Space Weather Highlights 18 September - 24 September 2017

Solar activity was at very low levels with a few B-class flares observed. Old active Region 2673 (S09, L=119), a major flare producer on its previous transit, returned on 24 Sep and was numbered 2682 (S09, L=127, Hsx/180 on 24 Sep). No Earth-directed CMEs were detected during the period.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at high levels throughout the period with a maximum flux of 36,942 pfu observed at 22/1655 UTC.

Geomagnetic field activity began the period on 18 Sep at mostly unsettled to G1 (Minor) storm conditions under the influence of a positive polarity CH HSS. During the 18th, solar wind speeds peaked at near 720 km/s, total field ranged between 2-6 nT while the Bz component varied between +5 nT to -6 nT. Quiet to unsettled conditions prevailed on 19-20 Sep under waning CH HSS influence. Mostly quiet conditions, with isolated unsettled intervals, were observed from 21-24 Sep. Beginning on 19 Sep, solar wind exhibited a steady decline in speed to a low of about 320 km/s at 24/2100 UTC. Thereafter, and through the remainder of 24 Sep, solar wind speed increased to near 415 km/s, total field peaked at 10 nT while the Bz component varied between +6 nT to -9 nT. A SSBC from a positive to a negative orientation was observed at about 24/1905 UTC.

Space Weather Outlook 25 September - 21 October 2017

Solar activity is expected to be at low levels, with a slight chance for M-class activity (R1-R2, Minor-Moderate), from 25 Sep - 07 Oct and from 20-21 Oct. This is primarily due to the flare potential from Region 2682. Mostly very low levels are expected from 08-19 Oct.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at high levels on 26-27 Sep, 28 Sep - 09 Oct and 12-21 Oct due to CH HSS influence. Normal to moderate levels are expected for the remainder of the outlook period.

Geomagnetic field activity is expected to be at unsettled to active levels on 26 Sep and 30 Sep, with G1 (Minor) storm conditions are expected on 27 Sep, 29 Sep and 11-14 Oct while G2 (Major) storm conditions are expected on 28 Sep, all due to recurrent CH HSS activity. Mostly quiet conditions are expected for the remainder of the outlook period.

				,		-							
	Radio	Sun	Sunspot	X	-ray	r Fl			Flares	lares			
	Flux	spot	Area	Background		X-ray			Optical				
Date	10.7cm	No.	(10 ⁻⁶ hemi.)) F	lux	C	C M	Х	S	1	2 3	3 4	
18 September	72	12	80	A0.0	0	0	0	0	0	0	0	0	
19 September	71	11	50	A2.0	0	0	0	0	0	0	0	0	
20 September	74	22	120	A5.2	0	0	0	0	0	0	0	0	
21 September	73	22	140	A1.1	0	0	0	0	0	0	0	0	
22 September	78	22	140	A3.7	0	0	0	0	0	0	0	0	
23 September	81	12	90	A7.6	0	0	0	0	0	0	0	0	
24 September	87	22	270	A9.7	0	0	0	0	0	0	0	0	

Daily Solar Data

Daily Particle Data

			Electron Fluence							
	(pro	otons/cm ² -da	ay -sr)		(electrons/cm ² -day -sr)					
Date	>1 MeV	>10 MeV	>100 MeV		>0.6 MeV	>2MeV	>4 MeV			
18 September	6.	3e+06	2.5e+04	3.	1e+03	8.16	8.1e+08			
19 September	1.9e+06		2.4e+04	3.	2e+03	1.56	1.5e+09			
20 September	2.	4e+06	1.8e+04	3.	3e+03	1.1e+09				
21 September	7.	5e+06	1.7e+04	3.	3e+03	1.4e+09				
22 September	1.	9e+06	1.9e+04	3.	2e+03	9.56	e+08			
23 September	1.4e+06		1.8e+04	3.	3e+03	7.06	e+07			
24 September	3.6e+06		1.7e+04	3.	3e+03	1.76	e+08			

