-2-1-2-3	
03 November	7	3-2-2-3-0-1-1	15	2-1-2-5-5-1-0-1	9	4-2-2-3-1-1-1	
04 November	2	1-1-0-1-1-1-0-1	3	0-0-1-1-2-2-1-0	4	1-1-1-1-1-1-1-1	
05 November	1	1-0-0-1-0-0-0	0	0-0-0-0-0-0-0-0	3	1-1-0-0-0-1-1	

Date & Time of Issue UTC		Date & Time of Event UTC
30 Oct 0506	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	24/1245
31 Oct 0500	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	24/1245
01 Nov 1021	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	24/1245
03 Nov 0003	WARNING: Geomagnetic $K = 4$	03/0001 - 0900
03 Nov 0233	ALERT: Geomagnetic $K = 4$	03/0233
03 Nov 0824	EXTENDED WARNING: Geomagnetic K =	4 03/0001 - 1500
04 Nov 1759	WATCH: Geomagnetic Storm Category G1 predic	eted
05 Nov 1457	WATCH: Geomagnetic Storm Category G1 predic	eted

Alerts and Warnings Issued

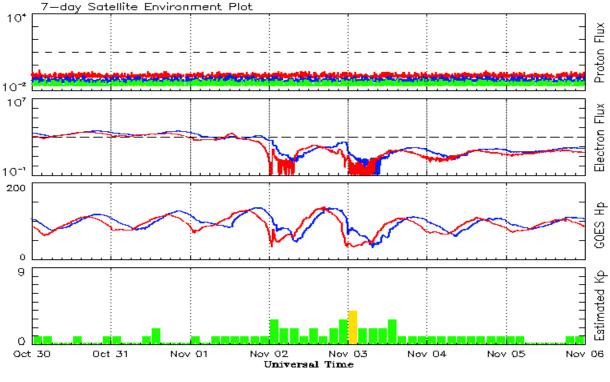
Twenty-seven Day Outlook

Date	Radio Flux 10.7cm	Planetary A Index	Largest Kp Index	Date	Radio Flux 10.7cm	-	Largest Kp Index
06 Nov	71	10	3	20 Nov	75	20	5
07	70	27	5	21	75	20	5
08	70	30	5	22	75	20	5
09	70	30	5	23	75	5	2
10	70	28	5	24	75	5	2
11	70	25	5	25	75	5	2
12	70	10	3	26	75	5	2
13	70	5	2	27	75	5	2
14	71	5	2	28	75	5	2
15	72	10	3	29	75	10	3
16	73	10	3	30	75	10	3
17	75	10	3	01 Dec	72	5	2
18	75	5	2	02	71	5	2
19	75	5	2				

				E	nerge	tic Ev	ents					
		Time		X	-ray	Opti	cal Informat	ion	Р	eak	Sweep Free	
			Half		Integ	Imp/	Location	Rgn	Rgn <u>Radio Fluz</u>		Intensity	
Date	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245	2695	II	IV
No E	No Events Observed											
					Fla	re List	ţ					
								Optic	al			
		Tim	ie			X-ray	Imp/	L	ocation	R	gn	
Date No I	Begi F lares Ob	in N served	/lax	End		Class	Brtns	La	at CMD	ŧ	¥	

