УДК 533.985

ДИАГНОСТИЧЕСКИЙ АНАЛИЗ СОЛНЕЧНЫХ ПРОТОННЫХ ВСПЫШЕК Сентября 2017 г. По их радиовсплескам

© 2018 г. И. М. Черток*

Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН), г. Москва, г. Троицк, Россия *e-mail: ichertok@izmiran.ru Поступила в редакцию 01.12.2017 г.

После доработки 26.12.2017 г.

Мощные вспышки, произошедшие на Солнце 4–10 сентября 2017 г., проанализированы на основе методики количественной диагностики протонных вспышек, разработанной в ИЗМИРАН в 1970–1980-х гг. Показано, что потоки и энергетические спектры пришедших к Земле протонов с энергией десятки МэВ качественно и количественно соответствуют интенсивности и частотным спектрам микроволновых радиовсплесков в диапазоне 2.7-15.4 ГГц. В частности, вспышка 4 сентября с пиковым радиопотоком $S \sim 2000$ sfu на частоте $f \sim 3$ ГГц (т.е. с мягким радиоспектром) сопровождалась значительным потоком протонов J (>10 МэВ) ~100 pfu и мягким энергетическим спектром с показателем $\gamma \sim 3.0$, а мощная вспышка 10 сентября с $S \sim 21000$ sfu на $f \sim 15$ ГГц (т.е. с жестким радиоспектром) привела к весьма интенсивному протонному событию с J(>10 МэВ) ~1000 pfu с жестким энергетическим спектром ($\gamma \sim 1.4$), в том числе к наземному возрастанию (GLE72). Это является еще одним свидетельством того, что данные о микроволновых радиовсплесках могут с успехом использоваться для диагностики протонных вспышек независимо от конкретного источника ускорения частиц на Солнце, в частности, с применением методики ИЗМИРАН.

DOI: 10.1134/S001679401804003X

1. ВВЕДЕНИЕ

Среди нерекуррентных возмущений космической погоды одними из важнейших являются солнечные космические лучи (СКЛ) или протонные события (СПС), т.е. возрастания потока протонов с энергией десятки-сотни МэВ в околоземном космосе, а иногда и с $E \ge 1$ ГэВ, регистрируемые на наземных нейтронных мониторах (см. обзоры [Reames, 2013; Desai and Giacalone, 2016; Klein and Dalla, 2017]). Такие возрастания могут вызывать сбои в работе электронного оборудования космических аппаратов, приводить к повышению уровня радиации на межпланетных и околоземных орбитах, представлять опасность для космонавтов, а также экипажей и пассажиров самолетов, летающих по приполярным трассам, приводить к нарушениям коротковолновой радиосвязи в высоких широтах и т.д.

За ускорение СКЛ ответственны три источника: первичное импульсное энерговыделение (импульсная компонента вспышки); длительное постэруптивное (ПЭ) энерговыделение, инициируемое корональными выбросами массы (КВМ); ударная волна, возникающая в процессе эрупции и на фронте достаточно быстрых КВМ (см. работы [Chertok, 1995; Aschwanden, 2006]). При этом сам КВМ в метровом диапазоне проявляется в виде континуального радиовсплеска IV типа, а индикатором ударной волны служит всплеск II типа. ПЭ-энерговыделение происходит на заключительной стадии эруптивного события, когла магнитное поле в обширном районе короны. сильно возмущенное КВМ, релаксирует к новому квазиравновесному состоянию посредством магнитного пересоединения в протяженном квазивертикальном токовом слое. В зависимости от масштаба КВМ и характеристик магнитного поля в короне ПЭ фаза сопровождается значительным нагревом плазмы, длительным ускорением частиц (иногда до весьма высоких энергий), продолжительными всплесками в различных диапазонах от гамма- до метрового радиоизлучения, двухленточными структурами в хромосфере, крупномасштабными корональными петлями, гигантскими аркадами и т.д. В настоящее время считается, что эффективное и длительное ускорение частиц может происходить также в коллапсирующих петлях, в том числе и на ПЭ-фазе [Somov, Kosugi, 1997].

