Solar activity was at background levels through the period.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at high levels from 26-31 Dec, dropping to normal to moderate levels late on 31 Dec - 01 Jan due to increased geomagnetic activity from the onset of a positive polarity CH HSS.

Geomagnetic field activity ranged from quiet to G1 (Minor) storm levels through the period. G1 conditions were observed early on 26 Dec as influence from a positive polarity CH HSS persisted from the previous reporting period. The CH HSS began to wane early on 27 Dec, causing a geomagnetic activity decrease to quiet to active levels. As solar wind speeds continue their slow decline, quiet to unsettled conditions on 28 Dec gave way to quiet conditions on 29-30 Dec. Quiet to unsettled activity was once again observed beginning on 31 Dec as the onset of another positive polarity CH HSS was observed. Wind speeds increased from around 300 km/s to between 450-550 km/s as well as total magnetic field strength from around 5 nT to a peak of nearly 20 nT at 31/1636 UTC. Active conditions were observed early on 01 Jan as the CIR transitioned into the high-speed stream proper. As total magnetic field strength gradually trended towards 5 nT, geomagnetic activity decreased to quiet to unsettled levels.

Space Weather Outlook 02 January - 28 January 2017

Solar activity is expected to be at very low levels throughout the outlook period.

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be high on 02-03 Jan, 05-13 Jan, and 18-27 Jan; moderate electron flux is expected on 04 Jan, 14-17 Jan and 28 Jan. All increases in electron flux are anticipated in response to multiple, recurrent CH HSSs

Geomagnetic field activity is expected to be at unsettled levels on 02 Jan, 08 Jan, 14 Jan and 23 Jan; active levels are expected on 03-04 Jan, 06-07 Jan, 20-22 Jan and 27-28 Jan; G1 (Minor) storm levels are likely on 05 Jan and 17-19 Jan. All elevated geomagnetic activity is anticipated in response to multiple, recurrent CH HSSs. The remainder of the outlook period is expected to observe quiet conditions under an ambient solar wind environment.

Daily Solar Data

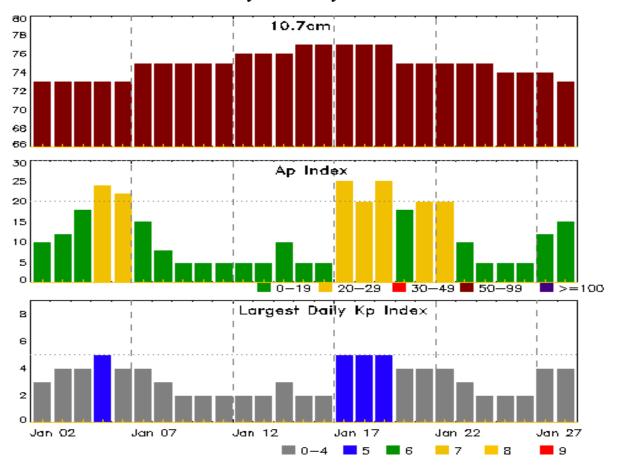
	Radio	Sun	Sunspot		X-ray				Flares	res				
	Flux	spot	Area	Area Background			X-ray	<u>y</u>		Optical				
Date	10.7cm	No.	(10 ⁻⁶ hem	i.)	Flux		C M	X	S	1	2 3	4		
26 December	74	13	10	A6.3	0	0	0	0	0	0	0	0		
27 December	74	14	30	A6.4	0	0	0	2	0	0	0	0		
28 December	73	14	10	A6.4	0	0	0	0	0	0	0	0		
29 December	73	0	0	A6.9	0	0	0	0	0	0	0	0		
30 December	74	11	10	A7.1	0	0	0	0	0	0	0	0		
31 December	74	11	10	A6.4	0	0	0	0	0	0	0	0		
01 January	73	0	0	A5.7	0	0	0	0	0	0	0	0		

Daily Particle Data

	-	Proton Fluer tons/cm ² -da		_	Electron Fluence (electrons/cm ² -day -sr)					
Date	>1 MeV	>10 MeV	>100 MeV		>0.6 MeV	>2MeV	>4 MeV			
26 December	2.8	8e+06	1.4e+04	3.	2e+03	6.8	e+08			
27 December	1.4e + 06		1.4e + 04	3.	3e+03	6.2	e+08			
28 December	1.3	8e+06	1.4e + 04	3.	5e+03	5.8e+0				
29 December	1.1	e+06	1.6e + 04	4.	1e+03	7.0	e+08			
30 December	1.6	6e+06	1.5e+04	3.	7e+03	4.7	e+08			
31 December	2.1e+06		1.5e+04	-04 3.7e+03		1.2	e+08			
01 January	1.5	5e+06	1.5e+04	5e+04 3.5e+03		1.6	6e+07			

