Solar activity was very low throughout the reporting period. Region 2659 (N14, L=038, class/area=Dao/040 on 21 May 2017) was the most complex region; however, it has produced no significant flare activity. No Earth-directed CMEs were observed in available coronagraph imagery.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit ranged from normal to high levels, with a peak flux of 13,000 pfu at 21/1710 UTC. Normal levels were observed on 15 May and moderate levels were observed on 16-19 May. In response to a negative polarity CH HSS, high levels were observed on 20-21 May.

Geomagnetic field activity was at quiet to active levels. Quiet to active levels were observed on 15 May. Conditions decreased to quiet to unsettled levels on 16-17 May under nominal solar wind conditions. A SSBC produced quiet to active levels on 18 May and quiet to unsettled levels on 19 May. The subsequent onset of a negative polarity CH HSS, with peak observed winds between 700-750 km/s, produced unsettled to active conditions on 20 May and quiet to unsettled levels on 21 May.

Space Weather Outlook 22 May - 17 June 2017

Solar activity is expected to be very low with a slight chance for C-class flare activity throughout the outlook period.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to range from normal to very high levels. Moderate levels are likely on 01-10 Jun and 12-15 Jun; high levels are likely on 22 May, 27-31 May, and 16-17 Jun; very high levels are likely on 23-26 May. Elevated levels of electrons are in response to multiple, recurrent, CH HSSs. The remainder of the outlook period is likely to observe normal background levels.

Geomagnetic field activity is expected to be at quiet to G1 (Minor) storm levels. Active conditions are likely on 22 May with unsettled conditions likely on 23-24 May due to the waning effects of a negative polarity CH HSS. Quiet conditions are then likely to prevail from 25 May-09 Jun under a nominal solar wind regime. An increase to active conditions is likely on 10-11 Jun from a positive polarity CH HSS. Quiet conditions are again likely on 12-13 Jun. A SSBC is expected to cause unsettled conditions on 14 Jun. A subsequent negative polarity CH HSS is likely to cause active conditions on 15 Jun, G1 (Minor) conditions on 16 Jun, then active conditions as the CH HSS wanes on 17 Jun.

Daily Solar Data

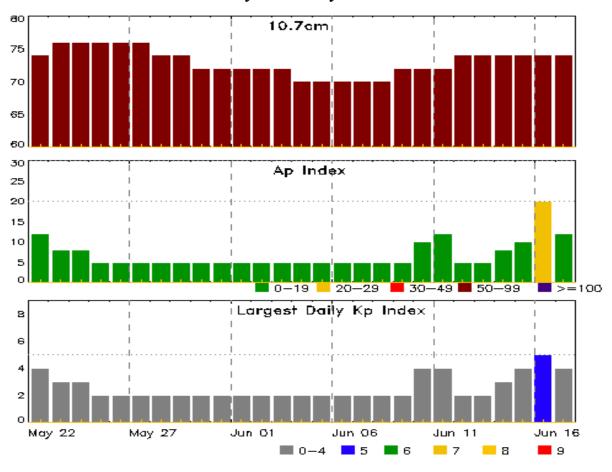
	Radio	Sun	Sı	ınspot	X-ray	,	Flares					
	Flux	spot	1	Area Background			K-ray	Optic		ptical		
Date	10.7cm	No.	(10-	⁶ hemi.)	Flux		C	M X	S	1	2 3	4
15 May	71	0	0	A3.9	0	0	0	0	0	0	0	0
16 May	72	11	30	A4.2	0	0	0	0	0	0	0	0
17 May	71	13	30	A4.8	0	0	0	0	0	0	0	0
18 May	72	24	30	A5.4	0	0	0	0	0	0	0	0
19 May	72	24	30	A5.0	0	0	0	0	0	0	0	0
20 May	72	22	30	A5.0	0	0	0	0	0	0	0	0
21 May	74	35	70	A5.6	0	0	0	1	0	0	0	0

Daily Particle Data

	Pr (proto	Electron Fluence (electrons/cm ² -day -sr)						
Date		>10 MeV >100 MeV	>0.6 MeV	>2MeV >4 MeV				
15 May	3.4e+07	1.5e+04	3.5e+03	1.3e+06				
16 May	4.1e+07	1.5e + 04	3.4e+03	3.3e+06				
17 May	4.4e+07	1.6e + 04	3.9e+03	1.0e+07				
18 May	3.8e+07	1.6e + 04	3.7e+03	3.1e+06				
19 May	3.9e+07	1.6e + 04	3.7e+03	6.3e+06				
20 May	4.9e+07	1.6e + 04	3.5e+03	3.0e+07				
21 May	5.0e+07	1.5e+04	3.7e+03	4.3e+08				

