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COMMENTS ON THE DURATION - PEAK-FLUX-DENSITY
DIAGRAM FOR 2800 MHz SOLAR BURSTS
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ABSTRACT

The existence of an essentially two-pronged distribution in the duration—peak-flux-density
scatter plot for simple 2800 MHz solar bursts (Covington and Harvey, 1958) was verified for a
more recent data set. An investigation was made of events that fall between the impulsive and
gradual rise and fall branches of the 7-S, Diagram. Such events are rare, with only 51 observed
at Ottawa during the 11 year period studied. A relatively high percentage of these bursts were
associated with proton flares. (This fact may aid in the prediction of some otherwise
difficult-to-forecast proton events.) Smaller subgroups in the sample include bursts from

behind-the-limb flares and events associated with ‘‘spotless’’ flares (Dodson and Hedeman,
1970).

Introduction. Covington and Harvey (1958) noted that approximately 90
per cent of all 2800 MHz bursts could be classified as simple, single-
maximum, events. Furthermore, they found that a scatter plot of burst
peak-flux density versus duration for these events resulted in a two-
pronged distribution representing the impulsive bursts on the one hand and
the gradual rise-and-fall events on the other (figure 1(a)). This diagram
remains the basic formalism for the classification of simple microwave
events. Historically, the impulsive events have been attributed to gyrosyn-
chrotron emission from non-thermal electrons while the gradual bursts
have been characterized as thermal bremsstrahlung from a Maxwellian
distribution of electrons (Svestka, 1976).

Wefer (1973) constructed the duration — peak-flux-density diagram from
a sample of 1502 simple 2700 MHz bursts observed at Pennsylvania State
University during a six-year period (July 1964 — June 1970) and found that
the two-pronged distribution was not as well defined as in the earlier
Ottawa observations, with a number of events falling in the ‘‘zone of
avoidance’’ between the two branches. Wefer concluded that if the bifur-
cated distribution of points should have been evident in his data, then the
most likely reason that it was not was differences in burst classification
between Pennsylvania State and Ottawa. (Neither differences in absolute
calibrations affecting the measured burst peak-flux densities nor differ-
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FiG. 1(a)—The duration - peak-flux-density scatter plot for simple 2800 MHz bursts
observed at Ottawa during 1956 (Covington and Harvey, 1958).

ences in radiometer sensitivities affecting the determination of burst start
and end times were large enough to account for the discrepancy.) To check
this hypothesis, we compared all the simple 2700 MHz bursts observed at
Pennsylvania-State during this period with durations (7) = 10 minutes and
peak-flux densities (S,) > 20 Sfu (1 Sfu = 1 solar flux unit = 1 x 10722 watts
m~2Hz™!) with the corresponding Ottawa observations. There were 133
bursts which satisfied these criteria in the Pennsylvania-State data. Ac-
cording to the published Ottawa burst summaries, however, only 36 of
these events met the criteria and, of these, only seven fell clearly between
the two branches. The resultant 7-S, diagram thus retained its basically
two-pronged character.

As Wefer had correctly surmised, the chief difference between the Ot-
tawa and Pennsylvania-State observations lay in the burst-classification
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procedures. In comparison with Ottawa, Pennsylvania-State observers
were less likely to use ‘‘underlying’’ (codes 21 and 23) burst types or to
assign Post-Burst Increases (PBI’s) to events, tending rather to consider
these long-enduring components as part of the principal burst. In either
case, the net effect was to increase the duration of the principal burst and to
push these events toward the zone of avoidance on the 7-S, scatter plot. An
additional classification difference concerned distinguishing between sim-
ple events with fluctuations, where the maximum intensity of secondary
peaks is less than 20 per cent of the peak-flux density of the burst, and
complex events, where secondary peaks meet or exceed the 20 per cent
criterion. The simple events with fluctuations are included in the 7-S,
diagram while the truly complex events are not. In all, Ottawa classified 19
of the 133 simple (PSU classification) events in the above sample as com-
plex.

Because seven events with uncharacteristic (7, S,) points were found in
the above search and because Covington (private communication in Wefer,
1973) had noted a much less distinct separation between the impulsive and
gradual branches on a 7-S, diagram for data obtained at Ottawa during the
period July 1957 through December 1960, it was decided to search for
further examples of these bursts that seemingly do not fall neatly into either
a thermal or non-thermal category. This was done in an attempt to deter-
mine what characteristics, if any, these unusual events might have in
common.

