Solar activity was at very low levels with only B-class activity observed. On 13 May, an eruptive filament located near S60E10 was observed in H-alpha imagery starting to lift off at approximately 13/1300 UTC. An associated CME was observed in LASCO/C2 coronagraph imagery beginning at 13/1712 UTC. The majority of the ejecta appeared to have a southern trajectory; however, there was indication of an Earth-directed component. ENLIL modeling suggested an arrival at Earth late on 16 May.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at normal to moderate levels throughout the period.

Geomagnetic field activity was at quiet levels on 08-09 May and 13 May while quiet to unsettled levels were observed 10-12 May and 14 May. Mostly nominal solar wind conditions were observed throughout the period with an SSBC slightly enhancing the solar wind environment on 09 May.

Space Weather Outlook 15 May - 10 June 2017

Solar activity is expected to be very low throughout the forecast period.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to range from normal to very high levels. Normal levels are likely on 19 Apr. Moderate levels are likely on 20 Apr, 05-06 May, and 08-14 May. High levels are likely on 18 Apr, 21-23 Apr, 29 Apr-04 May, and 07 May. Very high levels are likely 24-28 Apr. All enhancements in flux values are anticipated from multiple, recurrent, CH HSS influence.

Geomagnetic field activity is expected to range from quiet to G2 (Moderate) storm conditions over the outlook period. Active conditions are likely on 15 May due to an anticipated CIR late in the day. 16 May will likely observe G1 (Minor) storm conditions due to a positive polarity CH HSS. G2 (Moderate) conditions on 17 May are likely as CH HSS influence is forecast to combine with the 13 May CME. G1 (Minor) storm conditions are again likely with the onset of a negative polarity CH HSS on 18 May. Geomagnetic field activity is expected to increase to G2 (Moderate) storm levels on 19-20 May as wind speeds from the CH HSS peak. As the negative polarity CH HSS influence slowly wanes, G1 (Minor) storm levels on 21 May are likely to decrease to active on 22 May and finally to unsettled on 23 May. With the exception of a period of quiet to unsettled levels on 10 Jun, the remainder of the forecast period is expected to be at quiet levels.

Daily Solar Data

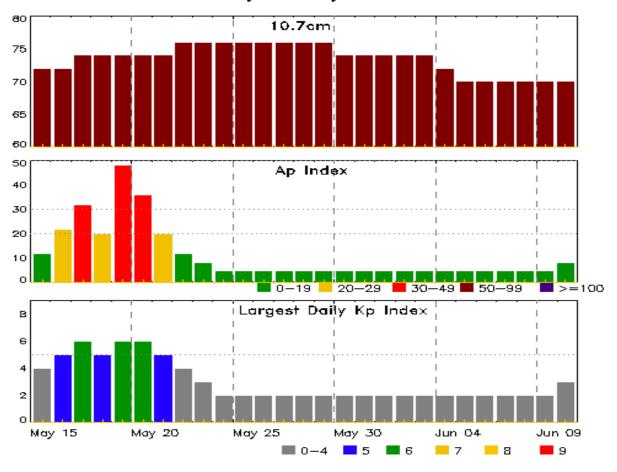
	Radio	Sun	Sı	ınspot	X-ray	r		Flares						
	Flux	spot		Area	Backgro	Background		X-ray	Optical					
Date	10.7cm	No.	(10-	⁶ hemi.)	Flux		C	M X	S	1	2 3	4		
08 May	71	11	20	A3.6	0	0	0	0	0	0	0	0		
09 May	69	0	0	A3.5	0	0	0	0	0	0	0	0		
10 May	69	0	0	A3.4	0	0	0	0	0	0	0	0		
11 May	69	0	0	A3.5	0	0	0	0	0	0	0	0		
12 May	69	0	0	A3.9	0	0	0	0	0	0	0	0		
13 May	70	0	0	A4.2	0	0	0	0	0	0	0	0		
14 May	71	0	0	A4.1	0	0	0	0	0	0	0	0		

