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Abstract

Identifying the source regions of coronal mass ejections (CMEs) is crucial for understanding their origins and
improving space weather forecasting. We present an automated algorithm for matching CMEs detected by the
Large Angle Spectrometric Coronagraph with their source active regions, specifically Space Weather HMI Active
Region Patches (SHARPs), between 2010 May and 2019 January. Our method uses posteruptive signatures,
including flares and coronal dimmings, to associate CMEs with potential source regions. Out of 4190 CMEs, we
successfully match 1132, achieving a recall rate of ~57% for frontside events. We find that the algorithm performs
better for complex SHARP regions containing multiple NOAA regions and for faster CMEs, consistent with
expectations that more energetic events produce stronger eruption signatures. We find that CME–flare association
rates increase with flare intensity, aligning with previous studies. While our approach has limitations, such as
focusing exclusively on SHARP regions and relying on a limited set of posteruptive signatures, it significantly
reduces the time required for CME source identification while providing transparent, reproducible results. We
encourage the solar physics community to build upon this work, developing improved automated tools for CME
source identification. The resulting catalog of CME–source region associations is made publicly available, offering
a valuable resource for statistical studies and machine learning applications in solar physics and space weather
forecasting.

Unified Astronomy Thesaurus concepts: Solar coronal mass ejections (310); Solar physics (1476); Catalogs (205);
Solar flares (1496); Solar active region magnetic fields (1975); Solar active regions (1974); Solar activity (1475)

1. Introduction

Coronal mass ejections (CMEs) are magnetized plasma
eruptions from the solar atmosphere and one of the most
energetic types of events produced by the Sun. These eruptions
inject on the order of 1032 erg of energy, 1023 Mx of magnetic
flux, and 1016 g of plasma into the interplanetary medium
(T. G. Forbes 2000). When they come in contact with the
magnetosphere, the ensuing geomagnetic storms can cause
disruption to Earth's technological systems, including satellite
operations, communication, and navigation systems or elec-
trical distribution systems (T. Pulkkinen 2007). As such, these
events are of great interest not only from a physical perspective,
helping us better understand the magnetic mechanisms driving
solar activity, but also from a forecasting perspective in order to
prevent or minimize their impacts on our technological
infrastructure.

In order to understand the physical mechanisms involved in
CME occurrence, CME source regions on the Sun must be
studied. Individual CME source regions can be investigated
through case studies, but statistical and machine learning
approaches require large data sets with confident associations
of the CMEs to their source regions. This identification is
challenging due to the nature of CME detection and the large
number of CMEs observed in the current age, where constant
observations of the solar corona by coronagraphs mean that
more than 2000 CMEs may be detected every year during solar
maximum.

CMEs are detected in coronagraphs, such as the Large Angle
and Spectrometric Coronagraph (LASCO; G. E. Brueckner
et al. 1995) on board the Solar and Heliospheric Observatory
(SOHO), which occult the solar disk. This is because CME
detections rely on the Thomson scattering of solar photons,
which is too faint to be seen unless the disk is occulted. Hence,
we cannot directly observe the CME in disk images. Moreover,
it is not possible to distinguish between CMEs produced by
frontside (Earth-facing) versus backside regions using LASCO.
Therefore, we need to rely on signatures left by the CME on the
disk to identify the source—though some CMEs, known as
stealth CMEs, do not leave any signatures (E. Robbrecht et al.
2009) or the signatures are difficult to detect (N. Alzate &
H. Morgan 2017; J. OKane et al. 2019).
There have been several works in the past that use signatures

