Solar activity was very low throughout the period with only isolated low and mid-level B-class flare activity observed. Regions 2663 (N12, L=095, class/area=Dso/100 on 17 Jun) and 2664 (N18, L=314, class/area=Cso/90 on 25 Jun) each produced B-class flare activity throughout the week while Region 2662 (N12, L=050, class/area=Hsx/170 on 13 Jun) was quiet. No Earth-directed CMEs were observed this period.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit reached high levels on 19-21 Jun with moderate levels observed on 22-25 Jun.

Geomagnetic field activity was generally quiet and quiet to unsettled throughout the week with isolated active conditions observed on 25 Jun due to the influence of a positive, north polar-connected CH HSS.

Space Weather Outlook 26 June - 22 July 2017

Solar activity is expected to be very low, with a slight chance for C-class flare activity, throughout the outlook period.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to reach high levels on 30 Jun-03 Jul, and 16-18 Jul. Normal and normal to moderate flux levels are expected to prevail throughout the remainder of the outlook period.

Geomagnetic field activity is expected to be at quiet and quiet to unsettled levels through most of the outlook period; however, G1 (Minor) geomagnetic storm conditions are likely on 13 Jul with active conditions likely on 14 Jul due to the anticipated influence of a recurrent, negative polarity CH HSS.

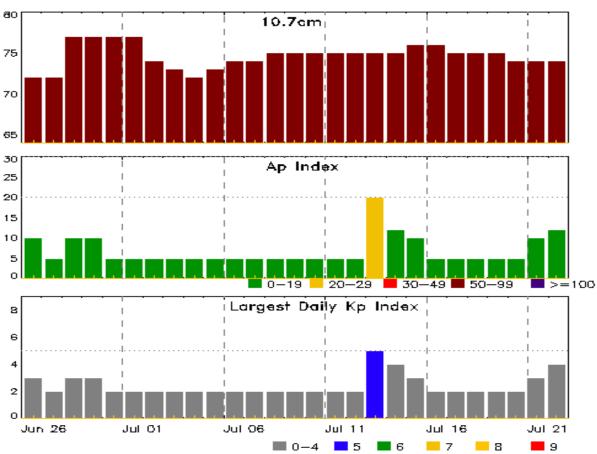
				Duny	Join D	uiu							
	Radio	o Sun	Su	nspot	X-ray		Flares						
	Flux	spot	A	Area Background			X	ray	Optical				
Date	10.7cm	n No.	(10-6	hemi.)	Flux		C I	M X	S	1	2 3	4	
19 June	74	26	140	A5.8	0	0	0	0	0	0	0	0	
20 June	74	34	170	A6.4	0	0	0	0	0	0	0	0	
21 June	74	35	120	A5.9	0	0	0	0	0	0	0	0	
22 June	74	23	80	A5.2	0	0	0	0	0	0	0	0	
23 June	74	22	90	A5.1	0	0	0	0	0	0	0	0	
24 June	74	28	80	A4.5	0	0	0	0	0	0	0	0	
25 June	74	20	90	A4.6	0	0	0	0	0	0	0	0	

Daily Solar Data

Daily Particle Data

	-	Proton Fluen ons/cm ² -da			-	Electron Flue trons/cm ² -da	
Date	$\frac{1}{1 \text{ MeV}} > 10 \text{ MeV} > 100 \text{ MeV}$				>0.6 MeV	>2MeV	>4 MeV
19 June	4.1e+05	5 1.	6e+04	3.5e	+03	1.0e-	+08
20 June	5.1e+05	5 1.	8e+04	3.7e	+03	1.2e	+08
21 June	5.3e+05	5 1.	8e+04	3.7e	+03	1.3e	+08
22 June	2.4e+05	5 1.	7e+04	3.7e	+03	6.6e	+06
23 June	1.6e+07	7 1.	5e+04	3.7e	+03	1.9e	+07
24 June	2.0e+07	7 1.	5e+04	3.5e	+03	1.1e	+07
25 June	1.7e+07	6e+04	3.3e	+03	2.2e+06		

