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Abstract

Solar energetic particle (SEP) events are one of the most crucial aspects of space weather that require continuous
monitoring and forecasting. Their prediction depends on various factors, including source eruptions. In the present
work, we use the Geostationary Solar Energetic Particle data set covering solar cycles 22, 23, and 24. We develop a
framework using time-series-based machine-learning (ML) models with the aim of developing robust short-term
forecasts by classifying SEP events. For this purpose, we introduce an ensemble learning approach that merges the
results from univariate time series of three proton channels (E�10, 50, and 100 MeV) and the long-band X-ray
flux (1–8Å) channel from the Geostationary Operational Environmental Satellite missions and analyze their
performance. We consider three models, namely, time series forest, supervised time series forest (STSF), and Bag-
of-Symbolic Fourier Approximation Symbols. Our study also focuses on understanding and developing confidence
in the predictive capabilities of our models. Therefore, we utilize multiple evaluation techniques and metrics. Based
on that, we find STSF to perform well in all scenarios. The summary of metrics for the STSF model is as follows:
the area under the ROC curve = 0.981, F1-score = 0.960, true skill statistics = 0.919, Heidke skill score = 0.920,
Gilbert skill score = 0.852, and Matthew’s correlation coefficient = 0.920. The Brier score loss of the STSF model
is 0.077. This work lays the foundation for building near-real-time short-term SEP event predictions using robust
ML methods.

Unified Astronomy Thesaurus concepts: Solar energetic particles (1491)

1. Introduction

Solar energetic particle (SEP) events are manifestations of
solar activity that constitute the emission of energetic electrons,
protons, and heavier ions from the Sun. These events are
usually associated with parent solar eruptions, namely solar
flares (SFs) and shock fronts of coronal mass ejections (CMEs;
Cane et al. 1986; Kahler 1992; Reames 1999; Gopalswamy
et al. 2001). Generally, it is understood that the eruptions at the
western side of the Sun have a higher probability of SEPs
reaching near-Earth space owing to the spiral structure of the
interplanetary magnetic field lines, known as the Parker spiral
(Parker 1965; Reames 1999). Measurements of SEP events
near Earth depend on the spatial region of source eruptions on
the Sun. In the case of extreme SEP events, given the right
conditions, such as geomagnetic connectivity and enough seed
population, they are often associated with fast CMEs (Marqué
et al. 2006; Gopalswamy et al. 2008, 2017; Swalwell et al.
2017; Cliver & D’Huys 2018; Rotti & Martens 2023).

The impacts of SEP events include severe technological
(Smart & Shea 1992) and biological effects on various
economic scales (Schrijver & Siscoe 2010). Although Earth’s
magnetic field provides us a protective shield from the
energetic particles and keeps them from reaching the ground,
they can be fatal for space-based missions and aircraft travel
along polar routes (Beck et al. 2005; Schwadron et al. 2010).
For instance, long-lasting strong SEP events pose a radiation

hazard to astronauts and electronic equipment in space (Jiggens
et al. 2019).
According to the Space Weather Prediction Center (SWPC),

proton intensities �10 pfu (1 pfu = 1 particle cm–2 s–1 sr–1) in the
E> 10 MeV energy channel are termed large SEP events with
regard to causing significant space weather (SWx) effects (Bain
et al. 2021). In addition, the severity of the solar proton events is
measured by SWPC using the Solar Radiation Storm Scale (S-
scale),3 which relates to biological impacts and effects on
technological systems. The S-scale relies on the E� 10MeV
integral peak proton flux from near-Earth observations of the
Geostationary Operational Environmental Satellite (GOES)
missions (Sauer 1989; Bornmann et al. 1996). The base
threshold, associated with an S1 storm, corresponds to a GOES
5-minute averaged �10MeV integral proton flux exceeding
10 pfu for at least three consecutive readings. Further scales
from “S2” to “S5” logarithmically increase from one another,
therefore defining different event intensities.
With great advancements in space engineering and technol-

ogy, we are fortunate to have near-continuous observations of
solar activity from a fleet of space-based satellites over the past
four decades. One important aspect of analyzing solar data is to
advance operational capabilities by mitigating SWx effects on
our human explorers and technological systems (Jackman &
McPeters 1987). This urgently requires the development of
robust tools to forecast eruptive event occurrences. With an
SEP event prediction system, we can forecast and send out
warning signals before the event.
Several researchers have been focusing on implementing a

variety of model-driven techniques for predicting SEP events.
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In this regard, most scientific studies concentrate on predicting
the peak fluxes. To predict event occurrences, many physics-
based and data-driven statistical models have been designed
based on the parameters of parent eruptions such as SFs and
CMEs (Van Hollebeke et al. 1975; Kahler et al. 2007;
Posner 2007; Balch 2008; Laurenza et al. 2009; Falconer
et al. 2011; Núñez 2011; Dierckxsens et al. 2015; Núñez 2015;
Winter & Ledbetter 2015; Alberti et al. 2017; Anastasiadis
et al. 2017; Papaioannou et al. 2018; Ji et al. 2021). In the past
decade machine-learning (ML) methods have also been at the
forefront of SEP event forecasting (Engell et al. 2017; Swalwell
et al. 2017; Aminalragia-Giamini et al. 2021; Lavasa et al.
2021). ML-based algorithms have been rigorously explored by
many teams across the globe owing to their success in many
other areas of research and operations (Camporeale 2019).
Detailed descriptions of existing SEP event forecasting models
can be found in Whitman et al. (2022).

