
SEPVAL 2023 Post Analysis Results

Kathryn Whitman, Philip Quinn, Ricky Egeland, Luke Stegeman, Clayton Allison NASA JSC SRAG

With contributions from many research and operational institutions

April 2024

And the particip develop

And the 17+ participating model developers' institutions

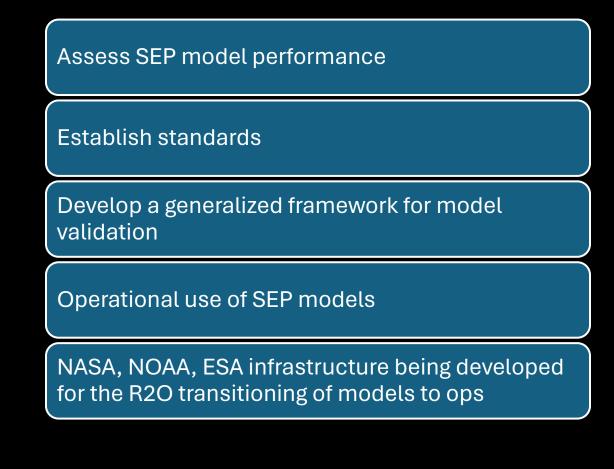
Overview

- This presentation is intended to inform all those who attended the SEPVAL 2023 working meetings of a post analysis that has been performed with the submitted forecasts
 - Updated version of SPHINX with bug fixes, added metrics, and improvements
 - SPHINX code tagged on github with SEPVAL_2023_Post_Analysis: <u>https://github.com/ktindiana/sphinxval</u>
- A summary of the SEPVAL efforts and challenge event periods is described
- The full set of forecasts that were submitted is listed
- Anonymized examples of the metrics are shown here to give an idea of the spread in performance
- Each model developer will receive a separate package with their model's results along with summary plots showing their model's performance in comparison with the other participants (anonymized)
- We will eventually deploy a publicly accessible version of VIVID loaded with the SEPVAL results so that users may explore model performance interactively

Overview of the ISEP Validation Effort

The ISEP validation effort began in 2018/2019

Prior to that, many developers of Solar Energetic Particle (SEP) models did not focus on validation and did not have a quantitative sense of how their models performed NOAA SWPC is SRAG's operational space weather forecasting service and their human-in-the-loop performance was largely unquantified until Bain et al. 2021


Thus, at the start of ISEP, the state-of-the-art of SEP forecasting performance was unclear because it had not been assessed Through ISEP efforts and a series of validation challenges in partnership with the research community, the SPHINX validation framework was developed The latest, most comprehensive SEPVAL challenge, along with the maturation of the SPHINX tool, has now provided a quantitative understanding of the state-ofthe-art of SEP model performance

SEPVAL 2023 US and Europe Working Meetings

 Following a multi-year validation effort through the SHINE, ISWAT, and ESWW workshops, we established the SEPVAL workshops which were focused on validation and SEP forecasting in ops

Broader Goals of this Continuing Validation Effort

Generate an assessment of the **state-of-the-art** of the SEP modeling field.

Facilitate a culture shift in the scientific community to put more emphasis on thorough, quantitative validation

Develop best practices and standards and communicate the forecasted quantities most useful from end-user (SRAG, etc) and space weather provider (SWPC, ESA, etc) perspectives.

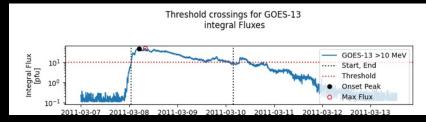
Simulated or actual real time validation to provide operators with a quantitative understanding of model performance by assessing the model **in the real-time environment in which it is used**. This may be different from the validation that is reported in the literature.

Sharing results of the challenge efforts and the SEP Scoreboards with model developers to motivate improvements (R2O cycle)

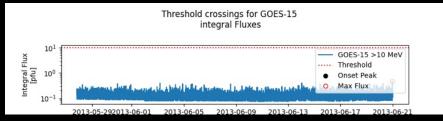
Organization of the SEPVAL Challenge

• SEPVAL organizers:

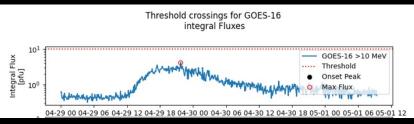
- Provide a list of challenge time periods and triggers (flares, CMEs)
 - M2M ensured quality CME measurements by checking all 3D CME parameters in DONKI provided for this challenge while also providing additional information
- Define rules of participation to encourage modelers to produce forecasts in a real time-like scenario
- Perform the validation using SPHINX
- Make the validation results available to attendees (R2O2R)


SEP model developers:

- Provide forecasts and supplementary information
- Follow the rules of participation
- Provide feedback about the forecast/prediction process and the validation results


SEP Challenge Events Overview

- 33 SEP events between 2011 2023 which includes the 10 original SHINE challenge events
- **30 non-event** periods between 2012 2023
 - Eruption followed by no enhancement in proton flux
 - Eruption followed by a small or below threshold enhancement of proton flux
 - Both SOHO and GOES data sets were checked for proton enhancements since GOES has a high instrumental background
- The event and non-event lists were selected to have similar distributions of flare and CME parameters, although this was not fully achieved
- Events in both sets occurred throughout Solar Cycles 24 & 25