Daily Geomagnetic Data


		Middle Latitude		High Latitude		Estimated
		Fredericksburg		College		Planetary
Date	A	A K-indices		K-indices	А	K-indices
19 June	7	2-3-2-2-1-1-1	12	2-2-2-5-4-1-0-0	5	1-2-2-2-1-1-0-1
20 June	3	0-1-0-1-2-2-1-0	1	0-1-1-1-0-0-0-0	3	1-1-1-1-1-0-0
21 June	3	0-0-0-1-2-1-2-2	1	0-0-0-0-0-1-1	4	1-1-1-1-1-2-2
22 June	8	3-2-1-1-2-1-3-2	5	2-3-2-1-0-1-1-0	6	3-2-1-1-1-3-2
23 June	6	1-1-1-3-2-2-2	7	2-1-0-4-1-0-2-2	5	1-1-1-2-1-1-2-2
24 June	8	2-1-2-2-2-2-3	11	1-2-3-4-2-3-2-1	9	2-1-2-3-2-2-3-3
25 June	11	2-2-4-2-2-3-2	24	3-4-6-4-2-1-1	9	2-2-4-3-2-2-2-2

Date & Time of Issue UTC		Date & Time of Event UTC
19 Jun 1140	ALERT: Electron 2MeV Integral Flux >= 1000pt	fu 19/1125
20 Jun 0836	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	19/1125
21 Jun 0652	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	19/1125
25 Jun 0808	WARNING: Geomagnetic $K = 4$	25/0808 - 1500
25 Jun 0813	ALERT: Geomagnetic $K = 4$	25/0813

Alerts and Warnings Issued

Date	Radio Flux 10.7cm	Planetary A Index	Largest Kp Index	Date	Radio Flux 10.7cm	-	Largest Kp Index
26 Jun	72	10	3	10 Jul	75	5	2
27 27	72	5	2	11	75	5	2
28	77	10	3	12	75	5	2
29	77	10	3	13	75	20	5
30	77	5	2	14	75	12	4
01 Jul	77	5	2	15	76	10	3
02	74	5	2	16	76	5	2
03	73	5	2	17	75	5	2
04	72	5	2	18	75	5	2
05	73	5	2	19	75	5	2
06	74	5	2	20	74	5	2
07	74	5	2	21	74	10	3
08	75	5	2	22	74	12	4
09	75	5	2				

				E	nerge	tic Ev	ents							
		Time		X·	-ray	Opti	cal Informat	ion	n Peak			Freq		
			Half		Integ	Imp/	Location	Rgn	Radi	o Flux	Inter	nsity		
Date	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	CMD # 245 269		CMD # 245 26		245 2695		IV
No E	vents O	bserve	ł											
					Fla	re List	t							
	Optical													
	Time					X-ray	Imp/	Lo	ocation	Rg	gn			
Date	Begi	n N	Aax	End		Class	Brtns	La	t CMD	#	ŧ			
19 Jun	0424	4 04	429	0436		B3.0				266	54			
19 Jun	1303	3 1	306	1309		B1.0				266	53			
19 Jun	1558	8 1	605	1609		B5.0				266	54			
20 Jun	0532	2 0.	540	0550		B1.4				266	53			
20 Jun	060	1 0	718	0848		B1.5				266	54			
22 Jun	0030	5 0	049	0102		B1.5				266	54			

				Neg	sion .	summ	ury								
	Locatio	on	Su	inspot C	haracte	eristics]	Flares				
		Helio	Area	Extent	Spot	Spot	Mag	X	K-ray			0	ptica	ıl	
Date	Lat CMD	Lon 1	0 ⁻⁶ hemi.	(helio)	Class	Count	Class	С	М	Х	S	1	2	3	4
		Regio	n 2644												
26 Mar	N12E30	54	50	6	Dao	10	В	1			4				
20 Mar 27 Mar	N12E30 N13E17	54 54	150	8	Dao	15	BG	1			4 6				
27 Mar 28 Mar	N12E04	54	240	10	Dsi	12	B	1			4				
20 Mar	N12L04	53	240	10	Eso	10	B	1			1				
30 Mar	N12W03	54	190	12	Eso	3	B				1				
31 Mar	N12W23	55	190	11	Eao	4	B				1				
01 Apr	N12W52	55 57	200	12	Eao	8	B	1	1		2	1			
02 Apr	N12W65	57	450	17	Fkc	19	BG	4	4		17		1		
03 Apr	N13W79	57	520	18	Fkc	12	BGD	7	2		24		1		
04 Apr	N13W92	57	150	13	Eao	7	В	6	_		4		_		
• • • • • •						-	_	20	7	0	63	1	2	0	0
Crossed	d West Lim	b.													
	te heliograp		gitude: 5	4											
		-													
		Regio	n 2662												
13 Jun	N12E70	50	170	2	Hsx	1	А								
14 Jun	N12E55	51	160	2	Hsx	1	А								
15 Jun	N12E42	50	100	2	Hsx	1	А								
16 Jun	N12E28	51	50	1	Hsx	1	А								
17 Jun	N11E15	52	70	2	Hsx	1	А								
18 Jun	N12E02	52	80	2	Hsx	1	А								
19 Jun	N12W12	52	80	1	Hsx	2	А								
20 Jun	N12W25	51	50	2	Hsx	2	А								
21 Jun	N13W38	51	40	3	Hsx	3	А								
22 Jun	N13W51	51	30	1	Hsx	2	А								
23 Jun	N13W65	52	20	1	Hrx	1	А								
24 Jun	N13W77	51	10	1	Axx	1	А								
								0	0	0	0	0	0	0	0
D' 1	D' 1														