We envision building low-risk, short-term predictive models
as the first step toward building operationally driven, reliable
SEP event forecasting systems. Therefore, we exploit the
feasibility of multivariate time-series (MVTS) data in this
work. For this purpose, we utilize and compare the perfor-
mances of three ML models. Two are interval-based algo-
rithms: time series forest (TSF) and supervised time series
forest (STSF); the last is a dictionary-based Bag-of-Symbolic
Fourier Approximation (SFA) Symbols (BOSS) model. Prior
studies on SEP event forecasting using parent eruption features
conclude that the tree-based model is viable (Boubrahimi et al.
2017). Both TSF and STSF implement a highly specialized
random forest (RF) model and rely on several interpretable
statistical features extracted from the time series to feed into an
ensemble of decision trees. We will discuss the individual
model architectures more in the later sections. The rest of the
paper is organized as follows: Section 2 provides information
about our data set and data preparation steps used in this work.
Section 3 presents our research methodology, including
descriptions of the time-series classifiers. Section 4 discusses
the training phase of the models and presents the experimental
evaluation framework. Lastly, Section 5 summarizes our work
and future avenues.

2. Data

The SEP events are critical phenomena caused by SFs and
CMEs. The parent eruptions are triggered by sudden, abrupt
changes in the magnetic field, typically of active regions in the
solar atmosphere. Thus, it is well expected to build predictive
capabilities employing parameters of precursor events. None-
theless, we do not consider any data related to CMEs, and we
restrict ourselves to using the 1 minute averaged GOES X-ray
(1–8Å) fluxes measured by the X-ray sensor (XRS) on board
GOES. The archived data are available online from the
National Oceanic and Atmospheric Administrationʼs (NOAA)
website.4 In addition, we use the following integrated proton
channels from GOES: (1) E� 10MeV fluxes corresponding to
P3, (2) E� 50MeV fluxes corresponding to P5, and (3)
E� 100MeV fluxes corresponding to P7. Because SFs have
characteristic durations from a few minutes to a few tens of
minutes, we linearly interpolate the proton 5 minute averaged
fluxes to match with the 1 minute cadence of the X-ray fluxes.

We believe that this interpolation is necessary to retain the
information on flaring peaks without altering the flare
characteristics from X-ray fluxes.

2.1. GSEP Data Set

The Geostationary Solar Energetic Particle (GSEP) events
data set (Rotti et al. 2022a) is a recently introduced open-
source5 MVTS benchmark data set of SEP events covering
solar cycles 22–24. The description of the data set and its
development can be found in Rotti et al. (2022b) and Rotti &
Martens (2023). It was created using proton fluxes measured by
the Space Environment Monitor (SEM) suite on board GOES
(Grubb 1975). This data set composes a catalog of 433 (244
large and 189 small) SEP events observed near Earth between
1986 and 2018. Each event is labeled with a “1” or “0,”
indicating either a large or small SEP event, respectively. Here
a large SEP event corresponds to proton fluxes crossing 10 pfu
in the GOES “P3” channel, whereas a small SEP event has
proton enhancements between �0.5 and <10 pfu. Furthermore,
the data set consists of time-series slices of GOES proton and
X-ray fluxes of all the events. Each time-series slice constitutes
12 hr fluxes prior to the onset of the event as an observation
window and further, until the events cross the peak flux, finally
falling to half that value.
As reported by Rotti & Martens (2023), ≈79% of SEP

events have a precursor eruption within 12 hr prior. In other
words, most SEP events’ onset times are within 12 hr after the
initiation of the parent flare eruption. Interestingly, most (53)
events with a parent eruption more than 12 hr prior to SEP
onset occur during solar maximum (±1 yr). Many of these
precursor eruptions occur more than a day before the onset of
an SEP event. We consider 12 hr as an optimal span or
observation window in the present work. However, limiting the
observation window to 12 hr does not cause a huge limitation
on our models. That is, the inclusion of X-ray fluxes is valuable
but not trivial to short-term predictions of SEP events. Hence,
we have considered 12 hr as an optimal window by including
as much precursor (X-ray) data as possible. Increasing the
window length to greater than 12 hr has the potential to induce
noise such as additional and unrelated X-ray flux peaks in data.
In addition, we omit 5 minutes of input data just before the SEP
event onset. As we consider fluxes with 1 minute cadences, our
data set represents a 715-length soft X-ray and integral proton
time series. A sample time profile for a large SEP event in the
GSEP data set is shown in Figure 1 that occurred on 2017-09-
05T00:40 (UT) with a rise time of ≈19 hr. The parent flare
erupted about 4 hr before the SEP event onset from Active
Region 12673 (solar lon = 12°, solar lat=−10°) and had a
magnitude of M5.5 as measured by the GOES/XRS instru-
ment. Following the flare there was a halo fast CME
propagating with a velocity of ≈1400 km s−1. The SEP event
reached a peak flux of ≈210 pfu on 2017-09-05T19:30 (UT) in
the E� 10MeV channel measured by the GOES-SEM
instrument. The vertical dotted line in the plot indicates the
event’s start time, while the horizontal dashed line indicates the
SWPC S1 threshold. The shaded region shows the typical
length of the time profile we utilize in our work.

4 https://www.ncei.noaa.gov/data/goes-space-environment-monitor/
access/avg/

5 The GSEP data set is available on the Harvard Dataverse at doi:10.7910/
DVN/DZYLHK.
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2.2. Data Labels

The work discussed here considers the term “SEP events”
analogous to solar proton events. While variations exist, event
labels are usually associated with the occurrence of strong/
large SEPs based on the integral proton fluxes (IP) recorded by
P3 crossing the 10 pfu threshold. As mentioned earlier, the
small events or subevents are defined based on a threshold of
0.5 pfu > IP< 10 pfu in the 10MeV channel. If there are
successive SEP events within 12 hr, then the observation
window shall constitute fluxes prior to the former event onset.
There are several events reported in the GSEP data set that have
overlapping proton fluxes from the previous event. Due to the
nature and characteristics of the SEP event, such overlapping
cannot be excluded. In these scenarios, when the proton fluxes
in the 10MeV channel are already above 10 pfu, the model
outputs a “yes” label indicating a large event. This “back-to-
back events” situation is evident during solar maximum. In the
GSEP data set, 23 (4) large (small) SEP events occur within the
next 24 hr following the first event. There are only six
successive events occurring within 12 hr, all of which are large
in nature, with a median rise time of ≈14 hr and a median event
length of >48 hr.