Daily Geomagnetic Data

	Middle Latitude		Н	igh Latitude	Estimated			
	Fredericksburg			College	Planetary			
Date	А	K-indices	А	K-indices	А	K-indices		
18 September	21	4-4-5-3-3-3-2-3	51	4-3-7-7-5-4-2-2	22	4-4-5-4-3-3-2-3		
19 September	6	2-1-1-2-2-1-2-2	11	1-1-0-4-3-2-2-4	8	3-2-1-2-2-3-3		
20 September	8	3-3-2-2-1-2-1	19	3-3-3-5-5-2-1-0	10	3-3-2-2-1-2-1		
21 September	7	1-2-3-2-2-1-1-2	9	1-1-4-3-4-0-0-0	7	1-2-3-2-2-0-1-2		
22 September	5	1-1-1-1-2-2-2	6	1-1-3-1-2-2-2-1	5	1-1-1-1-1-2-2		
23 September	4	1-1-1-1-2-2-1	5	1-1-3-2-2-0-1-1	5	1-2-1-1-1-2-2		
24 September	5	1-2-0-1-1-2-2-2	7	0-1-0-3-3-3-1-2	3	1-2-1-1-1-2-3		

Date & Time of Issue UTC	Type of Alert or Warning	Date & Time of Event UTC
18 Sep 0238	EXTENDED WARNING: Geomagnetic K = 4	14/1310 - 18/1200
18 Sep 0238	WARNING: Geomagnetic $K = 5$	18/0235 - 0900
18 Sep 0616	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	15/0830
18 Sep 0855	EXTENDED WARNING: Geomagnetic K = 5	18/0235 - 1500
18 Sep 0855	EXTENDED WARNING: Geomagnetic K = 4	14/1310 - 18/2359
18 Sep 0856	ALERT: Geomagnetic $K = 5$	18/0856
18 Sep 2311	EXTENDED WARNING: Geomagnetic K = 4	14/1310 - 19/0600
19 Sep 0500	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	15/0830
20 Sep 0353	WARNING: Geomagnetic $K = 4$	20/0352 - 1200
20 Sep 0505	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	15/0830
21 Sep 0500	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	15/0830
22 Sep 0500	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	15/0830
23 Sep 1206	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	15/0830
24 Sep 1105	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	15/0830
24 Sep 2110	WATCH: Geomagnetic Storm Category G1 predicted	ed
24 Sep 2304	WARNING: Geomagnetic $K = 4$	24/2303 - 25/1500

Alerts and Warnings Issued

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7cm	A Index	Kp Index	Date	10.7cm	A Index	Kp Index
25 Sep	90	16	4	09 Oct	76	5	2
26	95	8	3	10	75	5	2
27	95	25	5	11	74	25	5
28	95	32	6	12	73	25	5
29	95	25	5	13	72	25	5
30	95	12	4	14	72	20	5
01 Oct	95	8	3	15	72	8	3
02	95	8	3	16	71	8	3
03	95	8	3	17	74	5	2
04	95	5	2	18	73	5	2
05	95	5	2	19	78	5	2
06	95	5	2	20	80	5	2
07	90	5	2	21	85	5	2
08	85	5	2				

				E	nerge	IIC EV	enis					
		Time			-ray	Opti	cal Informat	Р	Peak		Sweep Freq	
			Half		Integ	Imp/	Location	Rgn	Radi	o Flux	Inte	nsity
Date	Begin	in Max Max Class Flux Brtns Lat CMD # 245 2695		II	IV							
No E	vents O	bserve	d									
					Fla	re List	÷					
								Optic	cal			
		Tin	ne			X-ray	Imp/	L	ocation	R	gn	
Date	Beg	in N	Max	End		Class	Brtns	L	at CMD	Ŧ	#	
20 Sep	013	0 0	137	0143		B1.2						
20 Sep	025	1 0	257	0321		B1.7						
20 Sep	052	5 0	531	0540		B1.4						
20 Sep	083	6 0	843	0848		B1.5						
20 Sep	0942	2 0	950	0955		B3.2				268	81	
20 Sep	123	1 1	243	1252		B5.4				268	81	
20 Sep	192	6 1	932	1937		B8.4				268	80	
20 Sep	200	0 2	003	2009		B1.0				268	80	
20 Sep	215	8 2	201	2204		B1.0				268	80	
23 Sep	055	1 0	603	0610		B3.0				268	82	
24 Sep	001	3 0	019	0026		B2.1				268	82	
24 Sep	111	8 1	122	1124		B2.8				268	82	
24 Sep	232	0 2	327	2337		B2.7				268	81	

