Solar activity was at low levels due to a C9/1f flare observed at 21/0726 UTC from Region 2628 (N12, L=173, class/area Dao/210 on 22 January). Region 2628 was responsible for additional C-class flaring on 21 January. The rest of the period was at very low levels. No Earth-directed coronal mass ejections were observed.

No proton events were observed at geosynchronous orbit.
The greater than 2 MeV electron flux at geosynchronous orbit was at normal to moderate levels with high levels observed on 16-17, and 20-22 January. The largest flux value of the period was 3,090 pfu observed at 16/1935 UTC.

Geomagnetic field activity ranged from quiet to active levels over the period. Solar wind parameters were indicative of background conditions to start the period. Early on 18 January, wind speed began to increase as a positive polarity coronal hole high speed stream (CH HSS) became geoeffective. Wind speed reached a maximum value of $651 \mathrm{~km} / \mathrm{s}$ at 19/0320 UTC and total field peaked at 17 nT at 18/0605 UTC before gradually decreasing throughout the remainder of the period. The geomagnetic field was at quiet levels on 16-17 January, quiet to active levels on 18-19 \& 21 January, and quiet to unsettled levels on $20 \& a m p ; 22$ January.

## Space Weather Outlook <br> 23 January - 18 February 2017

Solar activity is likely to be low with a slight chance for M-class flares on 23-31 January and 14-18 February due to the flare potential in Region 2628. Very low levels are expected on 01-13 February.

No proton events are expected at geosynchronous orbit.
The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at normal to moderate levels with high levels likely on 23-27 January, 01-13 February, and again on 16-18 February due to CH HSS influence.

Geomagnetic field activity is expected to be at unsettled to active levels on 23, 27-31 January, 01-07 February and 14-18 February with G1 (Minor) geomagnetic storm levels likely on 03 February due to recurrent CH HSS effects.

Daily Solar Data

| Date | Radio Flux 10.7 cm | Sun <br> spot <br> No. | Sunspot <br> Area <br> ( $10^{-6}$ hemi.) |  | X-ray <br> Background Flux | Flares |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | X-ray |  |  | Optical |  |  |  |  |
|  |  |  |  |  |  | C | M | X | S | 1 | 2 | 3 | 4 |
| 16 January | 78 | 24 | 180 | A6.9 |  | 90 | 0 | 0 | ) | 0 | 0 | 0 |  | 0 | 0 |
| 17 January | 79 | 26 | 140 | A7.0 |  | 0 | 0 | 0 | ) | 0 | 0 | 0 |  | 0 | 0 |
| 18 January | 79 | 25 | 100 | A7.0 | 0 | 0 | 0 | ) | 0 | 0 | 0 |  | 0 | 0 |
| 19 January | 80 | 26 | 90 | A7.1 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 |
| 20 January | 83 | 61 | 180 | B1.0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 |  | 0 | 0 |
| 21 January | 86 | 67 | 270 | B1.4 | 46 | 0 | 0 | 0 | 5 | 1 | 0 |  | 0 | 0 |
| 22 January | 87 | 61 | 350 | B1.3 | 30 | 0 | 0 | 0 | 0 | 0 | 0 |  | 0 | 0 |

## Daily Particle Data

| Date | Proton Fluence (protons/cm ${ }^{2}$-day -sr) |  |  | Electron Fluence (electrons $/ \mathrm{cm}^{2}$-day -sr) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $>1 \mathrm{MeV}$ | $>10 \mathrm{MeV}$ | $>100 \mathrm{MeV}$ | $>0.6 \mathrm{MeV}$ | $>2 \mathrm{MeV}$ | $>4 \mathrm{MeV}$ |
| 16 January |  |  | $1.5 \mathrm{e}+04$ | $3.6 \mathrm{e}+03$ |  |  |
| 17 January |  |  | $1.4 \mathrm{e}+04$ | $3.2 \mathrm{e}+03$ |  |  |
| 18 January |  |  | $1.5 \mathrm{e}+04$ | $3.6 \mathrm{e}+03$ |  |  |
| 19 January |  |  | $1.5 \mathrm{e}+04$ | $3.4 \mathrm{e}+03$ |  |  |
| 20 January |  |  | $1.5 \mathrm{e}+04$ | $3.5 \mathrm{e}+03$ |  |  |
| 21 January |  |  | $1.4 \mathrm{e}+04$ | $3.5 \mathrm{e}+03$ |  |  |
| 22 January |  |  | $1.4 \mathrm{e}+04$ | $3.4 \mathrm{e}+03$ |  |  |

