Solar activity ranged from very low to high during the period due to multiple M-class flares from Region 2644 (N13, L=57, class/area Fkc/520 on 03 April). The first was an M1/Sf flare observed at 03/0105 UTC. The second M-flare was an M5/2n at 03/1429 UTC with an associated Type II (estimated shock speed 746 km/s) and Type IV radio sweeps. Coronal mass ejections (CMEs) were observed with both flares, however, neither was deemed to be Earth-directed. No Earth-directed CMEs were observed during the period.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at normal to moderate levels on 05-08 April, high levels on 04, 09 April, and very high levels on 03 April. The largest flux of the period was 53,552 pfu at 03/1330 UTC.

Geomagnetic field activity ranged from quiet to G1 (Minor) storm conditions. The period began under the influence of a southern polar, negative polarity, coronal hole high-speed stream (CH HSS). Total field ranged between 2 and 6 nT until approximately 04/0000 UTC when it began to increase to a period maximum of 16 nT at 04/1019 UTC. The Bz component reached a period minimum value of -13 nT at 04/0932 UTC. Total field values were at near nominal levels between 05/2200 and 07/2000 when Bt ranged from 2 to 7 nT. An additional enhancement in the interplanetary magnetic field occured shortly after 07/2000 UTC when Bt increased to 10 nT in conjunction with a solar sector boundary crossing (SSBC) from a negative to a positve solar sector orientation. Solar wind speed began the period near 445 km/s and peaked to a maximum speed of 680 km/s at 08/1544 UTC. The geomagnetic field responded with G1 (Minor) storm conditions on 04, 09 April, and quiet to active levels on 03, 05-08 April.

Space Weather Outlook 10 April - 06 May 2017

Solar activity is expected to be very low with a slight chance for C-class flare activity on 10-17 April and 05-06 May. Solar activity is likely to be at moderate levels (R1-R2, Minor-Moderate) with a slight chance for X-class flares (R3-Strong or greater) on 18-30 April and 01-04 May due to potential in Regions 2644 and 2645 (S10, L=18, class/area Ekc/700 on 03 April).

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at normal to moderate levels with high levels likely from 10-12, 18-28 April and 01, 06 May with very high levels likely on 29-30 April due to CH HSS influence.

Geomagnetic field activity is expected to be at unsettled to active levels on 10-13, 17-19, 23-29 April, and 01-06 May with G1 (Minor) storm levels likely on 17, 23-27 April and G2 (Moderate)

storm levels likely on 23 April due to recurrent CH HSS effects. Quiet conditions are expected for the remainder of the period.

