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Abstract Space weather events, including solar flares, coronal mass ejections, and geomagnetic storms,
have significant effects on various transportation systems. This review provides a comprehensive examination
of the current understanding and future outlook of space weather effects on air, maritime, railway, and ground
transportation. It explores the mechanisms through which space weather causes communication blackouts,
satellite navigation failure, elevated cosmic radiation, and geomagnetically induced currents, leading to
disruptions in transportation operations. Historical events are analyzed to underscore the diversity and severity
of these impacts. Additionally, this review discusses the anticipated challenges posed by the upcoming solar
maximum of Solar Cycle 25 and highlights the need for improved forecasting, mitigation strategies, and
resilient infrastructure to safeguard transportation systems against space weather threats. By integrating findings
from recent studies and historical data, this review aims to enhance the preparedness and response strategies of
the transportation sector in the face of evolving space weather risks.

Plain Language Summary Space weather, which includes events like solar flares, coronal mass
ejections, and geomagnetic storms, can seriously affect various transportation systems. This review thoroughly
examines how these space weather phenomena impact air, maritime, railway, and ground transportation. It
explains how space weather events can cause problems such as communication blackouts, failure of satellite
navigation systems, increased levels of cosmic radiation, and geomagnetically induced currents. These issues
can disrupt transportation operations significantly. The review looks at past events to show the range and
seriousness of these impacts. It also discusses the upcoming solar maximum of Solar Cycle 25 and the
challenges it may bring. The review emphasizes the need for better forecasting methods, effective mitigation
strategies, and stronger infrastructure to protect transportation systems from space weather threats. By
combining recent research and historical data, this review aims to improve how the transportation sector
prepares for and responds to the risks posed by space weather. This is crucial for ensuring that transportation
systems remain functional and safe despite the challenges posed by space weather.

1. Introduction
Space weather refers to rapid changes in the space environment between the Earth and the Sun, triggered by
phenomena such as solar flares, coronal mass ejections (CMEs), and Solar Energetic Particles (SEPs) (Telloni
et al., 2020). These environmental changes can have harmful effects on the electricity grid, satellites, avionics,
satellite navigation signals, mobile communications, and even air passengers (Royal Academy of Engineer-
ing, 2013). The three primary types of space weather are radio blackouts, solar radiation storms, and geomagnetic
storms, impacting both Earth‐ and space‐based technologies (Eastwood et al., 2017). A comprehensive summary
of space physics can be found in Tsurutani et al. (2022).

1.1. Solar Flares

Intense bursts of electromagnetic radiation from the Sun's surface, are associated with the release of vast energy
stored in its magnetic fields. Classified based on their X‐ray brightness, solar flares range from A, B, C, and M, to
the most powerful X‐class, often occurring near sunspots, regions of intense magnetic activity (Bekker
et al., 2021). Solar flare radio blackouts, caused by solar flare events, primarily affect High‐Frequency (HF) radio
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communications used for long‐distance and over‐the‐horizon operations like amateur radio and aviation systems
(Frissell et al., 2019). These disruptions can distort or block signals, leading to HF communication blackouts and
failures. Additionally, solar flares can induce solar radiation storms, posing radiation hazards to astronauts and
high‐altitude aircraft passengers, increasing cancer risk and health effects due to higher radiation doses (Meier
et al., 2020). Furthermore, radiation storms significantly elevate the risk of Single‐Event Effects (SEE) in
electronic systems, particularly in space‐based and high‐altitude operations. While these storms pose some public
health concerns, especially for astronauts and frequent flyers, their impact on sensitive electronics and critical
infrastructure can be far more severe (Dyer et al., 2003, 2020).

1.2. CMEs

Massive eruptions of plasma and magnetic fields from the Sun's corona, often accompany solar flares (Howard
et al., 1985). Geomagnetic storms, triggered by changes in the solar wind, notably from CMEs or high‐speed solar
wind streams, interact with Earth's magnetosphere, causing fluctuations in the magnetic field and energy
deposition into the upper atmosphere (Gerontidou et al., 2018). Classified by intensity, the most severe storms are
designated as G5 on the NOAA Space Weather Scale (Berger et al., 2023). These storms cause geomagnetically
induced currents (GICs) and disrupt power grids, leading to outages and damage (Belakhovsky et al., 2019;
Oughton et al., 2019). Communication and navigation systems, particularly reliant on high‐frequency radio waves
and satellite technologies, experience disruptions due to ionospheric irregularities, affecting aviation, maritime
navigation, and emergency response operations (Astafyeva et al., 2014; Lakhina & Tsurutani, 2016). Moreover,
radiation in space poses a major threat to satellites by causing SEE, such as data corruption or hardware failure
(Dyer et al., 2017; Selčan et al., 2017). It also leads to long‐term degradation through Total Ionizing Dose (TID)
and Displacement Damage (DD), which affect satellite components like solar panels and sensors (Ren et al., 2024;
Tompros & Mouzakis, 2024). Additionally, spacecraft may encounter increased drag and orbit perturbations,
impacting operational efficiency and lifespan (Oliveira et al., 2020).

1.3. SEPs

Primarily, protons and electrons are accelerated during solar flares and CMEs (Klein & Dalla, 2017) to velocities
near the speed of light through mechanisms like shock waves and magnetic reconnection in the Sun's atmosphere
(Verkhoglyadova et al., 2015). These particles pose significant risks to astronauts, crewed spacecraft, and
unshielded satellites, potentially causing acute radiation sickness and increasing the long‐term risk of cancer and
other health effects (Marov, 2020). Space agencies closely monitor SEP events and implement radiation shielding
measures to protect astronauts during space missions. SEPs can penetrate spacecraft materials and electronic
components, leading to radiation‐induced damage and potential disruptions in onboard systems, jeopardizing
mission success and spacecraft longevity (Aminalragia‐Giamini et al., 2021). Additionally, SEPs disrupt
communication and navigation systems, impacting radio communications, Global Navigation Satellite System
(GNSS) signals, and wireless technologies (Knipp et al., 2021).