Daily Geomagnetic Data

		Middle Latitude		High Latitude		Estimated
		Fredericksburg		College		Planetary
Date	A K-indices		A	K-indices	A	K-indices
15 May	17	1-2-3-4-2-3-5-3	11	0-2-3-4-3-2-2-2	14	1-2-2-4-2-3-4-3
16 May	10	3-3-2-1-3-2-2-2	13	2-1-2-4-5-1-1-1	9	3-3-2-2-3-1-1-2
17 May	9	2-2-3-2-3-2-2	17	2-2-5-5-3-1-1-1	8	2-2-3-3-2-1-2-2
18 May	15	4-3-4-3-3-2-2-2	13	2-4-5-3-0-1-1-1	11	4-3-3-2-1-1-1-2
19 May	13	2-3-3-2-3-3-3	23	1-2-3-2-5-6-3-2	11	2-3-2-1-2-3-3-3
20 May	23	4-4-4-4-3-3-3	0	4-5-5-6-2-0-0-0	24	4-4-4-4-3-3
21 May	10	3-3-3-2-2-2-2	20	3-4-5-5-2-2-1	12	3-3-3-2-2-2-2



Alerts and Warnings Issued

Date & Time of Issue UTC		Date & Time of Event UTC
15 May 0958	WARNING: Geomagnetic K = 4	15/0957 - 2359
15 May 1152	ALERT: Geomagnetic $K = 4$	15/1150
15 May 2106	WATCH: Geomagnetic Storm Category G2 predicted	ed
15 May 2208	EXTENDED WARNING: Geomagnetic K = 4	15/0957 - 16/2100
16 May 2126	WATCH: Geomagnetic Storm Category G2 predicted	ed
17 May 1748	CANCELLATION: Geomagnetic Storm Category G2 predicted	
17 May 1752	WATCH: Geomagnetic Storm Category G2 predicted	ed
18 May 0119	WARNING: Geomagnetic $K = 4$	18/0115 - 0900
18 May 0139	ALERT: Geomagnetic $K = 4$	18/0139
19 May 1614	WARNING: Geomagnetic $K = 4$	19/1614 - 20/0600
20 May 0240	ALERT: Geomagnetic $K = 4$	20/0235
20 May 0241	EXTENDED WARNING: Geomagnetic K = 4	19/1614 - 21/1800
20 May 0730	WARNING: Geomagnetic $K = 5$	20/0729 - 1500
20 May 1450	EXTENDED WARNING: Geomagnetic K = 5	20/0729 - 2100
20 May 1720	ALERT: Electron 2MeV Integral Flux >= 1000pfu	20/1705
21 May 0639	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	20/1705
21 May 1755	EXTENDED WARNING: Geomagnetic K = 4	19/1614 - 22/0300

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7cm	A Index	Kp Index	Date	10.7cm	A Index	Kp Index
22.16	7 .4	10		0.7.7	5 0	_	•
22 May	74	12	4	05 Jun	70	5	2
23	76	8	3	06	70	5	2
24	76	8	3	07	70	5	2
25	76	5	2	08	70	5	2
26	76	5	2	09	72	5	2
27	76	5	2	10	72	10	4
28	74	5	2	11	72	12	4
29	74	5	2	12	74	5	2
30	72	5	2	13	74	5	2
31	72	5	2	14	74	8	3
01 Jun	72	5	2	15	74	10	4
02	72	5	2	16	74	20	5
03	72	5	2	17	74	12	4
04	70	5	2				

Energetic Events

	Time			X-	-ray	Optio	cal Informat	ion	P	eak	Sweep Freq		
			Half		Integ	Imp/	Location	Rgn	Radi	o Flux	Inter	sity	
Date	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245	2695	II	IV	

No Events Observed

Flare List

				Optical					
	Time			X-ray	Imp/	Location	Rgn		
Date	Begin	Max	End	Class	Brtns	Lat CMD	#		
16 May	0407	0416	0426	B2.2			2657		
16 May	1806	1809	1813	B1.2			2657		
18 May	1634	1639	1644	B1.1			2656		
21 May	0737	0744	0748	B1.4	SF	S06E02	2658		