				Keg	gion 2	Summ	ary								
	Locatio	on	Su	nspot C	haracte	ristics				I	Flares				
		Helio	Area	Extent	Spot	Spot	Mag	<u> </u>	K-ray			0	ptica	ıl	
Date	Lat CMD	Lon 1	0 ⁻⁶ hemi.	(helio)	Class	Count	Class	С	Μ	Х	S	1	2	3	4
		Desig	- 2695												
		Kegio	n 2685												
20 Oct	S10E85	129	plage						1						
21 Oct	S11E74	128	50	2	Hax	1	А								
22 Oct	S09E58	131	70	2	Hax	3	А								
23 Oct	S09E45	130	60	2	Hax	1	А								
24 Oct	S09E31	131	60	2	Hsx	1	Α								
25 Oct	S09E17	132	50	2	Hsx	2	А								
26 Oct	S09E04	132	30	1	Hsx	1	А								
27 Oct	S09W09	132	30	1	Hrx	1	А								
28 Oct	S08W22	131	10	1	Hrx	1	А								
29 Oct	S09W34	130	10	1	Axx	1	А								
30 Oct	S09W49	132	0	1	Axx	1	А								
31 Oct	S09W63	133	plage												
01 Nov	S09W77	134	plage												
			~ -					0	1	0	0	0	0	0	0
Died on	Disk.														
Absolut	e heliograp	hic long	gitude: 1	32											
		Regio	n 2686												
23 Oct	N12E67	108	30	2	Hax	2	А								
24 Oct	N12E53	109	30	2	Hax	2	A								
25 Oct	N12E39	110	20	1	Hsx	2	A								
26 Oct	N12E27	109	20	1	Hrx	2	A								
27 Oct	N13E15	108	30	2	Hax	2	A								
28 Oct	N13E02	108	10	1	Hrx	1	A								
29 Oct	N13W12	108	10	1	Hrx	2	A								
30 Oct	N13W26	100	10	1	Axx	1	A								
31 Oct	N13W39	109	0	1	Axx	1	A								
01 Nov	N13W53	110	plage	1	1 1/1/1	1	11								
01 Nov 02 Nov	N13W67	111	plage												
	N13W81	111	plage												
05 1107	1115 1101	111	plage					0	0	0	Ο	0	0	0	0
Crossed	West Lim	h						0	U	0	U	0	0	0	0
	e heliograp		ritude 1	08											
AUSUIU	e nenograp	ine iong	situde. I	00											

Region Summary



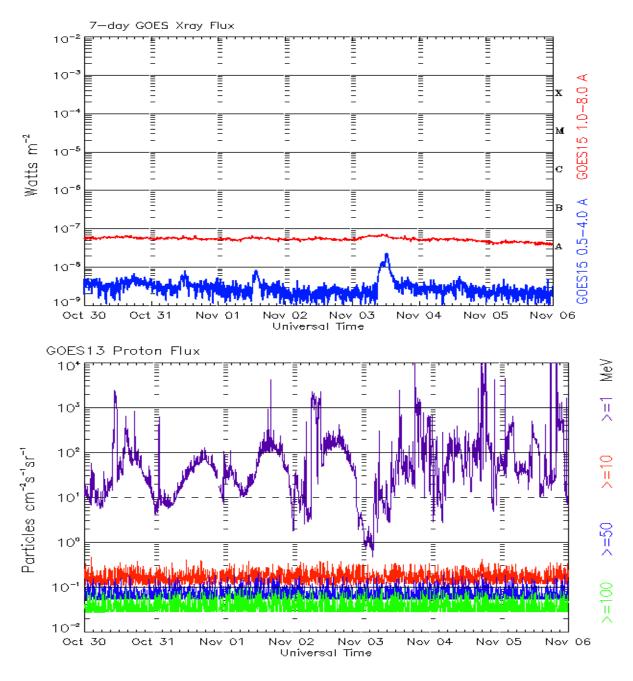
	Sunspot Numbers Radio Flux Geomagnetic												
		-						Geomagnetic					
	Observed values			oth values		Penticton		Planetary					
Month	SEC RI	RI/SEC	SEC	C RI		10.7 cm	Value	Ap	Value				
				2015									
November	61.8	37.3	0.61	59.0	36.7	109.6	105.3	13	12.5				
December	54.1	34.8	0.64	55.1	34.7	112.8	102.5	15	12.5				
				2016									
January	50.4	34.2	0.67	51.4	32.6	103.5	99.9	10	12.3				
February	56.0	33.8	0.61	49.6	31.5		98.1	10	12.0				
March	40.9	32.5	0.80	47.7	30.2	91.6	96.6	11	11.8				
April	39.2	22.7	0.58	45.0	28.7		95.3		11.8				
May	48.9	30.9	0.64	42.1	26.9		93.2		11.7				
June	19.3	12.3	0.65	39.0	24.9	81.9	90.4	9	11.4				
т 1	26.9	10.4	0.52	265	02.1	95.0	077	10	11.0				
July	36.8	19.4	0.53	36.5	23.1		87.7		11.2				
August	50.4	30.1	0.60	34.2	21.6		85.5		11.2				
September	37.4	26.8	0.72	32.1	19.9	87.8	83.7	16	11.3				
October	30.0	20.0	0.67	31.1	18.9	86.1	82.5	16	11.6				
November	22.4	12.8	0.57	29.4	17.9	78.7	81.1	10	11.6				
December	17.6	11.1	0.64	28.1	17.1	75.1	80.0	10	11.4				
				2017									
January	28.1	15.7	0.55	27.3	16.7		79.4		11.3				
February	22.0	15.8	0.71	25.5	15.9	76.9	78.7	10	11.3				
March	25.4	10.6	0.42	24.6	15.5	74.6	78.6	15	11.5				
A '1	20.4	10.4	0.64	24.2	140		70.4	10	11.5				
April	30.4	19.4	0.64	24.3	14.9		78.4		11.5				
May	18.1	11.3	0.62			73.5		9					
June	18.0	11.5	0.64			74.8		7					
July	18.8	11.0	0.59			77.7		9					
August	25.0	19.9	0.80			77.9		12					
September		26.2	0.62			92.0		19					
± · · · ·	-							-					
October	16.0	7.9	0.49			76.4		11					

