Solar activity was at very low levels on 06, 08-11 June. Low levels were reached on 05 and 07 June due to flare activity from Region 2661 (N06, L=211, class/area Dao/200 on 02 June). The largest flare of the period was a C2/Sf at 05/0531 UTC. No Earth-directed CMEs were observed in available satellite imagery.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at normal to moderate levels.

Geomagnetic field activity ranged from quiet to G1 (Minor) storm levels. Quiet to unsettled conditions were observed during the first six days of the reporting period (05-10 June) under a nominal solar wind regime. During this timeframe, solar wind speeds decreased from approximately 400 km/s to near 275 km/s. Total field values (Bt) ranged between 1 and 7 nT while the Bz did not drop lower than -5 nT. Phi angle was variable. At approximately 11/1330 UTC a solar wind enhancement occured, indicated by an increase in wind speed to near 430 km/s, an enhanced total field of 14 nT, and a low Bz value of -12 nT. Phi angle remained in a positive orientation shortly after the enhancement indicating a SSBC and the arrival of a recurrent, positive-polarity CH HSS. The geomagnetic field responded to this enhancement with unsettled to active levels and an isolated period of G1 (Minor) storm conditions.

#### Space Weather Outlook 12 June - 08 July 2017

Solar activity is expected to be at very low to low levels throughout the forecast period.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at normal to moderate levels with high levels likely on 16-26 June due to recurrent CH HSS influence.

Geomagnetic field activity is expected to be mostly quiet with unsettled to active levels expected on 12-19 June and G1 (Minor) geomagnetic storm levels likely on 16 June due to recurrent CH HSS effects.



## Daily Solar Data

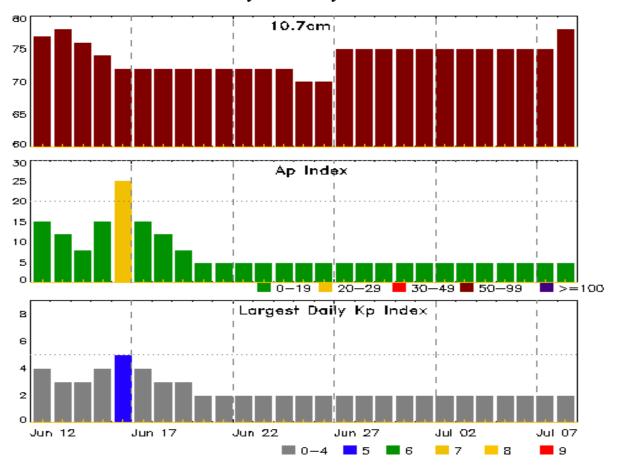
|         | Radio Sun Sunspot X-ray |       |                      | ]      | Flares     |   |   |       |    |   |        |   |
|---------|-------------------------|-------|----------------------|--------|------------|---|---|-------|----|---|--------|---|
|         | Flu                     | x spo | ot A                 | Area   | Background |   |   | X-ray | Op |   | ptical |   |
| Date    | 10.7c                   | m No  | o. (10 <sup>-6</sup> | hemi.) | Flux       |   | C | M X   | S  | 1 | 2 3    | 4 |
| 05 June | 79                      | 22    | 170                  | A9.0   | 2          | 0 | 0 | 19    | 0  | 0 | 0      | 0 |
| 06 June | 75                      | 18    | 130                  | A9.2   | 0          | 0 | 0 | 1     | 0  | 0 | 0      | 0 |
| 07 June | 76                      | 13    | 40                   | A8.1   | 2          | 0 | 0 | 1     | 0  | 0 | 0      | 0 |
| 08 June | 74                      | 12    | 10                   | A6.0   | 0          | 0 | 0 | 1     | 0  | 0 | 0      | 0 |
| 09 June | 74                      | 0     | 0                    | A5.8   | 0          | 0 | 0 | 0     | 0  | 0 | 0      | 0 |
| 10 June | 75                      | 0     | 0                    | A6.6   | 0          | 0 | 0 | 0     | 0  | 0 | 0      | 0 |
| 11 June | 74                      | 0     | 0                    | A6.6   | 0          | 0 | 0 | 0     | 0  | 0 | 0      | 0 |

