
1. Introduction
Space weather is now recognized to have important deleterious effects on human health and technology 
(Chiarini, 2013; Schrijver et al., 2014, 2015; Tobiska et al., 2015; Zheng et al., 2019). Increasing efforts are 
devoted to various models for forecasting the occurrence and magnitudes of solar transient events such as 
flares (Barnes et al., 2016; Bobra & Couvidat, 2015), coronal mass ejections (CMEs) (Bobra & Ilonidis, 2016; 
Falconer et al., 2014; Verbeke et al., 2019), and solar energetic particle (SEP) events (Marsh et al., 2015; 
Núñez et al., 2019; Papaioannou et al., 2018; Richardson et al., 2018; Zhong et al., 2019), that are the prin-
cipal drivers of most space weather (Schrijver & Siscoe, 2010). The forecast models are usually based on 
either statistical compilations of archival solar events, assumed physical models, or both. The verification 
of any forecast model is its application to historical event databases. The goal then becomes to show via a 
quantitative metric the merits of the forecast model.

Forecast verification is also important for terrestrial weather forecast models. As reviewed by Casati et al.
(2008), the field faces challenges to define verification procedures that address user requirements dealing 
with spatial structures and the presence of features in forecast fields. Ensemble forecasts have motivated 
the development of new verification methods for probability distribution functions, and the incorporation 
of operational feedback into forecast models and correct interpretation of verification statistics are active 
areas of research. Work on forecast verification methods is the topic of a number of ongoing workshops, 
conferences, and demonstration projects.

Research on extreme events, driven by their socio-economic impacts, is a particular focus of the commu-
nity. Understanding, modeling, and predicting weather and climate extremes is the goal of the Extremes 
Grand Challenge of the World Climate Research Program (Sillman et al., 2017). Scientific challenges are to 
understand the large-scale drivers and regional feedback processes to improve prediction methods and to 
assess the model performances. Two classes of extreme events are divided by time scales of short duration 
(<3 days, e.g., tornados, lightning, storm surges, cyclones, and anticyclones) and long duration (>3 days, 
e.g., droughts, heatwaves, floods, and increased wildfire seasons). The urgent need is for better observations 
and model evaluation tools specifically suited to the analysis of extremes. Evaluation of model ensembles 
and their properties or specific features, such as mean or variance, is a basic concern. The public attention 
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paid to catastrophic extreme event forecasts and the restriction of evalu-
ation to subsets of available forecasts can mean that skillful forecasts are 
unfairly discredited (the forecaster's dilemma, Lerch et al., 2017). How 
one might apply scoring rules to probabilistic forecasts when the par-
ticular emphasis is placed on extreme events while retaining propriety 
is a fundamental question. From the perspective of proper scoring rules, 
restricting the outcome space corresponds to the multiplication of a scor-
ing rule by an indicator weight function, which renders any proper score 
improper. The quest for terrestrial weather (and other) communities is to 
find suitably weighted scoring rules for probabilistic models that allow 
for emphasis on extreme events.

While extreme climatological events have continued to increase over the 
past several decades, extreme space weather events have trended in the 
opposite direction, toward fewer and weaker extreme events. Solar cycle 
(SC) 24, which ended about December 2019, was characterized by lower 

sunspot numbers (SSNs) than in SC 23 (1996–2008), which was lower than those of SC 22 (Ahluwalia, 2019). 
A lower SC 24 heliospheric pressure resulted in slower CMEs of decreased magnetic energy and geoeffec-
tiveness (Gopalswamy et al., 2020). SEP ground level events (GLEs) of SC 24 decreased to 2 from 16 in SC 23, 
and Dst ≤ −100 nT geomagnetic storms to 22 from 86. A forecast for the maximum smoothed monthly SSN 
of SC 25 (Svalgaard, 2020) is 128 ± 10, only slightly higher than the SC 24 maximum of 116. A phenomeno-
logical model prediction of McIntosh et al. (2020), however, yields a preliminary value of 233, with a 68% 
confidence range of 204–254, far above the Solar Cycle 25 Prediction Panel consensus maximum of 95–130.

