Solar activity was very low throughout the period. Region 2664 (N18, L=313, class/area=Dsi/100 on 27 Jun) was the most active region this week but only produced low-level B-class flare activity. A very faint CME, not associated with a flare event, was detected in coronagraph imagery midday on 27 Jun and is believed to have arrived at Earth late on 30 Jun/early on 01 Jul, causing a solar wind disturbance. Another, larger, partial halo CME associated with a long-duration B1 flare from Region 2664 was detected in coronagraph imagery midday on 28 Jun. This event is expected to arrive at Earth on 03 Jul.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit reached moderate levels on 26-30 Jun with normal levels observed on 01-02 Jul.

Geomagnetic field activity reached active and G1 (Minor) geomagnetic storm levels on 02 Jul due to the influence of a transient solar wind feature believed to be the passage of the 27 Jun CME. Quiet and quiet to unsettled conditions were observed throughout the remainder of the period under a nominal solar wind regime.

Space Weather Outlook 03 July - 29 July 2017

Solar activity is expected to be at low levels throughout the outlook period with a slight chance for isolated C-class flare activity.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to reach high levels on 16-19 Jul with moderate and normal levels expected throughout the remainder of the period.

Geomagnetic field activity is likely to reach G1 (Minor) geomagnetic storm levels on 03 Jul due to the anticipated arrival of the 28 Jun CME. G1 storm conditions are likely on 13 Jul with active levels likely on 14 Jul due to the influence of a recurrent negative polarity CH HSS. Generally quiet and quiet to unsettled conditions are expected throughout the remainder of the outlook period as a nominal solar wind regime prevails.

Daily Solar Data

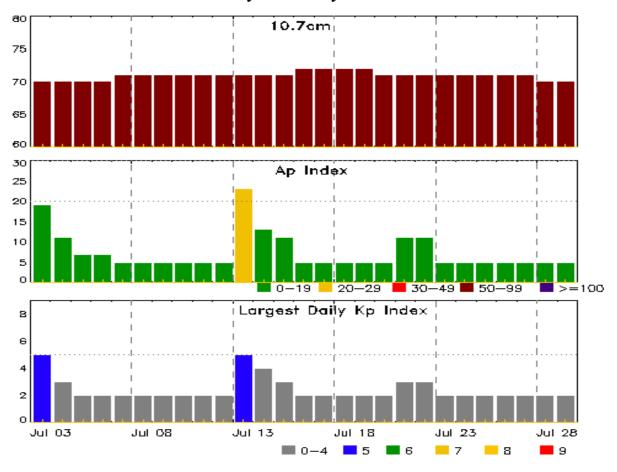
	Radi	o Sun	Su	nspot	ot X-ray		Flares						
	Flux	spot	A	rea E	Backgrou	nd	X-	-ray					
Date	10.7cr	m No.	(10^{-6})	hemi.)	Flux		C I	M X	S	1	2 3	4	
26 June	74	19	90	A5.2	0	0	0	0	0	0	0	0	
27 June	74	17	100	A5.3	0	0	0	2	0	0	0	0	
28 June	72	13	60	A5.2	0	0	0	0	0	0	0	0	
29 June	72	12	50	A4.3	0	0	0	0	0	0	0	0	
30 June	72	11	50	A3.7	0	0	0	0	0	0	0	0	
01 July	71	11	20	A3.4	0	0	0	0	0	0	0	0	
02 July	71	11	20	A3.5	0	0	0	0	0	0	0	0	

Daily Particle Data

		Proton Fluer	Electron Fluence							
	(pro	tons/cm ² -da	ay -sr)	(electrons/cm ² -day -sr)						
Date	>1 MeV	>10 MeV	>100 MeV	>0.6 MeV	>2MeV	>4 MeV				
26 June	1.6e+0	7 1.	.5e+04	3.4e+03	7.5e+	-06				
27 June	1.9e+0	7 1.	.5e+04	3.5e+03	2.0e+	-07				
28 June	1.5e+0	7 1.	.4e+04	3.3e+03	3.3e⊣	-07				
29 June	6.4e + 0	6 1.	.5e+04	3.5e+03	1.4e⊣	-07				
30 June	2.0e+0	7 1.	.5e+04	3.7e+03	1.3e+	-07				
01 July	1.4e + 0	7 1.	.5e+04	3.8e + 03	2.7e+	-06				
02 July	2.1e+0	7 1.	.5e+04	3.5e+03	-06					