Daily Geomagnetic Data

| Date | Middle Latitude |  | High Latitude |  | Estimated |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | redericksburg <br> K-indices | A | College K-indices | A | Planetary K-indices |
| 16 January | 2 | 0-1-1-0-1-0-1-0 | 0 | 0-0-1-0-0-0-0-0 | 3 | 1-1-1-0-0-0-1-1 |
| 17 January | 3 | 0-1-0-0-2-2-2-1 | 2 | 0-0-0-2-2-1-0-0 | 4 | 1-1-0-1-1-2-1-1 |
| 18 January | 11 | 1-2-2-2-3-3-3-3 | 27 | 0-1-4-5-6-4-3-3 | 17 | 1-3-3-3-3-4-4-4 |
| 19 January | 10 | 4-2-3-2-2-2-1-2 | 17 | 3-2-3-5-4-3-1-1 | 11 | 4-3-3-3-2-2-1-2 |
| 20 January | 9 | 2-3-2-1-1-1-3-3 | 10 | 2-1-3-3-4-1-1-2 | 11 | 3-3-2-2-2-1-3-3 |
| 21 January | 9 | 3-2-2-2-1-2-2-3 | 14 | 2-1-3-4-3-3-3-3 | 11 | 3-1-2-2-1-2-3-4 |
| 22 January | 8 | 3-3-2-2-2-2-1-1 | 16 | 2-1-2-5-5-1-2-1 | 15 | 3-3-3-2-2-2-2-2 |

Alerts and Warnings Issued

| Date \& Time of Issue UTC | Type of Alert or Warning ${ }^{\text {D }}$ | Date \& Time of Event UTC |
| :---: | :---: | :---: |
| 16 Jan 1352 | CONTINUED ALERT: <br> Electron 2 MeV Integral Flux $>=1000$ pfu | 05/1520 |
| 16 Jan 2213 | WATCH: Geomagnetic Storm Category G1 predicted |  |
| 17 Jan 1436 | CONTINUED ALERT: <br> Electron 2 MeV Integral Flux $>=1000$ pfu | 05/1520 |
| 18 Jan 0954 | WARNING: Geomagnetic $\mathrm{K}=4$ | 18/0955-1800 |
| 18 Jan 1741 | EXTENDED WARNING: Geomagnetic $\mathrm{K}=4$ | 18/0955-19/0600 |
| 18 Jan 1801 | ALERT: Geomagnetic $\mathrm{K}=4$ | 18/1759 |
| 19 Jan 0524 | EXTENDED WARNING: Geomagnetic $\mathrm{K}=4$ | 18/0955-19/1800 |
| 20 Jan 0351 | WARNING: Geomagnetic $\mathrm{K}=4$ | 20/0350-1200 |
| 20 Jan 1354 | ALERT: Electron 2MeV Integral Flux >= 1000pfu | 20/1340 |
| 21 Jan 1151 | CONTINUED ALERT: <br> Electron 2 MeV Integral Flux $>=1000$ pfu | 20/1340 |
| 21 Jan 2243 | WARNING: Geomagnetic $\mathrm{K}=4$ | 21/2242-22/0600 |
| 21 Jan 2245 | ALERT: Geomagnetic $\mathrm{K}=4$ | 21/2245 |
| 22 Jan 1456 | CONTINUED ALERT: <br> Electron 2 MeV Integral Flux $>=$ 1000pfu | 20/1340 |