Data Sources and Considerations. Because of the precision and the con-
sistency of the Canadian observation, it was decided to use only the Ottawa
and Penticton burst-data as reported monthly in Solar Geophysical Data
and yearly in the National Research Council reports by Covington, Ga-
gnon, and Moore. The search criteria employed were as follows:

(a) for simple bursts with

30 Sfu< S, < 200 Sfu,
T > 20 min

(b) and for simple bursts with

S, > 200 Sfu,
T>3.28,03

These relationships correspond to the heavy black lines drawn in figure
1(b). A search of data for the years 1966—1976, corresponding roughly to
the 20th solar cycle, uncovered 51 examples of these events (including the
seven from above). Their relative rarity is apparent if we consider that in
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FiG. 1(b)—A stylized T-S, diagram showing the positions of the 51 events in Table I. The
boundary of the ‘‘zone of avoidance’ is indicated by the heavy line. The symbols are
explained in the text.

1972, for example, Ottawa and Penticton observed more than 500 long-
enduring events with 7 > 20 min and 56 simple bursts with S, > 30 Sfu but
only three events which satisfied the above-listed search criteria. Early onin
the investigation it was noted that a relatively high percentage (51 per cent
or 26/51) of these events had proton association. The pertinent proton data
along with the radio-burst and Ha-flare data are listed in Table 1 for each of
the 51 events. Several comments on this table are in order:

1 For gradual-rise-and-fall events with superimposed burst(s) (classifica-
tion code 21 or 23), the burst parameters for the largest superimposed
event are given on the line immediately following the long-enduring burst
entry.

2 In the burst-classification column, code 47 refers to a Great Burst (S, =
500 Sfu). Such events may be intrinsically simple (single maximum) or
complex. We checked published photographs or the Sagamore Hill rec-
ords for each of these bursts to determine which category they fell into.

3 The Proton column lists either the 30-MHz riometer-absorption value in
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decibels for Polar-Cap Absorption (PCA) events or says simply ‘“‘SAT”’
for events detected only by satellites in the vicinity of the earth.

4 The Reference column refers to the study in which the given flare was
associated with a proton event. *‘S & S’ refers to the Catalog of Solar
Farticle Events, 1955-1969, edited by Svestka and Simon (1975); DHM
refers to extensions of this Catalog by Dodson et al. (1977, 1978) for the
years 1970-1972; *“‘C & B’ refers to the published list of Castelli and
Barron (1977) of proton flares with classical ‘‘U-Shaped’’ radio spectra;
and ‘‘C & T’ refers to Castelli and Tarnstrom’s (1978) catalog of proton
events associated with flares which did not have a U-shaped peak-flux-
density spectrum.

5 The key to the symbols in the last columnis: C& B(+);C& TorS& S
(@); behind the limb events with and without proton association respec-
tively (l, [J); and all remaining bursts without proton association (O).

The scatter points for the 51 events are plotted in figure 1(b) with the above
symbols.

Classical versus Non-Classical Proton Flares. Castelli et al. (1967) re-
ported that the peak-flux-density spectra of significant proton flares have a
characteristic U-shape — with a high flux-density response at meter
wavelengths, a pronounced dip in the decimeter range, and intensities
approaching or greater than 1000 Sfu at frequencies =8800 MHz. The
validity of this forecast tool has long been established (O’Brien, 1970).
Seven of the events in Table I are associated with such classical proton
flares (+). Five of these had peak-flux densities =350 Sfu. The position of
these five events in figure 1(b) reveals their basically impulsive nature.

The two remaining ‘‘classical’’ events (Nos. 16 and 20) were actually
long-enduring events with a superimposed Great Burst. Four other events
in Table I (Nos. 18, 28, 31 and 41) are similar to Nos. 16 and 20 in that the
superimposed event dominates the long-enduring component even though
the radio peak flux density spectra of these flares were not U-shaped. From
the point of view of burst classification, it is difficult to distinguish these
events from a large burst preceded by a precursor and followed by a
post-burst increase. In fact, this is how events Nos. 16 and 18 were
classified at Sagamore Hill.