Modern transportation systems heavily depend on advanced technologies like satellite navigation systems and
communication networks, which greatly enhance safety, efficiency, and overall effectiveness (Deng et al., 2023;
Monzon et al., 2022). Nevertheless, transportation systems are vulnerable to space weather, as space weather can
result in communication blackouts, satellite navigation failure, surveillance failure, increased cosmic radiation,
and power grid disruption. Figure 1 illustrates the effects of space weather on transportation systems.

To date, a research gap exists in comprehensively understanding the effects of space weather on transportation
systems. While studies have explored specific aspects caused by space weather like satellite navigation failures
(Pirjola et al., 2005; Xiong et al., 2016), communication disruptions (Ferguson et al., 2015; Knipp et al., 2016),
and elevated cosmic radiation (Hands et al., 2018; Meier & Matthiä, 2014), there is a need for a holistic review
considering the interconnectedness of transportation modes and their susceptibility to space weather events.
Furthermore, long‐term studies assessing the cumulative impacts on transportation infrastructure resilience and
operational efficiency are lacking. Additional research is necessary to develop effective mitigation strategies and
resilient infrastructure designs to minimize disruptions caused by space weather phenomena. Hence, this sys-
tematic review aims to address the following questions.

• How do space weather events cause disruptions in critical infrastructure, including communication systems,
GNSS, and power grids?
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• How do space weather events affect different modes of transportation, including air, maritime, railway, and
ground transportation?

• What measures can be implemented to enhance the resilience of transportation infrastructure against space
weather impacts?

The structure of this review is organized as follows: Section 2 highlights several related space weather effects that
can affect transportation systems. Section 3 provides a thorough review of the documented and potential effects of
space weather on different transportation modes. Section 4 presents various strategies for mitigating and adapting
to the negative consequences of space weather on transportation systems. Finally, conclusions and implications
are discussed in Section 5.

2. Related Space Weather Effects on Transportation Systems
The duration of space weather impacts can vary widely, spanning from fleeting seconds to enduring spans of
many days (Shea & Smart, 2012). Solar activity progresses through an 11‐year cycle, with the upcoming solar
maximum of Solar Cycle 25 expected in 2025 (Hapgood et al., 2022). Figure 2 presents a brief summary of
several notable historical space weather events in September 1859 (Cliver & Dietrich, 2013; Hayakawa
et al., 2019, 2023; Hudson, 2021; Love et al., 2024), in May 1921 (Hapgood, 2019; Kappenman, 2006; Love
et al., 2019; Lundstedt et al., 2015), in March 1940 (Hayakawa et al., 2022; Love et al., 2023), in August 1972
(Knipp et al., 2018; Tsurutani et al., 2024), in March 1989 (Allen et al., 1989; Balan et al., 2017; Boteler, 2019;
Tsurutani et al., 2024), in October 2003 (Shprits et al., 2006; Tsurutani et al., 2006; Villante & Regi, 2008; Wu
et al., 2005), in January 2005 (Dorotovič et al., 2008; Orus et al., 2007; Shea & Smart, 2012), in March 2015
(Fagundes et al., 2016; Kassa et al., 2023; Tlatov et al., 2017), and in September 2017 (Amaechi et al., 2021; Hajra
et al., 2020; Redmon et al., 2018; Schneider et al., 2018). The most significant impacts of these events highlight
the wide‐ranging effects of space weather on critical infrastructure and technology. With that, this section ex-
plains the related space weather effects on communications, satellite navigation, cosmic radiation, and power
grids from the perspectives of physical mechanisms, which can contribute to the understanding of space weather‐
caused transportation system disruptions.

2.1. Communication Blackouts

Solar flares can cause communication radio blackouts primarily by affecting the Earth's ionosphere, which is
essential for the propagation of radio waves (Yasyukevich et al., 2018). When a solar flare occurs, it emits a broad

Figure 1. Schematic of the effects of space weather on transportation systems, including air, maritime, railway, and ground
transportation.
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spectrum of radiation, including extreme ultraviolet (EUV) and X‐rays, which travel at the speed of light and
reach Earth in about 8 minutes (Woods et al., 2011). This rapid influx of high‐energy radiation significantly
increases the ionization levels in the Earth's upper atmosphere, particularly in the ionosphere's D‐layer. The D‐
layer of the ionosphere, located at altitudes between 50 and 90 km, plays a critical role in the propagation of High‐
Frequency (HF) radio waves, which are used for long‐distance communication (Wang et al., 2022). Under normal
conditions, the ionosphere reflects these HF radio waves, allowing them to travel beyond the horizon. However,
the enhanced ionization caused by solar flares increases the absorption of HF radio waves in the D‐layer. This
phenomenon, known as a sudden ionospheric disturbance (SID), results in a significant loss of signal strength and
can lead to complete radio blackouts on the sunlit side of the Earth (Fagundes et al., 2020). The higher absorption
prevents HF radio waves from being reflected back to the ground, thus disrupting long‐distance communication.

Moreover, the impact of solar flares on the ionosphere can extend beyond immediate HF communication
blackouts. The increased ionization can also affect the E‐layer and F‐layer, which are higher regions of the
ionosphere that influence the propagation of Very High Frequency (VHF) and Ultra High Frequency (UHF) radio
waves (Bust et al., 2021). These frequencies are crucial for various applications, including aviation, maritime
communication, and satellite communication. Enhanced ionization can lead to signal scattering, phase shifting,
and overall degradation of signal quality. Additionally, solar flares can cause bursts of radio noise that interfere
directly with communication signals. Therefore, the disturbances in the ionosphere caused by solar flares have
broad implications for global communication systems, such as shortwave radio broadcasts, GNSS signals, and
satellite‐based communications.