Прогнозирование СПС сводится к прогнозированию крупных эруптивных вспышек по характеристикам эволюционирующего магнитного поля больших групп солнечных пятен. Кроме

этого, в ряде прогностических центров осуществляется так называемая диагностика протонных вспышек. Она основана на том, что электромагнитное излучение вспышек приходит к Земле на десятки минут-часы раньше, чем, например, протоны с *E* > 10 МэВ. Это позволяет по наблюдаемому мягкому рентгеновскому излучению или радиовсплескам от уже произошедшей вспышки заблаговременно определить будет ли она сопровождаться заметным СПС и оценивать его ожидаемые параметры [Belov et al., 2005; Kahler et al., 2007; Nûñez M., 2011; Anastasiadis et al., 2017; Zucca et al., 2017]. Оригинальная методика диагностики протонных вспышек по сопровождающим их радиовсплескам, позволяющая с учетом гелиодолготы вспышки и условий выхода частиц в межпланетное пространство оценивать интенсивность потока протонов, его временные параметры и энергетический спектр, была разработана в ИЗМИРАН в 1970-1980-х гг. [Акиньян и др., 1977, 1978, 1980, 1981; Akinyan et al., 1980].

Обычно СПС происходят сериями в связи с прохождением по солнечному диску крупной эволюционирующей активной области (АО). Большинство СПС наблюдается вблизи максимума 11-летних циклов, но могут случаться и на фазе спада активности. В текущем 24-м цикле, при приближении к минимуму, в связи с развитием крупной АО, 4–10 сентября 2017 г. имел место неожиданно интенсивный всплеск активности, включавший в себя большое число мощных вспышек вплоть до рентгеновского балла Х9.3 и, по крайней мере, три значительных СПС. Настоящая работа посвящена диагностическому анализу этих СПС на основе упомянутой выше методики ИЗМИРАН.

2. ОСНОВЫ МЕТОДИКИ

Методика основывалась на следующем положении: параметры интенсивности микроволновых всплесков на частотах $f \sim 3-15$ ГГц, хотя последние и генерируются электронами, распространяющимися к фотосфере, отражают количество ускоренных частиц, в том числе приходящих к Земле протонов с энергией десятки МэВ. При оценках ожидаемой интенсивности потока протонов у Земли исходными параметрами служили как максимальная плотность потока микроволновых всплесков на ряде фиксированных частот, так и их интегральные параметры: полный флюенс и флюенс фазы нарастания. Тем самым в определенной степени учитывались не только импульсная, но и ПЭ-компоненты вспышки.

Сначала рассматривались протонные события, связанные со вспышками, происходившими в так называемом оптимальном долготном интервале (ОДИ), в пределах которого параметры потоков протонов и характер их связи с радиовсплесками почти не зависят от гелиодолготы. Для протонных событий ОДИ локализован в пределах гелиодолгот W20-80, а его существование обусловлено поперечной диффузией и быстрой азимутальной транспортировкой частиц в короне за счет распространения вдоль силовых линий, связывающих удаленные активные области и районы Солнца. Сейчас представляется, что ОДИ можно отождествить с областью локализации крупномасштабных магнитных структур глобальной солнечной магнитосферы, которые вовлечены в процесс эрупции КВМ, а также с протяженностью фронта ударной волны, образующейся перед КВМ. Для событий в ОДИ были установлены эмпирические зависимости между параметрами микроволновых всплесков на нескольких частотах и интенсивностью потоков протонов у Земли J с энергией E > 10, 30, 60 МэВ, которые назывались функциями интенсивности.

Весьма плодотворным оказалось введение величины ослабления, которая для каждого события рассчитывалась как отношение наблюдаемой у Земли интенсивности потока протонов к интенсивности, рассчитанной по функции интенсивности. Это позволило перейти к вспышкам с произвольной гелиодолготой и, кроме того, учесть условия выхода частиц в межпланетное пространство, проявляющиеся в метровой компоненте радиоизлучения (всплесках II, IV типа). Предполагалось, что интенсивная метровая компонента соответствует благоприятным, а слабая неблагоприятным условиям выхода частиц из области вспышки. Затем исследовалось распределение событий с различными характеристиками метрового излучения на диаграммах "величина ослабления φ-гелиодолгота Θ". Было установлено, что в ОДИ события с интенсивной метровой компонентой (благоприятными условиями выхода) сопровождаются более интенсивными потоками протонов, чем события со слабой метровой компонентой (неблагоприятными условиями выхода). Этот же эффект приводит к тому, что для вспышек вне ОДИ, т.е. на восточной половине диска, в событиях с интенсивной метровой компонентой потоки протонов испытывают более сильное гелиодолготное ослабление, чем в событиях со слабой метровой компонентой. Анализ диаграмм "ф-Ө" позволил количественно определить зависимость ослабления потока протонов от гелиодолготы вспышки. Сейчас представляется, что интенсивность метровой компоненты также отражает мошность эруптирующего КВМ и. следовательно, в какой-то мере учитывает возможный вклад третьего источника ускорения частиц, а именно, ускорения в ударной волне перед КВМ. Гелиодолготное ослабление усиливается с ростом энергии частиц, что приводит к укручению (смягчению) энергетического спектра протонов от восточных вспышек.