	Locatio	on	Su	nspot C	haracte	ristics		Flares							
		Helio	Area	Extent	Spot	Spot	Mag	Χ	K-ray			0	ptica	1	
Date	Lat CMD	Lon 1	0 ⁻⁶ hemi.	(helio)	Class	Count	Class	С	Μ	Х	S	1	2	3	4
		р.	2600												
		Regio	on 2680												
10 Sep	N09E66	317	100	2	Hsx	1	А								
11 Sep	N09E53	317	80	2	Hsx	1	А								
12 Sep	N09E39	317	140	2	Hsx	1	А	2			5				
13 Sep	N09E26	317	120	2	Hsx	1	А				1				
14 Sep	N08E13	317	120	2	Hsx	1	А								
15 Sep	N08W00	317	80	2	Hsx	3	А								
16 Sep	N08W13	317	90	3	Hsx	3	А								
17 Sep	N08W27	317	80	2	Hax	3	А								
18 Sep	N08W40	317	80	2	Hsx	2	А								
19 Sep	N08W53	317	50	1	Hsx	1	А								
20 Sep	N08W67	318	60	2	Hsx	1	А								
21 Sep	N07W80	317	60	2	Hsx	1	А								
22 Sep	N07W93	319	60	2	Hsx	1	А								
								2	0	0	6	0	0	0	0
Crossed Absolut	l West Liml e heliograp	b. hic long	gitude: 3	17											
		Regio	n 2681												
20 Sen	S12F73	178	60	2	Hsy	1	Δ								
20 Sep 21 Sep	S13E59	179	80	$\frac{2}{2}$	Hsx	1	A								
21 Sep 22 Sep	S13E46	180	80	$\frac{2}{2}$	Hsx	1	Δ								
22 Sep 23 Sep	S13E32	179	90	3	Cso	2	B								
23 Sep 24 Sep	S13E19	179	90	2	Hsx	1	A								
24 660	515217	177	70	2	1157	1	1	0	0	0	0	0	0	0	0
Still on	Dick							0	U	0	U	U	0	0	0
Absolut	DISK. e heliogran	hic lone	ritude 1	79											
Absolut	c nenograp		gitude. I	1)											
		Regio	on 2682												
24 Sen	S09F71	127	180	3	Hev	1	Δ								
2.965	507171	141	100	5	110/	1	11	0	0	0	0	0	0	0	0
Still on Absolut	Disk. e heliograp	hic long	zitude: 1	27				Ū	v	0	U	0	0	0	J