SEP Event 2011-03-08

Non-Event 2013-05-27

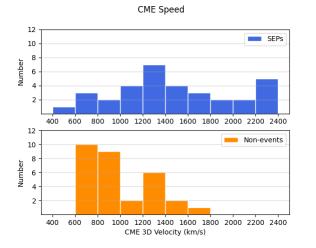
Non-Event 2022-04-29

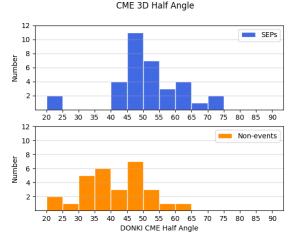
SEPVAL Challenge Event Periods

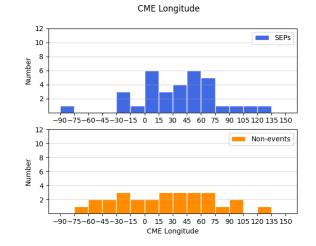
SHINE SHINE

Non-Event https://doc /d/1SPyMLI

jO8sulpw7JHR78q0/edit?usp=sharing

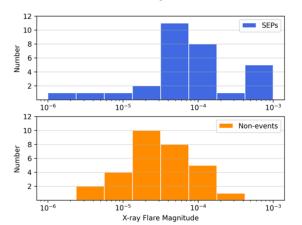

SEP Events

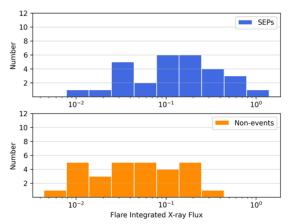

	Original SHINE Challenge Events		Added Events in Solar Cycle 24			
SHINE	2012-03-07	SC24	2011-03-08			
SHINE	2012-03-07	SC24	2011-06-07			
SHINE	2012-05-17	SC24	2011-08-04			
SHINE	2012-07-12	SC24	2011-08-09			
SHINE	2013-04-11	SC24	2012-01-23			
SHINE	2014-01-06	SC24	2012-01-27			
SHINE	2014-01-07	SC24	2012-03-13			
SHINE	2017-07-14	SC24	2012-07-07			
SHINE	2017-09-04	SC24	2012-07-23			
SHINE	2017-09-06	SC24	2012-09-28			
SHINE	2017-09-10	SC24	2013-05-22			
		SC24	2013-09-30			
		SC24	2014-02-25			
	New events in Solar	SC24	2014-04-18			
	Cycle 25	SC24	2014-09-11			
SC25	2021-05-29	SC24	2015-10-29			
SC25	2021-10-28					
SC25	2022-01-20	Event list:				
SC25	2022-03-28	<u>ts/d/11BiYbBALP-</u> x0n4qxURo_78rCe0bDC6kKxuEmDO				
SC25	2022-04-02					
SC25	2022-08-27					
SC25	2023-02-25	2noUk/edit?usp=	snaring			


Non-Events

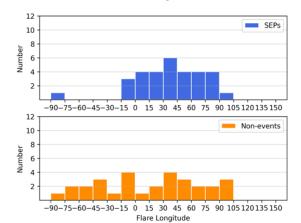
	Original SHINE		Solar Cycle 25 Non-events
	Non-events	SC25	2022-04-20
	2012-06-13	SC25	2022-04-29
	2013-06-07	SC25	2022-05-25
	2014-08-01	SC25	2022-08-17
	2014-10-24	SC25	2022-08-18
	2014-11-06	SC25	2022-08-19
	2014-11-07	SC25	2022-08-29
	2014-12-17	SC25	2022-08-30
	2014-12-17	SC25	2022-12-01
	2014-12-18	SC25	2023-03-04
		SC25	2023-03-06
	2016-07-23		
	2021-11-01		Added Non-events in Solar Cycle 24
	2021-11-02		
	2022-01-18	SC24	2011-05-09
		SC24	2012-03-04
	2022-04-17	SC24	2012-03-05
list:		SC24	2012-06-29
s.google.com/spreadsheets BuopTp5IkMRjEGAMXVzGwc		SC24	2013-06-28
Buopi			

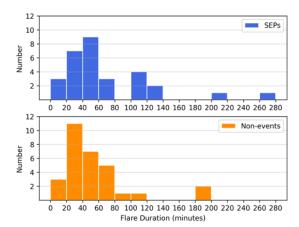
Flare and CME Distributions for the Challenge SEP Events and Non-Events

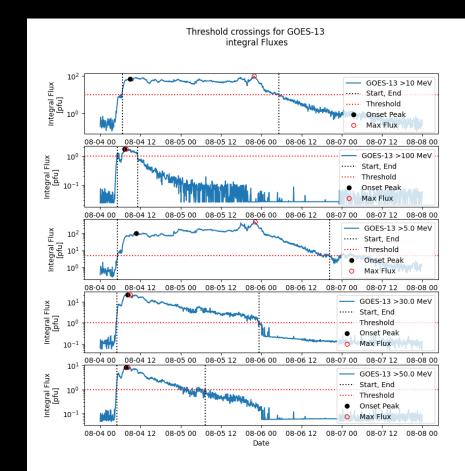




CME Parameters (left) Flare Parameters (below)


Flare Magnitude

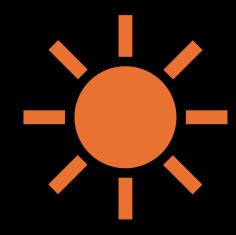

Flare Integrated X-ray Flux

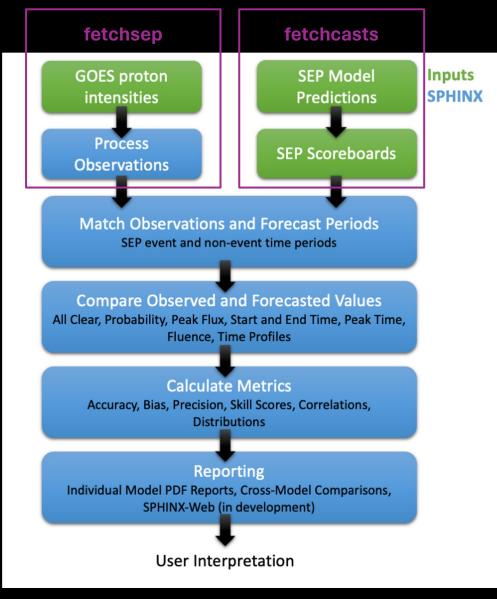


Flare Duration

Preparation of Observations

- Used the fetchsep package developed by Katie Whitman to prepare the observational SEP event properties
 - <u>https://github.com/ktindiana/fetchsep</u>
- Energy channel and threshold combinations applied:
 - >5 MeV, 5 pfu
 - >10 MeV, 10 pfu (SWPC and SRAG operational threshold)
 - >30 MeV, 1 pfu
 - >50 MeV, 1 pfu
 - >100 MeV, 1 pfu (SRAG operational threshold)




SPHINX Validation Code

Solar Particles in the Heliosphere validation INfrastructure for SpWx (SPHINX)

Goal: A generalized, automated tool that can validate any kind of forecasted quantity from any type of solar energetic particle (SEP) prediction model.

SPHINX: A gatekeeper that devours all who do not correctly answer her riddle.