# Daily Particle Data

|         | -       | roton Fluence                | Electron Fluence |                           |        |  |  |  |
|---------|---------|------------------------------|------------------|---------------------------|--------|--|--|--|
|         | (prote  | ons/cm <sup>2</sup> -day-sr) | (elec            | trons/cm <sup>2</sup> -da | y -sr) |  |  |  |
| Date    | >1 MeV  | >10 MeV >100 MeV             | >0.6 MeV         | >2MeV                     | >4 MeV |  |  |  |
| 05 June | 1.7e+06 | 1.7e+04                      | 3.6e+03          | 1.6e+07                   |        |  |  |  |
| 06 June | 1.4e+06 | 1.7e+04                      | 3.6e+03          | 1.0e+                     | 07     |  |  |  |
| 07 June | 1.1e+06 | 1.8e+04                      | 3.7e+03          | 1.6e + 07                 |        |  |  |  |
| 08 June | 1.1e+06 | 1.7e+04                      | 3.6e+03          | 1.6e + 07                 |        |  |  |  |
| 09 June | 1.2e+06 | 1.6e+04                      | 3.5e+03          | 1.6e+                     | 07     |  |  |  |
| 10 June | 1.2e+06 | 1.8e+04                      | 3.8e+03          | 1.0e+                     | 07     |  |  |  |
| 11 June | 8.8e+05 | 1.7e+04                      | 3.8e+03          | 3.9e+                     | 06     |  |  |  |

## Daily Geomagnetic Data

|         |    | Middle Latitude |   | High Latitude   | Estimated |                 |  |
|---------|----|-----------------|---|-----------------|-----------|-----------------|--|
|         |    | Fredericksburg  |   | College         | Planetary |                 |  |
| Date    | A  | A K-indices     |   | K-indices       | A         | K-indices       |  |
| 05 June | 5  | 0-1-1-3-1-2-1   | 3 | 0-1-0-1-2-2-1-1 | 5         | 1-2-1-1-2-1-1-2 |  |
| 06 June | 5  | 2-3-1-1-1-1-1   | 5 | 2-2-1-0-3-1-0-1 | 5         | 2-2-1-1-2-1-1-1 |  |
| 07 June | 5  | 1-2-2-1-1-2-1-2 | 5 | 2-2-2-1-1-0-1   | 5         | 1-2-2-1-1-1-0-2 |  |
| 08 June | 5  | 1-0-0-1-2-2-3-1 | 1 | 1-1-0-0-0-0-1   | 4         | 1-0-1-1-2-1-1-1 |  |
| 09 June | 6  | 2-1-0-2-3-2-2-0 | 1 | 1-1-0-1-0-0-0   | 5         | 3-1-1-1-1-1     |  |
| 10 June | 5  | 1-1-1-1-2-2-2-1 | 2 | 1-1-1-1-0-0-0-0 | 4         | 1-1-1-1-1-1     |  |
| 11 June | 14 | 1-2-3-2-3-4-4-2 | 9 | 1-2-2-1-2-4-3-1 | 4         | 1-2-3-2-3-5-4-3 |  |




# Alerts and Warnings Issued

| Date & Time of Issue UTC | Type of Alert or Warning          | Date & Time<br>of Event UTC |
|--------------------------|-----------------------------------|-----------------------------|
| 11 Jun 1434              | WARNING: Geomagnetic K = 4        | 11/1434 - 2100              |
| 11 Jun 1652              | ALERT: Geomagnetic K = 4          | 11/1650                     |
| 11 Jun 1735              | WARNING: Geomagnetic K = 5        | 11/1733 - 2100              |
| 11 Jun 1801              | ALERT: Geomagnetic $K = 5$        | 11/1759                     |
| 11 Jun 2027              | EXTENDED WARNING: Geomagnetic K = | = 4 11/1434 - 12/0600       |
| 11 Juli 2027             | EXTENDED WARNING. Geomagnetic K - | - 4 11/1434 - 12/0000       |



