Solar activity was at very low levels with only a few low level B-class flares observed. The solar disk was mostly spotless throughout the period. No Earth-directed coronal mass ejections were observed.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was normal to moderate levels with high levels observed on 05-08 January. The largest flux value of the period was 25,537 pfu observed at 08/1935 UTC.

Geomagnetic field activity was at quiet to unsettled levels on 02 January under a nominal solar wind environment. By 03 January, a solar sector boundary crossing was observed at approximately 03/0956 UTC transitioning into a negative sector followed by increase in solar wind speed and total field indicating the onset of a negative polarity coronal hole high speed stream (CH HSS). Total field increased to a maximum of 15 nT on 04/0444 UTC. Solar wind increased from approximately 372 km/s to 695 km/s by 05/1423 UTC. Solar wind speeds continued near 670 km/s through the rest of the period. The geomagnetic field responded with quiet to active levels from 03-08 January.

Space Weather Outlook 09 January - 04 February 2017

Solar activity is expected to be at very low levels with low levels possible from 12-26 January due to the return of old Region 2621 (N10, L=237).

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at normal to moderate levels with high levels likely on 9-10, 12-16, 18-27 January and on 01-04 February due to CH HSS influence.

Geomagnetic field activity is expected to be at unsettled to active levels on 09, 11-14, 17-23, and 27 January through 04 February with G1 (Minor) storm levels likely on 17-19, 21-22 January, and again on 03 February due to recurrent CH HSS effects.

Daily Solar Data

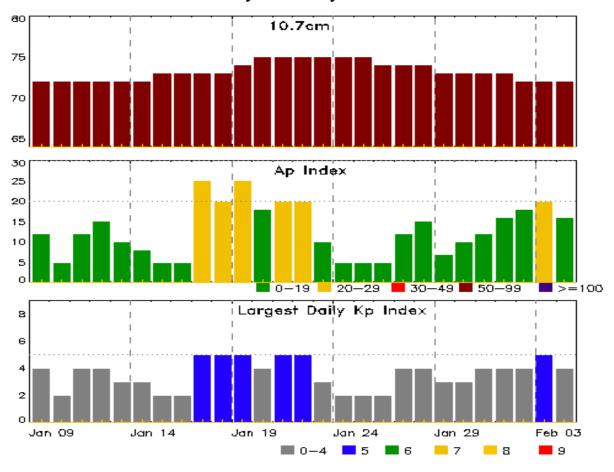
	Radio	Sun	Sun	spot	X-ray			Flares						
	Flux	spot	A	rea B	Background		X-	X-ray		Optica				
Date	10.7cm	No.	(10^{-6})	hemi.)	Flux		C N	M X	S	1	2 3	4		
02 January	73	0	0	A5.7	0	0	0	0	0	0	0	0		
03 January	73	11	0	A5.5	0	0	0	0	0	0	0	0		
04 January	72	0	0	A5.4	0	0	0	0	0	0	0	0		
05 January	73	0	0	A5.5	0	0	0	0	0	0	0	0		
06 January	72	0	0	A5.6	0	0	0	0	0	0	0	0		
07 January	72	0	0	A5.8	0	0	0	0	0	0	0	0		
08 January	72	0	0	A5.5	0	0	0	0	0	0	0	0		

Daily Particle Data

	_	Proton Fluer tons/cm ² -d			(e	y -sr)			
Date	>1 MeV	>100 MeV	7	>0.6 MeV	V >2	>2MeV >4			
02 January	7.7e-	+05	1.5e+04		3.5e+03		2.0e+	-07	
03 January	9.4e + 05		1.5e+04		3.5e+03		4.9e + 06		
04 January	9.8e-	+05	1.6e+04		3.4e+03		5.9e+06		
05 January	2.5e-	+06	1.7e+04		3.4e+03		3.1e+07		
06 January	3.5e+06		1.6e + 04		3.5e+03		2.4e+08		
07 January	7.0e+06		1.6e+04		3.6e+03		6.6e-	-08	
08 January	5.2e-	+06	1.5e+04		3.4e+03		9.9e+08		