Daily Geomagnetic Data

	_	Middle Latitude		High Latitude		Estimated	
		Fredericksburg		College	Planetary		
Date		A K-indices	A	K-indices	A	K-indices	
26 June	9	3-2-1-3-2-2-2	14	3-2-2-5-3-2-1-2	7	3-2-1-2-2-1-2-2	
27 June	5	1-1-1-2-2-2-1-1	5	2-1-1-2-3-1-1-0	5	2-2-1-1-1-1-0-1	
28 June	5	1-2-2-2-2-1-0	6	2-1-1-3-1-3-0-0	5	1-2-2-2-1-1-0-1	
29 June	6	1-2-2-3-2-2-1-0	7	1-2-3-4-0-0-0-1	5	1-2-2-2-1-1-1	
30 June	4	0-0-1-1-2-2-2	2	0-0-1-1-2-0-0-1	4	0-1-1-1-2-1-1-2	
01 July	14	2-4-3-2-3-3-3-2	15	2-4-3-1-4-4-2-1	11	2-3-3-2-3-3-2	
02 July	20	3-3-4-4-3-3-3-4	22	2-3-6-4-4-1-2-2	15	3-2-5-4-3-2-3-4	



Alerts and Warnings Issued

Date & Time of Issue UTC	Type of Alert or Warning	Date & Time of Event UTC
30 Jun 1518	WATCH: Geomagnetic Storm Category G1 predict	ed
01 Jul 0533	WARNING: Geomagnetic $K = 4$	01/0532 - 1200
01 Jul 1641	WARNING: Geomagnetic $K = 4$	01/1640 - 2359
01 Jul 1651	WARNING: Geomagnetic Sudden Impulse expecte	ed 01/1715 - 1745
01 Jul 1735	SUMMARY: Geomagnetic Sudden Impulse	01/1712
01 Jul 1954	WATCH: Geomagnetic Storm Category G1 predict	ed
01 Jul 2359	EXTENDED WARNING: Geomagnetic $K = 4$	01/1640 - 02/1200
02 Jul 0637	EXTENDED WARNING: Geomagnetic $K = 4$	01/1640 - 02/1500
02 Jul 0637	WARNING: Geomagnetic $K = 5$	02/0630 - 1300
02 Jul 0642	ALERT: Geomagnetic $K = 4$	02/0642
02 Jul 0900	ALERT: Geomagnetic $K = 5$	02/0859
02 Jul 1456	EXTENDED WARNING: Geomagnetic $K = 4$	01/1640 - 03/1500

Twenty-seven Day Outlook

Date	Radio Flux 10.7cm	Planetary A Index	Largest Kp Index	Date	Radio Flux 10.7cm		Largest Kp Index
03 Jul	70	19	5	17 Jul	72	5	2
04	70	11	3	18	72	5	2
05	70	7	2	19	72	5	2
06	70	7	2	20	71	5	2
07	71	5	2	21	71	11	3
08	71	5	2	22	71	11	3
09	71	5	2	23	71	5	2
10	71	5	2	24	71	5	2
11	71	5	2	25	71	5	2
12	71	5	2	26	71	5	2
13	71	23	5	27	71	5	2
14	71	13	4	28	70	5	2
15	71	11	3	29	70	5	2
16	72	5	2				

Energetic Events

	Time		X	X-ray Optical Information				P	eak	Sweep Freq			
			Half		Integ	Imp/	Location	Rgn	Radi	Radio Flux		Intensity	
Date	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245	2695	II	IV	