#### Twenty-seven Day Outlook



| Date   | Radio Flux<br>10.7cm | Planetary<br>A Index | Largest<br>Kp Index | Date   | Radio Flux<br>10.7cm |   | Largest<br>Kp Index |
|--------|----------------------|----------------------|---------------------|--------|----------------------|---|---------------------|
| 12 Jun | 77                   | 15                   | 4                   | 26 Jun | 70                   | 5 | 2                   |
| 13     | 78                   | 12                   | 3                   | 27     | 75                   | 5 | 2                   |
| 14     | 76                   | 8                    | 3                   | 28     | 75                   | 5 | 2                   |
| 15     | 74                   | 15                   | 4                   | 29     | 75                   | 5 | 2                   |
| 16     | 72                   | 25                   | 5                   | 30     | 75                   | 5 | 2                   |
| 17     | 72                   | 15                   | 4                   | 01 Jul | 75                   | 5 | 2                   |
| 18     | 72                   | 12                   | 3                   | 02     | 75                   | 5 | 2                   |
| 19     | 72                   | 8                    | 3                   | 03     | 75                   | 5 | 2                   |
| 20     | 72                   | 5                    | 2                   | 04     | 75                   | 5 | 2                   |
| 21     | 72                   | 5                    | 2                   | 05     | 75                   | 5 | 2                   |
| 22     | 72                   | 5                    | 2                   | 06     | 75                   | 5 | 2                   |
| 23     | 72                   | 5                    | 2                   | 07     | 75                   | 5 | 2                   |
| 24     | 72                   | 5                    | 2                   | 08     | 78                   | 5 | 2                   |
| 25     | 70                   | 5                    | 2                   |        |                      |   |                     |



# Energetic Events

|      | Time  |     |      | X-    | -ray  | Optical Information |          |     | P    | Peak   |           | Freq |
|------|-------|-----|------|-------|-------|---------------------|----------|-----|------|--------|-----------|------|
|      |       |     | Half |       | Integ | Imp/                | Location | Rgn | Radi | o Flux | Intensity |      |
| Date | Begin | Max | Max  | Class | Flux  | Brtns               | Lat CMD  | #   | 245  | 2695   | II        | IV   |

#### **No Events Observed**

#### Flare List

|        |       |      |      |       |       | Optical  |      |
|--------|-------|------|------|-------|-------|----------|------|
|        |       | Time |      | X-ray | Imp/  | Location | Rgn  |
| Date   | Begin | Max  | End  | Class | Brtns | Lat CMD  | #    |
| 05 Jun | 0514  | 0531 | 0541 | C2.7  | SF    | N06E30   | 2661 |
| 05 Jun | 0545  | 0545 | 0547 |       | SF    | N05E31   | 2661 |
| 05 Jun | 0640  | 0717 | 0747 | B8.1  | SF    | N16W74   | 2661 |
| 05 Jun | 0753  | 0759 | 0805 | B5.9  | SF    | N16W74   | 2661 |
| 05 Jun | 0826  | 0834 | 0836 |       | SF    | N16W74   |      |
| 05 Jun | 0837  | 0840 | 0903 |       | SF    | N16W74   |      |
| 05 Jun | 0904  | 0907 | 0909 |       | SF    | N16W74   |      |
| 05 Jun | 0911  | 0912 | 0915 |       | SF    | N16W75   |      |
| 05 Jun | 0916  | 1048 | 1109 | C1.2  | SF    | N16W75   |      |
| 05 Jun | 1118  | 1137 | 1145 | B3.6  | SF    | N16W75   |      |
| 05 Jun | 1149  | 1149 | 1149 |       | SF    | N16W75   |      |
| 05 Jun | 1221  | 1223 | 1224 |       | SF    | N16W80   |      |
| 05 Jun | 1225  | 1225 | 1227 |       | SF    | N16W80   |      |
| 05 Jun | 1234  | 1234 | 1242 |       | SF    | N16W80   |      |
| 05 Jun | 1246  | 1255 | 1306 | B3.3  | SF    | N16W80   |      |
| 05 Jun | 1426  | 1426 | 1433 | B1.6  | SF    | N20W77   |      |
| 05 Jun | 1600  | 1610 | 1615 | B5.8  | SF    | N06E18   | 2661 |
| 05 Jun | 1611  | 1624 | 1629 |       | SF    | N18W80   |      |
| 05 Jun | 1838  | 1844 | 1850 | B3.0  |       |          | 2661 |
| 05 Jun | 1914  | 1922 | 1926 | B9.4  | SF    | N06E16   | 2661 |
| 06 Jun | 0103  | 0106 | 0116 | B1.2  |       |          |      |
| 06 Jun | 0312  | 0315 | 0318 | B1.0  |       |          |      |
| 06 Jun | 0511  | 0514 | 0516 | B1.0  |       |          | 2661 |
| 06 Jun | 0927  | 0931 | 0934 | B1.6  |       |          | 2661 |
| 06 Jun | 1111  | 1124 | 1129 | B1.8  |       |          |      |
| 06 Jun | 1155  | 1158 | 1200 | B1.8  |       |          |      |
| 06 Jun | 1234  | 1237 | 1239 | B1.8  |       |          |      |
| 06 Jun | 1305  | 1308 | 1310 | B1.6  |       |          |      |
| 06 Jun | 1318  | 1322 | 1325 | B1.3  |       |          |      |
| 06 Jun | 1509  | 1514 | 1519 | B4.1  |       |          |      |
| 06 Jun | 1553  | 1554 | 1604 |       | SF    | N04E05   | 2661 |