Validation In Visually Interactive Displays (VIVID)

VIVID	Web application for displaying the validation results of SPHINX in a dashboard of interactive plots and tables	SPHINX-VIVID FOCUSED MODEL	Filtered Event Lis	at 35 Forecasts	ive Displays	FORFCASTED ONSET PEAK TIME	ORSERVED ONSET DEAY TIME	ENDER ASTER ANGET DEAV INTENSITY	
					011-03-07 21:41:00	2011-03-07 23:41:00	2011-03-08 04:55:00	2555.64	48.36
		FILTERS	2310		011-06-07 08:34:00	2011-06-07 13:34:00	2011-06-07 12:55:00	1882.26	46.64
		- SEP Model ADEPT	2311 2011-0	08-04 06:35:00 20	011-08-04 05:41:00	2011-08-04 09:41:00	2011-08-04 08:50:00	3529.65	69.32
	Filter results by SEP model, energy, quantity,	COMESEP (F) COMESEP (F+C)	2312	20	011-08-09 10:23:00	2011-08-09 13:23:00	2011-08-09 09:50:00	126.84	24.75
Filter	date range, or model input – all metrics are		2313 2012-0	01-23 05:30:00 20	012-01-23 05:26:00	2012-01-23 07:26:00	2012-01-23 21:15:00	17272.04	3195.2
i iteoi		MEMPSEP (Mean) MEMPSEP (Median)	2314 2012-0	01-27 19:05:00 20	012-01-27 18:46:00	2012-01-27 21:46:00	2012-01-28 01:45:00	1146.77	760.37
	recalculated for filtered results	MagPy PPS	2317	20	012-03-13 19:13:00	2012-03-13 21:13:00	2012-03-13 20:45:00	3358.59	468.77
		SEPMOD SEPSTER2D	2320	20	012-07-12 18:45:00	2012-07-12 23:45:00	2012-07-12 22:15:00	181.05	83.89
			2321 2012-0	07-23 15:45:00 20	012-07-23 04:07:00	2012-07-23 06:07:00	2012-07-23 13:45:00	26.54	9.83
Compare	Compare models side-by-side to find the state-of-the-art overall or given specific model input	 Energy 10 MeV 30 MeV 30 MeV 100 MeV Quantity All-clear Probability Start Time End Time Duration Onset Peak Intensity Onset Peak Time Max Intensity Max Time 	Event Compariso 164 163 162 161 161 160	n 2011-08-04 06:35:0	0		ADEPT COMESEP (F) CON	AESEP (F+C) SEPMOD SEPSTER	20 PPS IPATH Observ
Download	Download data and images for use in publications	Fluence Time Profile Date Range V Triggers V	1E-2 00:00:00 Aug 04 2011 Categorical Metri	ics All-clear	0000 04 2011 ⊠⊙≡	08:00:00 Aua 05 2011 Contingency Table	Time 00:00-00 Aud 08 2011 문국 ①	16:00:00 Aug 06 2011 Probabilistic Metrics	08:00:00 Aug 07 2011
			Find	poster d	uring Th	u/Fri poster	session fo	r more info	

SEPVAL 2023 Model Participation

- 1. How well do models perform following their default workflows? Performance in a simulated real time environment.
- 2. What is a model's best performance? Produce predictions with no restrictions. Turning all the knobs, is it possible to get it right?
- 3. How do models perform with respect to physical parameters, such as eruption location, CME speed, etc? Filters applied to determine the strengths and weaknesses of our current predictive capabilities.

Question 1: How well can a model do with its default workflows? (Simulated Real Time Forecasts)	Question 2: What is the best a model can do? (Science)
ADEPT AFRL PPS ASPECS COMESEP (flare, flare + CME) iPATH Lavasa Model MEMPSEP (Mean, Median, 10 submodels) MagPy REleASE SEPMOD SEPSTER SEPSTER SEPSTER2D SPREAdFAST UMASEP Zhang et al. (cRT, rRT, SEPSAT)	M-FLAMPA STAT

Forecasts submitted to SEPVAL 2023

Model	Developer Point of Contact	Affiliation	Energy Channels	Forecasted Quantities	# Forecasts Submitted	# Forecasts Processed
ADEPT 1hr, 6hr	Stephen White	US Air Force	>10 MeV	Time Profile	25	25
COMESEP flare, flare+CME	Mark Dierckxsens	BIRA	>10	Probability, Peak	63, 63	60, 63
cRT+AE10	Ming Zhang	Florida Institute of Technology	>10	Probability	63	63
ENLIL+SEPMOD	Janet Luhmann	UC Berkeley	>10, >30, >50, >100	Time Profile	61	61
Lavasa	Eleni Lavasa	National Observatory of Athens	>10	All Clear	58	58
MagPy	David Falconer, Tilaye Tedesse	UA Huntsville, NASA JSC SRAG	>10	Probability	2182	2182
MEMPSEP Mean, Median	Subhamoy Chatterjee	Southwest Research Institute	>10	Probability	60, 60	60, 60
MFLAMPA	Igor Sokolov	University of Michigan	>10, >30, >50, >100	Time Profile	9	8
PPS (SFS Update)	Stephen White	US Air Force	>10, >100	Peak Flux	61	61
SEPSAT	Ming Zhang	Florida Institute of Technology	>10, >100	Time Profile	64	64
SEPSTER	Ian Richardson	University of Maryland	>10, >30, >50, >100	Peak Flux	64	64
SEPSTER2D	Alessandro Bruno	NASA GSFC	>10, >30, >50, >100	Peak, Fluence	60	60
SPREAdFAST	Kamen Kozarev	Bulgarian Academy of Sciences	>10, >30, >50, >100	Time Profile	8	8
SPRINTS 0-24, 24-48, 48-72, 72-96	Alec Engell	NextGen	>10, >30, >50, >100	Probability, Peak	13134, 13134, 13134, 13134	13134, 13134, 13134, 13134
STAT	Jon Linker	Predictive Science, LLC	>10, >30, >50, >100	Time Profile	6	6
UMASEP-10, -100	Marlon Nunez	University of Malaga	>10, >30, >50, >100	Peak, Start	27572, 32240	27161, 32106
UNSPELL	Sigiava Alminalragia-Giamini	SPARC	>10	Probability	61	61
ZEUS+iPATH	Gang Li, Junxiang Hu	UA Hunstville, NASA GSFC	>10, >30, >50, >100	Time Profile	57	56