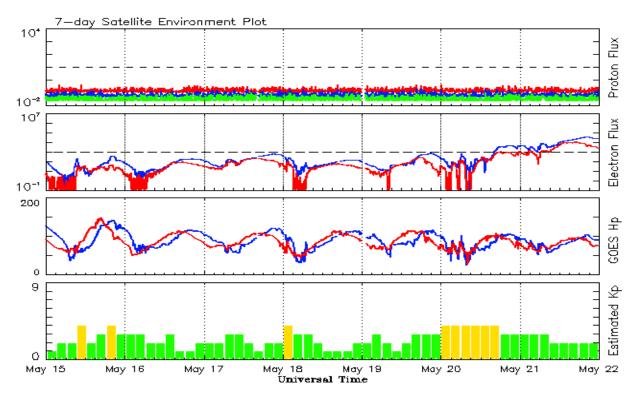
Region Summary

	Location	on	Su	nspot C	haracte	ristics	<u>-</u>	Flares							
		Helio		Extent			Mag	X	K-ray			О	ptica	ı1	
Date	Lat CMD	Lon	10 ⁻⁶ hemi.	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4
		Regi	on 2655												
04 May	N13E37	252	10	3	Bxo	4	В								
05 May	N14E25	251	30	3	Dro	6	В				7				
06 May	N13E11	252	20	3	Cro	5	В				1				
07 May	N14W04	253	10	5	Bxo	2	В								
08 May	N16W17	252	plage												
09 May	N16W31	254	plage												
10 May	N16W45	255	plage												
11 May	N16W59	255	plage												
12 May	N16W73	256	plage												
13 May	N16W87	257	plage												
14 May	N16W99	258	plage												
								0	0	0	8	0	0	0	0
	West Lim		. 1 0	5 2											
Absolut	e heliograp	ohic lor	igitude: 2	53											
		Regi	on 2656												
16 May	N12E62	67	30	1	Hrx	1	A								
•	N11E50	66	30	2	Cso	3	В								
•	N12E36	68	20	2	Hax	1	A								
•	N12E22	69	20	2	Hax	1	A								
•	N11E08	69	20	2	Hax	1	A								
21 May	N11W06	70	20	2	Hax	1	A								
								0	0	0	0	0	0	0	0
Still on															
Absolut	e heliograp	hic lor	ngitude: 7	0											
		Regi	on 2657												
16 Mav	N07E21	109	plage												
17 May		111	plage												
•	N07W08	112	plage												
•	N07W22	113	plage												
•	N07W36	113	plage												
•	N07W50	114	plage												
			, ···					0	0	0	0	0	0	0	0
Still on	Disk.														

Still on Disk. Absolute heliographic longitude: 111

Region Summary - continued

	Location Sunspot Characteristics Fla								Flares	lares					
		Helio	Area	Extent	Spot	Spot	Mag	>	K-ray		Optical				
Date	Lat CMD	Lon 1	0 ⁻⁶ hemi.	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4
		Regio	n 2658												
18 May	S08E38	66	10	4	Bxo	3	В								
19 May	S08E24	67	10	4	Bxo	3	В								
20 May	S07E09	69	10	1	Hrx	1	A								
21 May	S07W05	69	10	1	Hrx	1	A				1				
Still on Absolut	Disk. e heliograp	hic long	gitude: 6	9				0	0	0	1	0	0	0	0
		Regio	n 2659												
21 May	N14E26	38	40	5	Dao	3	В	0	0	0	0	0	0	0	0
Still on Absolut	Disk. e heliograp	hic long	gitude: 3	8											



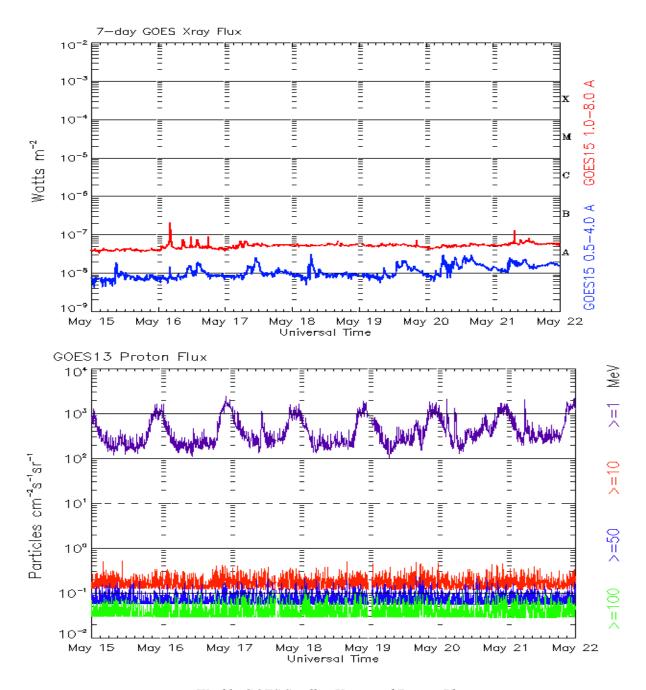
Recent Solar Indices (preliminary) Observed monthly mean values