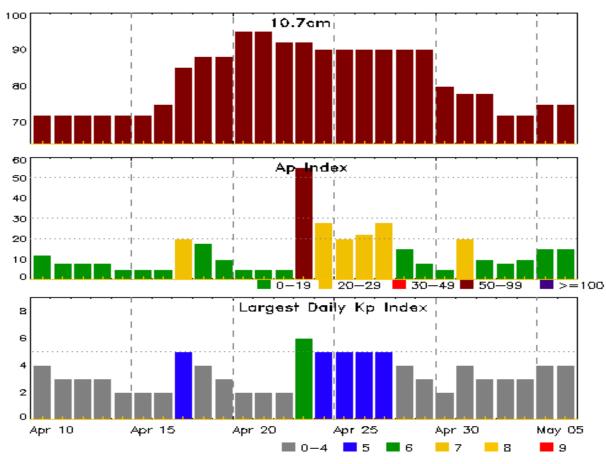
Radio	Sun	Sur	nspot	X-ray			I	Flares			
Flux	spot	Α	rea 1	Backgroun	X-1	ray					
10.7cm	No.	(10 ⁻⁶	hemi.)	Flux		C N	1 X	S	1	2 3	4
108	97	1270	C1.2	14	2	0	28	0	1	0	0
94	75	890	B5.5	13	0	0	9	0	0	0	0
85	37	550	B2.7	2	0	0	5	0	0	0	0
76	38	400	B1.6	2	0	0	4	0	0	0	0
74	27	70	A9.4	2	0	0	1	0	0	0	0
73	0	0	B1.0	2	0	0	0	0	0	0	0
74	13	20	A7.2	0	0	0	0	0	0	0	0
	Flux 10.7cm 108 94 85 76 74 73	Flux 10.7cm spot No. 108 97 94 75 85 37 76 38 74 27 73 0	Radio Sun Sur Flux spot A 10.7cm No. (10 ⁻⁶) 108 97 1270 94 75 890 85 37 550 76 38 400 74 27 70 73 0 0	Radio Sun Sunspot Flux spot Area 1 10.7cm No. (10 ⁻⁶ hemi.) 1 108 97 1270 C1.2 94 75 890 B5.5 85 37 550 B2.7 76 38 400 B1.6 74 27 70 A9.4 73 0 0 B1.0	Radio Sun Sunspot X-ray Flux spot Area Backgroun 10.7cm No. (10 ⁻⁶ hemi.) Flux 108 97 1270 C1.2 14 94 75 890 B5.5 13 85 37 550 B2.7 2 76 38 400 B1.6 2 74 27 70 A9.4 2 73 0 0 B1.0 2	Flux spot Area Background 10.7cm No. (10 ⁻⁶ hemi.) Flux 108 97 1270 C1.2 14 2 94 75 890 B5.5 13 0 85 37 550 B2.7 2 0 76 38 400 B1.6 2 0 74 27 70 A9.4 2 0 73 0 0 B1.0 2 0	Radio Sun Sunspot X-ray Flux spot Area Background X-ray 10.7cm No. (10 ⁻⁶ hemi.) Flux C M 108 97 1270 C1.2 14 2 0 94 75 890 B5.5 13 0 0 85 37 550 B2.7 2 0 0 76 38 400 B1.6 2 0 0 74 27 70 A9.4 2 0 0 73 0 0 B1.0 2 0 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Daily Solar Data

Daily Particle Data

		oton Fluence ns/cm ² -day -sr)	Electron Fluence (electrons/cm ² -day -sr)						
Date		>10 MeV >100 MeV	>0.6 MeV	>2 MeV >4 MeV					
03 April	7.6e+06	1.5e+04	3.5e+03	1.9e+09					
04 April	5.4e+06	1.5e+04	3.3e+03	8.6e+07					
05 April	3.8e+06	1.4e+04	3.4e+03	5.7e+06					
06 April	4.3e+06	1.4e+04	3.5e+03	6.0e+06					
07 April	5.9e+06	1.5e+04	3.6e+03	7.8e+06					
08 April	6.0e+06	1.5e+04	3.5e+03	1.2e+07					
09 April	8.8e+06	1.5e+04	3.4e+03	8.3e+07					

Daily Geomagnetic Data


		Middle Latitude		High Latitude		Estimated		
		Fredericksburg		College	Planetary			
Date	Α	K-indices	Α	K-indices	А	K-indices		
03 April	4	1-1-0-1-3-1-1-1	5	0-1-0-3-3-2-0-0	4	1-1-0-2-2-1-0-1		
04 April	17	2-3-5-4-3-1-1-3	28	2-4-6-6-3-1-1-2	20	2-4-5-5-3-1-1-3		
05 April	10	1-1-3-1-2-3-3-3	5	1-2-3-1-1-1-1-1	10	2-1-3-2-1-2-2-4		
06 April	5	1-0-1-1-2-2-2-2	20	1-1-1-3-5-6-2-1	7	2-1-1-2-2-3-2-1		
07 April	9	2-2-2-2-1-3-3	8	1-2-4-3-1-0-1-2	10	3-2-2-2-1-1-3-4		
08 April	14	3-3-3-2-3-2-2-4	20	3-3-5-5-2-2-3	16	4-3-4-2-2-3-4		
09 April	16	4-5-3-3-2-2-1-1	31	4-5-5-5-5-4-0-0	32	4-5-4-3-3-2-1-1		