Более того, в работах [Черток, 1982; Chertok, 1990] (см. также [Черток и др., 2009]) было показано, что существует прямая статистическая зависимость между частотным спектром микроволновых всплесков и показателем степенного энергетического спектра наблюдаемых у Земли потоков протонов с энергией десятки МэВ. В частности, в ОДИ вспышки с мягким радиоспектром (частота спектрального максимума $f_m \leq 5$ ГГц, отношение пиковой интенсивности всплесков на частотах 9 и 15 ГГц $S_9/S_{15} \ge 1$) приводят к потокам протонов у Земли с мягким (крутым) энергетическим спектром, а вспышки с жестким радиоспектром ($f_m \ge$ $\geq 15 \ \Gamma \Gamma \mu, S_9/S_{15} < 1) - \kappa$ потокам протонов с жестким (некрутым) энергетическим спектром. По такой же схеме, как функции гелиодолготного ослабления потока протонов, была определена кривая, количественно характеризующая укручение энергетического спектра протонов для восточных событий.

В дальнейшем методика была использована и как инструмент исследования СКЛ. В частности, среди западных событий были выделены избыточные и задержанные потоки протонов, в которых наблюдаемая интенсивность протонов у Земли с E > 10 МэВ заметно превышала расчетную, а временной интервал между максимумами сантиметрового всплеска и потока протонов превышал 10 ч [Базилевская и др., 1990]. Анализ показал, что такие протонные потоки наблюдаются в событиях с мягким частотным спектром микроволновых всплесков ($f_m < 5$ ГГц). Из этого был сделан вывод, что задержанные и избыточные потоки протонов обусловлены преобладанием продолжительного ПЭ-ускорения, поскольку именно ПЭ-компонента микроволновых всплесков характеризуется мягким радиоспектром и значительной длительностью.

Практически диагностика вспышек начинается с выделения протонных событий на основе сформулированного в методике критерия, который предусматривал наличие достаточно интенсивного и продолжительного (неимпульсного) микроволнового всплеска, а также существенной метровой компоненты (всплесков II, IV типа). На современном языке это соответствует событиям с сильной вспышкой большой длительности, крупным КВМ и развитым ПЭ-энерговыделением.

3. ВСПЫШКИ И ПРОТОННЫЕ СОБЫТИЯ

Значительный и очень резкий всплеск солнечной активности в начале сентября 2017 г. был связан с быстрым развитием на видимом диске крупной группы пятен AR 12673 [Yang et al., 2017]. Рисунок 1 иллюстрирует временные профили мягкого рентгеновского излучения в диапазонах 1-8 и 0.5-4 Å и потока протонов с энергией E > > 10, 50 и 100 МэВ, зарегистрированные ИСЗ GOES 13 и 15 в период 4-11 сентября. (ftp://ftp.swpc.noaa.gov/pub/warehouse/2017/ 2017 plots/). Видно, что за это время реализовались 4 вспышки балла Х, включая самую мощную в 24-м цикле вспышку балла Х9.3 6 сентября, 27 вспышек балла М и многочисленные вспышки более низких баллов. Для нашего анализа существенно, что все эти вспышки произошли на западной половине диска, в которой параметры потоков протонов слабо зависят от гелиодолготы вспышки. По данным спутникового коронографа SOHO/LASCO (https://cdaw.gsfc.nasa.gov/ CME list/halo/halo.html), по крайней мере, 3 вспышки (балла M5.54 сентября, X9.36 сентября и Х8.2 10 сентября) сопровождались крупными КВМ типа гало. Эти же три мощные эруптивные вспышки, отмеченные вертикальными стрелками на рис. 1а, явились источниками значительных возрастаний потока протонов у Земли, т.е. были СПС.

Как показывает рис. 16, в СПС 4 сентября поток протонов с энергией E > 10 МэВ, (который ниже мы будем обозначать как J_{10} , а на произвольной энергии как J_E), возрос до ~100 pfu (1 pfu = 1 см⁻² с⁻¹ ср⁻¹). При этом повышение потока протонов с E > 50 и 100 МэВ было совсем незначительным. Это означает, что в данном СПС энергетический спектр протонов был весьма мягким (круто спадающим). Показатель интегрального степенного энергетического спектра $J_E \propto E^{-\gamma}$, который рассчитывается по отношению потоков с E > 10 и 100 МэВ как $\gamma = \lg(J_{10}/J_{100})$, оказывается $\gamma \sim 3.0$.