Daily Geomagnetic Data

	N	Middle Latitude]	High Latitude	Estimated			
]	Fredericksburg		College	Planetary			
Date	A	K-indices	A	K-indices	A	K-indices		
02 January	5	1-3-1-1-2-1-1-0	23	1-2-6-4-5-3-1-1	7	2-3-2-2-2-1-1		
03 January	8	0-1-2-4-2-2-2	24	1-1-2-6-5-4-3-2	12	1-2-2-4-3-3-3-3		
04 January	8	1-1-2-2-2-3-3	13	1-1-1-4-4-2-3-3	11	1-2-2-2-2-4-4		
05 January	15	3-3-2-2-3-3-3-4	23	3-3-3-1-5-5-4-3	18	3-3-2-2-3-4-4-4		
06 January	14	3-4-3-2-3-2-2-3	28	4-4-5-4-5-3-4-2	16	4-4-3-2-3-3-3		
07 January	14	3-2-2-4-3-3-3	37	3-2-5-4-7-4-3-3	20	4-3-3-2-4-4-3-3		
08 January	11	11 3-3-2-2-2-3-3		26 2-2-3-6-4-4-3		3-3-2-3-3-4-4		



Alerts and Warnings Issued

Date & Time of Issue UTC	Type of Alert or Warning	Date & Time of Event UTC
02 Jan 1947	WATCH: Geomagnetic Storm Category G1 predict	ted
03 Jan 0831	WARNING: Geomagnetic $K = 4$	03/0832 - 1800
03 Jan 1111	ALERT: Geomagnetic K = 4	03/1110
03 Jan 1749	EXTENDED WARNING: Geomagnetic K = 4	4 03/0832 - 04/0600
04 Jan 0555	EXTENDED WARNING: Geomagnetic K = 4	4 03/0832 - 04/1800
04 Jan 1901	WARNING: Geomagnetic $K = 4$	04/1902 - 05/0300
04 Jan 1939	ALERT: Geomagnetic K = 4	04/1936
05 Jan 0255	EXTENDED WARNING: Geomagnetic K = 4	4 04/1902 - 05/1800
05 Jan 1539	ALERT: Electron 2MeV Integral Flux >= 1000pf	iu 05/1520
05 Jan 1753	EXTENDED WARNING: Geomagnetic K = 4	4 04/1902 - 06/0300
05 Jan 2120	WATCH: Geomagnetic Storm Category G1 predict	ted
05 Jan 2322	WARNING: Geomagnetic $K = 5$	05/2322 - 06/0600
05 Jan 2332	EXTENDED WARNING: Geomagnetic K = 4	4 04/1902 - 06/1200
06 Jan 0549	EXTENDED WARNING: Geomagnetic K = 4	4 04/1902 - 06/1800
06 Jan 0549	EXTENDED WARNING: Geomagnetic K = 5	5 05/2322 - 06/1500
06 Jan 0941	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	05/1520
06 Jan 1436	EXTENDED WARNING: Geomagnetic K = 4	4 04/1902 - 07/0600
06 Jan 1436	EXTENDED WARNING: Geomagnetic K = 5	5 05/2322 - 06/2359
07 Jan 0501	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	05/1520
07 Jan 0554	EXTENDED WARNING: Geomagnetic K = 4	4 04/1902 - 07/2359
08 Jan 0501	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	05/1520
08 Jan 1841	WARNING: Geomagnetic K = 4	08/1840 - 2359
08 Jan 1910	ALERT: Geomagnetic K = 4	08/1910
08 Jan 2355	EXTENDED WARNING: Geomagnetic K = 4	4 08/1840 - 09/1200

Twenty-seven Day Outlook

Date	Radio Flux 10.7cm	Planetary A Index	Largest Kp Index	Date	Radio Flux 10.7cm	•	Largest Kp Index
			-				_
09 Jan	72	12	4	23 Jan	75	10	3
10	72	5	2	24	75	5	2
11	72	12	4	25	75	5	2
12	72	15	4	26	74	5	2
13	72	10	3	27	74	12	4
14	72	8	3	28	74	15	4
15	73	5	2	29	73	7	3
16	73	5	2	30	73	10	3
17	73	25	5	31	73	12	4
18	73	20	5	01 Feb	73	16	4
19	74	25	5	02	72	18	4
20	75	18	4	03	72	20	5
21	75	20	5	04	72	16	4
22	75	20	5				

Energetic Events

		Time		X-ray		_Opti	cal Informat	ion	Peak		Sweep Freq	
	Half			Integ	Imp/	Location	Rgn	Radi	o Flux	Inten	sity	
Date	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245	2695	II	IV