Date & Time of Issue UTC	Type of Alert or Warning	Date & Time of Event UTC
03 Apr 0500	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	28/1045
03 Apr 1433	ALERT: X-ray Flux exceeded M5	03/1429
03 Apr 1447	SUMMARY: X-ray Event exceeded M5	03/1419 - 1434
03 Apr 1803	ALERT: Type II Radio Emission	03/1429
03 Apr 1804	ALERT: Type IV Radio Emission	03/1432
04 Apr 0439	WARNING: Geomagnetic $K = 4$	04/0440 - 0900
04 Apr 0544	SUMMARY: 10cm Radio Burst	04/0520 - 0520
04 Apr 0601	ALERT: Geomagnetic $K = 4$	04/0559
04 Apr 0734	EXTENDED WARNING: Geomagnetic $K = 4$	4 04/0440 - 1500
04 Apr 0734	WARNING: Geomagnetic $K = 5$	04/0733 - 1200
04 Apr 0815	ALERT: Geomagnetic $K = 5$	04/0814
04 Apr 1152	ALERT: Geomagnetic $K = 5$	04/1152
04 Apr 1455	EXTENDED WARNING: Geomagnetic $K = 4$	4 04/0440 - 2100
04 Apr 2155	SUMMARY: 10cm Radio Burst	04/2134 - 2136
05 Apr 2250	WARNING: Geomagnetic $K = 4$	05/2250 - 06/0300
06 Apr 0006	ALERT: Geomagnetic $K = 4$	05/2359
07 Apr 2349	WARNING: Geomagnetic $K = 4$	07/2348 - 08/0900
07 Apr 2355	ALERT: Geomagnetic $K = 4$	07/2355
08 Apr 0834	EXTENDED WARNING: Geomagnetic $K = 4$	4 07/2348 - 08/1800
08 Apr 1755	EXTENDED WARNING: Geomagnetic $K = 4$	4 07/2348 - 09/0300
09 Apr 0130	EXTENDED WARNING: Geomagnetic $K = 4$	4 07/2348 - 09/1300
09 Apr 0130	WARNING: Geomagnetic $K = 5$	09/0130 - 0600
09 Apr 0458	ALERT: Geomagnetic $K = 5$	09/0458
09 Apr 0542	EXTENDED WARNING: Geomagnetic K = 5	5 09/0130 - 1200
09 Apr 1239	EXTENDED WARNING: Geomagnetic $K = 4$	4 07/2348 - 10/0300
09 Apr 1346	ALERT: Electron 2MeV Integral Flux >= 1000pf	u 09/1330

Alerts and Warnings Issued

Date	Radio Flux 10.7cm	Planetary A Index	Largest Kp Index	Date	Radio Flux 10.7cm	-	Largest Kp Index
10 Apr	72	12	4	24 Apr	90	28	5
11	72	8	3	25	90	20	5
12	72	8	3	26	90	22	5
13	72	8	3	27	90	28	5
14	72	5	2	28	90	15	4
15	72	5	2	29	90	8	3
16	75	5	2	30	80	5	2
17	85	20	5	01 May	78	20	4
18	88	18	4	02	78	10	3
19	88	10	3	03	72	8	3
20	95	5	2	04	72	10	3
21	95	5	2	05	75	15	4
22	92	5	2	06	75	15	4
23	92	55	6				

	Energetic Events													
		Time		X-:	ray	Optic	cal Informat	Р	eak	Sw	Freq			
			Half		Integ	Imp/	Location	Rgn	Radi	io Flux	I	ntens	ity	
Date	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245	2695]	Ι	IV	
03 Apr	0056	0105	0112	M1.2	0.00)8 SF	N15W7	5 2644	Ļ					
03 Apr	1419	1429	1434	M5.8	0.03	81		2644	68	00 1	00	2	1	