In this work, we briefly review the standard tools and then suggest a new method to incorporate an event 
intensity of user importance into a forecast. The intensity-based and standard number-based forecasts are 
contrasted within the context of existing verification methods.

Space weather forecasts can be done either as continuous predictands, that is, probabilistic forecasts, or as 
categorical forecasts of discrete predictands (Stephenson, 2000; Wilks, 2006). The simplest example of the 
latter are forecasts of the occurrence or absence of a particular event for a specified time. The forecast can 
then be compared with the subsequent observation to determine whether the event forecast was correct or 
not. Contingency tables in a 2 × 2 format are a standard method of evaluating space weather event fore-
casts (Wilks, 2006), such as the occurrence of solar energetic particle (SEP) events (Zhong et al., 2019) or 
geomagnetic storms (Jackson et al., 2019). Table 1 shows the basic format where a is the number of events 
both forecasted and observed (hits), b is the number forecasted but not observed (false forecasts), c is the 
number observed but not forecasted (misses), d is the number of correctly forecasted null events, and the 
total n = a + b + c + d.

Several basic measures of the model are probability of detection




,aPOD
a c (1)

false-alarm ratio




,bFAR
a b

 (2)

and bias





,a bB

a c
 (3)

which is 1 when the forecasted events equal the observed events. These and other measures are defined and 
discussed in Chapter 7 of Wilks (2006).
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Observed

Yes No

Forecast Yes a b a + b

No c d c + d

a + c b + d n

Note. a = number of events both forecasted and observed. b = number of 
events forecasted but not observed. c = number of events not forecasted 
but observed. d = number of events not forecasted and not observed. n = 
total number of events.

Table 1 
Basic Contingency Table for Deterministic Forecasts of a Sequence of n 
Binary Events Showing Numbers of Observed and Forecasted Events
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Skill scores are scalar measures to determine the accuracy of a given model relative to some reference model 
(Barnes et al., 2016; Wilks, 2006). A commonly used measure of relative model accuracy based on contin-
gency tables is the Heidke skill score (HSS), which can be written as:




    
2( ) ,

( )( ) ( )( )
ad bcHSS

a c c d a b b d (4)

when the model is compared to random forecasts with the same probabilities of forecasted events (a + b)/n 
and of observed events (a + c)/n as in the model (Wilks, 2006).

A second kind of skill score, the TSS, or true skill statistic, compares the model with a reference unbiased 
(B = 1) model and is given by




 
.

( )( )
ad bcTSS

a c b d (5)

An advantage of the TSS over that of the HSS is that TSS is unchanged between model validations with differ-
ent data sets a and c, but the same PODs, whereas the HSS, in general, is different (Bloomfield et al., 2012).

The HSS and TSS serve as good quantitative scalar measures of the values of forecast models, particularly 
when competing models must be judged in selection for implementation. We have seen that these criteria 
measure accuracy relative to naive forecasts. In both cases, the measures range from one for perfect fore-
casts to 0 for random forecasts to negative values for worse than random forecasts. They are widely used 
as basic tools in space weather forecast evaluations (e.g., Barnes et al., 2016; Inceoglu et al., 2018; Zhong 
et al., 2019).

The TSS and HSS scores reflect the relative performance of space weather models well when all observed 
events have the same intrinsic value to the user. In that case, there are no large or small events in terms of 
their space weather application, and all events are considered equally. One example is the forecasting of 
whether observed CMEs will arrive at Earth (Verbeke et al., 2019). Further, false alarms should be equal 
in their consequences to missed events. This is evident by exchanging b and c in the HSS above and noting 
that TSS is evaluated for the condition of b and c equivalency. While Equations 2 and 3 provide a conven-
ient method of model evaluations, users in space weather situations almost always differ in their tolerance 
of false alarms versus missed events, so the question is how to account for deviations from those optimal 
conditions. Mozer and Briggs (2003) addressed the problem of equivalency of b and c by developing an 
economic skill score for categorical forecasts proposed by Briggs and Ruppert (BR, private comm.) and 
generalized from the work of Thomson (2000). The basic idea is that the cost of a false positive forecast, c01, 
may not equal the cost of a false negative forecast, c10, which is captured by

 

01

01 10
.