No Events Observed

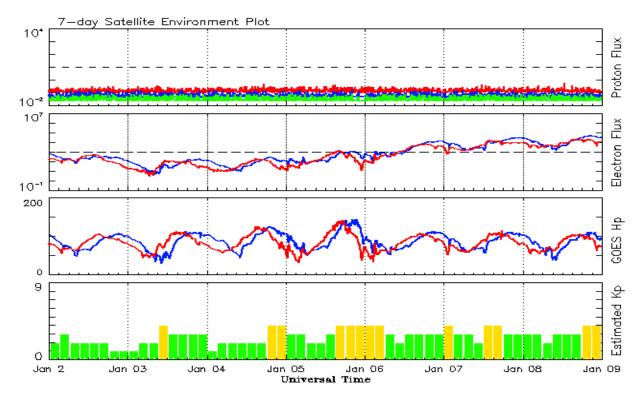
Flare List

					Optical							
		Time		X-ray	Imp/	Location	Rgn					
Date	Begin	Max	End	Class	Brtns	Lat CMD	#					
04 Jan	0234	0239	0250	B1.8			2624					
05 Jan	1820	1831	1839	B1.4								

Region Summary

	Location	on	Su	ınspot C	haracte	ristics		Flares							
		Helio	Area	Extent	Spot	Spot	Mag		K-ray			O	ptica	.1	
Date	Lat CMD	Lon	10 ⁻⁶ hemi.	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4
		Reg	ion 2622												
20 D	N11000150	•		1		1									
30 Dec	N12W59	196	10	1	Axx Axx	1 1	A								
31 Dec 01 Jan	N11W71 N11W85	195 195	10	1	AXX	1	A								
O1 Jan	MIIWOJ	193	plage					0	0	0	0	0	0	0	0
Crossed	l West Lim	h						U	U	U	U	U	U	U	U
	te heliograp		ngitude: 1	96											
110001	.••	1110		, ,											
		Reg	ion 2623												
01 Jan	S06W07	117	plage												
02 Jan	S06W22	119	plage												
03 Jan	S06W37	121	plage												
04 Jan	S06W52	123	plage												
05 Jan	S06W67	125	plage												
06 Jan	S06W82	127	plage												
								0	0	0	0	0	0	0	0
	l West Lim														
Absolut	te heliograp	hic lo	ngitude: 1	17											
Region 2624															
03 Jan	S08W57	141	0		Axx	1	A								
04 Jan	S08W71	142	plage												
05 Jan	S06W89	146	plage												
								0	0	0	0	0	0	0	0
Crossed	l West Lim	b.													

Absolute heliographic longitude: 141



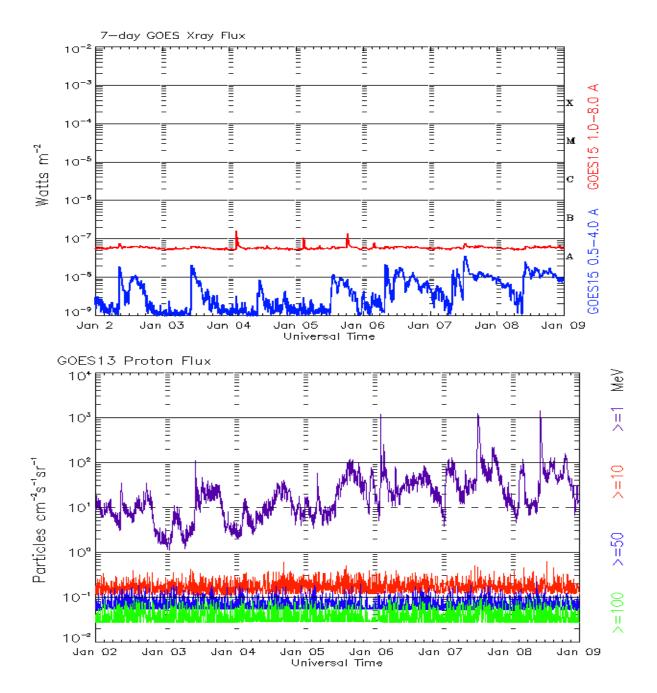
Recent Solar Indices (preliminary) Observed monthly mean values