No Events Observed

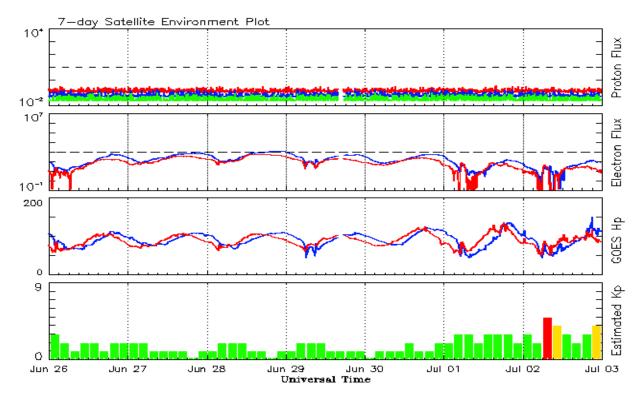
Flare List

			Optical					
		Time		X-ray	Imp/	Location	Rgn	
Date	Begin	Max	End	Class	Brtns	Lat CMD	#	
26 Jun	0723	0728	0733	B1.3			2664	
27 Jun	0448	0448	0450		SF	N19W08	2664	
27 Jun	0729	0735	0741	B1.2			2664	
27 Jun	2049	2053	2056	B1.2			2664	
27 Jun	2109	2115	2119	B2.6	SF	N19W18	2664	
28 Jun	1227	1524	1835	B1.3			2664	
02 Jul	1223	1239	1259	B3.1			2664	

Region Summary

	Location	on	Su	inspot C	haracte	ristics]	Flares	5			
		Helio	Area	Extent	Spot	Spot	Mag	X	-ray			О	ptica	1	
Date	Lat CMD	Lon 1	0 ⁻⁶ hemi.	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4
		Regio	n 2664												
20 Jun	N18E72	314	80	2	Cso	1	В								
21 Jun	N17E60	314	50	2	Hsx	1	A								
22 Jun	N17E47	312	50	1	Hsx	1	A								
23 Jun	N18E35	312	70	2	Hsx	1	Α								
24 Jun	N18E21	313	70	5	Cso	7	В								
25 Jun	N18E07	314	90	7	Cso	10	В								
26 Jun	N18W07	315	90	7	Dsi	9	BG								
27 Jun	N18W19	313	100	4	Dsi	7	В				2				
28 Jun	N18W33	314	60	5	Cso	3	В								
29 Jun	N18W46	314	50	5	Cso	2	В								
30 Jun	N17W58	313	50	3	Hsx	1	A								
01 Jul	N18W71	313	20	1	Hsx	1	A								
02 Jul	N18W85	313	20	1	Hsx	1	A	0	0	0	2	0	0	0	0

Still on Disk. Absolute heliographic longitude: 314



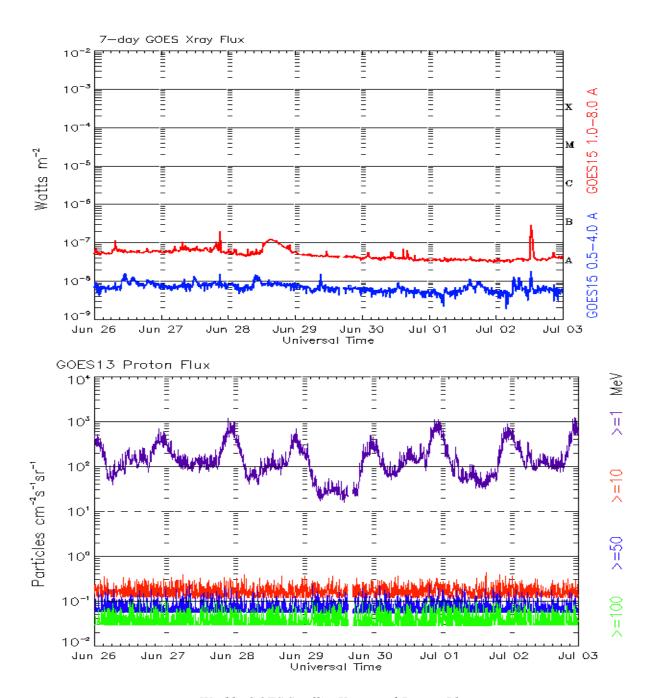
Recent Solar Indices (preliminary) Observed monthly mean values