Another critical threshold in terms of operational require-
ments concerning astronauts during extravehicular activities is
1 pfu in the E� 100MeV (P7) channel. Nonetheless, in the
present work, we focus only on the SWPC “S1” threshold and
defer the former scenario to future work.

In the context of solar particle radiation, a passing
interplanetary shock causes energetic storm particle (ESP)
acceleration (Cane 1995). Although ESPs are different kinds of
particle events, they can still be brought under the “umbrella”
of SEPs since the energetic particle fluences still determine the
radiation exposure and dosage rate. Furthermore, it is relevant
to minimize the total dosage rate of an astronaut during a space
mission for their health and safety. Therefore, our focus has
been a cumulative “solar particle event” prediction wherein we
also include the nine ESPs reported in the GSEP catalog in our
analysis.

3. Methodology

In this work, we attempt to address the grand problem of
SEP event predictions from a time-series classification

perspective. This problem is constructed here in the framework
of a binary classification task. Here the target labels are based
on surpassing the proton flux threshold defined by NOAA-
SWPC. Accordingly, the SEP event class labels that have
proton enhancements above the threshold (IP � 10 pfu) are
“positive”; otherwise, they are “negative.” In this section, we
describe a novel framework for classifying E� 10MeV SEP
events using time-series-based ML models.
We use a column ensemble of univariate classifiers, a

parameter-wise ensemble of columns in which individual
classifiers are applied to every parameter (column). This is a
homogeneous ensemble schema; an overview of it is shown in
Figure 2. The ensemble estimator allows multiple feature
columns of the input to be transformed separately. The
statistical features generated by each classifier on samples of
the original time series are ensembled to create a single output.
Each feature is assigned a score that indicates how informative
it is toward predicting the target variable (Hansen &
Salamon 1990; Schapire 1990; Arbib 2003).
In our case of the GSEP data, we create a multivariate

variant of univariate algorithms using the column ensemble
method described above. We consider the long-band X-ray
channel (XL) and three proton channels (P3, P5, P7) as our
input time series. We implement and compare the performances
of three classifiers for large/small SEP event classifications.
The prediction results from these individual column classifiers
are then aggregated as a whole (with equal votes using
prediction probabilities). The idea is to see whether the
observed time-series span leads to a large SEP event (positive
class) or not (negative class). The negative classes here do not
constitute SEP-quiet periods but are entirely small SEP events.
These sometimes behave almost as large events but fall below
the critical threshold. Identifying such patterns is relevant to
reducing false alarms. In other words, the reason for choosing
these two classes is that the models must pick up the incoming
flux behavior of X-rays and earthward accelerating protons that
may cross the SWPC event threshold, which requires
mitigation measures in an operational context. The rationale
is to explore the operationally relevant proton channels,
including those with the XL channel.
Regarding existing SWx forecasting methods, flare fore-

casters build models distinguishing between �M1.0 and �C9.9
classes (Ji et al. 2020). Similarly, we aim to provide an

Figure 1. Time-series plot of a large SEP event that occurred on 2017-09-05T00:40 (UT) shown on a log scale that reached a peak proton flux of ≈210 pfu on 2017-
09-05T19:30 (UT). The three fluxes in the legend correspond to GOES P3 (E �10 MeV), P5 (E �50 MeV), and P7 (E �100 MeV) integral proton channels. The
horizontal black dashed line indicates the SWPC threshold for a large SEP event, while the vertical black dotted line indicates the SEP event onset time. The shaded
region shows the typical span of time series considered in our work. It corresponds to 12 hr of proton fluxes prior to the SEP event onset.
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interpretable state-of-the-art time-series ML model to classify
large and small SEP events. Therefore, this method will
provide a perspective to extend the univariate time-series
classifiers in an ensemble and build a prototype short-term SEP
event prediction system that optimizes the model based on
forecast skill scores. Section 3.1 provides more details about
these classifiers and their feature sets.

3.1. Time-series Classification

SWx practitioners and forecasters highly recommend using
temporal features and time-series analysis for better forecasting
(Singer et al. 2001). In time-series data, every time stamp is
typically a vector or array of real values observed over time. It
can be divided into univariate or multivariate such that an array
of only one parameter is a univariate series and a set of
univariate series forms a multivariate series (Ruiz et al. 2021).
In time-series-based ML, one of the techniques to improve
model performance is the reduction of the dimensionality of the
data set by identifying and choosing the most relevant features
(Keogh et al. 2001; Cassisi et al. 2012).

Feature-based models extract highly relevant statistical
features from the time series that are later used as a core
subset in training models (Fulcher & Jones 2014). This step has
multiple purposes, such as (1) optimizing the performance of
the models by choosing relevant features, (2) providing robust
predictors and thereby reducing computational costs, and (3)
offering better interpretability to the underlying physical
processes that generated the data model. Time-series classifica-
tion uses supervised ML to analyze labeled classes of time-
series data and then to predict the class to which a new data set
belongs. This is important in SWx predictions, where particle
sensor data are analyzed to support operational decisions in
near-real-time (NRT). The accuracy of classification is critical
in these situations, and hence we must ensure that the classifiers
are as accurate and robust as possible.