				Flare Lisi			
					_	Optical	
		Time		X-ray	Imp/	Location	Rgn
Date	Begin	Max	End	Class	Brtns	Lat CMD	#
03 Apr	0056	0105	0112	M1.2	SF	N15W75	2644
03 Apr	0347	0349	0350		SF	N14W78	2644
03 Apr	0419	0426	0431	C2.3	SF	N12W71	2644
03 Apr	0437	0437	0442		SF	S11W32	2645
03 Apr	0455	0527	0536	C5.7	SF	N13W73	2644
03 Apr	0521	0521	0526		SF	N13W72	2644
03 Apr	0606	0607	0612		SF	N13W72	2644
03 Apr	0616	0621	0627		SF	S11W32	2645
03 Apr	0639	0642	0643		SF	N12W72	2644
03 Apr	0644	0648	0657		SF	N12W72	2644
03 Apr	0733	0734	0735		SF	N12W71	2644
03 Apr	0806	0812	0817	C3.8	SF	S11W33	2645
03 Apr	0914	0916	0919	C2.5	SF	N12W73	2644
03 Apr	0932	0933	0936		SF	N11W77	2644
03 Apr	1107	1113	1125	C3.9			2645
03 Apr	1140	1143	1145	C2.6			2645
03 Apr	1216	1220	1226	C2.6			2645
03 Apr	1301	1306	1309	C3.4			2645
03 Apr	B1313	1323	1355	C7.3	SF	N17W80	2644
03 Apr	1415	1423	1454		2N	N19W80	2644
03 Apr	1419	1429	1434	M5.8			2644
03 Apr	1529	1530	1533		SF	N18W80	2644
03 Apr	1543	1545	1548		SF	N16W78	2644
03 Apr	1549	1549	1553		SF	N17W78	2644
03 Apr	1613	1615	1618		SF	N16W77	2644
03 Apr	1623	1623	1627		SF	N16W77	2644
03 Apr	1701	U1703	1707		SF	N16W80	2644
03 Apr	1754	1758	1801		SF	N19W83	2644
03 Apr	1906	1910	1914	C2.5			

Flare List

				Flare List			
						Optical	
		Time		X-ray	Imp/	Location	Rgn
Date	Begin	Max	End	Class	Brtns	Lat CMD	#
03 Apr	1957	1958	1959		SF	N19W83	2644
03 Apr	2007	2013	2020	C5.0	SF	N15W77	2644
03 Apr	2046	2050	2055		SF	N15W77	2644
03 Apr	2113	2116	2118	C1.6	SF	N15W77	2644
03 Apr	2249	2251	2302	C2.3	SF	N15W76	2644
03 Apr	2343	2352	2356	C1.7	SF	S09W37	2645
04 Apr	0035	0039	0054	C1.4	SF	S12W37	2645
04 Apr	0128	0132	0136	C1.9	SF	S04E50	2648
04 Apr	0609	0616	0619	C1.1	SF	N13W76	2644
04 Apr	0702	0712	0725	C3.7	SF	N13W85	2644
04 Apr	B0811	U0811	A0817		SF	S12W39	2645
04 Apr	B0833	U0833	A0903		SF	N13W81	2644
04 Apr	0946	0951	0958	C2.3	SF	N12W75	2644
04 Apr	1145	1148	1150	B9.5			
04 Apr	1212	1216	1218	C1.9			2644
04 Apr	1331	1341	1356	C2.3			2644
04 Apr	1614	1617	1619	C1.0			2645
04 Apr	1623	1627	1634	B9.1			
04 Apr	1655	1701	1703	C1.9			2644
04 Apr	1921	1925	1927	C1.1			2645
04 Apr	1942	1945	1948	B9.4			
04 Apr	2131	2136	2139	C2.1	SF	S10W48	2645
04 Apr	2144	2148	2150	B9.9			
04 Apr	2222	2225	2227	C1.2			
04 Apr	2330	2342	2346	C4.9	SF	S09W50	2645
05 Apr	0004	0005	0008		SF	S09W50	2645
05 Apr	0118	0121	0123	B5.7			
05 Apr	0245	0250	0253	B9.8			
05 Apr	0318	0322	0327	B5.0			
05 Apr	0451	0455	0458	C1.1	SF	S13W52	2645
05 Apr	0837	0937	0942	C1.0	SF	S12W53	2645
05 Apr	1224	1229	1238	B4.3			
05 Apr	1551	1555	1558	B5.9			
05 Apr	1734	1740	1745	B9.1	SF	S10W57	2645
05 Apr	2339	2340	2351		SF	S10W60	2645
06 Apr	0647	0650	0652	B2.9			2645
06 Apr	0723	0732	0743	B8.4	SF	S15W67	2645
06 Apr	0839	0934	0945	B4.0			2645