Daily Geomagnetic Data

	Mi	Middle Latitude		igh Latitude	Estimated		
	Fr	Fredericksburg		College	Planetary		
Date	A	K-indices	A K-indices		A	K-indices	
26 December	15	4-3-3-2-3-3-2-3	45	4-4-5-6-6-6-2-2	22	5-3-3-3-4-4-3-3	
27 December	8	3-3-1-2-2-1-2-2	12	3-2-1-4-4-2-2-1	11	4-3-2-2-1-2-3	
28 December	4	1-2-0-1-1-2-1-1	5	1-2-0-3-1-2-1-1	6	2-3-1-1-1-2-1-2	
29 December	2	2-1-1-1-0-1-0-0	9	1-1-1-4-3-3-1-0	5	2-1-1-1-1-2-1-1	
30 December	2	0-1-0-0-1-0-1-1	1	0-0-0-2-1-0-0-0	4	1-2-0-1-1-1-1	
31 December	10	1-2-1-3-3-3-3-2	21	0-0-1-5-5-5-3-2	12	1-2-2-3-3-3-3-2	
01 January	9	3-3-3-2-1-2-1-1	26	2-4-4-6-5-2-2-1	22	4-4-3-2-2-3-2-2	



Alerts and Warnings Issued

Date & Time of Issue UTC		Date & Time of Event UTC				
26 Dec 0201	WARNING: Geomagnetic $K = 5$	26/0200 - 0900				
26 Dec 0203	EXTENDED WARNING: Geomagnetic K = 4	25/0255 - 26/1400				
26 Dec 0204	ALERT: Geomagnetic $K = 5$	26/0204				
26 Dec 0501	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	22/1215				
26 Dec 1456	WARNING: Geomagnetic $K = 4$	26/1455 - 2200				
26 Dec 1501	ALERT: Geomagnetic $K = 4$	26/1459				
26 Dec 2114	EXTENDED WARNING: Geomagnetic K = 4	26/1455 - 27/0600				
27 Dec 0500	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	22/1215				
27 Dec 0505	EXTENDED WARNING: Geomagnetic K = 4	26/1455 - 27/1800				
28 Dec 0500	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	22/1215				
28 Dec 2100	WATCH: Geomagnetic Storm Category G1 predicted	ed				
29 Dec 0500	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	22/1215				
30 Dec 0500	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	22/1215				
31 Dec 0500	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	22/1215				
31 Dec 0558	WATCH: Geomagnetic Storm Category G1 predicted	ed				
31 Dec 1134	WARNING: Geomagnetic K = 4	31/1133 - 01/1500				
01 Jan 0300	ALERT: Geomagnetic $K = 4$	01/0259				

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7cm	A Index	Kp Index	Date	10.7cm	-	Kp Index
02 Jan	73	10	3	16 Jan	77	5	2
03	73	12	4	17 17	77	25	5
04	73	18	4	18	77	20	5
05	73	24	5	19	77	25	5
06	73	22	4	20	75	18	4
07	75	15	4	21	75	20	4
08	75	8	3	22	75	20	4
09	75	5	2	23	75	10	3
10	75	5	2	24	75	5	2
11	75	5	2	25	74	5	2
12	76	5	2	26	74	5	2
13	76	5	2	27	74	12	4
14	76	10	3	28	73	15	4
15	77	5	2				

Energetic Events

	Time		X-	X-ray Optical Informa			ion	P	Sweep Freq			
			Half		Integ	Imp/	Location	Rgn	Radi	o Flux	Inten	sity
Date	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245	2695	II	IV