From the perspective of historical space weather events, the effects on HF communications are more significant
than VHF and Satellite Communication (SATCOM). (a) HF service encountered over 2 hours of impairment after
the X1.1 (R3 [Strong]) solar flare occurring between 16:29–17:04 UT on 19 October 2003 (NOAA, 2004). (b) On
7 September 2005, solar activity notably affected all HF communications across the United States. However, line‐
of‐sight VHF communication remained largely unaffected (SKYbrary, 2024). (c) Between 4 and 10 September
2017, multiple solar eruptions originating from active region AR12673 resulted in temporary degradation or loss
of HF signals on the sunlit side of Earth. Particularly, on 6 September 2017, HF communications experienced
a significant outage throughout most of the morning and early afternoon (Redmon et al., 2018). (d) Following
the peak of the M2.2 solar flare at 10:28 UT on 28 October 2021, an approximately 12% increase over
the background in total electron content was observed, particularly in the latitude range of 20°–40°S of the
African sector. Consequently, mid‐latitude ionosonde data revealed no echoes from the ionosphere E and F1
layers during the period ∼10:25–12:25 UT, constraining complex modes of HF communications (Habarulema

Figure 2. The summary of several notable historical space weather events and their most significant effects on communications, navigation, radiation, and power grids.
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et al., 2022). (e) CMEs were ejected into space following an X5 solar flare erupting from the Sun's surface at 21:55
UT on 31 December 2023, marking the most powerful flare during solar cycle 25 up to that point. Subsequently,
this space weather event prompted a warning to high‐frequency radio users (Bink, 2024).

2.2. Satellite Navigation Failure

Geomagnetic storms can lead to satellite navigation failures through multiple complex mechanisms. These storms
arise when charged particles from the sun interact with the Earth's magnetosphere, inducing significant changes in
the Earth's magnetic field and ionosphere. Especially, the most critical impact on satellite navigation systems is
the disturbance they cause in the ionosphere (Wang, Li, et al., 2021).

The ionosphere is a layer of the Earth's atmosphere, extending from about 60 km to 1,000 km in altitude, that is
ionized by solar radiation (Pavlov, 2014). It plays a crucial role in the propagation of radio signals used by satellite
navigation systems. During a geomagnetic storm, the influx of energetic particles increases the density and
variability of ionized particles in the ionosphere. This heightened ionization leads to irregularities known as
ionospheric scintillation, which can cause rapid fluctuations in the amplitude and phase of the radio signals
traveling through the ionosphere (Luo et al., 2020). Scintillation can severely degrade the quality of GNSS
signals, leading to increased positioning errors or complete signal loss.

Furthermore, geomagnetic storms can cause large‐scale changes in the structure of the ionosphere, creating
gradients in the electron density (Li et al., 2021). These gradients can lead to signal refraction and multipath
errors, where the satellite signals take multiple paths to the receiver, arriving at slightly different times and angles
(Affonso et al., 2022; Wang et al., 2020). This phenomenon degrades the accuracy of the position calculations
made by GNSS receivers. The Total Electron Content (TEC) of the ionosphere, which represents the number of
free electrons along the path of the GNSS signal, can fluctuate significantly during geomagnetic storms. In
particular, the TEC variation on 29 October 2003 is shown in Figure 3. Rapid changes in TEC introduce timing
delays in the signals, which GNSS receivers use to calculate distances. These delays can lead to substantial errors
in position determination, affecting navigation accuracy (Roy & Paul, 2013; Wang, Xue, et al., 2021).

Additionally, geomagnetic storms can disrupt the satellites themselves. The increased energetic particle flux
during such storms can cause temporary malfunctions or permanent damage to satellite electronics (Baker &
Bodeau, 2021). This includes the onboard atomic clocks, which are crucial for the precise timing needed for
accurate GNSS positioning. Satellite orbits can also be perturbed by increased atmospheric drag, leading to
further inaccuracies (Capon et al., 2019). Consequently, geomagnetic storms pose a significant threat to the
reliability and accuracy of satellite navigation systems, impacting a wide range of applications from aviation and
maritime navigation to military operations and personal navigation devices.

2.3. Elevated Cosmic Radiation

Solar radiation storms significantly increase cosmic radiation levels due to the intense emission of energetic
particles from the Sun. These events primarily occur during solar flares or CMEs, which release large quantities of
protons, electrons, and heavy ions into space (Norbury et al., 2019). During a solar radiation storm, the Sun emits
a burst of high‐energy particles, which are accelerated to near‐light speeds by the powerful magnetic fields
associated with solar flares and CMEs. These particles then propagate through the heliosphere, the bubble‐like
region of space dominated by the solar wind and the Sun's magnetic field. As they travel, they can penetrate
the Earth's magnetosphere and atmosphere, contributing to increased levels of ionizing radiation (Schwadron
et al., 2017). This influx of SEPs can significantly enhance the background cosmic radiation, which is normally
composed of galactic cosmic rays originating from outside our solar system.

The increase in cosmic radiation due to solar radiation storms is particularly pronounced at higher altitudes and
latitudes (Rozanov et al., 2012). The Earth's magnetosphere offers some protection by deflecting charged par-
ticles, but this shielding effect is weaker near the poles and at high altitudes, such as those encountered by aircraft
and spacecraft (Shi et al., 2013). Consequently, during an SPE, polar regions and high‐altitude flight paths
experience greater radiation exposure. This poses risks to aviation and space travel, as the elevated radiation
levels can affect both human health and electronic systems (Cannon, 2013). For instance, airline crews and
passengers on transpolar flights might receive doses of radiation significantly higher than usual, and satellites in

SpaceWeather 10.1029/2024SW004055

XUE ET AL. 5 of 20

 15427390, 2024, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024SW

004055 by C
ochrane R

ussian Federation, W
iley O

nline L
ibrary on [13/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



orbit can suffer from increased rates of single‐event upsets in their electronic components (Baker &
Bodeau, 2021).