SAWS-ASPECS

Developer: Athanasios Papaioannou+, Affiliation: National Observatory of Athens, Energy Channels: >10, >100 MeV

Model SAWS-ASPECS	Forecasted Quantities	# Forecasts Submitted	# Forecasts Processed	Model SAWS-ASPECS	Forecasted Quantities	# Forecasts Submitted	# Forecasts Processed
CME (CACTus) 50%	Time Profile	60	60	CME (CACTus) electrons 50%	Time Profile	60	60
CME (CACTus) 90%	Time Profile	60	60	CME (CACTus) electrons 90%	Time Profile	60	60
CME (CACTus)	Probability/All Clear	60	60	CME (CACTus) electrons	Probability/All Clear	60	60
CME (CDAW) 50%	Time Profile	63	63	CME (CDAW) electrons 50%	Time Profile	63	63
CME (CDAW) 90%	Time Profile	63	63	CME (CDAW) electrons 90%	Time Profile	63	63
CME (CDAW)	Probability/All Clear	63	63	CME (CDAW) electrons	Probability/All Clear	63	63
Flare+CME (CACTus) 50%	Time Profile	57	57	Flare+CME (CACTus) electrons 50%	Time Profile	57	57
Flare+CME (CACTus) 90%	Time Profile	57	57	Flare+CME (CACTus) electrons 90%	Time Profile	57	57
Flare+CME (CACTus)	Probability/All Clear	57	57	Flare+CME (CACTus) electrons	Probability/All Clear	57	57
Flare+CME (CDAW) 50%	Time Profile	60	60	Flare+CME (CDAW) electrons 50%	Time Profile	60	60
Flare+CME (CDAW) 90%	Time Profile	60	60	Flare+CME (CDAW) electrons 90%	Time Profile	60	60
Flare+CME (CDAW)	Probability/All Clear	60	60	Flare+CME (CDAW) electrons	Probability/All Clear	60	60
Flare 50%	Time Profile	60	60	Flare electrons 50%	Time Profile	60	60
Flare 90%	Time Profile	60	60	Flare electrons 90%	Time Profile	60	60
Flare	Probability/All Clear	60	60	Flare electrons	Probability/All Clear	60	60

Quantities Validated by SPHINX

All forecasting fields that can be submitted to the SEP Scoreboards are validated by SPHINX.

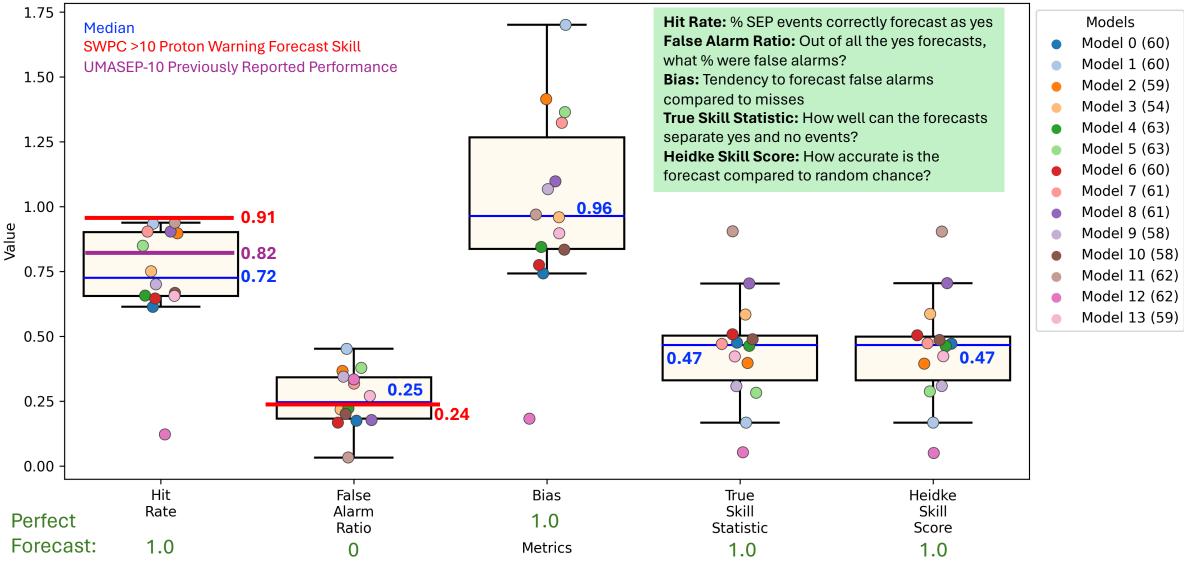
Will an SPE occur?

- All Clear (threshold crossed/not crossed)
- Probability of Occurrence

When will it happen? How long will it last?

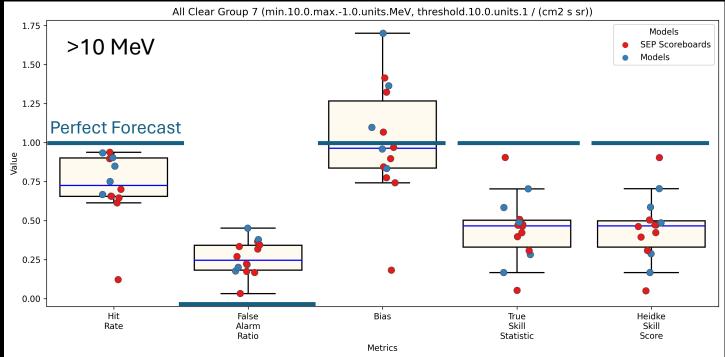
- Start Time
- End Time
- Duration
- Peak Time

How big will it be?


- Peak Flux
- Fluence
- SEP Intensity Time Profile

How much warning did we get?