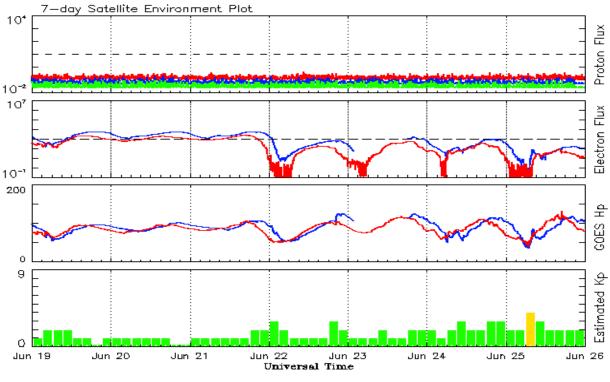
Region Summary

Died on Disk. Absolute heliographic longitude: 52

	Locatio	on	Su	nspot C	haracte	ristics				I	Flares				
		Helio	Area	Extent	Spot	Spot	Mag	2	K-ray			0	ptica	l	
Date	Lat CMD	Lon 1	10 ⁻⁶ hemi.	(helio)	Class	Count	Class	С	М	Х	S	1	2	3	4
		Regia	on 2663												
15 Jun	N14W00	92	50	7	Dso	7	BG				1				
16 Jun	N13W14	93	90	8	Dso	7	В								
17 Jun	N12W28	95	100	9	Dso	7	В								
18 Jun	N12W41	95	80	9	Dso	6	В				1				
19 Jun	N13W55	95	60	10	Cso	4	В								
20 Jun	N14W72	98	40	2	Hsx	1	Α								
21 Jun	N14W85	98	30	1	Hsx	1	А								
	l West Lim		aituda: 0	n				0	0	0	2	0	0	0	0
Absolu	te heliograp		gitude. 9	2											
		Regio	on 2664												
20 Jun	N18E72	314	80	2	Cso	1	В								
21 Jun	N17E60	314	50	2	Hsx	1	А								
22 Jun	N17E47	312	50	1	Hsx	1	А								
23 Jun	N18E35	312	70	2	Hsx	1	А								
24 Jun	N18E21	313	70	5	Cso	7	В								
25 Jun	N18E07	314	90	7	Cso	10	В								
								0	0	0	0	0	0	0	0
Still on	Dick														