Region Summary

Superot Numbers Radio Elux Geomagnetic										
	Observed values Ratio Smooth valu			th values		Penticton	Smooth	Planetary Smooth		
Month	SEC RI	RI/SEC	SEC	RI RI		10.7 cm	Value	<u>An</u>	Value	
wionth	SLC M	M/BLC	<u> </u>	0 01 5		10.7 CIII	value	<u></u>	v alue	
				2015						
September	72.5	47.2	0.65	64.0	39.5	102.1	110.8	16	12.8	
October	59.5	38.2	0.62	61.8	38.6	104.1	107.9	15	12.5	
November	61.8	37.3	0.61	59.0	36.7	109.6	105.3	13	12.5	
December	54.1	34.8	0.64	55.1	34.7	112.8	102.5	15	12.5	
				0.01.6						
Ŧ	50.4	24.2	0.67	2016	22	102 5	00.0	10	10.0	
January	50.4	34.2	0.67	51.4	32.6	103.5	99.9	10	12.3	
February	56.0	33.8	0.61	49.6	31.5	103.5	98.1	10	12.0	
March	40.9	32.5	0.80	47.7	30.2	91.6	96.6	11	11.8	
A pril	20.2	77 7	0.59	45.0	707	02.4	05.2	10	110	
April May	39.2 48.0	22.7	0.58	43.0	20.7	93.4	95.5	10	11.0	
Iviay	40.9	30.9 10.2	0.04	42.1	20.9	95.1	95.2	12	11./	
Julie	19.5	12.5	0.05	39.0	24.9	01.9	90.4	9	11.4	
July	36.8	19.4	0.53	36.5	23.1	85.9	87.7	10	11.2	
August	50.4	30.1	0.60	34.2	21.6	85.0	85.5	10	11.2	
September	37.4	26.8	0.72	32.1	19.9	87.8	83.7	16	11.3	
October	30.0	20.0	0.67	31.1	18.9	86.1	82.5	16	11.6	
November	22.4	12.8	0.57	29.4	17.9	78.7	81.1	10	11.6	
December	17.6	11.1	0.64	28.1	17.1	75.1	80.0	10	11.4	
				2017						
January	28.1	15.7	0.55	27.3	16.7	77.4	79.4	10	11.3	
February	22.0	15.8	0.71	25.5	16.0	76.9	78.7	10	11.3	
March	25.4	10.6	0.42			74.6		15		
A pril	20.4	10.6	0.64			<u>80 0</u>		12		
Apin May	30.4 19.1	19.0	0.04			72 5		15		
Iviay	10.1	11.5	0.02			75.5		9 7		
June	18.0	11.0	0.04			/4.8		/		
July	18.8	11.0	0.59			77 7		9		
August	25.0	19.9	0.80			77 9		12		
Tugust	20.0	1).)	0.00					14		

Recent Solar Indices (preliminary) Observed monthly mean values

Note: Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 18 September 2017

The proton flux plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by the SWPC Primary GOES satellite, near West 75, for each of three energy thresholds: greater than 10, 50, and 100 MeV.

The electron flux plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV by the SWPC Primary GOES satellite.

The Hp plot contains the five minute averaged Hp magnetic field component in nanoteslas (nT) as by the SWPC Primary GOES satellite. The Hp component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

The Estimated 3-hour Planetary Kp-index is derived at the NOAA Space Weather Prediction Center using data from the following ground-based magnetometers: Boulder, Colorado; Chambon la Foret, France; Fredericksburg, Virginia; Fresno, California; Hartland, UK; Newport, Washington; Sitka, Alaska. These data are made available thanks to the cooperative efforts between SWPC and data providers around the world, which currently includes the U.S. Geological Survey, the British Geological Survey, and the Institut de Physique du Globe de Paris.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are 'global' parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

The x-ray plots contains five-minute averages x-ray flux (Watt/m²) as measure by the SWPC primary GOES X-ray satellite, usually at West 105 longitude, in two wavelength bands, 0.05 - 0.4 and 0.1 - 0.8 nm. The letters A, B, C, M and X refer to x-ray event levels for the 0.1 - 0.8 nm band.

The proton plot contains the five-minute averaged intergral flux units (pfu = protons/cnf - sec - sr) as measured by the primary SWPC GOES Proton satellite for each of the energy thresholds: >1, >10, >30, and >100 MeV. The P10 event threshold is 10 pfu at greater than 10 MeV.

Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

Notice: The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

http://spaceweather.gov/weekly/ -- Current and previous year http://spaceweather.gov/ftpmenu/warehouse.html -- Online achive from 1997 http://spaceweather.gov/ftpmenu/ -- Some content as ascii text http://spaceweather.gov/SolarCycle/ -- Solar Cycle Progression web site

http://spaceweather.gov/contacts.html -- Contact and Copyright information http://spaceweather.gov/weekly/Usr_guide.pdf -- User Guide