Flare List

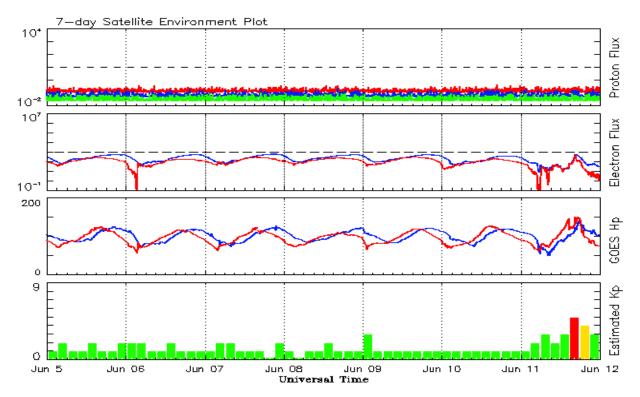
|        |       |      |      |       | Optical |          |      |  |  |  |
|--------|-------|------|------|-------|---------|----------|------|--|--|--|
|        | -     | Time |      | X-ray | Imp/    | Location | Rgn  |  |  |  |
| Date   | Begin | Max  | End  | Class | Brtns   | Lat CMD  | #    |  |  |  |
| 06 Jun | 2027  | 2047 | 2059 | B5.9  |         |          | 2661 |  |  |  |
| 07 Jun | 0212  | 0333 | 0356 | C1.3  |         |          | 2661 |  |  |  |
| 07 Jun | 0840  | 0847 | 0857 | B2.4  |         |          |      |  |  |  |
| 07 Jun | 1003  | 1022 | 1050 | C1.2  |         |          |      |  |  |  |
| 07 Jun | 1214  | 1218 | 1234 | B1.6  |         |          | 2661 |  |  |  |
| 07 Jun | 1622  | 1658 | 1724 | B4.4  | SF      | N06W05   | 2661 |  |  |  |
| 08 Jun | 0338  | 0350 | 0409 | B2.9  | SF      | N04W15   | 2661 |  |  |  |
| 09 Jun | 1152  | 1253 | 1319 | B4.1  |         |          | 2661 |  |  |  |
| 10 Jun | 1018  | 1023 | 1029 | B1.7  |         |          | 2661 |  |  |  |
| 11 Jun | 0107  | 0144 | 0223 | B1.5  |         |          | 2661 |  |  |  |



## Region Summary

|        | Location | on    | Su                    | Sunspot Characteristics |       |       |       |       | Flares |   |    |   |       |   |   |
|--------|----------|-------|-----------------------|-------------------------|-------|-------|-------|-------|--------|---|----|---|-------|---|---|
|        |          | Helio | Area                  | Extent                  | Spot  | Spot  | Mag   | X-ray |        |   |    | O | ptica | 1 |   |
| Date   | Lat CMD  | Lon 1 | 0 <sup>-6</sup> hemi. | (helio)                 | Class | Count | Class | C     | M      | X | S  | 1 | 2     | 3 | 4 |
|        |          | Regio | n 2661                |                         |       |       |       |       |        |   |    |   |       |   |   |
| 31 May | N06E79   | 213   | 30                    | 4                       | Hrx   | 1     | A     | 3     |        |   | 3  |   |       |   |   |
| 01 Jun | N05E64   | 214   | 60                    | 4                       | Cai   | 8     | В     | 6     |        |   | 8  |   |       |   |   |
| 02 Jun | N06E54   | 211   | 200                   | 10                      | Dao   | 9     | В     | 3     |        |   | 10 |   |       |   |   |
| 03 Jun | N06E39   | 213   | 180                   | 12                      | Eao   | 12    | BG    | 3     |        |   | 1  |   |       |   |   |
| 04 Jun | N06E26   | 213   | 130                   | 12                      | Eao   | 13    | В     |       |        |   |    |   |       |   |   |
| 05 Jun | N06E13   | 211   | 170                   | 12                      | Eao   | 12    | BD    | 1     |        |   | 4  |   |       |   |   |
| 06 Jun | N06W01   | 213   | 130                   | 12                      | Cao   | 8     | В     |       |        |   | 1  |   |       |   |   |
| 07 Jun | N07W11   | 210   | 40                    | 4                       | Hax   | 3     | A     | 1     |        |   | 1  |   |       |   |   |
| 08 Jun | N07W22   | 207   | 10                    | 2                       | Axx   | 2     | A     |       |        |   | 1  |   |       |   |   |
| 09 Jun | N07W37   | 210   | plage                 |                         |       |       |       |       |        |   |    |   |       |   |   |
| 10 Jun | N07W52   | 212   | plage                 |                         |       |       |       |       |        |   |    |   |       |   |   |
| 11 Jun | N07W67   | 213   | plage                 |                         |       |       |       |       |        |   |    |   |       |   |   |
|        |          |       |                       |                         |       |       |       | 17    | 0      | 0 | 29 | 0 | 0     | 0 | 0 |