Daily Particle Data

	Protoc	Electron Fluence (electrons/cm ² -day -sr)					
Date		ns/cm ² -day-sr) >10 MeV >100 MeV	>0.6 MeV	>2MeV	>4 MeV		
08 May	2.1e+07	1.6e+04	4.2e+03	8.3e+	06		
09 May	2.3e+07	1.6e + 04	3.6e+03	9.3e+	06		
10 May	3.3e+07	1.5e + 04	3.5e+03	1.9e + 07			
11 M ay	1.8e+07	1.5e + 04	3.6e+03	1.0e+07			
12 May	2.7e+07	1.6e + 04	3.9e+03	2.0e+07			
13 May	3.3e+07	1.6e + 04	3.8e+03	3.1e+	07		
14 May	4.0e+07	1.7e+04	3.9e+03	8.0e+	06		

Daily Geomagnetic Data

		<u> </u>		0			
		Middle Latitude		High Latitude		Estimated	
		Fredericksburg		College	Planetary		
Date	A	K-indices	A	K-indices	A	K-indices	
08 May	7	2-1-2-2-3-1-2-1	7	3-2-3-2-0-1-1-1	6	2-1-2-2-1-1-2-1	
09 May	5	1-1-1-2-2-2-1-1	3	1-1-2-1-1-1-0-0	6	1-1-2-1-2-2-1-2	
10 May	6	2-1-0-1-3-1-1-3	2	1-1-0-0-1-0-1-1	6	2-1-1-0-2-1-1-3	
11 May	8	2-3-2-1-2-2-2	4	2-3-1-0-0-0-0-1	6	1-3-2-1-1-1-2	
12 May	6	1-1-2-2-3-1-2-1	7	2-1-3-3-2-1-1-1	7	2-1-2-2-3-1-1-1	
13 May	5	1-2-1-1-1-2-2	2	0-1-0-0-0-1-1-1	4	1-2-1-1-1-1-1	
14 May	11	2-2-1-3-3-2-3-3	11	2-2-3-4-3-2-1-1	9	2-2-2-3-3-2-2-3	



Alerts and Warnings Issued

Date & Time		Date & Time
of Issue UTC	Type of Alert or Warning	of Event UTC
13 May 1929	WATCH: Geomagnetic Storm Ca	tegory G1 predicted
14 May 2027	WATCH: Geomagnetic Storm Ca	tegory G2 predicted

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7cm	A Index	Kp Index	Date	10.7cm	-	Kp Index
15 May	72	12	4	29 May	76	5	2
16	72	22	5	30	74	5	2
17	74	32	6	31	74	5	2
18	74	20	5	01 Jun	74	5	2
19	74	48	6	02	74	5	2
20	74	36	6	03	74	5	2
21	74	20	5	04	72	5	2
22	76	12	4	05	70	5	2
23	76	8	3	06	70	5	2
24	76	5	2	07	70	5	2
25	76	5	2	08	70	5	2
26	76	5	2	09	70	5	2
27	76	5	2	10	70	8	3
28	76	5	2				

Energetic Events

	Time		X-ray		Opti	cal Informat	P	eak	Sweep Freq			
			Half		Integ	Imp/	Location	Rgn	Radi	o Flux	Inten	sity
Date	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245	2695	II	IV

No Events Observed

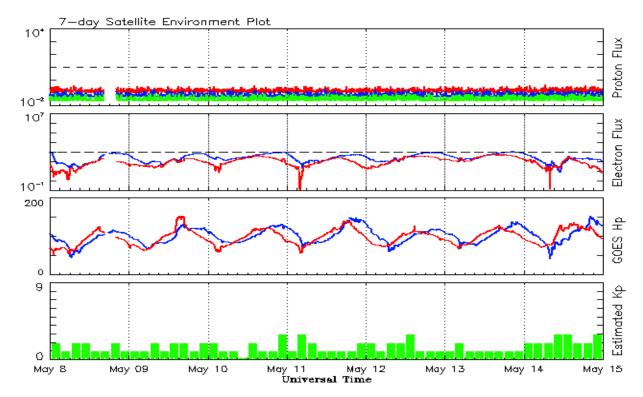
Flare List

				Optical						
		Time		X-ray	Imp/	Location	Rgn			
Date	Begin	Max	End	Class	Brtns	Lat CMD	#			
No Flares Observed										