of CME occurrence as observed in the lower solar atmosphere
to identify a CME's source region. P. Subramanian &
K. P. Dere (2001) used on-disk signatures in images from the
EUV Imaging Telescope (EIT) on board SOHO, including
erupting prominences, dimmings, and flares, to manually
identify the source region of 32 CMEs between 1996 January
and 1998 May. They found that CMEs not associated with a
prominence eruption typically come from active regions with a
lifetime of 11–80 days. Meanwhile, those associated with a
prominence eruption come from much older active regions with
lifetimes of ~6–7 months. G. Zhou et al. (2003) also used EIT
data to find the source regions of 197 frontside halo CMEs by
finding flares and filament eruptions that occur within
±30 minutes of the estimated CME onset and where the source
region position angle falls within the span of the CME. They
find that 79% of the matched CMEs originate from an active
region and that all CMEs have an associated brightening in EIT
images as well as in Hα. S. Yashiro et al. (2005) studied the
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association of CMEs with 1301 flares and the visibility of the
CMEs as a function of the flare location and intensity. They
found that the rate of association of flares with CMEs increases
with flare class, reaching up to 100% for flares above X3
GOES class. S. K. Tiwari et al. (2015) manually identified the
source region of 189 CMEs and demonstrated that the speed of
the fastest CME an active region can produce correlates with
free-magnetic-energy proxies and magnetic twist parameters
from vector magnetograms. S. A. Murray et al. (2018) used
ballistic back-propagation of CMEs observed by the Solar
TErrestrial RElations Observatory spacecraft to automatically
match them to flares and their source regions. The 550 matched
CMEs are released as the HELCATS LOWCAT catalog. In a
more recent work, S. Majumdar et al. (2023) manually matched
3327 CMEs from 1998 to 2017.

In this work, given a CME detected by LASCO, we find its
source active region using posteruptive signatures that can be
detected on the disk. We focus only on CME source regions that
are located within Space Weather HMI Active Region Patches
(SHARPs; M. G. Bobra et al. 2014). Our motivation for using an
automated approach is the significantly reduced human time
required to produce these matches and removing the susceptibility
of the associations to changes in personnel or their level of
experience. We are also driven by the increased transparency in the
associations that an automated approach can provide; i.e., the
reasoning for each association is clearly and simply described,
which is often lacking in human-made associations, especially if an
end user is interested in quickly filtering these associations based
on their confidence in the association methods. Moreover, even
though any automated algorithm can be prone to errors, we hope
that by providing the algorithm as an open-source project, these
can be characterized easily and regularly through smaller, curated
verification data sets leading to community-driven improvements
to the algorithm. However, we point out that we release this work
as a proof of concept, showing how an automated approach to this
task is possible, and not as an operational tool.

In Section 2, we describe the posteruptive signatures used in
our algorithm, in Section 3 we describe the data used in this
work and in Section 4, we describe how they are used to make
the associations. Section 5 describes the procedure used to
manually check a number of associations made by our method.
In Section 6, we show a small sample of summary statistics of
the resulting associations, and we discuss their implications in
Section 7. We conclude and discuss future developments of this
work in Section 8.

2. Posteruptive Signatures

With posteruptive signatures, we refer to signatures left by
the CME that manifest themselves in the corona or the
chromosphere. This can include the following.

1. Dimmings—a reduction of the brightness in the lower
corona, usually in EUV bands (E. Kraaikamp & C. Ver-
beeck 2015)—have been associated with CMEs and are
likely caused by mass evacuation during the eruption.
Mass-loss calculations using dimmings have been matched
to mass estimations from CME observations to support the
mass-loss theory (R. A. Harrison et al. 2003). The
relationship between CMEs and dimmings has been
statistically proven by D. Bewsher et al. (2008) and studied
by K. Dissauer et al. (2019), which makes them extremely
useful in tracing a CME back to its source region.

2. Flares are also known to be related to CMEs
(B. C. Low 1996; T. G. Forbes 2000; Z. Švestka 2001;
B. Vršnak 2008). However, not all CMEs seem to have
an associated flare, nor do all flares have an associated
CME. Flares that do not have an associated CME are
known as “confined flares,” and it is possible that the
reason some CMEs do not have an associated flare is that
the flare is too weak to be detected.

3. EUV waves—large-scale disturbances that propagate
through the Sun's atmosphere in the form of increased
EUV emission (E. Kraaikamp & C. Verbeeck 2015)—
have also been shown to be linked to CMEs (S. Patsour-
akos & A. Vourlidas 2009; S. Patsourakos et al. 2009;
P. T. Gallagher & D. M. Long 2011).

Given the connection of these signatures to CME eruptions, we
may use them to identify the source of a CME. For this work,
flares and dimmings are used, since catalogs are available as
described in Section 3.

3. Data Sources

Our study makes use of various existing catalogs and data
sources, which are described here.