	Sunspot Numbers Radio Flux Geomagnetic											
	Observed values	_		oth values		Penticton		Planetary	_			
Month	SEC RI	RI/SEC	SEC	RI		10.7 cm	Value	Ap	Value			
				2015				_				
July	68.4	39.5	0.58	68.2	41.0	107.0	116.0	10	13.1			
August	61.6	38.6	0.63	65.5	39.8	106.2	113.3	16	13.1			
September	72.5	47.2	0.65	64.0	39.5	102.1	110.8	16	12.8			
October	59.5	38.2	0.62	61.8	38.6	104.1	107.9	15	12.5			
November		37.3	0.61	59.0	36.7				12.5			
December	54.1	34.8	0.64	55.1	34.7		102.5		12.5			
				2016								
January	50.4	34.2	0.67	2016 51.4	32.6	103.5	99.9	10	12.3			
February	56.0	33.8	0.61	49.6	31.5		98.1	10	12.0			
March	40.9	32.5	0.80	47.7	30.2				11.8			
April	39.2	22.7	0.58	45.0	28.7				11.8			
May	48.9	30.9	0.64	42.1	26.9		93.2		11.7			
June	19.3	12.3	0.65	39.0	24.9	81.9	90.4	9	11.4			
July	36.8	19.4	0.53	36.5	23.1	85.9	87.7	10	11.2			
August	50.4	30.1	0.60	34.2	21.6	85.0	85.5	10	11.2			
September	37.4	26.8	0.72	32.1	19.9	87.8	83.7	16	11.3			
October	30.0	20.0	0.67	31.1	18.8	86.1	82.5	16	11.6			
November		12.8	0.57	29.4	17.9		81.1		11.6			
December	17.6	11.1	0.64	28.1	17.1		80.0		11.4			
				2015								
Ionnomy	20.1	155	0.55	<i>2017</i>		77.4		10				
January February	28.1 22.0	15.5 15.7	0.55			77.4 76.9		10 10				
March	25.4	10.6	0.71			70.9 74.6		15				
iviaicii	<i>4</i> 3. 4	10.0	0.42			74.0		13				
April	30.4	19.6	0.64			80.9		13				
May	18.1	11.3	0.62			73.5		9				
June	18.0	11.6	0.64			74.8		7				

Note: Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.

Weekly Geosynchronous Satellite Environment Summary
Week Beginning 26 June 2017

The proton flux plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by the SWPC Primary GOES satellite, near West 75, for each of three energy thresholds: greater than 10, 50, and 100 MeV.


The electron flux plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV by the SWPC Primary GOES satellite.

The Hp plot contains the five minute averaged Hp magnetic field component in nanoteslas (nT) as by the SWPC Primary GOES satellite. The Hp component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

The Estimated 3-hour Planetary Kp-index is derived at the NOAA Space Weather Prediction Center using data from the following ground-based magnetometers: Boulder, Colorado; Chambon la Foret, France; Fredericksburg, Virginia; Fresno, California; Hartland, UK; Newport, Washington; Sitka, Alaska. These data are made available thanks to the cooperative efforts between SWPC and data providers around the world, which currently includes the U.S. Geological Survey, the British Geological Survey, and the Institut de Physique du Globe de Paris.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are 'global' parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

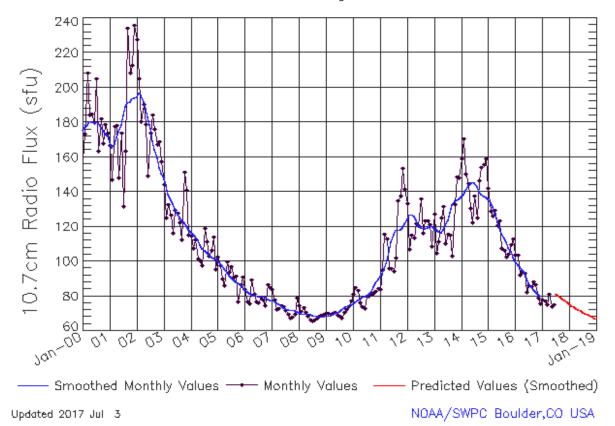
Weekly GOES Satellite X-ray and Proton Plots Week Beginning 26 June 2017

The x-ray plots contains five-minute averages x-ray flux (Watt/ m^2) as measure by the SWPC primary GOES X-ray satellite, usually at West 105 longitude, in two wavelength bands, 0.05 - 0.4 and 0.1 - 0.8 nm. The letters A, B, C, M and X refer to x-ray event levels for the 0.1 - 0.8 nm band.

The proton plot contains the five-minute averaged intergral flux units (pfu = protons/cm 2 -sec -sr) as measured by the primary SWPC GOES Proton satellite for each of the energy thresholds: >1, >10, >30, and >100 MeV. The P10 event threshold is 10 pfu at greater than 10 MeV.