There are many algorithms that are designed to perform
time-series classification. Depending on the data, one type
might produce higher classification accuracies than other types.
This is why it is important to consider a range of algorithms
when considering time-series classification problems. In this
work, we experiment with interval-based and dictionary-based
models on our data set.

Interval-based algorithms typically split the time series into
multiple random intervals. Each temporal feature calculated
over a specific time-series interval can capture some essential
characteristics. Therefore, the algorithm gathers summary
statistics from each subseries to train individual classifiers on
their interval. Next, the most common classes are evaluated
among the intervals and return the final class label based on
equal voting for the entire time series (Bagnall et al. 2017).
On the other hand, dictionary-based models implement the

bag-of-words (Zhang et al. 2010) algorithm. In a broad
structure a sliding window of length “l” runs across a series
of length “n.” Then, all real-valued window lengths are
converted into a symbolic string called a “word” through
approximation and discretization processes. During this
process, the possible representations are stored in a dictionary.
At the end of the series length, the occurrence of each “word”
from the dictionary in a series is counted and transformed into a
histogram. Finally, histograms of the extracted words are used
for the classification task of new input data (Faouzi 2022).
Among the univariate interval-based approaches, we con-

sider TSF (Deng et al. 2013) and STSF (Cabello et al. 2020).
From dictionary-based classifiers, we use the BOSS (Schä-
fer 2015), which uses the Symbolic Fourier Approximation
(SFA; Schäfer & Högqvist 2012) to transform and discretize
subseries into words. We explain the model structure below. A
brief summary of the model functions and parameters is
presented in Table 1. All our computational experiments are
performed using the Python programming language (Sanner

Figure 2. Schematic overview of the workflow. We consider three proton channels and the long-band X-ray channel from the GSEP time-series data set. In a column
ensemble, we input the fluxes to our classifiers. Each univariate classifier subsamples the time series and extracts features from each interval to generate a feature data
set. The classifier is trained to fit the input data and further tested on unseen data.

Table 1
Summary Properties of the Models

Model Sampling Schema Features

TSF Random intervals μ, σ, m
STSF Supervised intervals μ, σ, m, median,

IQR, min, max
BOSS Sliding window Word representations

Note. Model names: TSF—time series forest; STSF—supervised time series
forest; BOSS—Bag of Symbolic Fourier Approximation Symbols. Feature
names are as follows: μ—mean; σ—standard deviation; m—slope; IQR—
interquartile range; min—minimum value; max—maximum value.
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et al. 1999). All the classifiers used in this study are from the
sktime library (Löning et al. 2022).

3.1.1. Time Series Forest

One of the most commonly used and popular interval-based
algorithms is TSF (Deng et al. 2013). This model implements
an RF approach where multiple decision trees are grouped.
Each tree in this ensemble is trained using a subset of statistical
features derived from randomly selected intervals, essential in
reducing the dimensionality of high-dimensional feature
spaces. The statistical features derived from random intervals
are the mean (μ), standard deviation (σ), and slope of the
regression line (m). Figure 3 illustrates the feature extraction
process from random intervals in the TSF algorithm. The
process of obtaining statistical summaries of intervals is called
flattening the vectors. Each decision tree classifier then assigns
a target label to its interval of the data based on a majority vote
of all trees. The voting process is needed since every single tree
only evaluates a certain subseries of the time series.

3.1.2. Supervised Time Series Forest

Another interval-based model is STSF (Cabello et al. 2020).
Here an ensemble of decision trees is built on intervals selected
through a supervised process wherein the algorithm finds the
discriminatory intervals. The ranking of the interval feature is
obtained by a scoring function that indicates how well the
feature separates a class of time series from the other classes.
The final set of intervals is obtained in a top-down approach to
represent the entire series. STSF aims to improve the
classification efficiency by selecting in a supervised fashion
(based on their class-discriminatory capabilities) only a subset
of the original time series.

The algorithm uses three (time, frequency, and derivative)
representations of the time series as shown in Figure 4, and

extracts seven features (μ, σ, m, median, interquartile range
(IQR), minimum value, and maximum value) from each
interval. Finally, the feature set is concatenated to form a
new data set upon which decision trees are built. The final
output is based on majority voting of averaged probability
estimates of the ensemble.

3.1.3. Bag-of-SFA Symbols

The BOSS algorithm (Schäfer 2015) typically uses a sliding
window to transform the time series into sequences of symbols
to extract “words” and form a histogram. The final classifica-
tion is made by determining the distribution of these “words” in
the histogram. The intuition behind this method is that times
series are similar, which means that they are of the same class if
they contain similar “words.” First, BOSS finds symbolic
approximations using discrete Fourier transform (DFT). Then,
it creates words and discretizes/vectorizes the input using
words with multiple coefficient binning (MCB). This has the
effect of reducing noise (Schäfer 2015). Finally, the algorithm
uses a one-nearest neighbor over word frequency vectors and
retains the estimators using the BOSS metric for best parameter
training (Bagnall et al. 2017). Figure 5 illustrates these stages
of the BOSS algorithm.

3.2. Data Partitions

For classification in a supervised setting where all the data
have class labels, the data set is typically split into the training
set and the test set (Hastie et al. 2009). The training set is used
to fit the data features on the parameters of the algorithms
chosen to address the problem. The chosen algorithm is used to
score the test set and determine the quality of the classifier. We
partition our data into training/test sets with splitting criteria of
65%–35%, leading to 283 training samples and 150 test

Figure 3. Schematic overview of the TSF model. (a) Random intervals are generated and the corresponding subsets from each time series are extracted. (b) Three
statistical features are derived from each subinterval: mean (μ), standard deviation (σ), and slope (m).
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samples. A summary of the number of samples in each partition
with respect to the target labels is presented in Table 2.