1. SHARP active region bounding boxes. We make use of the
bounding boxes defined for SHARP active regions. These
regions are defined by tracking coherent magnetic
structures in line-of-sight data from the Helioseismic and
Magnetic Imager (HMI; P. H. Scherrer et al. 2012) on
board the Solar Dynamics Observatory (SDO) as they
rotate following the Sun's rotation. SHARP active regions
do not need to have a sunspot, and while they are often
associated with NOAA active regions, they do not
necessarily have to and may even be associated with more
than one NOAA active region. Thus, SHARP regions cover
both active regions with strong magnetic fields and more
dispersed, aged active regions. These bounding boxes are
crucial information about the position and spatial extent of
the regions that we use in our work. We obtain the SHARP
bounding boxes from R. A. Angryk et al. (2020). Although
they could be requested directly from the Joint Science
Operations Center, using the preprocessed data by
R. A. Angryk et al. (2020) was found to be more efficient
for our work. We included an extra preprocess step as we
found some oversized bounding boxes encompassing a
disproportionate area of the solar disk, along with smaller
regions that substantially overlap with larger ones in both
spatial extent and temporal duration. These regions are
removed, and the details can be found in the source code.

2. CMEs. We use the CDAW CME catalog3 from the years
2010–2018. This catalog is created manually with data
from the C2 and C3 coronagraphs. For CMEs with an
unclear identification, a “Poor Event” or “Very Poor
Event” comment is added. We discount these events to
use only confident CME identifications in this study. The
period we cover contains 4190 such CMEs.

3. Flares. We make use of the curated flare list from
R. A. Angryk et al. (2020), in which the locations and
association between flares and SHARP regions are

3 This CME catalog is generated and maintained at the CDAW Data Center
by NASA and the Catholic University of America in cooperation with the
Naval Research Laboratory. SOHO is a project of international cooperation
between ESA and NASA. https://cdaw.gsfc.nasa.gov/CME_list/.
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verified by comparing and aggregating flare detections
from GOES (SWPC 2019), SolarSoftWare (SSW) latest
events (S. Freeland 2018), and Hinode X-Ray Telescope
(XRT) (K. Watanabe et al. 2012). The data from
R. A. Angryk et al. (2020) cover the 2010–2018 range
and are the factor limiting the time range considered in
our work.

4. Dimmings. Dimmings are obtained from Solar Demon
(E. Kraaikamp & C. Verbeeck 2015). This is an
automated tool for the near-real-time detection of
dimmings from 211 Å images from the Atmospheric
Imaging Assembly (AIA; J. R. Lemen et al. 2012) on
board SDO. For each dimming, a peak time and position
(from the intensity-weighted mass center) are determined.

4. The Automated Algorithm

For each CME included in our list, the algorithm executes
the following steps.

1. Finds the SHARP region(s) that have a central position
angle within the CME's span as seen in LASCO data. See
Figure 1 for an example.

2. Identifies which of the SHARP regions from the previous
step had signatures that are potentially indicative of a
CME occurrence.

3. Ranks the potential source regions based on these
signatures to choose the best-ranking one as the source.

This sequence of steps is summarized in Figures 2 and 3. In the
case when no CME source region is identified, either because
there were no SHARP regions under the span of the LASCO
CME or no flare/dimming was observed, the CME is left
without an associated source region.

While flares have been associated with their source SHARP
region by R. A. Angryk et al. (2020), Solar Demon does not
provide such associations. Therefore, their source SHARP
region must be found using the intensity-weighted barycenter at
the dimming's peak extent as its position. For each dimming,

the closest region that is less than 10° from it—with the
distance measured from the dimming location to the edges of
the region's bounding box or 0 if the dimming is inside the
bounding box—is matched to the dimming. If there is no
region within 10°, the dimming is unmatched.
The result of steps 1 and 2 will be, for each CME, a list of

regions that were at the right location to be the source of this
CME. If one of these regions has produced one of the
signatures recently, e.g., a flare, we require that it has happened
within 2 hr before the CME was detected in LASCO in order to
consider it in step 3. This is solely based on the possible travel
time of the CME from the disk to LASCO'S field of view.
Given the conditions above, it is possible that more than one

SHARP region is a candidate for a CME source (e.g., two
regions are under the span of the CME, and both had a flare
within 2 hr before the CME was detected in LASCO). To handle
these situations, we create a series of scores roughly indicating
our confidence in the match. These scores are based on the
signatures that each region exhibits and are detailed in the right
panel of Figure 2. Once each region is assigned a score, the one
with the lowest number is assigned as the source of the CME.
Running the whole script for the years 2010–2018, which

includes more than 4000 CMEs, takes about 14minutes on a
consumer laptop. However, if a similar script to this were
implemented in an operational setting, the processing of CMEs
could be performed in near-real time (as data become available),
since the time to process a single event is expected to be very
short.