Поток протонов на E > 10 МэВ в последующие дни оставался повышенным, вероятно, из-за медленного выхода частиц из приближающегося к Земле межпланетного магнитного облака, отождествляемого с гало КВМ 4 сентября, или из-за длительного ускорения в ударной волне на фронте этого КВМ. В произошедшем на этом возмущенном фоне СПС 6 сентября отчетливое возрастание потока протонов видно только на E > 50 и 100 МэВ, где $J_{50} \sim 2$ pfu $J_{100} \sim 0.6$ pfu. Отсюда следует, что данное событие, в отличие от СПС 4 сентября, характеризовалось довольно жестким (плавно спадающим) спектром протонов. Оценки по потокам на этих двух энергиях дают показатель спектра γ~1.7. При таком спектре поток в канале E > 10 МэВ должен быть порядка $J_{10} \sim 32$ pfu, что близко к наблюдавшемуся выступу на временном протонном профиле 6 сентября, в районе 15:00 UT.

Самое значительное СПС имело место 10 сентября после продолжительной прилимбовой вспышки балла X8.2. Характеристики и параметры этого СПС типичны для мощных западных протонных вспышек. Поток протонов быстрой

Рис. 1. Временные профили мягкого рентгеновского излучения (*a*) и потоков протонов (*б*) по данным спутников GOES за 4–12 сентября 2017 г. Вертикальными стрелками отмечены три анализируемые СПС.

компоненты в этом случае достиг $J_{10} \sim 1000$ pfu, и после небольшого последующего повышения медленно спадал в течение нескольких суток. Поток быстрой компоненты в каналах E > 50 и 100 МэВ был тоже значительным $J_{50} \sim 130$ pfu и $J_{100} \sim 40$ pfu. Это указывает на то, что ее энергетический спектр был несколько жестче, чем в предыдущем событии, и имел показатель $\gamma \sim 1.4$. Убольшинства СПС на энергиях сотни МэВ спектр протонов становится более крутым, но при $J_{10} \sim 1000$ pfu этого хватило, чтобы поток с E >> 1 ГэВ оказался достаточным для регистрации умеренного возрастания на наземных нейтронных мониторах, т.е. такого редкого события как Ground Level Enhancement (GLE) (см. https:// gle.oulu.fi/). Это событие получило наименование GLE72 и было только вторым за весь 24-й цикл, (еще 3 события классифицируются как суб-GLE [Mishev et al., 2017]). Его амплитуда, например, на ст. Москва (ИЗМИРАН) составила ~4% (http:// cosrays.izmiran.ru).

4. РАДИОВСПЛЕСКИ И РЕЗУЛЬТАТЫ АНАЛИЗА

При анализе радиовсплесков от вспышек этого периода и их использовании для диагностики СПС будем исходить из данных сети USAF Radio Solar Telescope Network (RSTN), обеспечивающей круглосуточные наблюдения метровых динамических спектров и радиопотоков на нескольких фиксированных частотах в диапазне от 245 МГц до 15.4 ГГц (ftp://ftp.sec.noaa.gov/pub/warehouse/ 2017/2017_events/). Эти табличные данные позволяют применять методику диагностики ИЗМИРАН в несколько упрощенном виде, не прибегая к временным профилям радиовсплесков, а используя в качестве основного радиопараметра указанную в таблицах максимальную плотность потока всплесков на частотах 2.7 ГГц (S_3), 5 ГГц (S_5), 8.8 ГГц (S_9) и 15.4 ГГц (S_{15}).

Первый этап диагностики состоит в рассмотрении вспышек на основе так называемого критерия протонности. В методике было установлено (см. работу [Акиньян и др., 1980]), что вспышка может быть источником СПС с потоком протонов у Земли $J_{10} \ge 5-10$ pfu, если максимальная интенсивность связанных с ней микроволновых радиовсплесков хотя бы на одной из частот в диапазоне 2.7-15.4 ГГц превышает 500 sfu (1 sfu = $= 10^{-22}$ Вт м⁻² Гц⁻¹). Большинство вспышек рассматриваемого периода, в том числе достаточно мощных, с баллом М, не удовлетворяло этому условию и, следовательно, не должно было приводить к существенным СПС. Ряд вспышек с радиопотоком $S_{3-15} > 500$ sfu не соответствовал другому важному пункту критерия: требованию неимпульсного (достаточно продолжительного) характера радиовсплесков. В качестве примеров таких импульсных событий можно указать вспышки балла M2.4 в 05:02¹, M7.3 в 10:15 и X1.3 в

¹ В статье везде используется всемирное время UT.