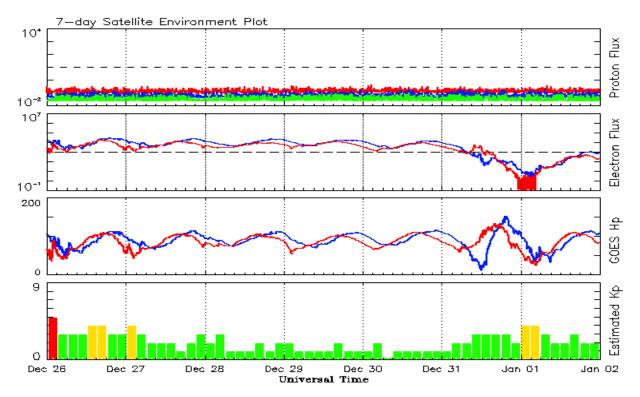
No Events Observed

Flare List

					Optical					
		Time		X-ray	Imp/	Location	Rgn			
Date	Begin	Max	End	Class	Brtns	Lat CMD	#			
26 Dec	1847	1852	1858	B3.0			2621			
26 Dec	2056	2101	2105	B8.3			2621			
26 Dec	2158	2202	2227	B2.9			2621			
26 Dec	2325	2329	2332	B3.3			2621			
27 Dec	0820	0846	0858	B3.1	SF	N09W50	2621			
27 Dec	1004	1012	1018	B1.6	SF	N09W52	2621			
27 Dec	1233	1238	1242	B1.5			2621			
29 Dec	2011	2015	2020	B1.3			2619			
30 Dec	0130	0133	0136	B1.0			2619			
30 Dec	1222	1229	1239	B2.2			2621			
31 Dec	0132	0350	0417	B2.4						
31 Dec	0738	0812	0836	B1.8						

Region Summary

	Location	on	Su	nspot C	-	ristics]	Flares	<u> </u>			
		Helio	-	Extent			Mag	X	K-ray				ptica	.1	
Date	Lat CMD	Lon	10 ⁻⁶ hemi.	(helio)	Class	Count	Class	С	M	X	S	1	2	3	4
		Pogi	on 2619												
10.5	NO 451 5	_		2		2	-								
18 Dec	N04E15	280	20	3	Dso	3	В								
19 Dec	N04W00	280	10	5	Bxo	2	В								
20 Dec	N03W10	278	plage			1									
21 Dec	N03W25	280	plage												
22 Dec	N03W39	281	plage												
23 Dec 24 Dec	N03W53 N03W67	282 283	plage												
24 Dec 25 Dec	N03W87	285	plage												
23 Dec	1103 W 62	263	plage					0	0	0	0	0	0	0	0
Crossed	West Lim	h						U	U	U	U	U	U	U	U
	e heliograp		gitude: 2	80											
11000141	o momograp	1110 101	1511440. 2	00											
		Regi	on 2621												
26 Dec	N11W45	234	10	3	Bxo	3	В								
27 Dec	N10W61	237	30	7	Cro	4	В				2				
28 Dec	N10W74	237	10	4	Bxo	4	В								
29 Dec	N10W88	238	plage												
								0	0	0	2	0	0	0	0
Crossed	West Lim	b.													
Absolut	e heliograp	hic lon	igitude: 2	34											
		Regi	on 2622												
30 Dec	N12W59	196	10	1	Axx	1	A								
31 Dec	N11W71	195	10	1	Axx	1	A								
01 Jan	N11W85	195	plage	-		-									
0 - 0 - 0 - 0			F6-					0	0	0	0	0	0	0	0
Still on															
Absolut	e heliograp	hic lon	igitude: 1	96											
	Region 2623														
01 Jan	S06W07	117	plage												
								0	0	0	0	0	0	0	0
Still on															
Absolut	e heliograp	hic lon	igitude: 1	17											



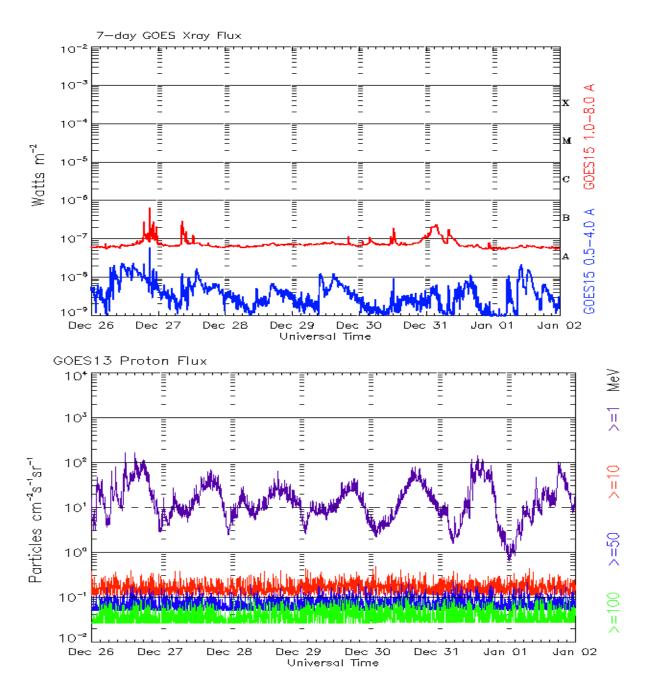
Recent Solar Indices (preliminary) Observed monthly mean values