5. Manual CME Source Active Region Association
Verification Procedure

In order to identify possible errors in the algorithm, we
perform a manual verification of the associations. This allows
us to quantify the accuracy of our automated approach and
characterize any errors. Given the extent of the data set, we
have selected a sample set of 300 randomly selected
associations for manual verification.
Our manual verification methodology consists of comparing

available visual data for each CME signature used in the
association process. We obtain these data by using the unique
flare and dimming identifiers provided for each association,
which we then use to gather AIA 211Å atmospheric images for
flare events and dimming masks images from Solar Demon. By
comparing the timing of these events, as well as their
coordinates on the solar surface, we manually determine if
their association with the CME and SHARP region is correct.
The multitude of data required for manual verification makes

the process inefficient and time-consuming. To address this
problem, we have developed CatView, an open-source applica-
tion that automatically gathers all the data needed for this
process into a comprehensive workspace. This substantially
reduced the time needed to validate each CME source region.
The application allows the user to parse through the association
catalog, automatically showing the necessary Solar Demon and
SDO data for each event, alongside a map of SHARP bounding
boxes and other data used for the automatic association.
Throughout the verification process, we use strict criteria

when labeling associations as correct or otherwise, only
accepting those that clearly showcase matching signatures as
correct. In cases where the data are ambiguous or difficult to
interpret, we have decided to label the association as incorrect
while also providing a brief explanation for future reference.

Figure 1. Possible source regions for a CME are selected by considering its
width and position angle. Any region within a wedge centered on the CME's
position angle and width equal to the CME's width is considered. Here, the
green rectangle represents a region that would be considered as a potential
source region for the CME. Meanwhile, a region represented by the dashed
rectangle would not be a potential source.
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While we find this manual approach to be largely effective at
validating events, certain challenges and issues have been
identified. Associating CMEs with individual active regions,
and particularly with a single SHARP bounding box, has been
found to be a limitation. Throughout the manual verification
process, we have found multiple instances where CME
posteruptive signatures extend across multiple SHARP regions
and cannot be associated with a single one.
We also find the use of AIA atmospheric images to be

particularly limiting, especially for weak <C5 flares; the
faintness of these events makes it difficult to clearly discern
their source, potentially leading to a negative bias toward
associations connected to such flares.

6. Results

We match 1132 CMEs out of 4190 recorded by LASCO
CDAW with no quality flags during the time period of this
study. This means we recover about 27% of the CMEs, when
we would expect to recover around 50% when accounting for
the fact that source regions for CMEs in the farside of the Sun
will not be visible with the data used in this work. Therefore,
our algorithm has a recall of ~57%. Given that we only match
CMEs originating from active regions, when we compare this
to G. Zhou et al. (2003), who found that 79% of their matched
CMEs come from active regions, this means we probably are
not recovering all active region CMEs from the frontside of the
Sun. Possible reasons for the relatively small recovery rate will
be discussed in Section 7. In Figure 4, we show how these
matched CMEs are distributed by verification score. The most

Figure 2. Simplified process for the creation of the CME source region catalog. We make use of posteruptive signatures in the form of dimmings from Solar Demon
(E. Kraaikamp & C. Verbeeck 2015) and flares from the SWAN-SF catalog (R. A. Angryk et al. 2020) and consider CMEs from the LASCO CDAW CME catalog.
The vertical line crossing from CMEs to flares and dimmings indicates that we consider the dimmings and flares associated with SHARP regions that are potential
sources for a particular CME (see Figure 1). Each potential SHARP region is given a score according to the right panel. If more than one region is a possible source,
the region with the lowest score is taken.

Figure 3. The association of a CME with a source SHARP region (bottom
right; colored boxes in this figure represent the bounding boxes of different
regions) depends on whether the span of the CME (top right) covers any
SHARP region and on the region producing at least a flare (top left) or a
dimming (bottom left, showing the dimming mask) associated with this CME.
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common (~500 matches, compared to the second-most-
common, ~200) is score 4, corresponding to a match made
only with a flare of class less than C5. Since small flares are
common, this is to be expected. At any given point, it will be
likely to find a small flare that could match with a CME, and so
this score is also the least reliable. Hence, we say these
verification scores represent confidence in the match loosely.