4. Results

In this work, we consider large (�S1) SEP events as a
“positive” class and small events as a “negative” class, thereby
designing the problem as a binary classification task. The
experiments are designed to fit a univariate model to an MVTS
architecture for a short-term SEP event prediction system. We
aim to demonstrate the robustness and compare the efficiency
of time-series classifiers toward generating short-term predic-
tions during NRT operations. As explained in the previous
section, the classifiers extract the features and data attributes
from the input series.

Because we want to aim at short-term predictions via SEP
event classification, we consider 12 hr of observations minus 5
minutes before the SEP event onset. Here the onsets are defined
as follows: large events crossing 10 pfu and small events
surpassing 0.5 pfu in the P3 channel. We interpolate the
5-minute proton time series to 1 minute to utilize the X-ray flux
characteristics during flaring periods. The model hyperpara-
meters considered are as follows: (i) the minimum interval
length/window size is 15 for TSF and BOSS, and (ii) the
number of estimators is 200 for TSF and STSF.

4.1. Learning Curves

One of the essential tools in ML to trace the model
performance is using learning curves. These curves visually
indicate the sanity of a model for overfitting or underfitting
during the training phase. They also help us to understand how
the model performance changes as we input more training
examples. In addition, these curves are useful for comparing
the performance of different algorithms (Perlich et al. 2003).

Figure 6 shows the learning curves of the models in our
consideration. Here, to provide a better performance estimate
given the imbalanced nature of our data set, we use a
“weighted” average of F1-scores (Manning et al. 2008) per
class as defined in Equation (1):

F w F 1
i

N

i1
1

1iweighted ( )å= ´
=

F 2
Precision Recall

Precision Recall
. 21

( )
( )

( )= ´
´
+

As shown in Equation (2), F1-score can be estimated as the
harmonic mean of precision (Equation (3)) and recall
(Equation (4)). Precision is used to evaluate the model’s
correct prediction with respect to the false alarms, recall
characterizes the ability of the classifier to find all of the
positive cases:

Precision
TP

TP FP
3

( )
( )

( )=
+

Recall
TP

TP FN
. 4

( )
( )

( )=
+

As we consider a “weighted” average for the F1-score, it
computes the score for each target class and uses sample
weights that depend on the number of instances in that class
while averaging. The weight in the F1-score is presented in
Equation (5). Here i is the number of target classes in the data
set, which is two in the present work:

w
Number of samples in class i

Total number of samples
. 5i ( )=

In our learning curves, the red line represents the training
score, which evaluates the model on the newly trained data.
The green line shows the estimations of the model on the
samples used for validation. The shaded area represents the
standard deviation of the scores after running the model
multiple times with the same number of training data. It can be
seen that the training score remains high for all models
regardless of the size of the training set.
In Figure 6(a), the steepness of the green line reaches a

plateau between ≈125 and 175 samples but shows a small
increment after 175 for TSF. On the other hand, the cross-
validation score in Figure 6(b) for STSF greatly reduces after
125 samples. In Figure 6(c), the curve for the BOSS model
initially increases with the training size up to ≈125 but the
slope reduces later, indicating that more training data are not
helpful in the generalization process. The STSF model achieves
a high F1-score (≈0.925), followed by TSF and then the BOSS
model. Overall, the learning curves represent a satisfactory use
of sample sizes to train the model efficiently. For TSF and

Figure 4. Schematic overview of time-series representations of STSF. For a given original series, a periodogram representation derived from the DFT and a first-order
difference representation is generated to find candidate discriminatory intervals as a subset of the original time series. The discriminatory interval features constituting
seven statistical parameters are obtained from all three (time, frequency, and derivative) domains prior to training the classifier.
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STSF, we note that with more samples this can be improved. In
the remainder of this section, we present and discuss the
implementation of several evaluation techniques to analyze the
performance of the models on the test set.

4.2. Reliability Curves

In ML, reliability curves/calibration plots are used to better
understand a model’s confidence intervals in its prediction
probabilities. Models such as decision trees give the label of the
event but do not support native confidence intervals. A simple

decision tree is a hierarchical tree structure used to determine
classes based on a set of rules (questions) about the attributes of
the data points (Safavian & Landgrebe 1991). Here, every
nonleaf node represents an attribute split (question), while all
the leaf nodes represent the classification result. In short, if the
decision tree model is input with a set of features and
corresponding classes, it generates a sequence of criteria to
identify a data sample’s target class.
We can evaluate the models based on multiple tools to be

confident in our predictions. One method is calibration plots
that check whether the predicted class distributions are similar
to the true ones. Calibration curves (Wilks 1990) visually aid us
in comparing how well the probabilistic predictions of a binary
classifier are calibrated. Figure 7 shows the predicted
probability of a model in each bin on the x-axis and the
fraction of the positive label in that bin on the y-axis. The
calibration intercept, shown with a black dotted line, is a best-
fit assessment. Values under the curve suggest overestimation,
whereas values above the curve suggest underestimation.
TSF and STSF show close behavior in their average

predictions over true values compared to the BOSS model.
Nonetheless, all the models show underestimates of their

Figure 5. Schematic overview of the BOSS model. (a) Given a raw time series, a sliding window is applied to extract subsequences. Each subsequence is transformed
into a word using the SFA algorithm, and only the first occurrence of identical back-to-back words is retained. (b) Lastly, a histogram of the words is computed.