Moreover, solar radiation storms can lead to secondary radiation effects (Obermeier et al., 2011). When high‐
energy particles from an SPE interact with the Earth's atmosphere, they can produce secondary particles
through a process called atmospheric cascades. These secondary particles, including neutrons and muons,
contribute to the overall radiation environment and can penetrate deeper into the atmosphere than the primary
SEPs. This phenomenon enhances the radiation dose at altitudes typically used by commercial aviation, further
increasing the risks during intense solar events.

Furthermore, radiation‐caused SEE can significantly impact modern transportation systems, particularly as ve-
hicles become more reliant on advanced electronics and automation. In aerospace, SEEs can disrupt critical
avionics, navigation, and communication systems, leading to potential safety risks (Dyer et al., 2006). As a result,
some autonomous vehicles and advanced driver‐assistance systems may experience temporary malfunctions or
incorrect actions, such as sudden braking or steering errors. Additionally, SEEs may affect power management
systems in electric and hybrid vehicles, potentially leading to hardware failures. As transportation becomes more
connected and automated (Yang et al., 2017), mitigating SEE risks through redundancy, error correction, and
radiation‐hardened components is crucial for safety and reliability.

2.4. Geomagnetically Induced Currents

The primary mechanism for geomagnetic storms to affect power grids lies in the induction of electric currents in
long conductors such as power lines and transformers (Švanda et al., 2020). During a geomagnetic storm, the

Figure 3. The spatial‐temporal changes in TEC on 29 October 2003, with a significant spike in TEC levels over North and South America. A detailed depiction of TEC
variations from October 27 to 31, 2003, can be found at https://zenodo.org/records/11112306.
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rapid changes in the Earth's magnetic field induce electric fields in these conductors. These induced electric fields,
in turn, generate electric currents that can flow through the power grid infrastructure. These GICs can have
significant impacts on power grids (Gil et al., 2023). First, GICs can saturate transformers, reducing their effi-
ciency and capacity. This saturation can persist for extended periods, affecting the stability and reliability of the
grid. Second, GICs can also cause voltage fluctuations and imbalances in the grid, potentially leading to
equipment damage and failures (Boteler, 2019).

Moreover, GICs can interact with the grid's protection systems, potentially causing them to malfunction or trip.
This can lead to widespread power outages, especially if multiple transformers are simultaneously affected. The
simultaneous saturation of transformers across the grid can result in a cascade of failures, further exacerbating the
disruption (Kappenman, 2018). The severity of the power grid disruption depends on several factors, including
the strength of the geomagnetic storm, the configuration and design of the power grid, and the presence of
mitigating measures. However, even moderate geomagnetic storms have the potential to disrupt power grids,
especially if the grid is not adequately protected or designed to withstand such events. For example, at the China
Hebei East traction power supply substation, the maximum GIC recorded was 1.08 A during the geomagnetic
storm on 17 March 2015 and 1.74 A during the geomagnetic storm on 23 June 2015 (Liu et al., 2016). A study of
the Mexican grid shows that even at low latitudes, GICs can induce an additional current effect of 10–75 A at the
edge of the grid, no matter the main orientation of the geoelectric fields (Caraballo et al., 2020).

3. Transportation System Disruptions
Space weather can affect satellite operations, disrupt communication, navigation, and surveillance systems,
induce electrical currents in power grids, and pose radiation hazards to airline crew and passengers. This section
provides a thorough review of the space weather effects on different transportation systems. Figure 4a illustrates
the relationship between keywords based on the published papers sourced from the Web of Science using
VOSviewer software, highlighting the interconnected themes in space weather research. The effects of space
weather on various transportation systems are depicted in Figure 4b, demonstrating the varying degrees of impact.
Among these, air transportation is identified as the most sensitive to space weather, due to its heavy reliance on
satellite‐based navigation and communication systems which are highly susceptible to solar activity and
geomagnetic disturbances. By exploring these various aspects, we can comprehensively understand the
complicated relationship between space weather events and transportation systems.

3.1. Air Transportation

Air transportation is highly sensitive to space weather effects, and these effects are HF communication blackouts,
satellite navigation failure, surveillance failure, and elevated cosmic radiation.

3.1.1. HF Communication Blackouts

The VHF is the primary channel used for communication between pilots and aviation staff at ground stations.
Specifically, pilots employ the Aircraft Communications Addressing and Reporting System (ACARS,
131.550 MHz) to communicate with airline dispatchers (Smith et al., 2018). Additionally, the Controller Pilot
Data Link Communication (CPDLC, 118.000–136.975 MHz) facilitates communication between pilots and Air
Traffic Control Officers (ATCOs) (Lin et al., 2012). Notably, when aircraft fly over the polar region, HF becomes
the only means of communication, as satellite communications are unavailable north of 82°N due to the orbit
inclination of geostationary satellites (Sauer & Wilkinson, 2008).

However, Polar Cap Absorption (PCA) events, caused by the ionization of the polar D‐region ionosphere by
SEPs, can lead to HF communication blackouts for aircraft flying north of 82°N, significantly affecting their
normal operations (Fiori et al., 2022). For example, in response to the two‐hour HF communication disruptions on
19 October 2003, three polar flights from New York to Hong Kong) were rerouted to routes with more favorable
Datalink and SATCOM, resulting in an additional fuel consumption of 26,600 pounds and a reduction of over
16,500 pounds of cargo. Additionally, due to poor communications on 30 October 2003, extra air traffic con-
trollers were required to manage air traffic (NOAA, 2004). On 6 September 2017, there was a notable outage in
HF communications during much of the morning and early afternoon (Redmon et al., 2018). Additionally, French
civil aviation authorities reported a 90‐min loss of HF radio contact with an aircraft lacking CPDLC equipment,
occurring off the coasts of Brazil and French Guiana (Rutledge & Desbios, 2018).
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Based on the assumption of a one‐day duration for HF communication blackouts and utilizing 2019 polar flight
data, Xue, Yang, Liu, and Yu (2023) calculated an economic loss estimate of €2.20 million if all polar flights were
canceled. However, focusing solely on the daily count of 18 polar flights with trajectories crossing the north polar
region above 82°N, simulation results indicate economic costs of €0.88 million for cancellations, €0.18–0.56
million for rerouting, and €0.85 million for scheduling adjustments (Xue et al., 2024).