Параметры	Вспышки		
	4 сент., 20:48 M5.5, S08W13	6 сент., 11:56 Х9.3, S09W38	10 сент., 15:58 X8.2, S09W85
S_3 , sfu/ J_{10} , pfu	2000/270	-	1910/230
S_9 , sfu/ J_{10} , pfu	1000/40	6500/70	10000/155
S_{15} , sfu/ J_{10} , pfu	360	8100/400	21000/7400
Оценка $\langle J_{10} \rangle$	155	235	2600
Наблюдения J_{10}	100	(~40)	1000
$f_m, \Gamma \Gamma$ ц/ γ	3/2.3	15/1.7	15/1.7
$S_9/S_{15}, \gamma$	2.8/3.0	0.8/1.5	0.48/1.2
Оценка (ү)	2.7	1.6	1.45
Наблюдения ү	3.0	1.5	1.4

Таблица 1. Наблюдательные характеристики трех СПС и результаты оценок потока протонов с энергией >10 МэВ (J_{10}) по максимальным радиопотокам на частотах ~3, 9, 15 ГГц $(S_3, S_9 \, \text{u} \, S_{15})$, а также показателя их степенного энергетического спектра γ по частоте спектрального максимума f_m и по отношению S_9/S_{15}

Примечание: Жирным шрифтом выделены усреднённые величины параметров *J*₁₀ и γ. В качестве времени вспышек указано пиковое время микроволновых всплесков.

14:35 7 сентября, балла М8.1 в 07:45 8 сентября. Ллительность микроволновых ралиовсплесков в этих случаях составляла всего несколько минут. Первая мощная вспышка 6 сентября балла Х2.2, 09:09 также не рассматривается как источник СПС из-за слабости или отсутствия метровой компоненты радиоизлучения. Об этом свидетельствуют как табличные данные RSTN, так и динамический спектр в диапазоне 25-270 МГц, зарегистрированный в ИЗМИРАН (см. http:// www.izmiran.ru/stp/lars/s archiv.htm). Об этом говорит также тот факт, что по данным коронографа SOHO/LASCO эта вспышка не сопровождалась заметным КВМ. В целом, проведенный анализ позволяет заключить, что в соответствии с наблюдениями (см. рис. 1 и таблицу 1) критерию протонности полностью удовлетворяют только три вспышки балла М5.5, 20:48 4 сентября, Х9.3, 11:56 6 сентября и Х8.2, 15:58 10 сентября, которые явились источниками трех дискретных СПС, описанных в предыдущем разделе. Повышенный нерегулярный фон протонов 7 и 8 сентября, повидимому, связан с сильной возмущенностью гелиосферы и земной магнитосферы, вызванной распространением ударной волны и крупного КВМ от Х9.3-вспышки 6 сентября, переносом в этих структурах быстрых частиц и их дополнительным ускорением.

На рисунке 2 показаны частотные спектры трех указанных вспышек, построенные по максимальным радиопотокам. Сразу видно, что вспышка 10 сентября обладала самым мощным радиовсплеском с резким ростом радиопотока вплоть до $f_m \sim 15 \Gamma \Gamma \mu$ ($S_{15} \sim 21000 \text{ sfu}$) и, следовательно, наиболее жестким частотным спектром.

А вспышка 4 сентября сопровождалась умеренным по интенсивности радиовсплеском с максимальным потоком в интересующем нас диапазоне на $f_m \sim 3 \Gamma \Gamma \mu (S_3 \sim 2000 \text{ sfu})$ и значительным понижением радиопотока до $S_{15} \sim 360 \text{ sfu}$ на $f \sim 15 \Gamma \Gamma \mu$, т.е. с самым мягким частотным спектром. Вспышка 6 сентября сопровождалась радиовсплесками с промежуточными характеристиками: максимальным потоком на $f_m \sim 15 \Gamma \Gamma \mu (S_{15} \sim 8100 \text{ sfu})$ и умеренно жестким частотным спектром.

Оценки количественных параметров СПС (масштаба возможного протонного возрастания в канале >10 МэВ по интенсивности J_{10} и показателя степенного энергетического спектра у) проводились с использованием полученных при разработке методики и слегка уточненных затем эмпирических соотношений. Наблюдаемые характеристики метрового радиоизлучения, включая всплески II, IV типа, позволяют для всех трех вспышек считать условия выхода частиц из области ускорения умеренными, по терминологии, принятой в методике ИЗМИРАН. При этом для оценки максимального потока протонов J_{10} (pfu) по радиопараметрам S_3 , S_9 и S_{15} можно использовать следующие эмпирические соотношения (см. работы [Акиньян и др., 1977, 1978, 1980, 1981; Akinyan et al., 1980]):

$$lg(J_{10}) = 3.8(lgS_3 - 3)^{1.25} + 1.6, S_3 > 1000 \text{ sfu},$$

$$lg(J_{10}) = 0.55(lgS_9 - 1)^{1.14}, S_9 \le 3000 \text{ sfu},$$

$$lg(J_{10}) = 2.12(lgS_9 - 3.5)^{1.729} + 1.56,$$

$$S_9 > 3000 \text{ sfu},$$

Рис. 2. Частотные спектры радиовсплесков, связанных с тремя рассматриваемыми протонными событиями.