Advanced Warning Time


Example All Clear Performance (>10 MeV)

All Clear Group 7 (min.10.0.max.-1.0.units.MeV, threshold.10.0.units.1 / (cm2 s sr))

Performance of SEP Scoreboard Models in the SEPVAL Challenge

- The SEP Scoreboards contain models across all levels of performance, including top performers
- It is a resource where we are trying out different forecasting techniques
- Validation is starting to show which approaches are more and less effective
- Identify models that have the potential to transition to higher Readiness Levels (e.g. for selection by SWPC)
- Identify models that may need additional work to improve performance
- All interested developers are encouraged to participate in the SEP Scoreboards

Activities Enabled by the SEPVAL Community Challenges

N

Designed, thorough, structured challenge gave an independent characterization of model performance

Provided an understanding of the state-of-the-art (SOA) performance of SEP models across the research community (never been done before)

Receiving output from so many types of models enabled the development of SPHINX as a generalized tool – exercised failure space, tested logic

SEPVAL Contributors are now better-prepared to participate in the SEP Scoreboards – familiar with JSON format

1111 >>>> We can establish target benchmarks for model performance now that we have a clearer view of SOA

We can identify which metrics are most meaningful for SRAG (and others)

Activities Enabled by the SPHINX Framework

Perform an independent verification of self-reported metrics

Establish new benchmarks

Provide feedback to SEP model developers to inspire improvements in an R2O2R cycle

Identify which aspects of performance a model needs to improve to reach benchmark goals

Readily reassess performance after model updates

Provide a tool to evaluate gap closure

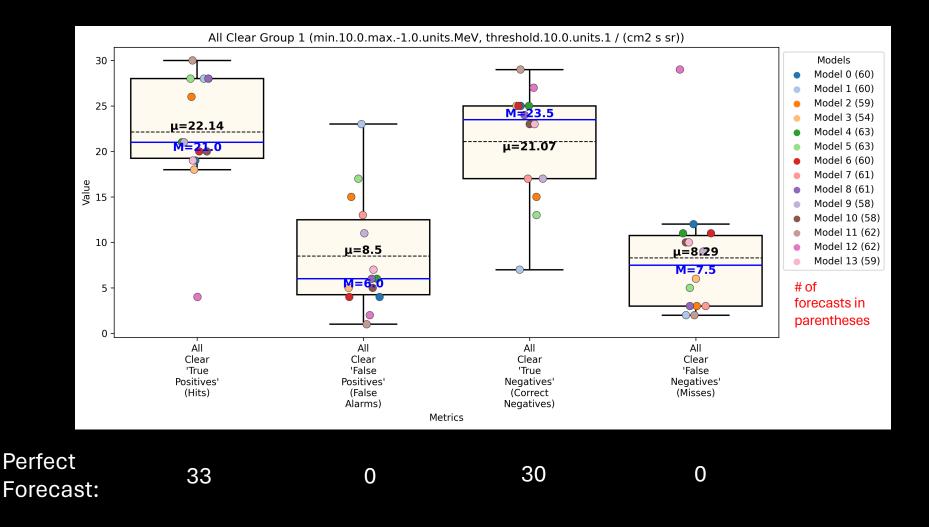
Õ

EOY: Continuous real time assessment of SEP Scoreboards performance with SPHINX (to become public via CCMC)

Data Sampling affects Validation Outcomes: Community Challenges and SEP Scoreboards

- Validation through the community challenges and for forecasts in the SEP Scoreboards tells different but complimentary stories
- We are working to understand how to best interpret each type of validation
- The SEPVAL community challenge provides a broad view of SEP forecasting skill across the research field and the varying approaches that are being developed and tested
- The SEP Scoreboards allow us to directly evaluate real time performance
- The community challenge using a benchmark event list provides information about (but not limited to):
 - Model performance relative to other participating models
 - Which model approaches are doing comparatively well
 - Which model approaches may need improvement

- SEP Scoreboard real time validation gives information about (but not limited to) how models perform in a real time setting:
 - All false alarms and misses
 - Impact of input data availability
 - Advanced warning time
 - Timing of overall operational forecasting workflows


Your Feedback is Welcome

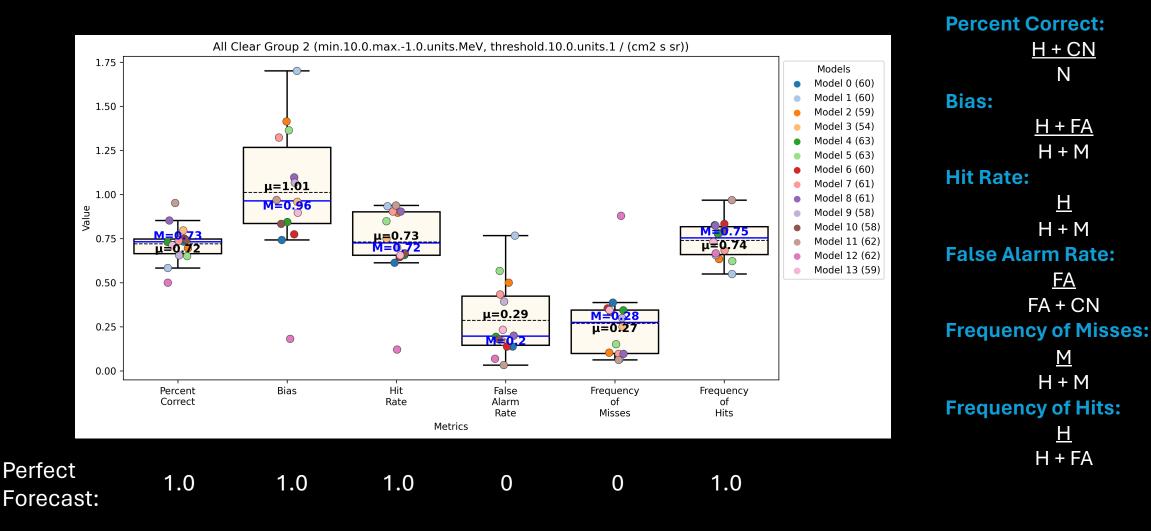
- The results presented here are a subset of the information generated by SPHINX.
- Each model developer that contributed to the SEPVAL 2023 challenge received an individual validation report and supporting summary plots with a full set of metrics.
- The SEPVAL 2023 results will be reported in 2024 at TESS, EGU, COSPAR and ESWW using anonymized plots.
- Model developers are encouraged to contact Katie Whitman and the SPHINX development team to discuss their personalized results, ask any questions, for clarifications, or to motivate revisions in the SPHINX logical workflow.
- This is a collaborative R2O2R effort and the ISEP project and the development of SPHINX has benefitted immensely from the participation of the community.
- A publication will be prepared. We will be contacting model developers to participate in writing the paper and agreeing upon the results.