		Sunspot N	umbers			Radio	Flux	Geoma	gnetic
	Observed values	Ratio	Smoo	th values		Penticton	Smooth	Planetary	Smooth
Month	SEC RI	RI/SEC	SEC	RI		10.7 cm	Value	Ap	Value
				2015					
May	83.0	53.3	0.71	77.5	45.7	120.1	123.3	9	12.7
June	77.3	39.9	0.53	73.1	43.3	123.2	119.5	14	13.0
July	68.4	39.5	0.58	68.2	41.0	107.0	116.0	10	13.1
August	61.6	38.6	0.63	65.5	39.8	106.2	113.3	16	13.1
September	72.5	47.2	0.65	64.0	39.5	102.1	110.8	16	12.8
	-0 -	•	0.10	-1.0	•		40=0		
October	59.5	38.2	0.62	61.8	38.6		107.9		12.5
November		37.3	0.61	59.0	36.7		105.3		12.5
December	54.1	34.8	0.64	55.1	34.7	112.8	102.5	15	12.5
				2016					
January	50.4	34.2	0.67	51.4	32.6	103.5	99.9	10	12.3
February	56.0	33.8	0.61	49.6	31.5		98.1	10	12.0
March	40.9	32.5	0.80	47.7	30.2		96.6		11.8
April	39.2	22.7	0.58	45.0	28.7	93.4	95.3	10	11.8
May	48.9	30.9	0.64	42.1	26.9	93.1	93.2	12	11.7
June	19.3	12.3	0.65	39.0	24.9	81.9	90.4	9	11.4
July	36.8	19.4	0.53	36.5	23.1		87.7		11.2
August	50.4	30.1	0.60	34.2	21.6		85.5		11.2
September	37.4	26.8	0.72	32.1	19.9	87.8	83.7	16	11.3
October	30.0	20.0	0.67	31.1	18.8	86.1	82.5	16	11.6
November		12.8	0.57	0111	10.0	78.7	02.0	10	1110
December	17.6	11.1	0.64			75.1		10	
				<i>2017</i>					
January	28.1	15.5	0.55			77.4		10	
February	22.0	15.7	0.71			76.9		10	
March	25.4	10.6	0.42			74.6		15	
April	30.4	19.6	0.64			80.9		13	

Note: Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 15 May 2017

The proton flux plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by the SWPC Primary GOES satellite, near West 75, for each of three energy thresholds: greater than 10, 50, and 100 MeV.


The electron flux plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV by the SWPC Primary GOES satellite.

The Hp plot contains the five minute averaged Hp magnetic field component in nanoteslas (nT) as by the SWPC Primary GOES satellite. The Hp component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

The Estimated 3-hour Planetary Kp-index is derived at the NOAA Space Weather Prediction Center using data from the following ground-based magnetometers: Boulder, Colorado; Chambon la Foret, France; Fredericksburg, Virginia; Fresno, California; Hartland, UK; Newport, Washington; Sitka, Alaska. These data are made available thanks to the cooperative efforts between SWPC and data providers around the world, which currently includes the U.S. Geological Survey, the British Geological Survey, and the Institut de Physique du Globe de Paris.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are 'global' parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots Week Beginning 15 May 2017

The x-ray plots contains five-minute averages x-ray flux (Watt/ m^2) as measure by the SWPC primary GOES X-ray satellite, usually at West 105 longitude, in two wavelength bands, 0.05 - 0.4 and 0.1 - 0.8 nm. The letters A, B, C, M and X refer to x-ray event levels for the 0.1 - 0.8 nm band.

The proton plot contains the five-minute averaged intergral flux units (pfu = protons/cm 2 -sec -sr) as measured by the primary SWPC GOES Proton satellite for each of the energy thresholds: >1, >10, >30, and >100 MeV. The P10 event threshold is 10 pfu at greater than 10 MeV.

Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

Notice: The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

http://spaceweather.gov/weekly/ -- Current and previous year

http://spaceweather.gov/ftpmenu/warehouse.html -- Online achive from 1997

http://spaceweather.gov/ftpmenu/ -- Some content as ascii text

http://spaceweather.gov/SolarCycle/ -- Solar Cycle Progression web site

http://spaceweather.gov/contacts.html -- Contact and Copyright information http://spaceweather.gov/weekly/Usr_guide.pdf -- User Guide