	S	Sunspot N	lumbers			Radio	Flux	Geomagnetic		
	Observed values	_		th values		Penticton		Planetary	_	
Month	SEC RI	RI/SEC	SEC		•	10.7 cm	Value	Ap	Value	
				2015				•		
January	101.2	55.8	0.66	92.1	53.6	5 141.7	135.8	10	11.0	
February	70.6	40.0	0.63	88.3	51.7	7 128.8	133.8	10	11.5	
March	61.7	32.7	0.62	84.2	49.3	3 126.0	131.2	17	12.0	
April	72.5	45.2	0.75	80.5	47.3	3 129.2	127.3	12	12.4	
May	83.0	53.3	0.71	77.5	45.7	7 120.1	123.3	9	12.7	
June	77.3	39.9	0.53	73.1	43.3	3 123.2	119.5	14	13.0	
July	68.4	39.5	0.58	68.2	41.0	107.0	116.0	10	13.1	
August	61.6	38.6	0.63	65.5	39.8				13.1	
September		47.2	0.65	64.0	39.5		110.8		12.8	
October	59.5	38.2	0.62	61.8	38.6	5 104.1	107.9	15	12.5	
November		37.3	0.61	59.0	36.7				12.5	
December	54.1	34.8	0.64	55.1	34.7		102.5		12.5	
				2016						
January	50.4	34.2	0.67	51.4	32.6	5 103.5	99.9	10	12.3	
February	56.0	33.8	0.61	49.6	31.5		98.1	10	12.0	
March	40.9	32.5	0.80	47.7	30.3				11.8	
April	39.2	22.7	0.58	45.0	28.7	7 93.4	95.3	10	11.8	
May	48.9	30.9	0.64	42.1	26.9		93.2		11.7	
June	19.3	12.3	0.65	39.0	25.0		90.4		11.4	
July	36.8	19.5	0.53			85.9		10		
August	50.4	30.4	0.60			85.0		10		
September		26.8	0.72			87.8		16		
-										
October	30.0	20.2	0.67			86.1		16		
November		12.8	0.57			78.7		10		
December	17.6	11.3	0.64			75.1		10		

Note: Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.

Weekly Geosynchronous Satellite Environment Summary
Week Beginning 26 December 2016

The proton flux plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by the SWPC Primary GOES satellite, near West 75, for each of three energy thresholds: greater than 10, 50, and 100 MeV.


The electron flux plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV by the SWPC Primary GOES satellite.

The Hp plot contains the five minute averaged Hp magnetic field component in nanoteslas (nT) as by the SWPC Primary GOES satellite. The Hp component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

The Estimated 3-hour Planetary Kp-index is derived at the NOAA Space Weather Prediction Center using data from the following ground-based magnetometers: Boulder, Colorado; Chambon la Foret, France; Fredericksburg, Virginia; Fresno, California; Hartland, UK; Newport, Washington; Sitka, Alaska. These data are made available thanks to the cooperative efforts between SWPC and data providers around the world, which currently includes the U.S. Geological Survey, the British Geological Survey, and the Institut de Physique du Globe de Paris.

The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are 'global' parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.

Weekly GOES Satellite X-ray and Proton Plots Week Beginning 26 December 2016

The x-ray plots contains five-minute averages x-ray flux (Watt/ m^2) as measure by the SWPC primary GOES X-ray satellite, usually at West 105 longitude, in two wavelength bands, 0.05 - 0.4 and 0.1 - 0.8 nm. The letters A, B, C, M and X refer to x-ray event levels for the 0.1 - 0.8 nm band.

The proton plot contains the five-minute averaged intergral flux units (pfu = protons/cm 2 -sec -sr) as measured by the primary SWPC GOES Proton satellite for each of the energy thresholds: >1, >10, >30, and >100 MeV. The P10 event threshold is 10 pfu at greater than 10 MeV.

Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

Notice: The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

http://spaceweather.gov/weekly/ -- Current and previous year

http://spaceweather.gov/ftpmenu/warehouse.html -- Online achive from 1997

http://spaceweather.gov/ftpmenu/ -- Some content as ascii text

http://spaceweather.gov/SolarCycle/ -- Solar Cycle Progression web site

http://spaceweather.gov/contacts.html -- Contact and Copyright information http://spaceweather.gov/weekly/Usr_guide.pdf -- User Guide