					(Optical	
		Time		X-ray	Imp/	Location	Rgn
Date	Begin	Max	End	Class	Brtns	Lat CMD	#
06 Apr	1015	1026	1029	C1.1	SF	S12W65	2645
06 Apr	1201	1210	1220	C5.5	SF	S13W68	2645
06 Apr	1721	1727	1734	B5.5	SF	S10W71	2645
06 Apr	2106	2116	2121	B4.8			2645
06 Apr	2259	2304	2311	B4.7			2645
07 Apr	0013	0025	0033	C2.7			2645
07 Apr	0849	0855	0903	B9.8			2645
07 Apr	1558	1559	1602		SF	S13W84	2645
07 Apr	1713	1720	1724	B2.6			2645
07 Apr	1942	1949	1952	C4.3			2645
08 Apr	0038	0047	0051	B4.0			2645
08 Apr	0142	0148	0153	B3.0			2650
08 Apr	0255	0309	0317	C1.1			2645
08 Apr	0847	0905	0912	C1.2			2645
08 Apr	1323	1328	1335	B3.2			2650
08 Apr	1414	1417	1423	B3.3			2645
08 Apr	1505	1510	1516	B3.6			2650
08 Apr	1703	1714	1726	B3.1			2650
08 Apr	1918	1929	1945	B4.9			2645
08 Apr	2351	0016	0023	B2.3			2650
09 Apr	1721	1726	1730	B1.8			2648

Flare List

						Jumm	ur y								
	Locatio	on	Su	inspot C	haracte	ristics					Flares	5			
		Helio	Area	Extent	Spot	Spot	Mag	X	K-ray			0	ptica	1	
Date	Lat CMD	Lon 1	0 ⁻⁶ hemi.	(helio)	Class	Count	Class	С	М	Х	S	1	2	3	4
		л ·	2644												
		Regio	on 2644												
26 Mar	N12E30	54	50	6	Dao	10	В	1			4				
27 Mar	N13E17	54	150	8	Dai	15	BG				6				
28 Mar	N12E04	54	240	10	Dsi	12	В	1			4				
29 Mar	N12W09	53	220	11	Eso	10	В				1				
30 Mar	N12W23	54	190	12	Eso	3	В								
31 Mar	N12W37	55	190	11	Eao	4	В				1				
01 Apr	N12W52	57	200	12	Eao	8	В	1	1		2	1			
02 Apr	N12W65	57	450	17	Fkc	19	BG	4	4		17		1		
03 Apr	N13W79	57	520	18	Fkc	12	BGD	7	2		24		1		
04 Apr	N13W92	57	150	13	Eao	7	В	6			4				
								20	7	0	63	1	2	0	0
Crossed	West Lim	b.													
Absolut	te heliograp	hic long	gitude: 5	4											
		Regio	n 2645												
27 Mar	S09E59	12	30	4	Cso	3	В	3			6				
28 Mar	S09E44	14	70	7	Dai	8	BG	4			9				
29 Mar	S10E29	15	180	9	Dsi	12	В				2				
30 Mar	S10E16	15	260	10	Dki	10	В								
31 Mar	S10E01	17	380	12	Ekc	29	BG	2			4				
01 Apr	S11W13	17	520	12	Ekc	25	BG	1			1				
02 Apr	S10W26	18	600	14	Ehc	23	BGD	3			2				
03 Apr	S10W40	18	700	15	Ekc	35	BGD	6			4				
04 Apr	S10W53	18	680	15	Ekc	16	BGD	5			4				
05 Apr	S10W67	18	500	16	Fkc	12	BGD	2			5				
06 Apr	S10W79	18	380	15	Ekc	14	BG	2			4				
07 Apr	S09W91	17	70	6	Cao	5	В	2			1				
*								30	0	0	42	0	0	0	0
0	1 3 3 7 4 7 1	1													