	<u> </u>	Sunspot N				Radio	Flux	Geomagnetic		
	Observed values	•		oth values		Penticton		Planetary	-	
Month	SEC RI	RI/SEC	SEC		-	10.7 cm	Value	Ap	Value	
				2015				•		
January	101.2	55.8	0.66	92.1	53.6	5 141.7	135.8	10	11.0	
February	70.6	40.0	0.63	88.3	51.7	128.8	133.8	10	11.5	
March	61.7	32.7	0.62	84.2	49.3	3 126.0	131.2	17	12.0	
April	72.5	45.2	0.75	80.5	47.3	129.2	127.3	12	12.4	
May	83.0	53.3	0.71	77.5	45.7	120.1	123.3	9	12.7	
June	77.3	39.9	0.53	73.1	43.3	123.2	119.5	14	13.0	
July	68.4	39.5	0.58	68.2	41.0	107.0	116.0	10	13.1	
August	61.6	38.6	0.63	65.5	39.8	3 106.2	113.3	16	13.1	
September	72.5	47.2	0.65	64.0	39.5	102.1	110.8	16	12.8	
October	59.5	38.2	0.62	61.8	38.6	5 104.1	107.9	15	12.5	
November		37.3	0.61	59.0	36.7	109.6	105.3		12.5	
December	54.1	34.8	0.64	55.1	34.7	112.8	102.5	15	12.5	
				2016						
January	50.4	34.2	0.67	51.4	32.6	103.5	99.9	10	12.3	
February	56.0	33.8	0.61	49.6	31.5	103.5	98.1	10	12.0	
March	40.9	32.5	0.80	47.7	30.2	91.6	96.6	11	11.8	
April	39.2	22.7	0.58	45.0	28.7	93.4	95.3	10	11.8	
May	48.9	30.9	0.64	42.1	26.9	93.1	93.2	12	11.7	
June	19.3	12.3	0.65	39.0	24.9	81.9	90.4	9	11.4	
July	36.8	19.4	0.53			85.9		10		
August	50.4	30.1	0.60			85.0		10		
September	37.4	26.8	0.72			87.8		16		
October	30.0	20.2	0.67			86.1		16		
November		12.8	0.57			78.7		10		
December	17.6	11.3	0.64			75.1		10		

Note: Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 02 January 2017

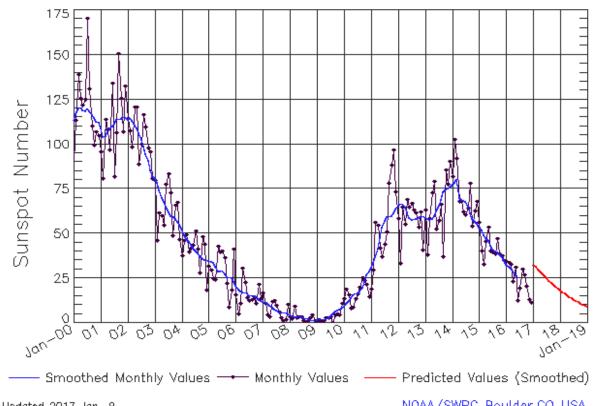
The proton flux plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by the SWPC Primary GOES satellite, near West 75, for each of three energy thresholds: greater than 10, 50, and 100 MeV.


The electron flux plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV by the SWPC Primary GOES satellite.

The Hp plot contains the five minute averaged Hp magnetic field component in nanoteslas (nT) as by the SWPC Primary GOES satellite. The Hp component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

The Estimated 3-hour Planetary Kp-index is derived at the NOAA Space Weather Prediction Center using data from the following ground-based magnetometers: Boulder, Colorado; Chambon la Foret, France; Fredericksburg, Virginia; Fresno, California; Hartland, UK; Newport, Washington; Sitka, Alaska. These data are made available thanks to the cooperative efforts between SWPC and data providers around the world, which currently includes the U.S. Geological Survey, the British Geological Survey, and the Institut de Physique du Globe de Paris.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are 'global' parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

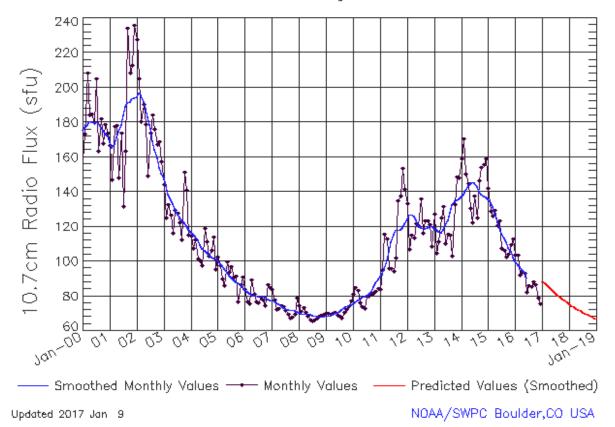

Weekly GOES Satellite X-ray and Proton Plots Week Beginning 02 January 2017

The x-ray plots contains five-minute averages x-ray flux (Watt/ m^2) as measure by the SWPC primary GOES X-ray satellite, usually at West 105 longitude, in two wavelength bands, 0.05 - 0.4 and 0.1 - 0.8 nm. The letters A, B, C, M and X refer to x-ray event levels for the 0.1 - 0.8 nm band.