Table 2
Data Partitioning

Training Test

Positive 167 77
Negative 116 73

Note. Number of instances in each partition corresponding to the binary target
labels. Here binary corresponds to a positive (strong SEP event) or negative
(weak SEP event).
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predictive probability against the observed probability. In other
words, this represents relatively lower confidence intervals in
the model predictions. Hence, we use the Brier score (BS) loss
(Murphy 1973) as defined in the following equation to evaluate
the performance of the model:

N
y yBS

1
. 6

i

N

i i
1

2( ˆ ) ( )å= -
=

Here N is the number of data samples in the test set, yi is the
observed probability, and yî denotes the prediction score (used
as the estimated probability) of the ith test sample. BS loss is
strictly used to assess the calibration and discriminative power
of a model, as well as the randomness of the data at the same
time. The loss values range from 0 to 1, with 0 being a perfect
score. In our case, TSF has 0.080, STSF has 0.077, and BOSS
has 0.161 as BS losses. Because of the low losses, our models
indicate that they are excellent predictors with more discrimi-
natory power. Therefore, we further evaluate the model on the
test set using popular metrics and compare their performances.

4.3. Evaluation

In Section 4.1, we have defined statistical metrics, such as
precision and recall, that have been traditionally used to assess
classifier performances. On a simple scale, accuracy
(Equation (7)) is another standard evaluation metric used to
evaluate the quality of a classifier by counting the ratio of

correct classification over total classifications:

Accuracy
TP TN

TP FP TN FN
. 7

( )
( )

( )=
+

+ + +

Furthermore, we can focus on false negatives and measure
the model performance using a receiver operating characteristic
(ROC) curve. The ROC curve for the classifier is generated by
plotting the true-positive rate (TPR) against the false-positive
rate (FPR). The classifier predicts mean probabilities for each
input instance belonging to the positive class, where the
prediction score from the classifier is greater than a
parameterized threshold. Then, a classification threshold (in
the range 0–1) is used to assign a binary label to the predicted
probabilities. To find the optimal threshold that minimizes the
difference between TPR and FPR of the classifier, we use the
Youden index (J; Youden 1950) defined in Equation (8).

J Sensitivity Specificity 1. 8( )= + -

Here sensitivity is the recall for the positive class and
specificity is the recall for the negative class. We further
explain our analysis on finding the optimal threshold in
Appendix A. The quality of the model is then assessed on the
area under the ROC curve (AUC) for the positive class. The
intuition behind this measure is that AUC equals the
probability that a random positive sample ranks above a
random negative sample. Ahmadzadeh et al. (2019) point out
that the AUC is statistically consistent and more discriminating

Figure 6. Learning curves for (a) TSF, (b) STSF, and (c) BOSS ensemble models. The weighted F1-score has been used here as the scoring function. The red line
represents the training score, while the green line shows the model estimations on validation. Here the shaded region indicates the standard deviation of the validation
score. The STSF model produces the best score (≈0.925) at the end of cross-validation.

8

The Astrophysical Journal, 966:165 (15pp), 2024 May 10 Rotti, Aydin, & Martens



than accuracy. A measure of 1.0 for AUC signifies perfect
classification, while a value of 0.5 means that the classifier
cannot differentiate at all.

In Figure 8, we show the ROC curves for our models based
on the TPR and FPR. We indicate the optimal threshold of the
classifiers in the upper left corner of the ROC curve (as a blue
star). Furthermore, the TSF has an ROC-AUC of 0.987, STSF
has 0.981, and for BOSS we get 0.966, indicating excellent
discriminatory performance in all the classifiers. The skill
scores and model evaluation discussed further are based on the
specific chosen (which gives optimal results) threshold after
our initial analysis: TSF = 0.40 (Figure 8(a)), STSF = 0.39
(Figure 8(b)), and BOSS = 0.59 (Figure 8(c)). In Appendix A,
we provide an evaluation of the influence of varying thresholds
on the scores as shown in Figure 9.

A 2× 2 contingency table constitutes the following elements:
true positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN). Here TP indicates the number of correctly
predicted large SEP events (positive class) by a model, while TN
represents the number of correctly predicted small SEP events
(negative class). FP corresponds to the number of small events
predicted as large (false alarms), while FN corresponds to the
number of large events predicted as small (misses). Subsequently,
the aim of our best model should be to reduce incorrect results
represented by both FP and FN. In Table 3, we show the
contingency tables based on the chosen classification threshold of
our models on the test set. TSF and STSF indicate a relatively
higher number of false alarms, but the BOSS model outputs a
fairly close number of misses and false alarms.

Focusing on the importance of positive classes, we consider
the F1-score defined in Equation (1). It ranges between 0 and 1
such that scores closer to 1 indicate that the model is better.

To account for the FPR, that is, to compare the difference
between the probability of detection and the probability of false
detection, we utilize true skill statistics (TSS; Woodcock 1976;

Murphy & Daan 1985) as shown in Equation (9). TSS ranges
from −1 to +1, where the latter indicates a perfect score. TSS
� 0 indicates agreement no better than a random classification:

TSS
TP TN FP FN

TP FN FP TN
. 9

( ) ( )
( ) ( )

( )=
´ - ´
+ ´ +

Furthermore, the Heidke skill score (HSS; Heidke 1926)
measures the improvement of the forecast over a random
prediction as defined in Equation (10). HSS of 1 indicates
perfect performance, and 0 indicates no skill. No skill means
that the forecast is not better than a random binary forecast
based on class distributions:

10HSS
2 TP TN FP FN

TP FN TN FN FP TN FP TP
. ( )(( ) ( ))

(( ) ( )) (( ) ( ))
=

´ ´ - ´
+ ´ + + + ´ +

The Gilbert skill score (GSS; Schaefer 1990) considers the
number of hits due to chance, which is the frequency of an
event multiplied by the total number of forecast events. This
score formula is given by Equation (11). GSS ranges from –1/
3 to 1. Here 0 indicates no skill, while 1 is a perfect forecast:

GSS
TP

TP FP FN
. 11

TP FN TP FP

TP FP TN FN

TP FN TP FP

TP FP TN FN

( )
( ) ( ) ( )

( ) ( )