Region Summary

	Location	on	Su	nspot C	haracte	eristics]	Flares	S			
		Helio	Area	Extent	Spot	Spot	Mag	X	K-ray			О	ptica	ıl	
Date	Lat CMD	Lon	10 ⁻⁶ hemi.	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4
		Regi	ion 2654												
28 Apr	N10E52	316	10	1	Axx	2	A								
29 Apr	N11E38	317	10	1	Axx	1	A								
30 Apr	N11E25	317	10	1	Axx	1	A								
01 May	N11E11	317	plage												
02 May	N11E01	314	60	5	Dao	4	В								
03 May	N12W12	314	70	5	Dso	5	В								
04 May	N11W25	314	80	6	Dso	5	В								
05 May	N11W38	314	40	5	Cso	5	В								
06 May	N11W53	316	30	1	Hsx	1	A								
07 May	N11W66	315	20	1	Hsx	1	A								
08 May	N11W82	318	20	1	Axx	1	A								
	West Limbe heliograp		ngitude: 3	14											
		Regi	ion 2655												
04 May	N13E37	252	10	3	Bxo	4	В								
05 May	N14E25	251	30	3	Dro	6	В				7				
06 May	N13E11	252	20	3	Cro	5	В				1				
07 May	N14W04	253	10	5	Bxo	2	В								
08 May	N16W17	252	plage												
09 May	N16W31	254	plage												
10 May	N16W45	255	plage												
11 May	N16W59	255	plage												
12 May	N16W73	256	plage												
13 May	N16W87	257	plage												
14 May	N16W99	258	plage												
G. 21	D' 1							0	0	0	8	0	0	0	0

Still on Disk. Absolute heliographic longitude: 253



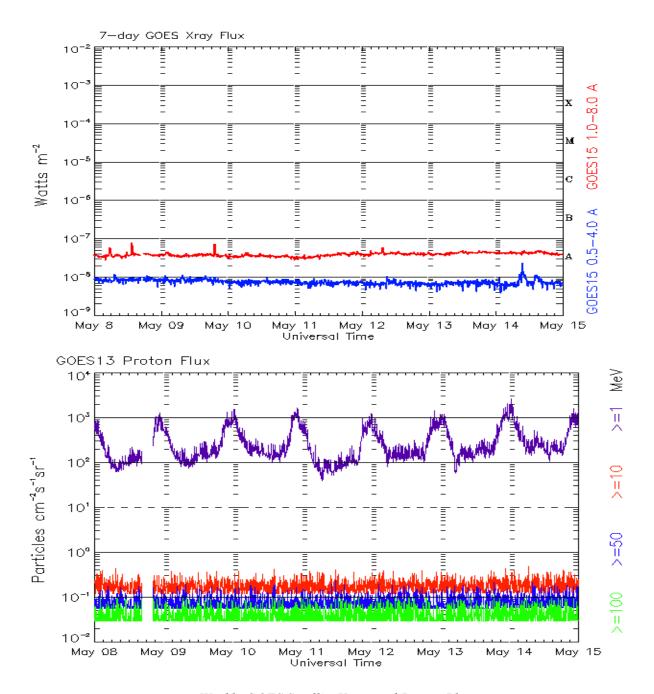
Recent Solar Indices (preliminary) Observed monthly mean values