Still on Disk. Absolute heliographic longitude: 213




#### Recent Solar Indices (preliminary) Observed monthly mean values

|           | (               | Sunspot N |      | Radio     | Flux | Geomagnetic |        |           |        |
|-----------|-----------------|-----------|------|-----------|------|-------------|--------|-----------|--------|
|           | Observed values | Ratio     | Smoo | th values |      | Penticton   | Smooth | Planetary | Smooth |
| Month     | SEC RI          | RI/SEC    | SEC  | RI        |      | 10.7 cm     | Value  | Ap        | Value  |
|           |                 |           |      | 2015      |      |             |        |           |        |
| June      | 77.3            | 39.9      | 0.53 | 73.1      | 43.3 | 123.2       | 119.5  | 14        | 13.0   |
| July      | 68.4            | 39.5      | 0.58 | 68.2      | 41.0 | 107.0       | 116.0  | 10        | 13.1   |
| August    | 61.6            | 38.6      | 0.63 | 65.5      | 39.8 |             | 113.3  |           | 13.1   |
| September | 72.5            | 47.2      | 0.65 | 64.0      | 39.5 | 102.1       | 110.8  | 16        | 12.8   |
| October   | 59.5            | 38.2      | 0.62 | 61.8      | 38.6 | 104.1       | 107.9  | 15        | 12.5   |
| November  | 61.8            | 37.3      | 0.61 | 59.0      | 36.7 | 109.6       | 105.3  | 13        | 12.5   |
| December  | 54.1            | 34.8      | 0.64 | 55.1      | 34.7 | 112.8       | 102.5  | 15        | 12.5   |
|           |                 |           |      | 2016      |      |             |        |           |        |
| January   | 50.4            | 34.2      | 0.67 | 51.4      | 32.6 | 103.5       | 99.9   | 10        | 12.3   |
| February  | 56.0            | 33.8      | 0.61 | 49.6      | 31.5 |             | 98.1   | 10        | 12.0   |
| March     | 40.9            | 32.5      | 0.80 | 47.7      | 30.2 |             | 96.6   |           | 11.8   |
| April     | 39.2            | 22.7      | 0.58 | 45.0      | 28.7 | 93.4        | 95.3   | 10        | 11.8   |
| May       | 48.9            | 30.9      | 0.64 | 42.1      | 26.9 |             | 93.2   |           | 11.7   |
| June      | 19.3            | 12.3      | 0.65 | 39.0      | 24.9 |             | 90.4   |           | 11.4   |
| Inly      | 36.8            | 19.4      | 0.53 | 36.5      | 23.1 | 85.9        | 87.7   | 10        | 11.2   |
| July      |                 | 30.1      | 0.60 | 34.2      | 21.6 |             | 85.5   |           | 11.2   |
| August    | 50.4            | 26.8      | 0.72 | 32.1      | 19.9 |             | 83.7   |           | 11.2   |
| September | 37.4            | 20.8      | 0.72 | 32.1      | 19.9 | 87.8        | 83.7   | 10        | 11.5   |
| October   | 30.0            | 20.0      | 0.67 | 31.1      | 18.8 |             | 82.5   |           | 11.6   |
| November  |                 | 12.8      | 0.57 | 29.4      | 17.9 |             | 81.1   | 10        | 11.6   |
| December  | 17.6            | 11.1      | 0.64 |           |      | 75.1        |        | 10        |        |
|           |                 |           |      | 2017      |      |             |        |           |        |
| January   | 28.1            | 15.5      | 0.55 |           |      | 77.4        |        | 10        |        |
| February  | 22.0            | 15.7      | 0.71 |           |      | 76.9        |        | 10        |        |
| March     | 25.4            | 10.6      | 0.42 |           |      | 74.6        |        | 15        |        |
| April     | 30.4            | 19.6      | 0.64 |           |      | 80.9        |        | 13        |        |
| May       | 18.1            | 11.3      | 0.62 |           |      | 73.5        |        | 9         |        |