Further Examples of Metrics

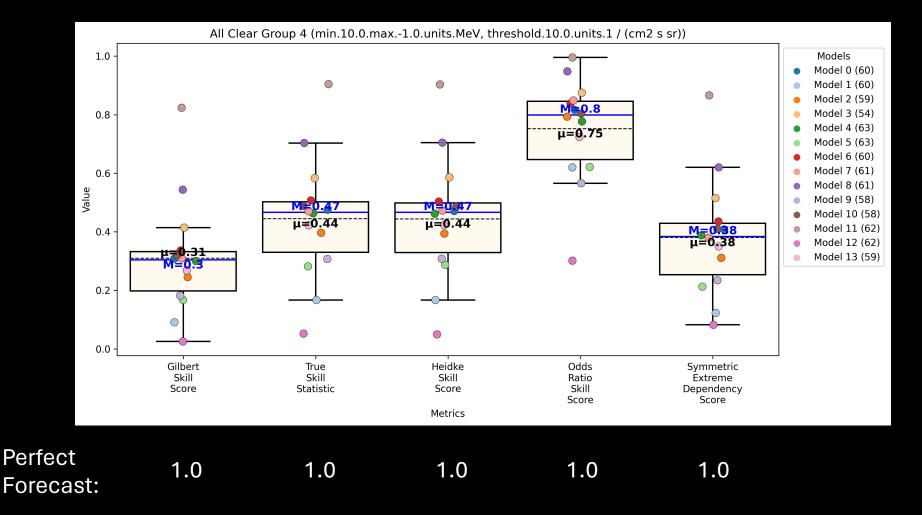
The models have been anonymized until the metrics have been discussed with the model developers and agreed upon for public release

SEPVAL 2023: All Clear Summary

Models with multiple forecasts per time period:


MagPy, SPRINTS, and UMASEP produce new forecasts each hour, 3 minutes, or 1 minute (respectively).

The metrics presented here have been reduced to an overall forecast result per challenge event time period.


Hit: At least one forecast indicating an SEP event was issued for an observed SEP Miss: All forecasts were All Clear but an SEP was observed False Alarm: At least one Not Clear forecast was issued during a non-event period Correct Negative: All forecasts were All Clear for a non-event period

SEPVAL 2023: All Clear Summary >10 MeV, 10 pfu

H – Hits M – Misses FA – False Alarms CN – Correct Negatives N – Total forecasts

SEPVAL 2023: All Clear Summary >10 MeV, 10 pfu

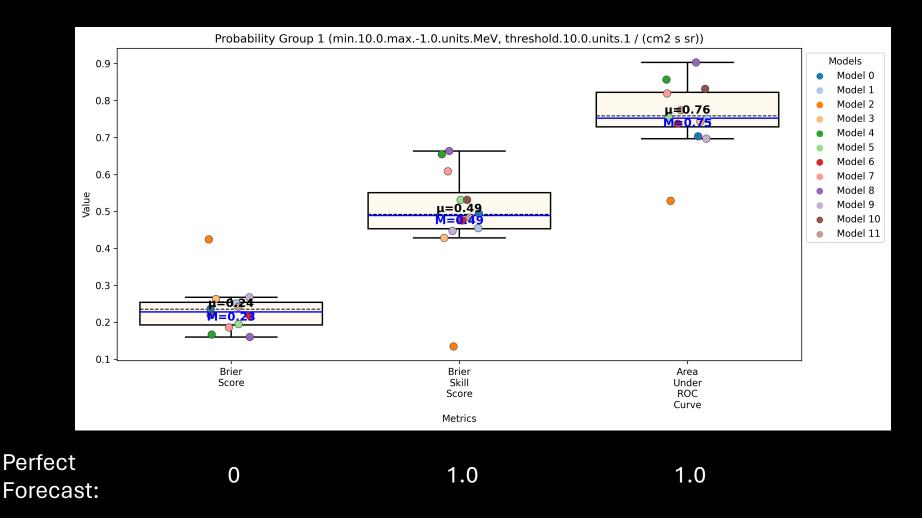
Gilbert Skill Score:

How well did the forecast yes events correspond to the observed yes events, accounting for hits by chance?

True Skill Statistic:

How well did the forecast separate the yes events from the no events?

Heidke Skill Score:


What was the accuracy of the forecast relative to random chance?

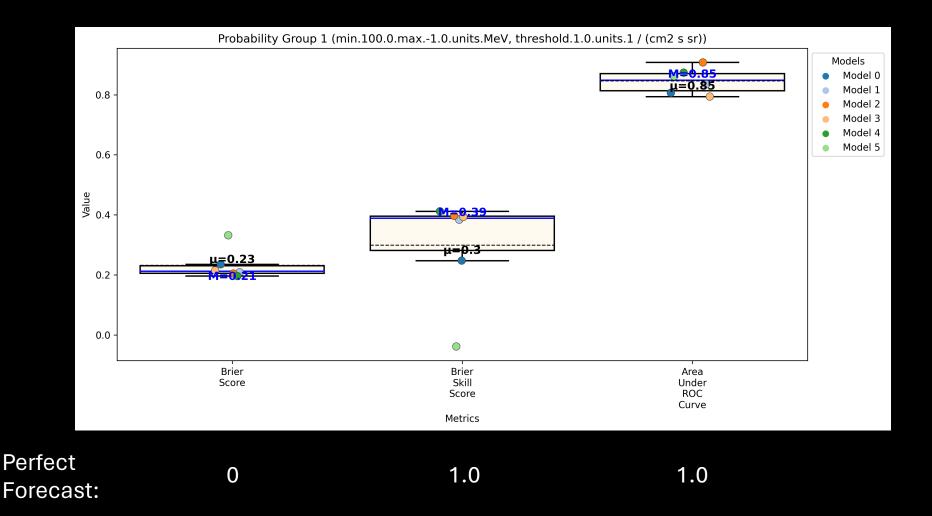
Odds Ratio Skill Score:

What was the improvement over random chance?

Symmetric Extreme Dependency Score: Emphasizes hits and deemphasizes correct negatives.