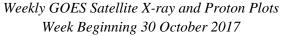
Recent Solar Indices (preliminary) Observed monthly mean values

Note: Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 30 October 2017

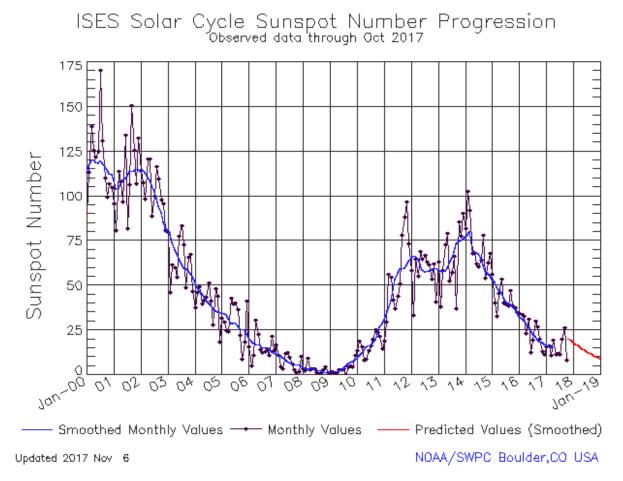
The proton flux plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by the SWPC Primary GOES satellite, near West 75, for each of three energy thresholds: greater than 10, 50, and 100 MeV.


The electron flux plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV by the SWPC Primary GOES satellite.


The Hp plot contains the five minute averaged Hp magnetic field component in nanoteslas (nT) as by the SWPC Primary GOES satellite. The Hp component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

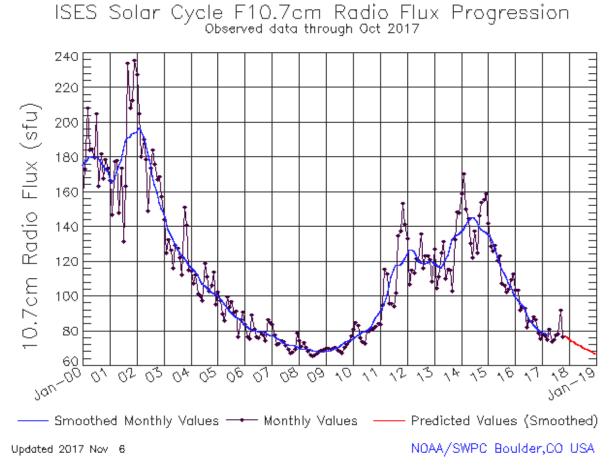
The Estimated 3-hour Planetary Kp-index is derived at the NOAA Space Weather Prediction Center using data from the following ground-based magnetometers: Boulder, Colorado; Chambon la Foret, France; Fredericksburg, Virginia; Fresno, California; Hartland, UK; Newport, Washington; Sitka, Alaska. These data are made available thanks to the cooperative efforts between SWPC and data providers around the world, which currently includes the U.S. Geological Survey, the British Geological Survey, and the Institut de Physique du Globe de Paris.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are 'global' parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.