3.1.2. Satellite Navigation Failure

Satellite navigation offers the potential to enhance flight efficiency and reduce fuel consumption by allowing for
reduced separation distances between aircraft, enabled by the Area Navigation (RNAV) capability (Enge
et al., 2015). RNAV, a navigation method allowing aircraft operation along any desired flight path rather than
fixed point‐to‐point routes defined by ground‐based aids (López‐Lago et al., 2020), enables closer flight paths.
Furthermore, satellite navigation aids in facilitating continuous descents toward landing airports and adjusting
speeds to synchronize with other arriving flights (Xue et al., 2021). However, the performance of satellite
navigation systems can be significantly compromised by space weather, posing safety risks to flights reliant on

Figure 4. (a) Overlay visualization of keywords based on the VOSviewer software. (b) The effects of space weather on different transportation systems, “√”: obvious
effects based on transportation research experience, “‐‐”: unobvious effects.
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satellite navigation. In such instances, ground‐based navigation systems like Very High‐Frequency Omnidirec-
tional Range (VOR), Distance Measuring Equipment (DME), and Non‐Directional Beacon (NDB) would need to
be utilized (Jakšić & Janić, 2020), potentially reducing airspace capacity and causing imbalances between flight
demand and airport capacity (Sandamali et al., 2021).

In prior studies, Xue, Yang, and Liu (2022) conducted simulations using forecasted flight data for Hong Kong
Airport in 2030 to examine the impacts of satellite navigation failures on various flight parameters such as
cancellations, ground delays, airborne delays, and flight diversions. Economic losses were estimated to range
from €3.18 million to €4.18 million, which is related to the lead time forecast for satellite navigation failure.
Subsequently, Xue, Yang, Liu, and Yu (2023) analyzed the repercussions of the Halloween storm event in 2003
on the top 50 busiest airports in the Continental United States, estimating economic costs stemming from Area
Navigation and Continuous Descent Approach (CDA) failures to be €2.43 million. Furthermore, in a subsequent
study (Xue, Yang, Liu, & Cong, 2023), considering the projected flight volume for the Greater Bay Area (GBA)
of China in 2025, simulation results revealed potential economic costs amounting to tens of millions of Euros,
depending on the duration of satellite navigation failure and the time intervals for ground navigation‐based
landings.

3.1.3. ADS‐B and Radar Surveillance Failure

Air traffic management heavily relies on radar systems and Automatic Dependent Surveillance‐Broadcast (ADS‐
B) technology for aircraft tracking and maintaining safe separations. ADS‐B out systems, installed onboard
aircraft, continuously transmit ADS‐B messages at 1,090 MHz, which are then received by ground ADS‐B re-
ceivers and other aircraft equipped with ADS‐B In‐system (Ali et al., 2014). Subsequently, these signals are
relayed to air traffic control centers, where flight statuses are displayed for air traffic management. However,
disruptions in GNSS caused by space weather events can impede ADS‐B functionality, given its reliance on
GNSS. In addition, space weather events can occasionally lead to the failure of radar‐based surveillance, despite
being relatively rare. For instance, Marqué et al. (2018) documented an incident on 4 November 2015, where an
exceptionally intense solar burst at a radio frequency of approximately 1 GHz caused significant radar distur-
bances in the air traffic control systems of Belgium, Norway, Greenland, and Sweden, because radar antennas
were inadvertently pointed toward the Sun during the solar burst event. Especially, Sweden was affected for about
an hour and reduced aircraft movement as accurate information about aircraft was not going to the controllers.

When both radar and ADS‐B systems become unavailable, procedure control serves as a fallback mechanism,
necessitating an even higher aircraft separation standard. This, in turn, results in reduced airspace capacity and
places greater workload demands on air traffic controllers (ICAO, 2016). Additionally, disruptions in surveillance
systems can increase the workload and stress for air traffic controllers, further complicating air traffic man-
agement during adverse conditions. A sudden surge in workload may compromise efficiency levels and exac-
erbate fatigue among air traffic controllers, thereby increasing the likelihood of human errors (Loft et al., 2023).
The impact of space weather on the operational efficiency of air traffic controllers is challenging to quantify
precisely. Nevertheless, its significance cannot be overlooked, as any resultant human‐induced accidents could
have severe consequences.

3.1.4. Elevated Aviation Radiation Exposure

Aircrews, considered occupational radiation workers by the Federal Aviation Administration (FAA), face sig-
nificant exposure during high‐altitude flights (Bagshaw, 2008). Therefore, airline dispatchers must consider
cumulative crew radiation when scheduling flights. Regulatory bodies suggest limits, such as 20 mSv per year
averaged over 5 years for aircrews and 1 mSv per year for the general public (ICRP, 2016), with a specific ra-
diation limit of 0.5 mSv during pregnancy (NCRP, 2013).