( ) ( )
=

-

+ + -

+ ´ +
+ + +

+ ´ +
+ + +

However, accounting for the true negatives to assess the
performance of a binary class problem is essential in our
context. Hence, we also choose Matthew’s correlation
coefficient (MCC) as defined in Equation (12). MCC ranges
from −1 to 1. Here 0 indicates no skill, while 1 shows perfect
agreement with predicted and actual values:

12MCC
TP TN FP FN

TP FP TP FN TP FP TN FN
. ( )( ) ( )

( ) ( ) ( ) ( )
=

´ - ´
+ ´ + ´ + ´ +

We approach the SEP event prediction problem from a time-
series classification perspective using the GSEP data set. The

Figure 7. Reliability diagram or calibration plots of our models on the test set. The diagonal black dotted line shows the best fit. Data points above this line are
underestimates, while those below it are overestimates. Shown in the legend are model names TSF, STSF, and BOSS with their respective BS loss.
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skill scores based on the respective chosen classification
threshold for all our classifiers on the test set are presented in
Table 4. One can see that the STSF model performs well
compared to the TSF and BOSS models in terms of all the
scores.

As there is no one-to-one correspondence between the task,
data set, and sampling implemented, we do not extensively
compare our results with earlier studies. In Table 5, we list
existing models that implement empirical or ML methods for
predicting E� 10MeV SEP events. The models in these
studies have been developed focusing on a combination of
various solar parameters, including SF X-ray fluxes and their
properties. As can be seen, the period considered in these
studies varies depending on the availability of their desired data
set. We include two common metrics, HSS and TSS (where
available), used across these works in the table. HSS is an
advanced metric and is highly dependent on the number of
samples present in each binary class of a data set (Bobra &
Couvidat 2015).

While we make short-term predictions, other works typically
focus on forecasting SEP event onset hours and days ahead.
Moreover, no previous work has focused on the classification
task between large and small SEP events. Nonetheless, in
addition to other evaluation methods demonstrated in this

paper, our results show great performance potential in using
column ensembles of the time-series ML. The interval-based
STSF model architecture demonstrated in this paper promises
to be helpful to be implemented in NRT operations. In
Appendix B, we show the effect of randomness in the TSF and
STSF architectures on the optimal threshold for classification
and further establish confidence and robustness in our
predictions. Therefore, our future work will transform the
capacity of the STSF model to provide short-term predictions
on NRT data.

5. Conclusions

SEP events are one of the main elements of space weather,
along with SFs and CMEs. Toward predictive efforts of SEP
events, we utilize the recently developed GSEP data set (Rotti
et al. 2022b) publicly available from Harvard Dataverse
(doi:10.7910/DVN/DZYLHK). The data set constitutes
in situ time-series measurements from the NOAA-GOES
missions for solar cycles 22–24. They are long-band (1–8Å)
X-ray measurements from the XRS instrument and proton
fluxes (P3, P5, and P7) from the SEM instrument. We use these
parameters to evaluate the performance of our MVTS models.

Figure 8. ROC curves for (a) TSF, (b) STSF, and (c) BOSS models on the test set with the AUC inset in the legend. Here the x-axis shows the FPR and the y-axis
shows the TPR for the classifier. The dashed diagonal line indicates the ROC curve for a baseline or no-skill classifier. The blue star positioned at the upper left corner
of the plot indicates the optimal threshold value of the model. In addition, the chosen threshold to estimate the model skills is provided at the top of the plot for the
model, respectively.
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The target labels are defined based on integral proton fluxes
(IP) recorded by the GOES P3 channel. Positive labels are large
SEP events crossing the 10 pfu threshold; negative otherwise.
There are 433 SEP events in the GSEP data set, of which
244 are large. We consider a fixed length of 12 hr minus 5
minutes of fluxes before the SEP event onset. Therefore, the
total length for each time series corresponds to 715 instances.

Our focus in the present work is to see whether the model
can classify the P3 proton channel flux to be crossing the 10
pfu limit or not. In other words, if the 10 pfu limit is outset in
the 10MeV channel, then the model outputs a “true” or “yes”
label, indicating a large event. If not, then it is a small or
subevent. When implemented in NRT operation, the yes/no
outputs from the models are in succession for the next few
minutes of the prediction window.

ML methods are at the forefront of the latest techniques in
space weather forecasting. The crucial focus on implementing
ML toward SEP event forecasting is for the upcoming NASA
human missions to the Moon and Mars (Whitman et al. 2022).
In this scenario, short-term forecasts become relevant and
require distinct attention to precise and sensitive prediction of
large SEP event occurrences. This work implements time-
series-based ML models in binary classification schema.
Because no single algorithm always creates the best results,
we want to experiment with multiple models and evaluate their
performances.

Interval-based methods are based on splitting the time series
into phase-dependent distinct intervals. Statistics are gathered
from each interval to fit individual classifiers on the data. The
final classification is assigned based on majority voting of the
most common class generated by the individual classifiers. We
consider two interval-based classifiers in our work. They are