$$lg(J_{10}) = 2.24(lgS_{15} - 3.3)^{1.484} + 1.56$$

S₁₅ > 2000 sfu.

Оценки показателя степенного энергетического спектра протонов γ по частоте спектрального максимума радиовсплесков f_m и по отношению пиковых потоков на $f \sim 9$ и 15 ГГц, т.е. S_9/S_{15} , производятся по выражениям (см. публикации [Черток, 1982; Chertok, 1990; Черток и др., 2009]):

$$\gamma = 0.91 S_9 / S_{15} + 0.432$$

$$\gamma = 2.45 - 0.05 f_m.$$

Результаты оценок и соответствующие наблюдательные параметры потоков протонов представлены в таблице. Для вспышки 6 сентября оценки J_{10} выполнялись по монотонно растущему участку частотного спектра (см. рис. 2), т.е. по радиопараметрам S_9 и S_{15} .

В целом, оценки по радиоданным достаточно хорошо отражают масштаб и энергетический спектр трех СПС. Отличительной особенностью вспышки 4 сентября является мягкий радиоспектр с максимальным потоком в интересующем нас диапазоне $S_3 \sim 2000$ sfu на $f_m \sim 3$ ГГц (фактически частотный спектр достигает пика даже в дециметровом диапазоне). Этим определяются основные оценочные и наблюдаемые характеристики потока протонов: мягкий энергетический спектр с показателем $\gamma \sim 2.7$ (оценка) и $\gamma \sim 3.0$ (наблюдения). Радиоданные дают также правильную оценку масштаба СПС с J_{10} в диапазоне 10—250 pfu

при наблюдаемой интенсивности $J_{10} \sim 100$ pfu. Типичный для событий с мягким радиоспектром временной профиль СКЛ характеризуется медленным нарастанием потока протонов и большой (~10 ч) задержкой максимальной интенсивности J_{10} относительно вспышки (см. статью [Базилевская и др., 1990]). Все это дает основания предполагать, что в данной вспышке преобладало ПЭ-энерговыделение и ускорение частиц. Подъем потока J_{10} во второй половине дня 5 сентября до уровня ~200 pfu, скорее всего, связан с вкладом приближающихся к Земле КВМ и ударной волны.

Судя по частотному радиоспектру (рис. 2), вспышка 6 сентября представляла собой комбинацию первичного вспышечного энерговыделения и ПЭ-фазы. Им соответствуют растущий поток в высокочастотной части микроволнового диапазона на $f \sim 5-15$ ГГц и существенная дециметровая компонента с максимумом на $f \sim 1.4$ ГГц. Оценки показателя спектра протонов по двум микроволновым радиопараметрам указывают на довольно жесткий спектр протонов ($\gamma \sim 1.6$), согласующийся с наблюдаемым энергетическим спектром в каналах E > 50 и 100 МэВ ($\gamma \sim 1.5$). Однако, оценочный поток протонов с $\vec{E} > 10$ МэВ $J_{10} \sim 235$ pfu оказался заметно больше измеренного $J_{10} \le 40$ pfu (рис. 16). Это расхождение связано с возмущенным состоянием гелиосферы, вызванным межпланетным КВМ от вспышки 4 сентября, который, вероятно, препятствовал распространению к Земле низкоэнергичных солнечных протонов. Приход к Земле межпланетного магнитного облака (КВМ) с ударной волной от вспышки 6 сентября привел, напротив, к повышению потока протонов в утренние и вечерние часы 7 сентября.

Частотный спектр вспышки 10 сентября характеризуется очень резким ростом радиопотока в диапазоне от 3 до 15 ГГц и весьма значительной интенсивностью $S_{15} \sim 21000$ sfu. Это приводит к жесткому оценочному спектру протонов, согласующемуся с измеряемым $\gamma \sim 1.4$, и к большому разбросу оценок количества протонов по пиковым радиопотокам на разных частотах от $J_{10} \sim 155$ pfu для S_9 до $J_{10} \sim 7400$ pfu для S_{15} . При этом, тем не менее, можно считать, что усредненный оценочный протонный поток $J_{10} \sim 2600$ pfu указывает довольно правильный масштаб СПС. Последний для быстрой компоненты был $J_{10} \sim 1000$ pfu, а для задержанной компоненты возрос в ~1.4 раза. Существенно, что полученные по радиоданным оценки интенсивности и спектра потоков протонов, в особенности, значительная величина J_{10} , соответствуют наблюдавшемуся в данном случае наземному возрастанию СКЛ (GLE).