In Figure 5, we show the flare–CME association rate for
different flare class bins in comparison with the results of
S. Yashiro et al. (2005). While our overall flare–CME
association rates are lower, we observe the same trend of
increasing association rates with higher flare classes. The lower
association rates are likely due to our limited recovery rate and
the small sample size in the higher flare class bins.

In order to further characterize the behavior of our algorithm,
i.e., which types of CMEs and source regions are being
matched, biases, etc., we plot the following statistics.

First, we consider what kind of SHARP regions are being
matched. Since each SHARP region may contain zero, one, or
more than one NOAA active region, we plot the distribution of
the number of NOAA active regions per SHARP region. We do
this for both the whole population of SHARP regions in the
2010–2018 range and those that were matched to a CME in
Figure 6. We find that the more NOAA active regions there are
in a SHARP region, the more likely it is to have been
associated with a CME.

To investigate how this may be related to the signatures our
algorithm is considering, we show in Figure 7 how this
distribution changes per verification score. Note here that a
comparison with the full population is not possible, as a match
is needed to assign a verification score. We find that the bulk of
SHARP regions with zero active regions, expected to
correspond to a more dispersed field without sunspots, are
matched with score 5. This corresponds to a dimming with no
flare. Given that these SHARP regions with no NOAA active
regions within them should correspond to a more dispersed
magnetic field without a sunspot, they may have insufficient
free magnetic energy to produce a detectable flare. So having
most of the matches originating from a SHARP region with no
NOAA active regions in verification level 5 is expected.

Focusing on the distribution of CME speeds of matched
CMEs compared to that of the whole population, we plot the
distribution of speeds of all CMEs versus the distribution of the
matched CMEs. This comparison is shown in Figure 8. The

larger the speed of the CME, the more likely it is to be matched
to a source region by our algorithm. These more energetic
CMEs can be expected to originate from equally more
energetic and complex source regions that are more likely to
produce the signatures we are looking for clearly. Hence, our
algorithm seems to be biased toward large and complex
regions, which produce fast CMEs.
Finally, considering the distribution of the Stonyhurst long-

itudes of the source regions in Figure 9, we find a dip in regions
with latitudes within 15° of Sun center in nonhalo CMEs.

6.1. Evaluation of Catalog Accuracy

Figure 10 shows the error rates per verification score from
our manual verification. We have found that associations with
verification scores 3 (dimming and flare <C5) and 5 (dimming

Figure 4. Distribution of verification scores for the matched CMEs. Score 5 is
highlighted as it corresponds to CMEs without an associated flare.

Figure 5. Flare association rates with CMEs. Result from this work are
compared with S. Yashiro et al. (2005).

Figure 6. Distribution of number of NOAA active regions per SHARP region for
all SHARP regions and those that were matched to a CME. Percentages show, for
each number of active regions, how many were matched to a CME. For an
unbiased algorithm, we would expect these percentages to be constant across the
x-axis. The increasing percentages instead indicate a bias in the algorithm to
detecting CMEs from regions that contain a larger number of active regions.
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with no flare) are less error-prone than anticipated, with error
rates of 3.23% and 31.3%, respectively. This is particularly
noteworthy given that events with scores 2 (flare >C5 and no
dimming) and 4 (flare <C5 and no dimming) have substantially
higher error rates than expected at 28.6% and 56.4%,
respectively. Hence, we say that the verification scores only
describe the confidence in the association loosely.

Given that scores 3 and 5 include dimmings as part of their
associations and that scores 2 and 4 do not, this appears to
indicate that dimmings serve as a more reliable CME signature
than flares alone, at least given our matching procedure. For
example, comparing stronger flares (greater than C5) with and
without dimmings shows that including dimmings improves
the accuracy of the match. The same trend holds for weaker
flares (less than C5) when comparing them with and without

dimmings. Furthermore, when comparing weaker flares alone
to dimmings alone, dimmings are a more reliable indicator of
CME eruptions than weaker flares. The better accuracy in the
associations could be due to either a much higher number of
weak flares, facilitating false associations, or dimmings being a
better indicator of a CME eruption.

7. Discussion

In Figure 6, we find that SHARP regions with more NOAA
active regions within them are more likely to be matched to a
CME. We expect regions containing more NOAA active
regions to be larger and thus contain more magnetic energy.
These regions are also more likely to contain complex magnetic
configurations with multiple polarity inversion lines. This
means that they are more likely both to be CME productive and
to produce a flare or a dimming when they do erupt. There are
then two contributions to the trend seen in Figure 6.