Air transportation experiences the highest radiation exposure compared to other transportation modes. Pilots,
crewmembers, and frequent flyers encounter heightened levels of cosmic radiation during flights, especially at
high altitudes where shielding from the Earth's magnetosphere and atmosphere is reduced. Long‐haul flights, like
those over Polar Regions, are particularly prone to increased cosmic radiation. To mitigate aviation radiation
exposure, airlines traditionally make measures such as canceling flights, lowering altitudes, or rerouting, at the
cost of more fuel consumption or economic losses (Koops, 2017).
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Based on the findings from Matthiä et al. (2015), lowering flight altitudes for a transatlantic flight (Seattle‐
Cologne) from 41,000 ft to 28,000 ft, resulted in the maximum reduction in effective dose by 42%, decreasing
from 119 to 68.7 μSv during the ground‐level event on 13 December 2006. However, this reduction was
accompanied by increased fuel consumption, rising by 4.8% from 53.9 to 56.5 tons, and an extension of flight
duration by 4.7% from 9.9 to 10.37 hr. According to (Fujita et al., 2021), a Ground‐Level Enhancement (GLE)
event significant enough to warrant a change in flight conditions occurs approximately once every 47 years when
adhering to dose and dose‐rate regulations. However, this frequency is reduced to once every 17 years under more
stringent conditions. Their conservative estimation suggests that the annual risks associated with countermeasure
costs can amount to up to approximately $1.5 thousand for daily operated long‐distance flights. Moreover, Saito
et al. (2021) conducted an analysis utilizing the atmospheric radiation storm event that occurred on 20 January
2005, focusing on a flight route from New York to Tokyo to assess its economic impacts. Their findings indicate
that to mitigate radiation hazards, fuel consumption for twin‐engine, wide‐body jet passenger aircraft increases by
39–69 tons (33%–58%) when flight altitude restrictions are imposed. Moreover, when constraints are applied to
both aircraft altitude and latitude, both flight time and fuel consumption experience increases of 2.2–2.8 hr (17%–
20%) and 32–48 tons (27%–41%), respectively. As lowering flight altitudes always increases fuel consumption,
Xue, Yang, Liu, et al. (2022) proposed a multi‐objective optimization model aiming to determine the optimal
flight altitude and speed to minimize the weighted sums of cosmic radiation dose and fuel consumption. The
simulation focuses on a scenario involving heightened cosmic radiation during a typical Tokyo to London flight
due to a space weather event. Findings indicate that this model effectively lowers fuel consumption while
satisfying cosmic radiation safety thresholds endorsed by the European Union. The economic advantages of this
approach may vary between $4,556 and $0.35 million. After that, by assuming space weather like the Halloween
storm in 2003 occurred in 2019, the total flight cancellation cost would be €49.97 million if the cosmic radiation
limit for one flight trip is set to 500 μSv. In contrast, if the limit is set to 1,000 μSv, the total flight cancellation cost
would be reduced to €2.77 million (Xue, Yang, Liu, & Yu, 2023).

Furthermore, SEE can present a significant risk to autonomous air transportation by disrupting critical systems
such as navigation, communication, and onboard decision‐making algorithms. These disruptions, caused by
temporary faults or permanent damage to flight control systems, can potentially lead to loss of control or system
failure. Given that autonomous air vehicles depend heavily on sensors, communication links, and real‐time data
processing, SEE can compromise the accuracy and reliability of these components, affecting overall safety and
mission success.

3.2. Maritime Transportation

Maritime transportation also relies heavily on GNSS for navigation and HF/VHF for communication, making it
vulnerable to space weather effects. Geomagnetic storms can cause GNSS inaccuracies, leading to navigation
errors that are particularly problematic in congested or narrow waterways. Disruptions to AIS, which operates on
VHF, can affect vessel tracking and collision avoidance. However, the slower pace and larger operational space of
maritime transportation allow for more time to react to space weather forecasts and adjust operations accordingly.

3.2.1. Communication Blackouts

Maritime transportation relies heavily on HF and VHF radio communications for long‐distance and short‐range
communications, respectively (Alqurashi et al., 2022). Solar flares and geomagnetic storms can cause ionospheric
disturbances that degrade these radio signals. HF communications, essential for over‐the‐horizon communication,
are particularly vulnerable. During heightened solar activity, the ionosphere becomes highly ionized, leading to
increased signal absorption and reflection anomalies. These impacts are exacerbated at high latitudes, where
ionospheric disturbances are both intense and frequent, resulting in sporadic and unreliable communication. Such
disruptions pose significant maritime operational risks, especially in emergencies where reliable communication
is critical.

3.2.2. Satellite Navigation Failure

GNSS provides the precise positioning data that modern ships depend on for navigation, route planning, and
collision avoidance (Zhang et al., 2021). Geomagnetic storms can induce rapid and severe fluctuations in the
ionosphere, causing delays and distortions in the signals received from satellites. This results in positional errors
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that can reduce the accuracy of GNSS from a fewmeters to tens of meters, as detailed in the research by Panda and
Gedam (2016). Sufficiently strong space weather events can impact radio‐based navigation and communication
systems, magnetic compass performance, and power systems, potentially disrupting maritime navigation oper-
ations (Grant et al., 2012). Such inaccuracies are particularly dangerous in narrow or congested waterways, near
ports, and during adverse weather conditions where precise navigation is paramount.

3.2.3. AIS Failure

The Automatic Identification System (AIS) relies on VHF radio signals to exchange ship positions, identities, and
navigation data (Yang et al., 2019). Solar flares and geomagnetic storms cause ionospheric disturbances,
increasing signal noise and degrading VHF channels, which can lead to intermittent or complete AIS signal loss,
causing gaps in real‐time tracking. Berdermann et al. (2018) indicated that during solar flares, AIS message traffic
spikes due to GNSS tracking issues, indicating prolonged effects on AIS transponder software. These disruptions
compromise situational awareness for ship operators and maritime authorities, increasing navigational hazards,
collision risks, and operational inefficiencies. Additionally, GNSS disruptions impair AIS functionality, leading
to unreliable vessel tracking and decision‐making delays, especially in poor visibility or heavy traffic areas.