( )
c

c c (6)

Mozer and Briggs (2003) plotted their BR skill scores for a solar wind shock forecast model for 0.1 < θ < 0.9.

In the terrestrial weather community, Murphy (1985) considered a general model of Wj degrees of adverse 
weather for which the user can take Pi levels of protection, where j and i range from 1 (completely adverse 
weather and full protection) to N (no adverse weather and no protection). For combinations of i > j, a loss is 
incurred, and for j > i, an additional cost results. Based on several assumptions about the actions taken, he 
derived expressions for the expected expenses incurred for imperfect, climatological, and perfect forecasts. 
For the reduced case of N = 2, of interest here, Wilks (2001) proposed a forecast evaluation to address the 
cost/loss ratio problem, in which a decision-maker can either pay a cost C to protect against effects of ad-
verse weather or suffer a loss L when no protection is taken and adverse weather occurs. He defined a Value 
Score VS in terms of C/L and a, b, and c of Table 1, interpreted as the expected economic value of forecasts 
as a fraction of the value of perfect forecasts relative to climatological forecasts.

In the space weather community, Park et al. (2017) addressed the cost/loss problem for forecasts of three 
classes of solar flares and defined a Value Score with a formula identical to that of Wilks (2001). Owens 
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and Riley (2017) compared deterministic versions of an MHD model of Vsw with large ensembles of Vsw 
produced by the same model. They evaluated the two methods using the cost/loss model of Murphy (1985) 
where the user takes an action with cost C or risks a loss L for various threshold values of Vsw. The use of 
model ensembles and cost/loss analysis has been lauded by Henley and Pope (2017) as welcome adaptations 
of terrestrial weather forecasting techniques to space weather forecasting. These models are concerned with 
the consequences of particular responses to forecasts, but continue to distinguish only between individual 
cases of forecasts and no forecasts.

A more important skill score limitation is that of event size equivalency, in which all events are treated as 
being of equal importance, or size, to the user of evaluated models. Two extreme situations challenge that 
concept, the first being one of two events with huge differences in size or magnitude. When the forecasted 
parameter can range over orders of magnitude, a small event barely above the threshold is equivalent in the 
skill scores to another larger by orders of magnitude, in that both may fall in the same category of Table 1. 
At least for those two hypothetical events, the model that fails to forecast the huge event while correctly 
forecasting a threshold event merits the same skill score contribution as the one that forecasts the former 
and misses the latter because both events are given the same weight.

The second extreme situation is one in which models must distinguish between two nearly identical events 
near the forecast event threshold. For a forecast event threshold of say 100 units, the model forecasting a 
105-unit event but not a 98-unit event is deemed superior to a model missing the first but forecasting the 
second. Thus, forecast models based on thresholds can fail to provide event size resolution when needed 
and impose it when it is essentially useless. These threshold-based issues are often not present in some 
terrestrial weather forecasts, where all storms or tornados might be considered equivalent and count the 
same. It then does not matter which tornado was missed or falsely forecasted—they are all the same for an 
evaluation score.

2. Size Distributions and Weighting of Events
It is important to consider the parent population of events to be forecasted by a given model. In space 
weather, many event differential size distributions, such as those of SEP peak intensities Ip (Belov 
et al., 2007; Cliver & D'Huys, 2018) and solar flares (Aschwanden, 2019; Cliver & D'Huys, 2018; Ryan 
et al., 2016) are described by power laws, but the power-law fits, or even the appropriate fitting functions, 
can be misleading when based only on graphical methods employed with small sample sizes (Cliver & 
D'Huys, 2018; Verbeeck et al., 2019). The functional uncertainty can become acute when events in the 
distribution tail dominate a radiation model (Jiggens et  al.,  2018). Other space weather distributions, 
such as geomagnetic Dst, are described by exponentials (Echer et  al.,  2011) or by Weibull functions 
(Gopalswamy, 2017).

In each of these distributions, there are many small events, each with little user impact, and a few big 
events, each with major impacts. Depending on the application, the range of forecasted variable intensities 
can be several orders of magnitude, almost universal for space weather variables. The forecast threshold 
should be set to include the many small events, which cumulatively may have an impact comparable to 
or exceeding that of the few large events. On the other hand, the included small events may play only a 
cumulative minor role compared to the impacts of the few large events. Providing a resolution to this 
uncertainty is the motivation here for exploring a new system of event-weighted variables. We have seen 
above that the standard skill scores based only on numbers of event detections fail to capture that size 
importance.