1. We expect SHARP regions with fewer NOAA active
regions—especially those without any, corresponding to
a dispersed field—to be less CME productive. On the
other side, we expect SHARP regions with many NOAA
active regions to be energetic and complex, making them
more likely to produce a CME.

2. Even if the CME productivity was equal regardless of the
number of NOAA active regions, more complex and
energetic regions are more likely to produce the
signatures that we are looking for, especially flares,
compared to dispersed field regions.

Figure 7. Distribution of number of NOAA active regions within each SHARP
for CMEs by verification score from the right panel of Figure 2.

Figure 8. Distribution of CME speeds for all CMEs and those that are matched
by our algorithm. The top panel shows the distribution with two different y-axis
scales. For matched CMEs, the distribution is biased to slightly larger speeds
compared to all CMEs. In the bottom panel, we show for each of the bins in the
top panel what percentage of all CMEs have been matched, again showing a
bias toward faster CMEs in our algorithm.
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To what extent the trend in Figure 6 is due to a bias in our
algorithm caused by the signatures we are looking for (second
contribution) and not just due to larger regions being more likely
to produce CMEs (first contribution) is hard to say. To shed light
on this, we would need a catalog that is known to have matched
all the frontside CMEs for the same time period and compare the
distributions, which at this time is not available.

Regarding the dip in the longitude distribution of Figure 9, a
similar gap was found by S. Majumdar et al. (2023; see their
Figure 16). This is likely due to the decreased Thomson
scattering efficiency for CMEs originating from central regions
making them harder to detect in white light (A. Vourlidas &
R. A. Howard 2006), meaning they are less frequent in the
LASCO CDAW catalog, rather than a bias in the algorithm.
This is supported by the fact that dimmings are more frequently
detected in central longitudes, and flares do not show any dips

at those longitudes as shown in Figure 11, meaning we do not
expect these longitudes to represent a special challenge for the
algorithm when matching CMEs.
The relatively small number of recovered CMEs can be

attributed to several factors.

1. Exclusive focus on SHARP regions. This method only
considers CMEs with source regions that are located
within SHARPs. Consequently, CME source regions that
are located outside the SHARP regions will not be
detected. For example, CMEs that originate from polarity
inversion lines in the very weak and dispersed field at
high latitude are associated with the eruption of polar
crown filaments. Incorporating a catalog of filaments into
our algorithm would allow us to check for the
disappearance of a filament at the time of the CME and
link the two events together. However, it would require a
completely different approach to identifying the source
region, as there may not be a SHARP number and
bounding box to assign as the source.

2. Limited set of signatures. The algorithm relies on flares
and dimmings as signatures. CMEs that do not produce
these particular signatures remain undetected. For
example, CMEs from weak field regions will produce
weak flare emissions that may not be detected against
background radiation levels so that no flare will be
recorded.

Figure 9. Distribution of Stonyhurst longitudes for CME source regions. There
is a dip for regions within 15° of central longitude, probably due to CMEs
originating from these regions being harder to detect in LASCO. There are also
dips at either extreme of longitude; however, also note that the bin size for the
extremes is half the size of the others.

Figure 10. Results of the manual verification of 300 randomly selected events
from the catalog. We show the number of incorrect, unclear (where, e.g., the
CME source involved an interaction between two regions), and correct
associations per verification level and also the normalized values.
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3. Association of dimmings with SHARPs. Our method of
association of dimmings with SHARP regions relies on
defining the position of the dimming as a single point.
Dimmings have significant spatial extents, and this
method could lead to associating the dimming with the
wrong region or missing the association altogether, which
would negatively impact the association of CMEs.
During the time period of our study, there were 4740
dimmings detected by Solar Demon. We matched 2579;
therefore, many dimmings were missed, either because
they did not originate within a SHARP region or because
relying on a single point to define their position led to our
algorithm missing their source. Some of these missing
dimmings could even be associated with a filament
eruption.

However, these are all problems that could be solved by future
iterations of the algorithm. The success of this proof-of-concept
implementation at finding more than 1000 CME source regions
highlights the potential of this approach to become a regular
tool in the solar and forecaster community.