If we do not consider the above 11 events, then, and ignore for the
moment the six bursts from behind-the-limb flares, we are left with a
sample of 34 events. Thirteen of these (or 38 per cent) had proton associa-
tion. This is a high percentage considering that none of the 34 events had
the classical U-shaped radio spectrum and only three were Great Bursts at
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2800 MHz. Castelli and Tarnstrom (1978) investigated 76 proton events,
occurring between 1966 and 1976, that could be attributed to visible disk
flares with non-classical radio emission. They found that the most impor-
tant of these (in terms of measured riometer absorption) came from flares
which had associated microwave bursts with durations on the order of an
hour or more and with peak-flux densities on the order of 100 Sfu across the
spectrum from 1000 to 9000 MHz. Obtaining average values of 7 and S, for
the 13 events in our sample with proton association and the 21 events
without reveals some interesting, and perhaps significant, differences be-
tween the two groups. If we eliminate the largest event in each parameter
group and average the remainder, we obtain

Sp..= 102 Sfu
T,vg= 169 min
for the proton related events, and

S,..= 165 Sfu

Pa
T,yg= 52 min

for the non-proton events. If we assume a simple triangular burst-shape, we
can use the approximation that the mean flux-density (S,,) ® 35, to compute
the average burst-integrated flux-density (E) in each case,

E . (proton) =S, x T S, x T=5.2x 10717
Joules m™2Hz!

and
E .vg (non-proton) = 2.6 x 107!7 Joules m2Hz!.

Thus the proton-flare bursts in the sample have, on the average,
significantly longer durations and larger integrated flux-densities than the
2800 MHz bursts from the non-proton flares. We note that the average
integrated fluxes from both groups, however, exceed the 107!7 Joules
m~2Hz™! value cited by Castelli and Tarnstrom as a prerequisite for a flare
associated > 10 Mev proton flux of 1 proton cm2s~!ster—!. A histogram of
the solar longitudes of the 34 flares is given in figure 2 where the well known
Archimedean-spiral propagation effect, (Smart et al., 1976), favouring
observation at the earth of protons accelerated on the western hemisphere
of the sun, is apparent. From this figure it appears likely that more events in
the sample may have had proton association, especially when one consid-
ers that several of these flares (Nos. 5, 6, 11, 15 and 40) came from
proton-prolific regions.
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PROTON
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F1G. 2—The longitudinal distribution of the 34 flares, distinguishing between proton (upper)
and non-proton (lower) events.

While the proton events from flares with non-U-shaped radio spectra
tend to be small in size (Castelli and Tarnstrom, 1978), they can, on
occasion, be significant. Four of the events in our sample (Nos. 13, 24, 37
and 39) were principal (=2.0 db) PCA’s. Because the radio emission from
these flares is unspectacular, the ensuing proton events are particularly
difficult to predict. Plotting the point for the associated 2800 MHz burst on
the 7-S, diagram may help to identify certain flares as proton producers.
From figure 3 we note that 10 of the 18 (56 per cent) western-hemisphere
events that fell in the zone of avoidance had proton association. Also, from
figure 1(b) it appears that the observation of a 2800 MHz burst with 7> 100
min and §, > 30 Sfu is a strong indicator that a proton event will occur.

2800 MHz Bursts from Behind-the-Limb Flares. Six of the events in Table I
(Nos. 8, 21, 22, 34, 35 and 38) cannot be confidently linked to flares
observed in Ho and are assumed to have come from active regions behind
the solar limb. For five of the six cases a likely candidate region was located
behind either the east or west limb. A possible explanation to account for
the (7, §,) points of these events falling in the zone of avoidance is that the
source of the impulsive microwave component is located low in the solar
atmosphere and is occulted by the disk; what is observed, then, is either the
extended source of the gradual thermal burst in small flares or, more likely,
the extended source of the smooth Type-IV microwave emission from
large flares. This picture is consistent with the emerging model of solar
flares in which the nonthermal impulsive-emission source is taken to lie
relatively low in the corona below heights ranging from 6000 km (Vorpahl,
1973) to 15000 km (Bohme et al., 1976).
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F1G. 3—The Sagamore Hill multi-frequency observations of the behind-the-limb flare on 01
Sept. 1971.