5. ВЫВОДЫ

Проведенный анализ дает основания заключить, что применение методики количественной радиодиагностики протонных вспышек, разработанной в ИЗМИРАН в 1970–1980-х гг., к серии мощных вспышек сентября 2017 г. приводит, в целом, к положительным результатам. Прежде всего, на основе предусмотренного в методике критерия протонности вспышек, учитывающего ланные об интенсивности. длительности. частотном спектре микроволновых всплесков и параметрах метровой компоненты радиоизлучения, были правильно выделены вспышки, явившиеся источниками трех значительных, разных по характеру СПС. Оценки возможной интенсивности потока протонов в канале E > 10 МэВ, проводившиеся в упрощенном варианте по пиковому радиопотоку на частотах $f \sim 3, 9$ и 15 ГГц, позволили достаточно достоверно определить масштаб всех трех СПС. По виду частотного спектра микроволновых радиовсплесков были успешно диагностированы как вспышка с преобладающей ПЭ-компонентой (4 сентября), так и вспышки, в которых основной вклад в ускорение протонов, видимо, давало первичное вспышечное энерговыделение (СПС 6 и 10 сентября).

Особенно важной оказывается продемонстрированная выше возможность правильно оценивать по радиоспектру показатель степенного энергетического спектра протонов в диапазоне десятков МэВ. Было снова показано, что ПЭ-вспышка с мягким частотным спектром микроволновых всплесков вызывает СПС с мягким энергетическим спектром протонов, а вспышки с жестким радиоспектром, наоборот, сопровождаются потоками протонов с жестким энергетическим спектром. Очевидно, что такое соответствие между радио- и энергетическими спектрами не укладывается в так называемый "синдром больших вспышек" [Kahler, 1982], согласно которому интенсивность потока протонов у Земли показывает заметную положительную корреляцию с любыми параметрами, отражающими энергетику вспышки, в том числе физически не связанными с ускорением частиц.

Полученные результаты свидетельствуют о том, что ускорение частиц во вспышке, включающее в себя первичное ускорение и ускорение в ПЭ токовом слое, который формируется в короне вслед за КВМ, вносит значительный вклад в наблюдаемые у Земли потоки протонов. Проведенное исследование еще раз демонстрирует, что, независимо от конкретных источников ускорения, данные о радиовсплесках могут быть с успехом использованы как для анализа, так и для реальной диагностики протонных вспышек, т.е. для заблаговременных оценок интенсивности и энергетического спектра потоков протонов, в частности, с применением методики ИЗМИРАН. Весьма перспективным оказывается диагностика вспышек по данным о радиовсплесках на более высоких частотах ~35 ГГц и использование при этом в качестве основного исходного параметра флюенсов микроволновых всплесков [Grechnev et al., 2013; Гречнев и др., 2017].

Автор выражает благодарность рецензенту за рассмотрение рукописи и полезные замечания, а также коллективам, работающим со спутниками GOES и сетью радиотелескопов RSTN, за открытые данные, использованные в настоящей работе.

Исследование выполнено при частичной поддержке РФФИ в рамках проекта № 17-02-00308.

СПИСОК ЛИТЕРАТУРЫ

– Акиньян С.Т., Фомичев В.В., Черток И.М. Определение параметров солнечных протонов в окрестности Земли по радиовсплескам. І. Функция интенсивности // Геомагнетизм и аэрономия. Т. 17 № 1. С. 10–15. 1977.

— Акиньян С.Т., Алибегов М.М., Козловский В.Д., Черток И.М. О количественной диагностике протонных вспышек по характеристикам микроволновых радиовсплесков на частотах ~9 ГГц // Геомагнетизм и аэрономия. Т. 18 № 3. С. 410–414. 1978.

– Акиньян С.Т., Фомичев В.В., Черток И.М. Результаты количественной диагностики протонных вспышек по данным о радиовсплесках за контрольный интервал 1970–1977 г. // Геомагнетизм и аэрономия. Т. 20 № 3. С. 385–393. 1980.

— Акиньян С.Т., Фомичев В.В., Черток И.М. Оценки параметров потоков протонов по характеристикам радиовсплесков на частотах 15–19 ГГц // Phys. Solariterr. № 17. Р. 135–143. 1981.