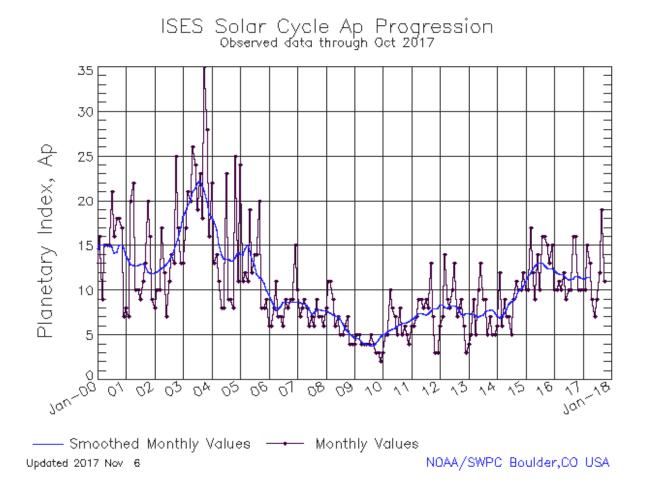
The x-ray plots contains five-minute averages x-ray flux (Watt/m²) as measure by the SWPC primary GOES X-ray satellite, usually at West 105 longitude, in two wavelength bands, 0.05 - 0.4 and 0.1 - 0.8 nm. The letters A, B, C, M and X refer to x-ray event levels for the 0.1 - 0.8 nm band.

The proton plot contains the five-minute averaged intergral flux units (pfu = protons/cnf -sec -sr) as measured by the primary SWPC GOES Proton satellite for each of the energy thresholds: >1, >10, >30, and >100 MeV. The P10 event threshold is 10 pfu at greater than 10 MeV.



Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2010	9	10	11	13	15	16	17	17	20	23	27	29
	(1)	(2)	(3)	(5)	(5)	(6)	(7)	(7)	(8)	(9)	(9)	(10)
2011	19	30	56	54	42	37	44	51	78	88	97	73
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2012	58	33	64	55	69	65	67	63	61	53	62	41
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2013	63	38	58	72	79	53	57	66	37	86	78	90
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2014	82	102	92	68	68	62	60	64	78	54	62	68
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2015	56	40	33	45	53	40	40	39	47	38	37	35
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2016	34	34	33	23	31	12	19	30	27	20	13	11
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2017	16	16	11	19	11	12	11	20	26	8	20	19
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2018	18	17	16	15	15	14	13	12	12	11	10	10
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2019	9	8	8	7	7	6	6	6	5	5	4	4
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)

Smoothed Sunspot Number Prediction



Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2010	76	77	78	78	79	80	80	81	82	85	88	90
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2011	91	93	96	100	106	111	115	118	118	118	120	122
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2012	124	127	127	126	124	121	120	119	119	119	120	120
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2013	119	118	117	117	118	121	124	128	132	135	135	136
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2014	137	139	141	144	145	146	145	143	140	138	137	137
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2015	136	134	131	127	123	120	116	113	111	108	105	103
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2016	100	98	97	95	93	90	88	86	84	83	81	80
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2017	79	79	79	78	78	78	78	78	78	77	77	77
	(***)	(***)	(***)	(***)	(1)	(1)	(2)	(3)	(4)	(4)	(5)	(6)
2018	76	76	74	73	72	71	71	70	69	69	68	67
	(7)	(8)	(8)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2019	67	66	66	65	65	65	64	64	63	63	63	63
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)

Smoothed F10.7cm Radio Flux Prediction

Solar Cycle Comparison charts are temporarily unavailable.

Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

Notice: The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

http://spaceweather.gov/weekly/ -- Current and previous year http://spaceweather.gov/ftpmenu/warehouse.html -- Online achive from 1997 http://spaceweather.gov/ftpmenu/ -- Some content as ascii text http://spaceweather.gov/SolarCycle/ -- Solar Cycle Progression web site

http://spaceweather.gov/contacts.html -- Contact and Copyright information http://spaceweather.gov/weekly/Usr_guide.pdf -- User Guide