SEPVAL 2023: Probability Summary >10 MeV, 10 pfu

Brier Score: 1/N SUM $(f - o)^2$

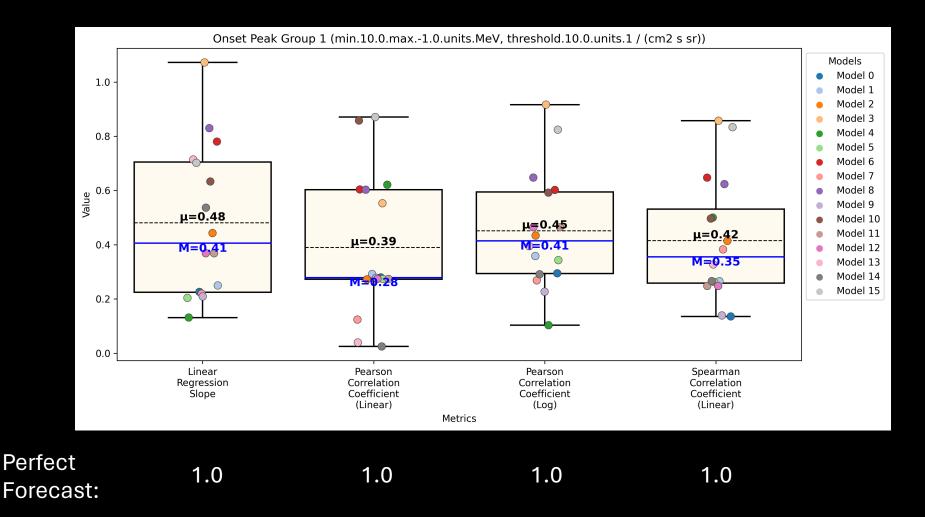

Brier Skill Score:

Brier Score compared to climatology. Here the climatology was set to the probability value provided in Bain et al. 2021 for SWPC. 1.0 is a perfect forecast. 0.0 is the skill of the reference.

Area Under ROC Curve:

Relative value as a function of a user's cost/loss ratio. 1.0 is a perfect forecast. 0.0 indicates the value of climatology.

SEPVAL 2023: Probability Summary >100 MeV, 1 pfu

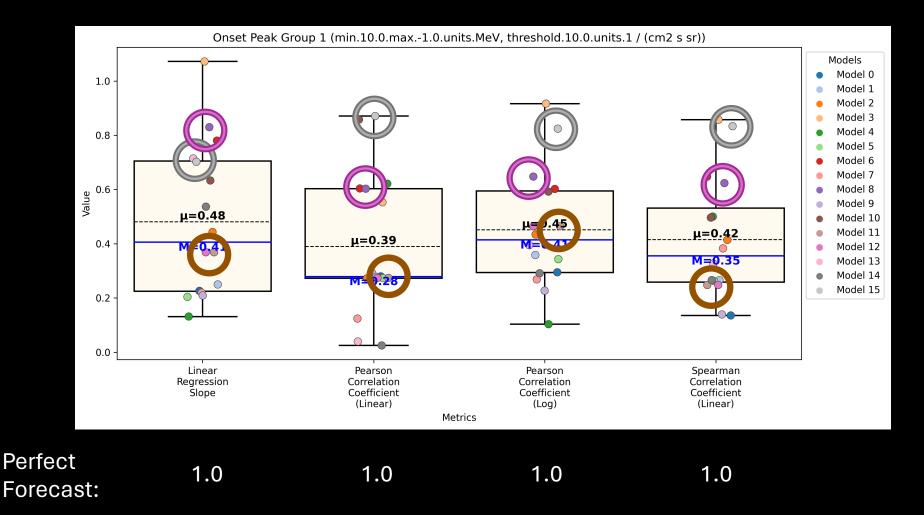

Brier Score: 1/N SUM $(f - o)^2$

Brier Skill Score:

Brier Score compared to climatology. Here the climatology was set to the probability value provided in Bain et al. 2021 for SWPC. 1.0 is a perfect forecast. 0.0 is the skill of the reference.

Area Under ROC Curve:

Relative value as a function of a user's cost/loss ratio. 1.0 is a perfect forecast. 0.0 indicates the value of climatology.

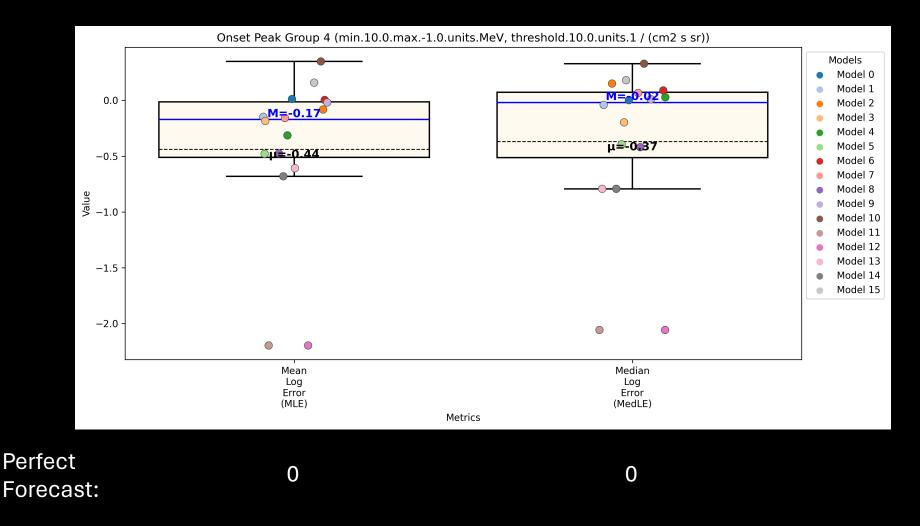

Linear Regression Slope: Slope of a regression line fit to the correlated observations and forecasts.

Pearson Correlation Coefficient:

Correlation between two variables that each have normal distributions.

Spearman Correlation Coefficient:

Correlation of data by rank order rather than the actual values. Describes the monotonic relationship between observations and forecasts.