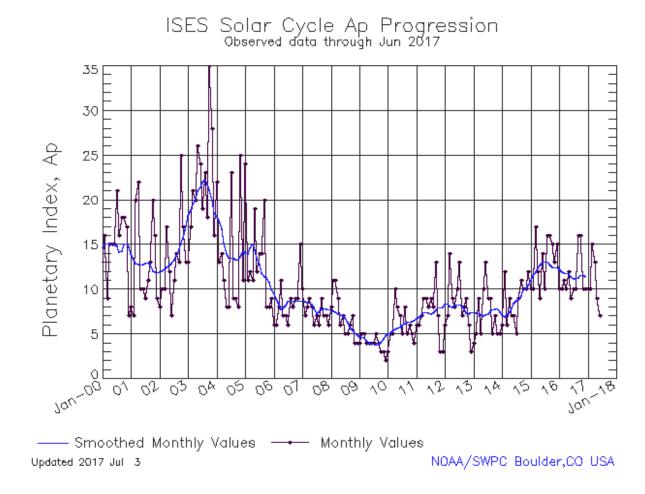
ISES Solar Cycle Sunspot Number Progression Observed data through Jun 2017

Updated 2017 Jul 3


NOAA/SWPC Boulder,CO USA

Smoothed Sunspot Number Prediction

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2010	9	10	11	13	15	16	17	17	20	23	27	29
	(1)	(2)	(3)	(5)	(5)	(6)	(7)	(7)	(8)	(9)	(9)	(10)
2011	19	30	56	54	42	37	44	51	78	88	97	73
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2012	58	33	64	55	69	65	67	63	61	53	62	41
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2013	63	38	58	72	79	53	57	66	37	86	78	90
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2014	82	102	92	68	68	62	60	64	78	54	62	68
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2015	56	40	33	45	53	40	40	39	47	38	37	35
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2016	34	34	33	23	31	12	19	30	27	20	13	11
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2017	16	16	11	20	11	12	25	24	23	21	20	19
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2018	18	17	16	15	15	14	13	12	12	11	10	10
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2019	9	8	8	7	7	6	6	6	5	5	4	4
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)


ISES Solar Cycle F10.7cm Radio Flux Progression Observed data through Jun 2017

Smoothed F10.7cm Radio Flux Prediction

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2010	76 (***)	77 (***)	78 (***)	78 (***)	79 (***)	80 (***)	80 (***)	81 (***)	82 (***)	85 (***)	88 (***)	90 (***)
2011	91 (***)	93 (***)	96 (***)	100 (***)	106 (***)	111 (***)	115 (***)	118 (***)	118 (***)	118 (***)	120 (***)	122 (***)
2012	124 (***)	127 (***)	127 (***)	126 (***)	124 (***)	121 (***)	120 (***)	119 (***)	119 (***)	119 (***)	120 (***)	120 (***)
2013	119 (***)	118 (***)	117 (***)	117	118 (***)	121 (***)	124	128 (***)	132 (***)	135 (***)	135 (***)	136 (***)
2014	137 (***)	139 (***)	141 (***)	144 (***)	145 (***)	146 (***)	145 (***)	143 (***)	140 (***)	138 (***)	137 (***)	137 (***)
2015	136 (***)	134 (***)	131 (***)	127 (***)	123 (***)	120 (***)	116 (***)	113 (***)	111 (***)	108 (***)	105 (***)	103 (***)
2016	100 (***)	98 (***)	97 (***)	95 (***)	93 (***)	90 (***)	88 (***)	86 (***)	84 (***)	83 (***)	81 (***)	80 (***)
2017	80 (1)	79 (1)	79 (2)	78 (3)	78 (4)	78 (4)	78 (5)	77 (6)	77 (7)	77 (8)	76 (8)	76 (9)
2018	75 (9)	75 (9)	74 (9)	73 (9)	72 (9)	71 (9)	71 (9)	70 (9)	69 (9)	69 (9)	68 (9)	67 (9)
2019	67 (9)	66 (9)	66 (9)	65 (9)	65 (9)	65 (9)	64 (9)	64 (9)	63 (9)	63 (9)	63 (9)	63 (9)

Solar Cycle Comparison charts are temporarily unavailable.

Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

Notice: The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

http://spaceweather.gov/weekly/ -- Current and previous year

http://spaceweather.gov/ftpmenu/warehouse.html -- Online achive from 1997

http://spaceweather.gov/ftpmenu/ -- Some content as ascii text

http://spaceweather.gov/SolarCycle/ -- Solar Cycle Progression web site

http://spaceweather.gov/contacts.html -- Contact and Copyright information http://spaceweather.gov/weekly/Usr_guide.pdf -- User Guide