	<u> </u>	Sunspot N			Radio Flux			Geomagnetic			
	Observed values	es Ratio Smooth		oth values		Penticton		Planetary	-		
Month	SEC RI	RI/SEC	SEC			10.7 cm	Value	Ap	Value		
				2015				•			
May	83.0	53.3	0.71	77.5	45.7	120.1	123.3	9	12.7		
June	77.3	39.9	0.53	73.1	43.3		119.5		13.0		
July	68.4	39.5	0.58	68.2	41.0	107.0	116.0	10	13.1		
August	61.6	38.6	0.63	65.5	39.8	106.2	113.3	16	13.1		
September	72.5	47.2	0.65	64.0	39.5	102.1	110.8	16	12.8		
October	59.5	38.2	0.62	61.8	38.6	104.1	107.9	15	12.5		
November	61.8	37.3	0.61	59.0	36.7		105.3		12.5		
December	54.1	34.8	0.64	55.1	34.7		102.5	15	12.5		
2016											
January	50.4	34.2	0.67	51.4	32.6	103.5	99.9	10	12.3		
February	56.0	33.8	0.61	49.6	31.5		98.1	10	12.0		
March	40.9	32.5	0.80	47.7	30.2		96.6		11.8		
April	39.2	22.7	0.58	45.0	28.7	93.4	95.3	10	11.8		
May	48.9	30.9	0.64	42.1	26.9		93.2		11.7		
June	19.3	12.3	0.65	39.0	24.9		90.4		11.4		
T1	26.0	10.4	0.52	26.5	22.1	95.0	97.7	10	11.0		
July	36.8 50.4	19.4	0.53 0.60	36.5	23.1		87.7 85.5		11.2		
August	50.4 37.4	30.1 26.8	0.00	34.2 32.1	21.6 19.9		83.3 83.7	10 16	11.2 11.3		
September	37.4	20.8	0.72	32.1	19.9	07.0	63.7	10	11.5		
October	30.0	20.0	0.67	31.1	18.8	86.1	82.5	16	11.6		
November	22.4	12.8	0.57			78.7		10			
December	17.6	11.1	0.64			75.1		10			
				2017							
January	28.1	15.5	0.55	= 01,		77.4		10			
February	22.0	15.7	0.71			76.9		10			
March	25.4	10.6	0.42			74.6		15			
April	30.4	19.6	0.64			80.9		13			

Note: Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 08 May 2017

The proton flux plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by the SWPC Primary GOES satellite, near West 75, for each of three energy thresholds: greater than 10, 50, and 100 MeV.


The electron flux plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV by the SWPC Primary GOES satellite.

The Hp plot contains the five minute averaged Hp magnetic field component in nanoteslas (nT) as by the SWPC Primary GOES satellite. The Hp component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

The Estimated 3-hour Planetary Kp-index is derived at the NOAA Space Weather Prediction Center using data from the following ground-based magnetometers: Boulder, Colorado; Chambon la Foret, France; Fredericksburg, Virginia; Fresno, California; Hartland, UK; Newport, Washington; Sitka, Alaska. These data are made available thanks to the cooperative efforts between SWPC and data providers around the world, which currently includes the U.S. Geological Survey, the British Geological Survey, and the Institut de Physique du Globe de Paris.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are 'global' parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots Week Beginning 08 May 2017

The x-ray plots contains five-minute averages x-ray flux (Watt/ m^2) as measure by the SWPC primary GOES X-ray satellite, usually at West 105 longitude, in two wavelength bands, 0.05 - 0.4 and 0.1 - 0.8 nm. The letters A, B, C, M and X refer to x-ray event levels for the 0.1 - 0.8 nm band.

The proton plot contains the five-minute averaged intergral flux units (pfu = protons/cm 2 -sec -sr) as measured by the primary SWPC GOES Proton satellite for each of the energy thresholds: >1, >10, >30, and >100 MeV. The P10 event threshold is 10 pfu at greater than 10 MeV.

Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

Notice: The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

 $http://spaceweather.gov/weekly/ {\hbox{\it --}} Current \ and \ previous \ year$

http://spaceweather.gov/ftpmenu/warehouse.html -- Online achive from 1997

http://spaceweather.gov/ftpmenu/ -- Some content as ascii text

http://spaceweather.gov/SolarCycle/ -- Solar Cycle Progression web site

http://spaceweather.gov/contacts.html -- Contact and Copyright information http://spaceweather.gov/weekly/Usr_guide.pdf -- User Guide