## Twenty-seven Day Outlook



|  | Radio Flux <br> 10.7 cm | Planetary <br> A Index | Largest <br> Kp Index | Date | Radio Flux <br> 10.7 cm | Planetary <br> A Index | Largest <br> Kp Index |
| :--- | :---: | ---: | :---: | :---: | :---: | :---: | :---: |
| Date |  |  |  |  |  |  |  |
| 23 Jan | 85 | 8 | 3 | 06 Feb | 75 | 10 | 3 |
| 24 | 83 | 5 | 2 | 07 | 75 | 8 | 3 |
| 25 | 82 | 5 | 2 | 08 | 76 | 5 | 2 |
| 26 | 80 | 5 | 2 | 09 | 77 | 5 | 2 |
| 27 | 80 | 12 | 4 | 10 | 77 | 5 | 2 |
| 28 | 80 | 15 | 4 | 11 | 77 | 5 | 2 |
| 29 | 78 | 8 | 3 | 12 | 77 | 5 | 2 |
| 30 | 77 | 10 | 3 | 13 | 78 | 5 | 2 |
| 31 | 77 | 12 | 4 | 14 | 79 | 15 | 4 |
| 01 Feb | 76 | 16 | 4 | 15 | 81 | 10 | 3 |
| 02 | 76 | 18 | 4 | 16 | 83 | 10 | 3 |
| 03 | 75 | 20 | 5 | 17 | 83 | 8 | 3 |
| 04 | 75 | 16 | 4 | 18 | 83 | 8 | 3 |
| 05 | 75 | 12 | 4 |  |  |  |  |

## Energetic Events

| Date | Time |  |  | X-ray |  | Optical Information |  |  | Peak <br> Radio Flux |  | Sweep Frec Intensity |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Half |  | Integ | Imp/ | Location | Rgn |  |  |  |  |
|  | Begin | Max | Max | Class | Flux | Brtns | Lat CMD | \# | 245 | 2695 | II | IV |

## No Events Observed

Flare List

| Date | Time |  |  | Optical |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | X-rayClass | $\begin{gathered} \hline \text { Imp/ } \\ \text { Brtns } \end{gathered}$ | Location <br> Lat CMD | $\begin{gathered} \text { Rgn } \\ \# \end{gathered}$ |
|  | Begin | Max | End |  |  |  |  |
| 16 Jan | 0141 | 0144 | 0148 | B1.3 |  |  | 2626 |
| 16 Jan | 1812 | 1823 | 1835 | B1.4 |  |  | 2625 |
| 18 Jan | 1833 | 1836 | 1839 | B1.3 |  |  |  |
| 20 Jan | 0633 | 0636 | 0637 | B1.0 |  |  | 2628 |
| 20 Jan | 0637 | 0638 | 0642 | B1.4 | SF | N12E61 | 2628 |
| 20 Jan | 0644 | 0702 | 0709 | B1.7 | SF | N12E61 | 2628 |
| 20 Jan | 0735 | 0736 | 0737 |  | SF | N12E61 | 2628 |
| 20 Jan | 0738 | 0739 | 0743 |  | SF | N12E61 | 2628 |
| 20 Jan | 0746 | 0756 | 0801 | B2.7 | SF | N12E61 | 2628 |
| 20 Jan | 0808 | 0809 | 0813 |  | SF | N12E61 | 2628 |
| 20 Jan | 0815 | 0830 | 0846 |  | SF | N12E61 | 2628 |
| 20 Jan | 0851 | 0853 | 0857 |  | SF | N12E61 | 2628 |
| 20 Jan | 0933 | 0939 | 0942 | B4.3 |  |  | 2628 |
| 20 Jan | 1037 | 1046 | 1052 | B5.3 |  |  | 2628 |
| 20 Jan | 1509 | 1516 | 1520 | B3.1 |  |  | 2628 |
| 20 Jan | 1709 | 1712 | 1716 | B4.1 |  |  | 2627 |
| 20 Jan | 2057 | 2100 | 2104 | B2.6 |  |  | 2627 |
| 21 Jan | 0210 | 0217 | 0221 | B5.4 |  |  | 2628 |
| 21 Jan | 0224 | 0227 | 0237 | B7.1 | SF | N12E53 | 2628 |
| 21 Jan | 0238 | 0239 | 0240 |  | SF | N12E53 | 2628 |
| 21 Jan | 0300 | 0305 | 0307 | B7.6 |  |  | 2628 |
| 21 Jan | 0402 | 0405 | 0407 | B3.6 | SF | N12E53 | 2628 |
| 21 Jan | 0543 | 0545 | 0552 |  | SF | N12E46 | 2628 |
| 21 Jan | 0623 | 0629 | 0636 | C1.2 | SF | N11E46 | 2628 |
| 21 Jan | 0656 | 0726 | 0842 |  | 1F | N13E44 | 2628 |
| 21 Jan | 0702 | 0705 | 0709 | B8.4 |  |  | 2628 |
| 21 Jan | 0714 | 0726 | 0729 | C9.3 |  |  | 2628 |
| 21 Jan | 0823 | 0826 | 0829 | B3.5 |  |  | 2628 |
| 21 Jan | 0858 | 0906 | 0910 | B3.8 |  |  | 2628 |
| 21 Jan | 0912 | 0917 | 0926 | B5.1 |  |  | 2628 |
| 21 Jan | 0940 | 0946 | 0952 | C1.0 |  |  | 2628 |