Region Summary - continued

Still on Disk. Absolute heliographic longitude: 314



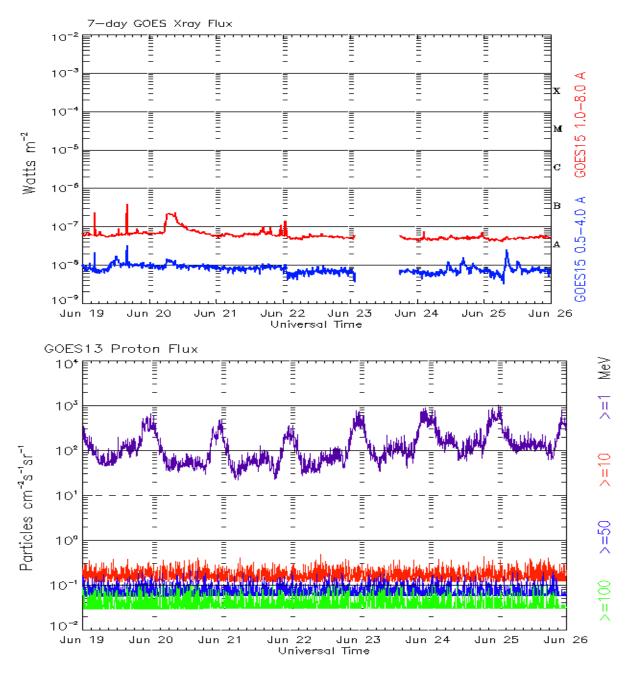
Observed moninity mean values												
	\$	Sunspot N	Numbers			Radio	Flux	Geomagnetic				
	Observed values	<u>Ratio</u>	Smo	oth values		Penticton	Smooth	Planetary	Smooth			
Month	SEC RI	RI/SEC	SEC	C RI		10.7 cm	Value	Ap	Value			
				2015								
June	77.3	39.9	0.53	73.1	43.3	3 123.2	119.5	14	13.0			
July	68.4	39.5	0.58	68.2	41.0) 107.0	116.0	10	13.1			
August	61.6	38.6	0.63	65.5	39.8	8 106.2	113.3	16	13.1			
September	72.5	47.2	0.65	64.0	39.5	5 102.1	110.8	16	12.8			
October	59.5	38.2	0.62	61.8	38.6		107.9		12.5			
November	61.8	37.3	0.61	59.0	36.7	/ 109.6	105.3	13	12.5			
December	54.1	34.8	0.64	55.1	34.7	112.8	102.5	15	12.5			
				2016								
January	50.4	34.2	0.67	51.4	32.6	5 103.5	99.9	10	12.3			
February	56.0	33.8	0.61	49.6	31.5	5 103.5	98.1	10	12.0			
March	40.9	32.5	0.80	47.7	30.2	2 91.6	96.6	11	11.8			
April	39.2	22.7	0.58	45.0	28.7	93.4	95.3	10	11.8			
May	48.9	30.9	0.64	42.1	26.9		93.2		11.7			
June	19.3	12.3	0.65	39.0	24.9		90.4		11.4			
July	36.8	19.4	0.53	36.5	23.1	85.9	87.7	10	11.2			
August	50.8	30.1	0.60	34.2	21.6		85.5		11.2			
September		26.8	0.00	32.1	19.9		83.7		11.2			
	• • •	• • • •	0.47		10.0							
October	30.0	20.0	0.67	31.1	18.8		82.5		11.6			
November		12.8	0.57	29.4	17.9		81.1	10	11.6			
December	17.6	11.1	0.64			75.1		10				
				2017								
January	28.1	15.5	0.55			77.4		10				
February	22.0	15.7	0.71			76.9		10				
March	25.4	10.6	0.42			74.6		15				
April	30.4	19.6	0.64			80.9		13				
May	18.1	11.3	0.62			73.5		9				

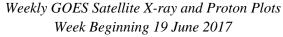
Recent Solar Indices (preliminary) Observed monthly mean values

Note: Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 19 June 2017

The proton flux plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by the SWPC Primary GOES satellite, near West 75, for each of three energy thresholds: greater than 10, 50, and 100 MeV.


The electron flux plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV by the SWPC Primary GOES satellite.


The Hp plot contains the five minute averaged Hp magnetic field component in nanoteslas (nT) as by the SWPC Primary GOES satellite. The Hp component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

The Estimated 3-hour Planetary Kp-index is derived at the NOAA Space Weather Prediction Center using data from the following ground-based magnetometers: Boulder, Colorado; Chambon la Foret, France; Fredericksburg, Virginia; Fresno, California; Hartland, UK; Newport, Washington; Sitka, Alaska. These data are made available thanks to the cooperative efforts between SWPC and data providers around the world, which currently includes the U.S. Geological Survey, the British Geological Survey, and the Institut de Physique du Globe de Paris.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are 'global' parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

The x-ray plots contains five-minute averages x-ray flux (Watt/m²) as measure by the SWPC primary GOES X-ray satellite, usually at West 105 longitude, in two wavelength bands, 0.05 - 0.4 and 0.1 - 0.8 nm. The letters A, B, C, M and X refer to x-ray event levels for the 0.1 - 0.8 nm band.

The proton plot contains the five-minute averaged intergral flux units (pfu = protons/cnf - sec - sr) as measured by the primary SWPC GOES Proton satellite for each of the energy thresholds: >1, >10, >30, and >100 MeV. The P10 event threshold is 10 pfu at greater than 10 MeV.

Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

Notice: The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

http://spaceweather.gov/weekly/ -- Current and previous year http://spaceweather.gov/ftpmenu/warehouse.html -- Online achive from 1997 http://spaceweather.gov/ftpmenu/ -- Some content as ascii text http://spaceweather.gov/SolarCycle/ -- Solar Cycle Progression web site

http://spaceweather.gov/contacts.html -- Contact and Copyright information http://spaceweather.gov/weekly/Usr_guide.pdf -- User Guide