3.3. Railway Transportation

Railway transportation is generally less affected by space weather than air and maritime transport. Although
modern railways rely on GNSS for precise timing, signaling, and radio communication for train control and
coordination (Johnsen & Veen, 2013; Rahimi et al., 2022; Righetti et al., 2020), the fixed nature of railway
networks and the availability of alternative terrestrial communication systems can reduce the impact of space
weather to some extent. However, these systems depend on electrical power, making them vulnerable to dis-
ruptions from GICs during severe geomagnetic storms.

3.3.1. Signal Anomalies

Railway infrastructure and operations can be affected by induced electrical currents during severe space weather
(Krausmann et al., 2015). Studies of railway operations at magnetic latitudes above 50° have shown that induced
and/or stray currents from the ground during strong magnetic storms result in increased numbers of signaling
anomalies (Eroshenko et al., 2010; Ptitsyna et al., 2008; Wik et al., 2009). These anomalies can be categorized
into “right side” failures, where green signals erroneously turn red, and “wrong side” failures, where red signals
erroneously turn green (Patterson et al., 2024). The latter is a more hazardous failure mode, as it may create a
collision risk (Boteler, 2021). Based on two example railway lines in the United Kingdom, relays are most
susceptible to “wrong side” failures when a train is at the end of a track circuit block, and the geoelectric field
threshold at which “wrong side” failures can occur is lower than that for “right side” failures (Patterson
et al., 2023b). These failures are expected to recur over timescales of several decades (Patterson et al., 2023a).

3.3.2. Power System Disruptions

In addition, GICs significantly can also impact railway transportation by interfering with traction power supply
systems (Taran et al., 2023). Railway tracks, being long metallic conductors, can experience induced currents
during geomagnetic disturbances. These GICs can flow through the rails and enter the traction power substations,
causing transformer saturation, increased magnetization currents, and overheating. For example, the March 1989
geomagnetic storm caused transformer saturation and the failure of ∼1,000 MVA Generator Set Up (GSU)
transformers on the 500 kV transmission grid (Naim et al., 2022). Such disruptions can lead to immediate service
interruptions and necessitate costly repairs and maintenance, undermining the reliability and safety of railway
operations.

3.4. Ground Transportation

Space weather has the least impact on ground transportation compared to other modes due to the fundamental
differences in their reliance on space‐dependent technologies. Ground transportation systems, including cars,
trucks, and buses, are minimally dependent on satellite‐based navigation and communication systems (Liu
et al., 2022; Shi et al., 2022). These vehicles primarily rely on terrestrial infrastructure such as roads, traffic
signals, and ground‐based communication networks, which remain largely unaffected by space weather events.
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Unlike aviation and maritime transport, which rely heavily on satellite‐based GNSS for navigation and timing,
ground transportation can operate effectively with traditional methods and infrastructure.

However, in the long term, some potential effects of space weather on ground transportation need to be
mentioned. Satellite navigation failure can significantly impede vehicle operation, affecting safety, efficiency,
and reliability. In modern vehicles, which heavily rely on satellite‐based navigation systems for route guidance
and positioning, such failures can lead to a loss of accuracy and reliability in navigation information (Pilipenko
et al., 2023). This can result in misinterpretation of routes, delays, and potential safety hazards for drivers and
passengers. Moreover, autonomous vehicles, reliant on precise satellite data for localization and path planning,
may experience disruptions in their autonomous functions, potentially compromising their ability to navigate
safely (Jing et al., 2022). In emergencies, the impact of satellite navigation failure can be particularly severe,
hindering the ability of emergency responders to navigate swiftly to incident locations.

In addition, power grid disruptions can have profound effects on vehicle operation, particularly with the
increasing electrification of transportation. Electric vehicles (EVs) rely on an uninterrupted power supply to
recharge their batteries and sustain operation. In the event of a power grid disruption, charging infrastructure may
become unavailable, limiting the ability of EV drivers to recharge their vehicles, and potentially stranding them
without power (Acharya et al., 2020). This can result in disruptions to transportation services, affecting both
individual drivers and commercial fleets. Furthermore, grid failures may also impact traffic management systems,
such as traffic lights and road signage, leading to traffic congestion and safety hazards on road networks (Li
et al., 2014).

4. Discussions and Mitigation Strategies
The resilience of different transportation modes to space weather effects varies significantly. Specifically, air
transportation is the most vulnerable due to heavy reliance on satellite‐based systems and HF communications.
Maritime transportation is also affected but to a lesser degree. Railway transportation shows moderate resilience
with fixed infrastructure and alternative communication options. Ground transportation is the most resilient,
relying more on terrestrial navigation and communication systems, and experiencing the least direct impact from
space weather. Space weather events, though rare, have substantial global destructive potential. Limited data
hinder a thorough understanding of the impact on transportation systems due to infrequent extreme events
spanning decades to centuries. Given the impossibility of preventing such events, this review outlines three Key
Measures to mitigate their effects on transportation infrastructure, ensuring safety and efficiency.

4.1. Key Measure One

Improving space weather forecast and monitoring systems is crucial for enhancing the resilience and safety of
global technological infrastructure (ICAO, 2019). Specifically, space weather forecast centers play a crucial role
in monitoring and predicting space weather events that can impact various technological systems on Earth.
Accurate and timely forecasts can help mitigate the adverse effects of space weather on critical systems such as
communication networks, navigation systems, power grids, and transportation networks (Smith et al., 2022). In
Europe, the European Space Agency (ESA) leads efforts to monitor and forecast space weather. They employ
sophisticated observational networks and advanced modeling tools to track solar wind patterns, CMEs, and
geomagnetic storms, contributing to early warning systems (ESA, 2020). NOAA's Space Weather Prediction
Center (SWPC) in the United States can provide real‐time space weather alerts and forecasts. It utilizes data from
space‐based observatories, including those from the Solar Dynamics Observatory (SDO) and geostationary
satellites (Bain et al., 2023). In Canada, the Canadian Space Weather Forecast Center (CSWFC) plays a pivotal
role, leveraging the country's unique geomagnetic vantage points to study auroral and ionospheric phenomena
(Marshall et al., 2020). Meanwhile, Russia's Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave
Propagation (IZMIRAN) conducts extensive research on space weather, focusing on high‐latitude impacts and
satellite navigation systems (Borchevkina et al., 2020). In addition, the Chinese Meridian Project (CMP), a key
initiative funded and developed by the Chinese government, aims to comprehensively monitor the space envi-
ronment through an extensive ground‐based network (Wang et al., 2024). Currently, space weather advisory
services are provided by four global centers: the Pan‐European Consortium for Aviation Space Weather User
Services (PECASUS), SWPC, the Australia‐Canada‐France‐Japan (ACFJ) consortium, and the China‐Russia
(CRC) consortium (Sergeeva et al., 2023). These centers operate on a 2‐week rotational basis, with one center
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on duty while the others serve as primary backup, secondary backup, and maintenance centers. By providing early
warnings, these improved systems enable better preparedness and response strategies, reducing the risk of dis-
ruptions and economic losses.