TSF and STSF. TSF is a collection of decision trees applied to
the feature sets (mean, standard deviation, and slope) extracted
from the intervals. Here the average prediction from each tree is
obtained, and based on a majority vote, the final output is
predicted. STSF builds on the TSF model by implementing a
metric to supervise the random sampling such that the
subsamples represent the entire series. Statistical features such
as mean, median, standard deviation, slope, min, max, and IQR
are extracted from each interval for three representations (time,
frequency, and derivative). The classifier then concatenates
these extracted values to form a new data set and builds an RF
model to make predictions. Another model we implement is the
BOSS ensemble, a dictionary-based algorithm. In that, small
intervals of length “l” are transformed into “words” and stored
as histograms for each input time series. The occurrence of the
word during prediction is used to classify the series to a label
on a weighted output.
The learning curves of our classifiers indicate sufficient data

used during the training phase. On the test set, we estimate the
confidence intervals of the predictions using reliability
diagrams and use BS loss in our evaluation strategy. We
construct the ROC curve for our models and identify the best
classification threshold to transform the probabilistic decisions
into binary labels. We use AUC, F1-score, TSS, GSS, HSS, and
MCC to further assess the performance of our models.
The results in this paper show that the STSF classifier

performs well compared to the TSF and BOSS models.
Multiple evaluation schemes relatively indicate that our model
obtains the best scores compared to existing methods but in the
framework of SEP event classification. In addition, our work
shows that interval-based classifiers have great potential to
improve short-term forecasts, and an ensemble model is a
suitable predictor for use in an operational context.
The SEP prediction model we have developed in this paper

is very high confidence. Our objective is to develop a short-
term SEP event forecasting algorithm to predict whether the
solar proton flux level will surpass the SWPC “S1” threshold.
In that respect, our approach is very different from the standard
SEP prediction methods, which forecast the likelihood of an
SEP storm in the coming 24 or 48 hr. Our model would allow
for SEP warnings to be called off at the last minute and for
high-level (E�10 MeV) SEP event forecasts to be confirmed
with high certainty or issued if there is no longer-term alert.
Certainly, the latter case will be extremely valuable for Artemis
astronauts in extravehicular activities or on the surface of the
Moon. If reliable, our model will give the real-time forecasters
at the Space Radiation Analysis Group (SRAG) a useful tool to
help them decide whether to issue an alert. In an operational
setting, we envisage our system to sit on top of forecasts with a
much longer prediction horizon but lower precision, such as
current forecasts.6

More avenues can be explored for future work, which
includes but is not limited to extending the analysis to (1)
consider “no-SEP” phases, i.e., SEP-quite periods following
the occurrence of large (� M1.0) flares, and (2) build different
ensemble strategies.
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Appendix A
Threshold Analysis

The classification threshold is the decision threshold that
allows us to map the probabilistic output of a classifier to a
binary category. In other words, it is a cutoff point used to
assign a specific predicted class label for each sample. In our
model analysis phase, we used the ROC curve, which is a
diagnostic tool used to evaluate a set of probabilistic
predictions made by a model. The ROC curve is useful for
understanding the trade-off between TPR and FPR at different
thresholds.

By default, the classification threshold in our models is 0.5.
Any prediction above 0.5 belongs to the positive class, and that
below 0.5 belongs to the negative class. However, 0.5 is not
always optimal, and we identify a reliable threshold for the
classifier that better splits between the two target classes. That
is, we choose the threshold that provides a TPR with an
acceptable FPR to make decisions using the classifier.

In the present work, we find the optimal threshold using the
Youden index (J; Youden 1950) defined in Equation (8). Here
sensitivity is TPR and specificity is (1 – FPR). Therefore, by
estimating TPR–FPR for each threshold, we obtain a maximum
J as a cutoff point that optimizes classification between the two

classes. The obtained best J-value gives us the optimal
threshold of the classifier.
Furthermore, we demonstrate the effect of “thresholding” on

the model performances by visualizing the variations in the
skills due to changing thresholds. For this purpose, we used
advanced metrics discussed in Section 4. We define a set of
thresholds (from 0.0 to 1.0) and then evaluate predicted
probabilities under each threshold. That is, we transform/
binarize the predicted probabilities into labels for the respective
threshold and estimate the skill scores in order to find and
select the best threshold value. Figure 9 shows the influence of
variation in the classification threshold for each model. The
TSF (Figure 9(a)) and STSF (Figure 9(b)) have a very close
optimal threshold that is less than 50%. The BOSS model
(Figure 9(c)) shows optimal performance at a threshold
of ≈60%.

Appendix B
Effect of Randomness

Of the three models considered in this work, TSF considers
random intervals from the input time series and implements an
RF to fit the feature vectors and make predictions. Although
STSF largely overcomes the randomization of interval selec-
tion, it consists of a tree-based RF structure at its core. Because
TSF and STSF models have random components in their
architecture, we run both models multiple (10) times and find
the variations in their respective optimal threshold values as
shown in Figure 10. The median (mean) value for TSF is 0.412
(0.415), and for STSF it is 0.407 (0.412). Comparing the above
values with the chosen thresholds (as shown in Figure 9) for the
respective classifiers, we are confident in our model predictions
and their capabilities to be further transformed for operational
standards.

Table 5
List of Existing SEP Event Prediction Models That Consider Solar Protons, X-Ray Flare Fluxes, and Their Properties as Input

Model Period Type HSS TSS

Balch (2008) 1986–2004 Empirical 0.48 ± 0.04 L
Laurenza et al. (2009) 1995–2005 Empirical 0.58 L
Winter & Ledbetter (2015) 1995–2005 Empirical 0.60 L
Alberti et al. (2017) 2004–2014 Empirical 0.55 L
Anastasiadis et al. (2017) 1984–2013 Empirical 0.37 ± 0.011 0.5
Engell et al. (2017) 1986–2018 ML 0.58 L
Papaioannou et al. (2018) 1997–2013 Empirical 0.65 L
Lavasa et al. (2021) 1988–2013 ML 0.69 ± 0.04 0.75 ± 0.05
Aminalragia-Giamini et al. (2021) 1988–2013 ML L 0.79
Sadykov et al. (2021) 2010–2019 ML 0.434 ± 0.046 0.821 ± 0.003

Note. HSS—Heidke skill score; TSS—true skill statistics; ML—machine learning.
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Figure 9. Variation in skills such as TSS, HSS, GSS, and MCC with respect to increasing the classification threshold for (a) TSF, (b) STSF, and (c) BOSS models on
the test set. The optimal threshold value for each model is inset in the plot.
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