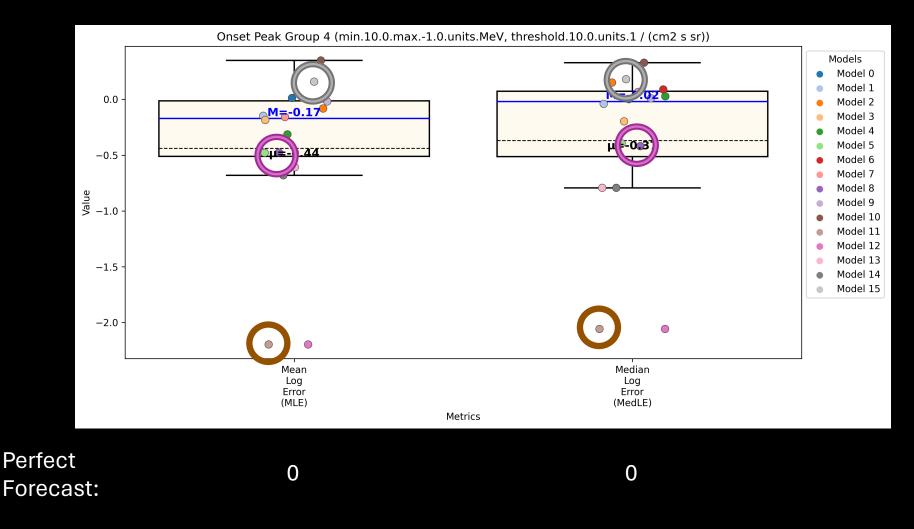

Linear Regression Slope: Slope of a regression line fit to the correlated observations and forecasts.

Pearson Correlation Coefficient:

Correlation between two variables that each have normal distributions.

Spearman Correlation Coefficient:

Correlation of data by rank order rather than the actual values. Describes the monotonic relationship between observations and forecasts.

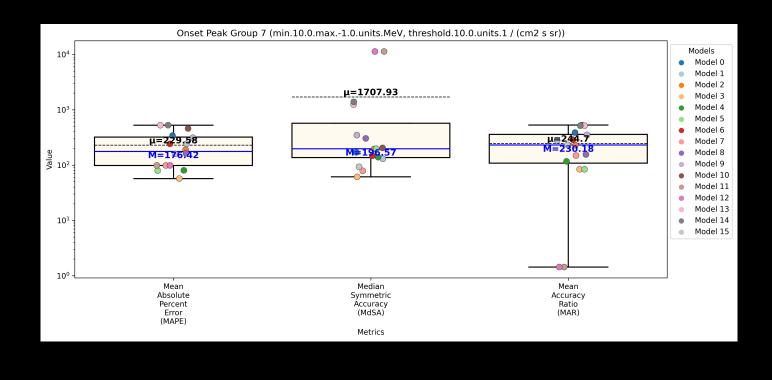


Mean Log Error: MEAN(log10(f) – log10(o))

Median Log Error: MEDIAN(log10(f) – log10(o))

MLE and MedLE are a measure of bias.

Negative = Underprediction Positive = Overprediction



Mean Log Error: MEAN(log10(f) – log10(o))

Median Log Error: MEDIAN(log10(f) – log10(o))

MLE and MedLE are a measure of bias.

Negative = Underprediction Positive = Overprediction

0%

All metrics are in linear space.

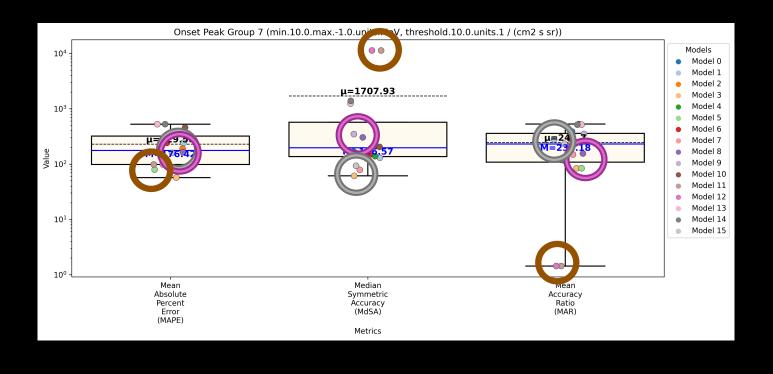
Mean Absolute Percent Error:

<u>|f – o| x 100%</u>

0

Difference between the forecast and observation relative to the observed value.

Median Symmetric Accuracy: exp(MEDIAN(|ln(o/f)|) – 1) x 100%


Morley et al. 2018 Penalizes over and underestimates equally.

Mean Accuracy Ratio: <u>f x 100%</u> o < 100% = underestimate >100% = overestimate

Perfect Forecast:

0%

100%

All metrics are in linear space.

Mean Absolute Percent Error:

<u>|f – o| x 100%</u>

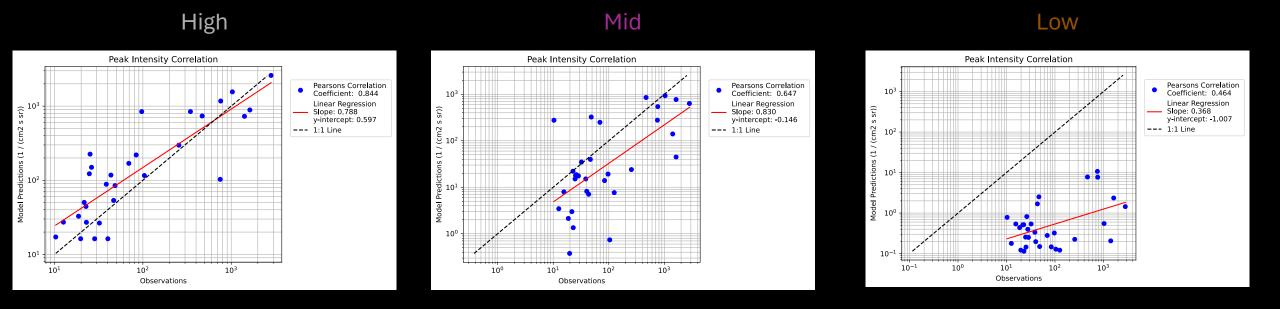
0

Difference between the forecast and observation relative to the observed value.

Median Symmetric Accuracy: exp(MEDIAN(|ln(o/f)|) – 1) x 100%

Morley et al. 2018 Penalizes over and underestimates equally.

Mean Accuracy Ratio: <u>f x 100%</u> o < 100% = underestimate >100% = overestimate


Perfect Forecast:

0%

0%

100%

- Comparison of higher and lower performing models for Onset Peak
 - High
 - Mid
 - Low