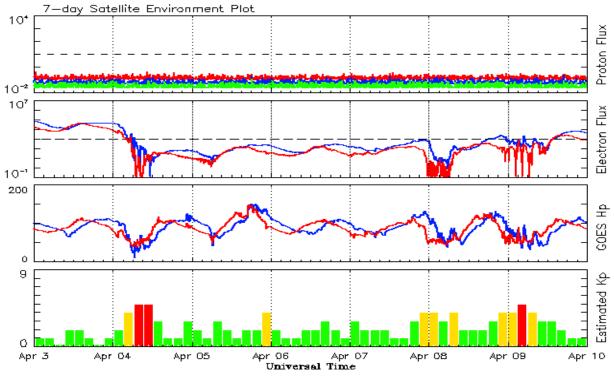
Region Summary

Crossed West Limb. Absolute heliographic longitude: 17

	Locatio	on		inspot C		-	onunu			1	Flares	3			
		Helio	Area	Extent			Mag	X	C-ray				ptica	1	
Date	Lat CMD	Lon	10 ⁻⁶ hemi.		-	-	Class	С	Μ	Χ	S	1	2	3	4
		Regi	on 2647												
31 Mar	N11E01	17	10	2	Bxo	2	В								
01 Apr	N11W13	18	10	3	Bxo	4	В								
02 Apr	N11W27	19	plage												
03 Apr	N11W41	19	plage												
04 Apr	N11W55	20	plage												
05 Apr	N11W69	21	plage												
06 Apr	N11W83	22	plage												
								0	0	0	0	0	0	0	0
	l West Lim e heliograp		gitude: 1	7											
	0 1		-												
		Regi	on 2648												
01 Apr	S03E72	293	10	3	Bxo	2	В								
02 Apr	S03E61	291	20	5	Cro	3	В								
03 Apr	S03E50	288	30	7	Dro	6	В								
04 Apr	S03E37	288	30	8	Cro	8	В	1			1				
05 Apr	S02E22	288	50	7	Bxo	5	В								
06 Apr	S03E07	292	20	4	Bxo	4	В								
07 Apr	S03W04	290	0	3	Axx	2	А								
08 Apr	S03W19	291	plage												
09 Apr	S03W34	293	plage							_		_	_	_	_
~ 111	~							1	0	0	1	0	0	0	0
Still on Absolut	Disk. e heliograp	hic lon	gitude: 2	90											
		Rogi	on 2649												
02 4	NITEWEO	-		Λ	Crea	Λ	р								
03 Apr	N15W58	36	20	4	Cro	4	B								
04 Apr	N14W70	35	30	5	Cro	4	В								
05 Apr	N14W84	36	plage					0	0	0	0	0	0	0	0
	l West Lim e heliograp		gitude: 3	6				0	0	0	0	0	0	0	0
		Regi	on 2650												
09 Apr	N08E71	188	20	4	Cro	3	В	0	0	0	0	0	0	0	0
Still on	Disk.							0	0	0	0	0	0	0	0