To illustrate our event-weighted evaluation, we need a forecast parameter with a significantly declining size 
distribution, although not necessarily a power law. Next is a set of event data and several competing forecast 
models which can be evaluated with standard skill scores in addition to our weighted method. We note that 
many published forecast model evaluations not only do not list their input observations, which may be too 
extensive for publication but give only their skill scores without the input contingency tables (e.g., Zhong 
et al., 2019).
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3. Data Analysis: The Proton Prediction System
The proton prediction system (PPS) (Kahler et al., 2007, 2017) provides de-
terministic forecasts of E > 10 MeV proton events observed with the GOES 
energetic proton sensors for peak intensities Ip of ≥ 10 proton flux units 
(pfu, 1 p cm−2 s−1 sr−1), using solar flare longitudes and either X-ray flare or 
radio burst observations as forecast model inputs. The PPS model first cal-
culates SEP time-intensity profiles in 18 integral energy ranges to estimate 
a forecasted peak intensity in each range and then produces a yes/no fore-
cast based on whether that intensity exceeds a specified threshold of 10 pfu. 
It does not forecast the calculated peak intensity. After Kahler et al. (2007) 
validated PPS for E > 10 MeV protons with GOES ≥ M5 flare peak flux and 
flare fluence (flux × rise time) inputs, Kahler et al. (2017) ( KWL17) extend-
ed the PPS validation to E > 50 MeV protons, an energy range considered 
more important for space weather applications. As forecast model test in-
puts, KWL17 used associated ≥ M5 X-ray flare fluences and three different 
groups of peak fluxes of 8800-MHz radio bursts: (1) 8800-MHz bursts ac-
companied by ≥ M5 flares; (2) all 8800-MHz bursts > 500 solar flux units 
(sfu) and known longitude sources; and (3) all 8800-MHz bursts > 5,000 
sfu with known longitude sources. Contingency tables for all four input 
groups to the PPS are given in Table 2 of KWL17. Their PPS results will be 
the basis of our examples of weighting events for skill score evaluations. 
We exclude the fourth group of all 8800-MHz radio bursts with peak fluxes 
> 5,000 sfu and known flare longitudes, which was limited to 81 flares and 
produced the worst results of the four groups. KWL17 focused on a target 
population of 67 10-pfu threshold E > 50 MeV SEP events over the period 
1986 to 2016, and, following the example of Kahler et al. (2007), included a 
separate population of 71 SEP events with Ip between 1 and 10 pfu.

After compiling contingency tables for the Ip ≥ 10 pfu events with the 
four different PPS input groups and computing the resulting HSS and 
TSS scores, KWL17 considered an alternative situation in which the fore-
casted smaller (1 pfu < Ip < 10-pfu) events are also counted as hits. This 
increased the number a and decreased b of their contingency tables by 
the same number of small events, with resulting increases in the skill 
scores. This was equivalent to validating PPS against a smaller defined 
event threshold, but they left c and d unchanged in each contingency 
table before recalculating TSS and HSS. With a lower threshold, however, 
both a and c will increase and b and d decrease by the same numbers. 
Properly accounting for accompanying changes in c and d may have pro-
duced decreases of their associated skill scores, rather than the increases 
they reported. One can find an optimum forecast model performance by 
varying the threshold size, but this results in a model which may well be 
unsatisfactory for the model user. Here we seek an alternative basis for 
deciding on the forecast value of a model and in particular whether there 
is a way to evaluate a model for space weather forecasting based on the 
calculated importance of observed events. We want to make these new 
evaluations within the context of skill scores using the 2 × 2 contingen-
cy Table 1. Despite its flaws detailed above, the table has four categories 
readily interpretable in terms of forecasts and observations and serves as 
input into the well defined standard skill scores.