4.2. Key Measure Two

Strengthening the resilience of critical systems such as communication, navigation, surveillance, signaling, and
power grids is crucial in mitigating the adverse effects of space weather on transportation networks. This can be
achieved through several measures. For communication systems, this involves incorporating redundancy and fail‐
safes to ensure continuous operation during space weather disturbances (Sabaliauskaite et al., 2024). Then,
enhancing navigation systems, especially those reliant on GNSS, includes developing alternative positioning
methods and improving the robustness of satellite infrastructure (Chen et al., 2023; Wang et al., 2023). For
example, Ground Based Augmentation System (GBAS) can contribute to resilient aircraft navigation service
(Zhu et al., 2024). Surveillance systems need to be fortified with advanced sensors and algorithms to maintain
operational integrity (Chiocchio et al., 2020). Railway signal systems should be designed to withstand
geomagnetic interferences (Pan et al., 2020). Lastly, power grids should be upgraded with protective technologies
like geomagnetic shielding and adaptive control mechanisms to prevent disruptions caused by geomagnetically
induced currents (Lopes et al., 2020). By implementing these comprehensive strategies, the transportation sector
can better withstand the challenges posed by space weather events, ensuring safety and reliability.

4.3. Key Measure Three

Implementing targeted traffic management strategies can significantly enhance the resilience of transportation
systems against space weather impacts. These strategies include developing dynamic rerouting protocols that
adjust to real‐time space weather data, ensuring that flights and vessels avoid affected areas. Advanced traffic
control systems equipped with predictive analytics can optimize the flow of air, maritime, and ground traffic,
reducing congestion and minimizing delays caused by disruptions (Sridhar et al., 2008). In aviation, this might
involve preemptively adjusting flight paths and altitudes to minimize exposure to increased cosmic radiation and
communication blackouts (Buzulukova & Tsurutani, 2022; Jones et al., 2005). For maritime and railways,
strategic scheduling adjustments and the use of alternative routes can maintain service continuity (Ahuja
et al., 2005). Additionally, integrating space weather alerts into traffic management systems allows for timely
decision‐making and coordinated responses. By adopting these comprehensive traffic management strategies,
transportation networks can maintain operational efficiency and safety, even during severe space weather events.
Dynamic rerouting, adaptive signal control, and pre‐established contingency plans are essential to ensure
continued transportation operation and safety. For illustration, Figure 5 highlights these potential methods and
recommendations for mitigating the effects of space weather on transportation systems from the perspectives of
Key Measure two and Key Measure three.

Notably, effective mitigation of space weather effects requires a balance among improving space weather
monitoring and forecasts (Georgoulis et al., 2024; Ishii et al., 2024; Vourlidas et al., 2023; Zheng et al., 2024),
strengthening critical system resilience (Firdhous & Karuratane, 2018; Liu et al., 2020; Zhang et al., 2023), and
optimizing operational measures (Hu et al., 2024; Lai et al., 2022; Sun et al., 2021; Zamanifar &Hartmann, 2020),
with the latter two relying in part on accurate space weather forecasts. The specific technology and the relative
costs of mitigation will dictate the best way forward. Technological mitigation often depends on the particular
application, while forecasting involves both general and application‐specific components. Addressing this
challenge will be a significant undertaking for the scientific community and will require collaboration with
engineering and business sectors to achieve effective solutions.

5. Conclusions
This systematic review has provided a comprehensive overview of the intricate relationship between solar‐
terrestrial interactions and their impacts on transportation systems. Through the synthesis of existing research
literature and empirical evidence, we have elucidated the multifaceted effects of space weather phenomena on
aviation, maritime, rail, and ground transportation.

Our analysis has stressed the critical importance of understanding and mitigating the effects of space weather on
transportation infrastructure and operations. We have demonstrated that disruptions to satellite‐based navigation,
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communication, and power distribution networks can pose significant challenges to transportation resilience,
safety, and efficiency, with potential ramifications for economic productivity and societal well‐being.

Furthermore, this review has highlighted the need for proactive risk management strategies and resilient infra-
structure design to enhance the preparedness and response capabilities of transportation organizations in the face
of space weather threats. By leveraging advanced forecasting techniques, real‐time monitoring systems, and
contingency planning measures, transportation stakeholders can mitigate the impact of space weather events and
ensure the robustness and reliability of global transportation networks.

Moving forward, future research efforts should focus on addressing knowledge gaps and advancing predictive
capabilities in space weather forecasting models, with a particular emphasis on developing tailored solutions for
the transportation sector. Collaboration between academia, industry, and government agencies will be essential to
facilitate knowledge exchange, data sharing, and technology transfer initiatives aimed at enhancing space weather
resilience across the transportation ecosystem.

Data Availability Statement
The TEC data were obtained from IGS (https://cddis.nasa.gov/archive/gnss/products/ionex/).
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