## Flare List

|  |  |  |  |  | Optical |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | Begin | Max | End |  | $\begin{array}{c}\text { X-ray } \\ \text { Class }\end{array}$ | $\begin{array}{c}\text { Imp/ } \\ \text { Brtns }\end{array}$ | $\begin{array}{c}\text { Location } \\ \text { Lat CMD }\end{array}$ |
| 21 Jan | 1019 | 1023 | 1027 |  | Rgn |  |  |
| \# |  |  |  |  |  |  |  |$]$

Region Summary

|  | Location |  | Sunspot Characteristics |  |  |  |  | Flares |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Helio | Area | Extent | Spot | Spot | Mag |  | X-ray |  |  |  | tic |  |  |
| Date | Lat CMD | Lon | $10^{-6}$ hemi | (helio) | Class | Count | Class | C | M | X | S | 1 | 2 | 3 | 4 |

## Region 2625

| 12 Jan | N03E72 | 254 | 30 | 1 | Hsx | 1 | A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 13 Jan | N03E58 | 254 | 50 | 4 | Cso | 3 | B |
| 14 Jan | N03E45 | 254 | 50 | 8 | Cso | 3 | B |
| 15 Jan | N03E31 | 255 | 40 | 1 | Hsx | 1 | A |
| 16 Jan | N01E18 | 254 | 60 | 1 | Hsx | 1 | A |
| 17 Jan | N01E06 | 252 | 50 | 3 | Hsx | 2 | A |
| 18 Jan | S00W07 | 252 | 40 | 5 | Cao | 2 | B |
| 19 Jan | S00W20 | 253 | 20 | 5 | Hax | 2 | A |
| 20 Jan | S00W35 | 255 | 40 | 1 | Hax | 2 | A |
| 21 Jan | N01W48 | 255 | 30 | 2 | Hax | 3 | A |
| 22 Jan | N01W62 | 256 | 0 | 1 | Axx | 1 | A |

Still on Disk.
Absolute heliographic longitude: 252

## Region 2626

| 13 Jan | N08E67 | 245 | 20 |  | Hsx | 1 | A |
| :--- | :--- | ---: | ---: | ---: | :--- | :--- | :--- |
| 14 Jan | N08E55 | 244 | 140 | 2 | Hsx | 2 | A |
| 15 Jan | N09E42 | 244 | 140 | 3 | Hax | 2 | A |
| 16 Jan | N08E29 | 243 | 120 | 3 | Hax | 3 | A |
| 17 Jan | N08E16 | 242 | 90 | 3 | Cao | 4 | B |
| 18 Jan | N07E03 | 243 | 60 | 2 | Hax | 3 | A |
| 19 Jan | N08W11 | 244 | 70 | 2 | Hax | 4 | A |
| 20 Jan | N08W24 | 244 | 50 | 3 | Hax | 3 | A |
| 21 Jan | N08W37 | 244 | 40 | 3 | Hsx | 3 | A |
| 22 Jan | N08W50 | 244 | 30 | 2 | Hax | 1 | A |