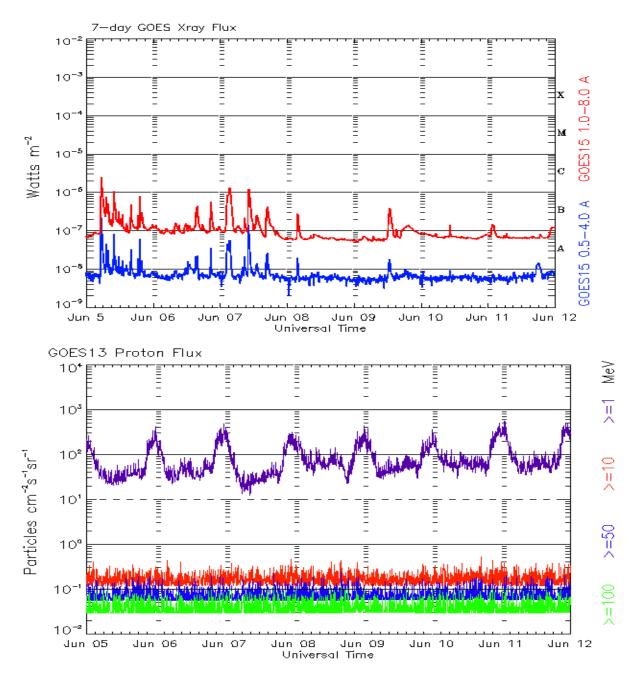
**Note:** Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.





Weekly Geosynchronous Satellite Environment Summary Week Beginning 05 June 2017

The proton flux plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by the SWPC Primary GOES satellite, near West 75, for each of three energy thresholds: greater than 10, 50, and 100 MeV.


The electron flux plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV by the SWPC Primary GOES satellite.

The Hp plot contains the five minute averaged Hp magnetic field component in nanoteslas (nT) as by the SWPC Primary GOES satellite. The Hp component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

The Estimated 3-hour Planetary Kp-index is derived at the NOAA Space Weather Prediction Center using data from the following ground-based magnetometers: Boulder, Colorado; Chambon la Foret, France; Fredericksburg, Virginia; Fresno, California; Hartland, UK; Newport, Washington; Sitka, Alaska. These data are made available thanks to the cooperative efforts between SWPC and data providers around the world, which currently includes the U.S. Geological Survey, the British Geological Survey, and the Institut de Physique du Globe de Paris.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are 'global' parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.





Weekly GOES Satellite X-ray and Proton Plots Week Beginning 05 June 2017

The x-ray plots contains five-minute averages x-ray flux (Watt/ $m^2$ ) as measure by the SWPC primary GOES X-ray satellite, usually at West 105 longitude, in two wavelength bands, 0.05 - 0.4 and 0.1 - 0.8 nm. The letters A, B, C, M and X refer to x-ray event levels for the 0.1 - 0.8 nm band.

The proton plot contains the five-minute averaged intergral flux units (pfu = protons/cm $^2$ -sec -sr) as measured by the primary SWPC GOES Proton satellite for each of the energy thresholds: >1, >10, >30, and >100 MeV. The P10 event threshold is 10 pfu at greater than 10 MeV.



#### Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

**Notice:** The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

http://spaceweather.gov/weekly/ -- Current and previous year

http://spaceweather.gov/ftpmenu/warehouse.html -- Online achive from 1997

http://spaceweather.gov/ftpmenu/ -- Some content as ascii text

http://spaceweather.gov/SolarCycle/ -- Solar Cycle Progression web site

http://spaceweather.gov/contacts.html -- Contact and Copyright information http://spaceweather.gov/weekly/Usr\_guide.pdf -- User Guide