Region Summary - continued

Still on Disk. Absolute heliographic longitude: 188



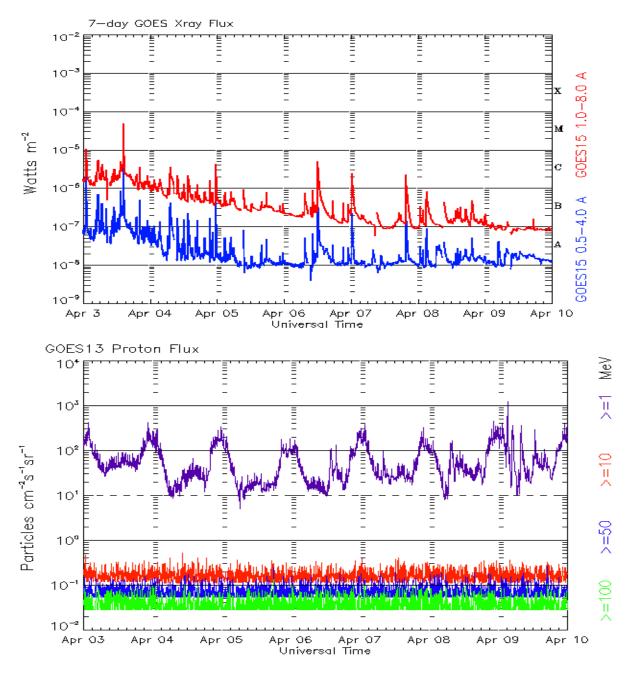
Observed moninty mean values									
		Sunspot N			Radio				gnetic
	Observed values			oth values		Penticton		Planetary	
Month	SEC RI	RI/SEC	SEC	C RI		10.7 cm	Value	Ap	Value
2015									
April	72.5	45.2	0.75	80.5	47.3	129.2	127.3	12	12.4
May	83.0	53.3	0.71	77.5	45.7	120.1	123.3	9	12.7
June	77.3	39.9	0.53	73.1	43.3	123.2	119.5	14	13.0
T 1	CO 1	20.5	0.50	(0, 2)	41.0	107.0	1160	10	10.1
July	68.4	39.5	0.58	68.2	41.0		116.0		13.1
August	61.6	38.6	0.63	65.5	39.8		113.3		13.1
September	72.5	47.2	0.65	64.0	39.5	102.1	110.8	16	12.8
October	59.5	38.2	0.62	61.8	38.6	5 104.1	107.9	15	12.5
November	61.8	37.3	0.61	59.0	36.7	109.6	105.3	13	12.5
December	54.1	34.8	0.64	55.1	34.7	112.8	102.5	15	12.5
2017									
Ionuomi	50.4	34.2	0.67	2016 51.4	32.6	5 103.5	99.9	10	12.3
January Februarv	56.0	34.2 33.8	0.67	49.6	31.5		99.9 98.1		12.3
March	40.9	32.5	0.80	49.0 47.7	30.2		96.6		12.0
watch	40.9	52.5	0.80	47.7	50.2	, 91.0	90.0	11	11.0
April	39.2	22.7	0.58	45.0	28.7	93.4	95.3	10	11.8
May	48.9	30.9	0.64	42.1	26.9	93.1	93.2	12	11.7
June	19.3	12.3	0.65	39.0	24.9	81.9	90.4	9	11.4
July	36.8	19.4	0.53	36.5	23.1	85.9	87.7	10	11.2
August	50.4	30.1	0.60	34.2	21.6		85.5		11.2
September		26.8	0.72	31.0	19.9		83.7		11.3
October	30.0	20.0	0.67			86.1		16	
November		12.8	0.57			78.7		10	
December	17.6	11.1	0.64			75.1		10	
				2017					
January	28.1	15.5	0.55			77.4		10	
February	22.0	15.7	0.71			76.9		10	
March		10.6				74.6		15	

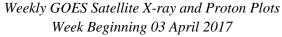
Recent Solar Indices (preliminary) Observed monthly mean values

Note: Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 03 April 2017

The proton flux plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by the SWPC Primary GOES satellite, near West 75, for each of three energy thresholds: greater than 10, 50, and 100 MeV.


The electron flux plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV by the SWPC Primary GOES satellite.


The Hp plot contains the five minute averaged Hp magnetic field component in nanoteslas (nT) as by the SWPC Primary GOES satellite. The Hp component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

The Estimated 3-hour Planetary Kp-index is derived at the NOAA Space Weather Prediction Center using data from the following ground-based magnetometers: Boulder, Colorado; Chambon la Foret, France; Fredericksburg, Virginia; Fresno, California; Hartland, UK; Newport, Washington; Sitka, Alaska. These data are made available thanks to the cooperative efforts between SWPC and data providers around the world, which currently includes the U.S. Geological Survey, the British Geological Survey, and the Institut de Physique du Globe de Paris.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are 'global' parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

The x-ray plots contains five-minute averages x-ray flux (Watt/m²) as measure by the SWPC primary GOES X-ray satellite, usually at West 105 longitude, in two wavelength bands, 0.05 - 0.4 and 0.1 - 0.8 nm. The letters A, B, C, M and X refer to x-ray event levels for the 0.1 - 0.8 nm band.

The proton plot contains the five-minute averaged intergral flux units (pfu = protons/cnf - sec - sr) as measured by the primary SWPC GOES Proton satellite for each of the energy thresholds: >1, >10, >30, and >100 MeV. The P10 event threshold is 10 pfu at greater than 10 MeV.

Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

Notice: The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

http://spaceweather.gov/weekly/ -- Current and previous year http://spaceweather.gov/ftpmenu/warehouse.html -- Online achive from 1997 http://spaceweather.gov/ftpmenu/ -- Some content as ascii text http://spaceweather.gov/SolarCycle/ -- Solar Cycle Progression web site

http://spaceweather.gov/contacts.html -- Contact and Copyright information http://spaceweather.gov/weekly/Usr_guide.pdf -- User Guide