Still on Disk.
Absolute heliographic longitude: 243

## Region 2627



Still on Disk.
Absolute heliographic longitude: 193

## Region Summary - continued

| Date | Location |  | Sunspot Characteristics |  |  |  |  | Flares |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Helio <br> Lon | Area $10^{-6}$ hemi. | Extent (helio) | Spot <br> Class | Spot <br> Count | Mag <br> Class | X-ray |  |  | Optical |  |  |  |  |
|  | Lat CMD |  |  |  |  |  |  | C | M | X | S | 1 | 2 | 3 | 4 |
| Region 2628 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 20 Jan | N12E49 | 171 | 20 | 1 | Bxo | 4 | B |  |  |  | 8 |  |  |  |  |
| 21 Jan | N12E36 | 171 | 120 | 9 | Dai | 8 | BG | 6 |  |  | 5 | 1 |  |  |  |
| 22 Jan | N12E21 | 173 | 210 | 9 | Dao | 8 | BG |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  | 6 | 0 | 0 |  | 1 | 0 | 0 |  |

Still on Disk.
Absolute heliographic longitude: 173

## Recent Solar Indices (preliminary) <br> Observed monthly mean values

| Month | Sunspot Numbers |  |  |  |  | Radio Flux |  | Geomagnetic |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Observed values | Ratio | Smooth values |  |  | Penticton Smooth |  | Planetary Smooth |  |
|  | SEC RI | RI/SEC | SEC | RI |  | 10.7 cm | Value | Ap | Value |
| 2015 |  |  |  |  |  |  |  |  |  |
| January | 101.2 | 55.8 | 0.66 | 92.1 | 53.6 | 141.7 | 135.8 | 10 | 11.0 |
| February | 70.6 | 40.0 | 0.63 | 88.3 | 51.7 | 128.8 | 133.8 | 10 | 11.5 |
| March | 61.7 | 32.7 | 0.62 | 84.2 | 49.3 | 126.0 | 131.2 | 17 | 12.0 |
| April | 72.5 | 45.2 | 0.75 | 80.5 | 47.3 | 129.2 | 127.3 | 12 | 12.4 |
| May | 83.0 | 53.3 | 0.71 | 77.5 | 45.7 | 120.1 | 123.3 | 9 | 12.7 |
| June | 77.3 | 39.9 | 0.53 | 73.1 | 43.3 | 123.2 | 119.5 | 14 | 13.0 |
| July | 68.4 | 39.5 | 0.58 | 68.2 | 41.0 | 107.0 | 116.0 | 10 | 13.1 |
| August | 61.6 | 38.6 | 0.63 | 65.5 | 39.8 | 106.2 | 113.3 | 16 | 13.1 |
| September | 72.5 | 47.2 | 0.65 | 64.0 | 39.5 | 102.1 | 110.8 | 16 | 12.8 |
| October | 59.5 | 38.2 | 0.62 | 61.8 | 38.6 | 104.1 | 107.9 | 15 | 12.5 |
| November | 61.8 | 37.3 | 0.61 | 59.0 | 36.7 | 109.6 | 105.3 | 13 | 12.5 |
| December | 54.1 | 34.8 | 0.64 | 55.1 | 34.7 | 112.8 | 102.5 | 15 | 12.5 |
|  | 50.4 | 34.2 | 0.67 | $2016$ | 32.6 | 103.5 | 99.9 | 10 | 12.3 |
| February | 56.0 | 33.8 | 0.61 | 49.6 | 31.5 | 103.5 | 98.1 | 10 | 12.0 |
| March | 40.9 | 32.5 | 0.80 | 47.7 | 30.2 | 91.6 | 96.6 | 11 | 11.8 |
| April | 39.2 | 22.7 | 0.58 | 45.0 | 28.7 | 93.4 | 95.3 | 10 | 11.8 |
| May | 48.9 | 30.9 | 0.64 | 42.1 | 26.9 | 93.1 | 93.2 | 12 | 11.7 |
| June | 19.3 | 12.3 | 0.65 | 39.0 | 24.9 | 81.9 | 90.4 | 9 | 11.4 |
| July | 36.8 | 19.4 | 0.53 |  |  | 85.9 |  | 10 |  |
| August | 50.4 | 30.1 | 0.60 |  |  | 85.0 |  | 10 |  |
| September | 37.4 | 26.8 | 0.72 |  |  | 87.8 |  | 16 |  |
| October | 30.0 | 20.2 | 0.67 |  |  | 86.1 |  | 16 |  |
| November | 22.4 | 12.8 | 0.57 |  |  | 78.7 |  | 10 |  |
| December | 17.6 | 11.3 | 0.64 |  |  | 75.1 |  | 10 |  |