The proton plot contains the five-minute averaged intergral flux units (pfu = protons/cm 2 -sec -sr) as measured by the primary SWPC GOES Proton satellite for each of the energy thresholds: >1, >10, >30, and >100 MeV. The P10 event threshold is 10 pfu at greater than 10 MeV.

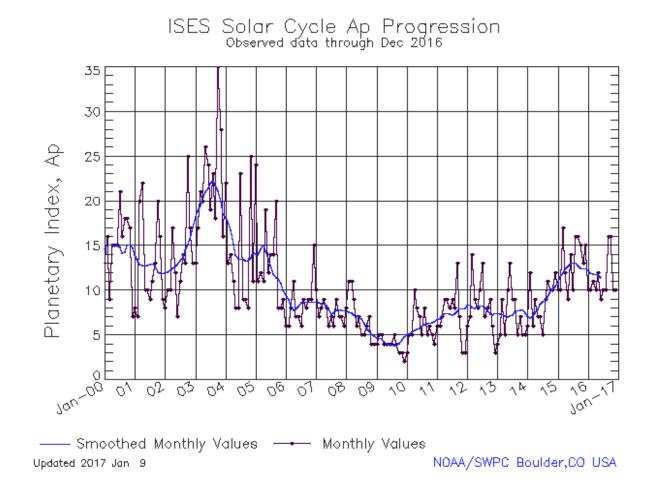
ISES Solar Cycle Sunspot Number Progression Observed data through Dec 2016

Updated 2017 Jan 9


NOAA/SWPC Boulder,CO USA

Smoothed Sunspot Number Prediction

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2010	9	10	11	13	15	16	17	17	20	23	27	29
	(1)	(2)	(3)	(5)	(5)	(6)	(7)	(7)	(8)	(9)	(9)	(10)
2011	19	30	56	54	42	37	44	51	78	88	97	73
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2012	58	33	64	55	69	65	67	63	61	53	62	41
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2013	63	38	58	72	79	53	57	66	37	86	78	90
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2014	82	102	92	68	68	62	60	64	78	54	62	68
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2015	56	40	33	45	53	40	40	39	47	38	37	35
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2016	34	34	33	23	31	12	19	30	27	20	13	11
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2017	33	31	30	29	27	26	25	24	23	21	20	19
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2018	18	17	16	15	15	14	13	12	12	11	10	10
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2019	9	8	8	7	7	6	6	6	5	5	4	4
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)


ISES Solar Cycle F10.7cm Radio Flux Progression Observed data through Dec 2016

Smoothed F10.7cm Radio Flux Prediction

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2010	76	77	78	78	79	80	80	81	82	85	88	90
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2011	91	93	96	100	106	111	115	118	118	118	120	122
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2012	124	127	127	126	124	121	120	119	119	119	120	120
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2013	119	118	117	117	118	121	124	128	132	135	135	136
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2014	137	139	141	144	145	146	145	143	140	138	137	137
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2015	136	134	131	127	123	120	116	113	111	108	105	103
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2016	100	98	97	95	93	90	88	87	86	85	85	84
	(***)	(***)	(***)	(***)	(***)	(***)	(1)	(1)	(2)	(3)	(4)	(4)
2017	84	84	83	83	82	82	82	80	79	78	77	76
	(5)	(6)	(7)	(8)	(8)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2018	75	75	74	73	72	71	71	70	69	69	68	67
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
2019	67	66	66	65	65	65	64	64	63	63	63	63
	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)

Solar Cycle Comparison charts are temporarily unavailable.

Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

Notice: The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

http://spaceweather.gov/weekly/ -- Current and previous year

http://spaceweather.gov/ftpmenu/warehouse.html -- Online achive from 1997

http://spaceweather.gov/ftpmenu/ -- Some content as ascii text

http://spaceweather.gov/SolarCycle/ -- Solar Cycle Progression web site

http://spaceweather.gov/contacts.html -- Contact and Copyright information http://spaceweather.gov/weekly/Usr_guide.pdf -- User Guide