- Базилевская Г.А., Сладкова А.И., Фомичев В.В., Черток И.М. Возможная связь потоков солнечных протонов в межпланетном пространстве с формированием послевспышечной системы петель // Астрон. журн. Т. 67. № 2. С. 409-419. 1990.

– Гречнев В.В., Киселёв В.И., Мешалкина Н.С., Черток И.М. О корреляции околоземных протонных возрастаний >100 МэВ с микроволновыми параметрами солнечных эруптивных событий // Солнечно-земная физика. Т. 3. № 3. С. 3–14. 2017.

- Черток И.М. Оценки показателя энергетического спектра протонов по данным о солнечных микроволновых всплесках // Геомагнетизм и аэрономия. Т. 22. № 2. С. 182–186. 1982.

– Черток И.М., Гречнев В.В., Мешалкина Н.С. О соотношении спектров микроволновых всплесков на Солнце и потоков протонов у Земли // Астрон. журн. Т. 86. № 11. С. 1133–1144. 2009.

- Akinyan S.T., Chertok I.M., Fomichev V.V. Quantitative forecast of solar protons based on solar flare radio data // Solar-Terrestrial Prediction Proceedings. Boulder, USA, 1980. V. 3. P. D14–D26. 1980.

- Anastasiadis A., Papaioannou A., Sandberg I., Georgoulis M., Tziotziou K., Kouloumvakos A., Jiggens P. Predicting flares and solar energetic particle events: the FORSPEF tool // Solar Phys. V. 292. № 9. ID 134. 2017.

- Aschwanden M.J. The localization of particle acceleration sites in solar flares and CMEs // Space Sci. Rev. V. 124. № 1–4. P. 361–372. 2006.

- Belov A., Garsia H., Kurt V., Mavomichalaki H., Gerontidou M. Proton enhancements and their relation to the X-ray flares during the three last solar cycles // Solar Phys. V. 229. \mathbb{N} 1. P. 135–159. 2005.

- *Chertok I.M.* On the correlation between the solar gamma-ray line emission, radio bursts and proton fluxes in the interplanetary space // Astron. Nachr. V. 311. № 6. P. 379–381. 1990.

– Chertok I.M. Post-eruption particle acceleration in the corona: a possible contribution to solar cosmic rays // Proc. 24th ICRC. Rome, Italy, 1995. V. 4. P. 78–81. 1995.

− *Desai M., Giacalone J.* Large gradual solar energetic particle events // Living Rev. Sol. Phys. V. 13. \mathbb{N} 1. Id. 3. P. 3–132. 2016.

- Grechnev V.V., Meshalkina N.S., Kiselev V.I., Chertok I.M. Relations between strong high-frequency microwave bursts and proton events // Publ. Astron. Soc. Japan. V. 65. N_{P} SP1. ID S4. 2013.

- Kahler S.W. The role of the big flare syndrome in correlations of solar energetic proton fluxes and associated microwave burst parameters // J. Geophys. Res. V. 87. № A 5. P. 3439–3448. 1982.

− *Kahler S.W., Cliver E.W., Ling A.G.* Validating the proton prediction system (PPS). // J. Atmos. Solar-Terr. Phys. V. 6. \mathbb{N} 1–2. P. 43–49. 2007.

- *Klein K.-L., Dalla S.* Acceleration and propagation of solar energetic particles // Space Sci. Rev. V. 212. № 3-4. P. 1107-1136. 2017.

- Mishev A., Poluianov S., Usoskin I. Assessment of spectral and angular characteristics of sub-GLE events using the global neutron monitor network // J. Space Weather Space Clim. V. 7. ID A28. 2017.

 $- N\hat{u}\hat{n}ez M$. Predicting solar energetic particle events (*E* > 10 MeV) // Space Weather. V. 9. № 7. ID S07003. 2011.

- *Reames D.V.* The two sources of solar energetic particles // Space Sci. Rev. V. 175. № 1–4. P. 53–92. 2013.

- Somov B.V., Kosugi T. Collisionless reconnection and high-energy particle acceleration in solar flares // Astro-phys. J. V. 485. № 2. P. 859–868. 1997.

- Yang S., Zhang J., Zhu X., Song Q. Block-induced complex structures building the flare-productive solar active region 12673 // Astrophys. J. Lett. V. 849. № 2. ID L21. 2017.

- Zucca P., Nez M., Klein K.-L. Exploring the potential of microwave diagnostics in SEP forecasting: the occurrence of SEP events // J. Space Weather Space Clim. V. 7. ID A13. 2017.