Note: Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.


## Weekly Geosynchronous Satellite Environment Summary Week Beginning 16 January 2017

The proton flux plot contains the five-minute averaged integral proton flux (protons $/ \mathrm{cm}^{2}-\mathrm{sec}-\mathrm{sr}$ ) as measured by the SWPC Primary GOES satellite, near West 75, for each of three energy thresholds: greater than 10,50 , and 100 MeV.

The electron flux plot contains the five-minute averaged integral electron flux (electrons/ $/ \mathrm{cm}^{2}-\mathrm{sec}-\mathrm{sr}$ ) with energies greater than 2 MeV by the SWPC Primary GOES satellite.

The Hp plot contains the five minute averaged Hp magnetic field component in nanoteslas ( nT ) as by the SWPC Primary GOES satellite. The Hp component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

The Estimated 3-hour Planetary Kp-index is derived at the NOAA Space Weather Prediction Center using data from the following ground-based magnetometers: Boulder, Colorado; Chambon la Foret, France; Fredericksburg, Virginia; Fresno, California; Hartland, UK; Newport, Washington; Sitka, Alaska. These data are made available thanks to the cooperative efforts between SWPC and data providers around the world, which currently includes the U.S. Geological Survey, the British Geological Survey, and the Institut de Physique du Globe de Paris.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are 'global' parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.



Weekly GOES Satellite X-ray and Proton Plots
Week Beginning 16 January 2017

The x-ray plots contains five-minute averages x-ray flux (Watt $/ \mathrm{m}^{2}$ ) as measure by the SWPC primary GOES X-ray satellite, usually at West 105 longitude, in two wavelength bands, $0.05-0.4$ and $0.1-0.8 \mathrm{~nm}$. The letters A, B, C, M and X refer to x-ray event levels for the $0.1-0.8 \mathrm{~nm}$ band.

The proton plot contains the five-minute averaged intergral flux units ( $\mathrm{pfu}=$ protons $/ \mathrm{cm}^{2}-\mathrm{sec}-\mathrm{sr}$ ) as measured by the primary SWPC GOES Proton satellite for each of the energy thresholds: $>1,>10,>30$, and $>100 \mathrm{MeV}$. The P10 event threshold is 10 pfu at greater than 10 MeV .

## Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.
U.S. Department of Commerce

NOAA / National Weather Service
Space Weather Prediction Center
325 Broadway, Boulder CO 80305

Notice: The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997. http://spaceweather.gov/weekly/ -- Current and previous year http://spaceweather.gov/ftpmenu/warehouse.html -- Online achive from 1997 http://spaceweather.gov/ftpmenu/ -- Some content as ascii text http://spaceweather.gov/SolarCycle/ -- Solar Cycle Progression web site
http://spaceweather.gov/contacts.html -- Contact and Copyright information http://spaceweather.gov/weekly/Usr_guide.pdf -- User Guide