The absence of an impulsive component in behind-the-limb flares has
been noted by several investigators. Teske (1967) pointed out the lack of an
impulsive component in soft X-Rays for certain limb events. Unusual
gradual hard X-Ray events associated with behind-the-limb flares have
been reported by Frost and Dennis (1971), Kane and Pick (1976), and
Hudson (1978b). Krivsky and Kriiger (1973) noted the lack of an impulsive
component in the higher-frequency observations of the event of 01 Sep
1971 (figure 3) but, because the responsible flare was R 30° beyond the limb,
were unable to make a more definitive statement than ‘‘the emission height
(of the impulsive microwave component) must be smaller than about 1.5 x
10° km”’. Further studies of such partially occulted bursts might serve to
better delineate the vertical structure of the microwave source.
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It must be mentioned that examples of impulsive 2800 MHz events from
behind-the-limb flares also exist (Badillo and Salcedo, 1969; Kane et al.,
1979). For these events it is possible that ejecta carry flare plasmas and
fields to great heights. The radio emission of the event of 30 March 1969
reported by Badillo and Salcedo gave evidence of such outward motion.

“Spotless’’ Flares. Dodson and Hedeman (1970, 1975) reported the occur-
rence of flares from regions with small spots or none at all. They found that
the microwave emission from these flares is characteristically of the
gradual-rise-and-fall type. The four such events in Table I (Nos. 3, 19, 42,
and 44) represent only about 10 per cent of the major (Ha importance =2)
spotless flares observed between 1966 and 1974. In Ha, these flares appear
as parallel ribbons at the location of a previously existing quiescent dark
filament.

Closing Comments. This study has reiterated the fact that solar microwave
bursts fall into two basic categories, impulsive and long-enduring. These
two branches of the 7-§,, diagram merge in the region of short durations and
low peak flux densities. For longer durations, the number of gradual-rise-
and-fall events greatly exceeds the number of impulsive events. This latter
statement follows almost by definition and is apparent in figure 1 (a). The
long-enduring events rarely have peak-flux densities greater than 30 Sfu
and, in the Ottawa records, events with peak fluxes less than 5 Sfu pre-
dominate. For the events listed in Table I, the largest of the long-enduring
events (No. 37) had an integrated flux density a factor of three less than that
of the largest of the impulsive events (No. 46), 1.0 x 1076 Joules m 2Hz!
vs 3.0 x 1071¢ Joules m—2Hz'.

We view the impulsive events listed in Table I as the ‘‘rough edge’’ of the
upper branch of the 7-S, diagram, i.e., as having the same basic character
as the events on this branch. We are less certain that the events whose (7,
S,) points fall near the lower branch of the diagram (figure 1(b)) can be
viewed as the normal upward extension of the gradual-rise-and-fall events.
In particular, many of the longer-duration (7 > 120 min) events without a
dominant impulsive component seem to be of the ‘‘magnetic-storm type’’
discussed by Sakurai (1974), even though the peak fluxes are somewhat
lower. Several (=5 of 10) of these events had associated Type II and/or
Type IV emission. It is difficult to reconcile this dynamic behaviour with
the smaller gradual rise and fall events that are generally thought to be
short-lived sources of the slowly varying component.

The high percentage of proton association for the events in Table I is
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perhaps explained by Hudson’s (1978a) finding that an absolute total flare-
energy threshold may exist beyond which the second-stage acceleration
process becomes very efficient. This parallels Castelli and Tarnstrom’s
(1978) establishment of a single-frequency (at centimeter wavelengths)
integrated-burst flux-density of 10717 Joules m~2Hz™! as a necessary con-
dition for a> 10 Mev proton flux of 1 proton cm~2s™ster™!, a condition that
applies independently of the nature of the energy release — either rapid or
slow. (Earlier investigators (Pick 1961; Harvey 1965) had suggested similar
values of the 2800 MHz burst energy as a favourable condition for the
observation of an associated Type IV or Type II/IV event at meter
wavelengths.) The smallest event that our selection criteria allowed (No.
40) had an integrated flux-density approaching this threshold (~0.2 x 10717
Joules m™2Hz™1).

The traditional interpretation of the two burst classes has recently come
into question. For the impulsive events, Matzler (1978) and Dulk et al.
(1979) have presented theoretical evidence that allows for an interpretation
of these events in terms of gyrosynchrotron emission from a thermal
(quasi-thermal) distribution of electrons. For the gradual-rise-and-fall
events, Guidice and Castelli (1975) reported that only 20 per cent, at most,
of a sample of nearly 400 long-enduring events observed at Sagamore Hill
between 1968—1971 had peak-flux-density radio spectra that were consis-
tent with a thermal bremsstrahlung emission mechanism. This is at marked
variance with the widely held view that these events are of thermal origin
and more work is needed to resolve the discrepancy.

Edward W. Cliver,

Air Force Geophysics Laboratory,
Hanscom Air Force Base,
Massachusetts 01731,

U.S.A.
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