While the manual verification process proved that the
algorithm is highly reliable in its performance, we have also
identified certain errors and misclassifications in the resulting
catalog. However, these errors appear to be caused under
certain conditions, mainly the types of signatures used to
perform the associations between active regions and CMEs, as
was observed in the high error rate of associations at levels 4
and 5. At the same time, the identified errors are also largely
consistent with the limitations that arise from using SHARP

regions and their absolute separation of active regions that
could, in fact, be connected.
It must also be noted that the algorithm may be prone to perform

some misassociations by pure chance. A random signature event
may occur at the same time as a CME and be incorrectly
associated with an active region that did not cause the eruption.
This is also a likely explanation as to why associations performed
with only weak <C5 flares perform worse than those that only
used dimmings; weak flares are a far more common occurrence
and are therefore more likely to trigger a misassociation.
Finally, the relatively small recovery rate of our algorithm

means that there will be flares that were associated with a CME
but were not matched in our catalog. This could explain why in
Figure 5, the association rates are smaller than those of
S. Yashiro et al. (2005). However, the trend that higher flare
classes are associated with higher CME association rates is
reproduced in our results. It is also worth noting that although
S. Yashiro et al. (2005) report a 100% association rate for flares
larger than X3, they point out that not all flares of this type
have an associated CME. The number of flares in this bin is
very small, seven in our data with six having a CME, which
means it can suffer from small number statistics problems.

8. Conclusion

We have developed an automated algorithm for the identifica-
tion of the active region sources of CMEs using posteruptive
signatures. Our algorithm successfully matched 1132 CMEs with
their source regions in the period from 2010 to 2018,
demonstrating the potential for automation of this task. We
provide the list of the matched CMEs for use by the general
scientific community. This data set may be used for diverse tasks,
such as training machine learning models for CME forecasting
and for statistical studies on the pre- and post-CME evolution of
source regions. An automated approach to this task significantly
reduces the need for manual intervention, saving valuable
researcher time while providing a fast way to identify the source
region for CMEs. Our approach is also fully transparent, with the
source code publicly available. Each association follows a clear
logic that can be scrutinized and improved by the community.
This kind of transparency can increase confidence in the
associations and drive consensus on data sets for tasks such as
machine learning forecasting of CMEs.
Although automated approaches such as ours are promising,

we acknowledge their limitations, including a relatively poor
recovery rate due to design constraints. Most importantly, our
work is limited to SHARP regions—meaning any CME not
from a SHARP region will be missed—and relies on a specific
set of signatures that are not always present after a CME.
Improvements should focus on extending the algorithm to other
source region types and signatures. For example, jets have been
associated with stealth CME sources (N. Alzate &
H. Morgan 2017), and image processing techniques can
improve the detection of posteruptive signatures.
We also note that every mistake made in the algorithm

design has the potential to propagate to all associations. While
this may make it easier to detect errors, undetected errors would
have a larger impact than in human-made associations. A
possible solution, which we follow here, is to host the
algorithm as an open-source project. In this way, regular
inspections offer the possibility of identifying such errors as
well as performance degradation due to changes in any of the

Figure 11. Longitude distribution for all flares and dimmings.
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data sources. However, this would require regular input from
field experts and their time investment.

To make the improvement of automatic CME source
detection algorithms more transparent, we consider the creation
of a citizen science project that would result in a curated
verification catalog for benchmarking future iterations of
automated algorithms. With a large enough curated data set,
machine learning approaches would also become possible. We
believe that there is potential in the integration of future
iterations of this algorithm with current tools in space weather.
The clear identification of numerous source regions of CMEs
would provide a much-needed resource in the investigation of
CMEs. We hope to further encourage other automated tools for
detecting source regions of CMEs, leading to better catalogs.

While our automated approach removes the time barrier to
the identification of large numbers of CME source regions, it
also underlines that in order to keep improving our algorithms,
expert input remains crucial. Future work will make use of the
generated list by training a machine learning model to produce
forecasts of CMEs and a statistical study of source regions with
respect to their evolution pre- and post-CME.

Data Availability

The source code for the algorithm for matching CMEs with
source regions and to reproduce the figures in this work is made
available through a Zenodo upload (J. Hernandez Camero
2024). The data required to run the algorithm as well as the
final version of our catalog are also available in a Zenodo
upload via Doi:10.5281/zenodo.13150638.

The CatView visualization tool is available at A. Pinel
Neparidze (2024).
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