Table 2 lists the 138 KWL17 SEP events consisting of 67 ≥  10 pfu and 
71 small (1 pfu < Ip < 10 pfu) observed SEP events and their associated 
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Peak UT Ip
> M5 
flare > M5 flare 8800 MHz

Date Time (p/cm2 s sr) Only & 8800 MHz > 500 sfu

2/7/1986 17:50 14.8 c a a

2/14/1986 17:45 9.35 e b b

5/4/1986 12:55 1.53 e e e

1/3/1988 8:35 6.07 e e e

3/25/1988 22:35 3.63 e e e

11/8/1988 21:05 1.73 e e e

12/15/1988 3:00 1.71 e e e

12/16/1988 22:50 2.89 d e e

3/12/1989 19:25 183 c a a

3/13/1989 7:45 10 c c c

3/18/1989 8:15 10.3 a a a

3/23/1989 21:00 2.36 d b b

6/18/1989 17:10 3.52 e e e

7/25/1989 10:40 17.5 c c c

8/13/1989 4:40 557 a a a

8/23/1989 21:25 1.27 e e e

9/30/1989 6:20 5,650 a a a

10/20/1989 10:20 5,150 c a a

10/22/1989 23:30 700 a a a

10/24/1989 23:00 500 a a a

10/29/1989 10:00 7 e e e

11/15/1989 8:30 12.5 a a a

12/1/1989 10:45 42.4 a a a

3/19/1990 16:55 5.68 b b e

4/28/1990 17:20 3.81 e e e

5/22/1990 5:00 61.5 a a a

5/24/1990 22:00 43.4 a a a

7/26/1990 7:30 1.23 e e e

8/1/1990 17:05 1.59 e e e

3/24/1991 3:50 2,510 c c c

5/13/1991 4:40 24.6 c a c

6/8/1991 17:30 23.2 c c c

6/11/1991 13:50 269 a a a

6/15/1991 13:00 153 a a a

6/30/1991 17:15 1.84 e e e

7/1/1991 20:55 2.5 d e e

7/8/1991 6:45 4.79 e e e

10/30/1991 11:10 9.93 d b b

3/8/1992 9:10 2.18 e e e

Table 2 
E > 50 MeV SEP Events and PPS Forecast Contingency Table Elements for 
Three Input Groups of KWL17
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PPS forecasts. The first three columns give event dates, approximate peak 
times, and Ip. The last three columns give the event classifications of Ta-
ble 1 using the three model inputs of KWL17. For each input all Ip ≥ 10 
pfu events are either a, correctly forecasted (hits); or c, not forecasted 
(misses). Each small (1 pfu < Ip < 10 pfu) event is b, forecasted but not 
observed as an Ip ≥ 10-pfu event (a subset of all false alarms); d, forecasted 
as no event and not observed as a 10-pfu event (a subset of all correct null 
forecasts); or e, no forecast was made and not observed as a 10-pfu event. 
The last group, e, results from no PPS runs due to lack of suitable flare or 
radio burst events. It lies outside the context of Table 1 but merits con-
sideration, as discussed below. Events are shown in Figures 1, 2, and 3, 
which give a synoptic view of the SEP peak-intensity power-law size dis-
tribution. Some of the X-ray fluence values of Figure 1 were computed 
from incorrect flare onset and end times (Swalwell et al., 2018), but that 
result is not relevant to our exploration of a new scoring methodology.

In this reevaluation of skill scores, we want to provide a weighting to 
events that measures the importance of each event to the user. In the 
case of SEP events, we assume that it is not event numbers, but the total 
amount of radiation in those events that the user wants accurately fore-
casted. The event fluence, the time-integrated particle intensity of inter-
est, has been shown to scale with the event Ip (Kahler & Ling, 2018), so 
each event is weighted by its value of Ip as a measure of its relative im-
portance. As evident in the plots, power-law size distributions may confer 
approximately equal weights to the few large events and the many small 
events. The goal is to maintain the format of Table 1 and the original val-
ue of n with new weighted events a', b', c', and d' rather than the original 
event numbers and then calculate new skill scores with those weighted 
events.

We first adhere to the original concept of including only observed events 
above the 10-pfu threshold. The relative sums of event intensities Ci of 
unforecasted events c (events in blue to the right of the dashed line in 
Figures 1–3) and Ai of the forecasted events a (subset events in yellow 
to the right of the dashed line in Figures  1–3) provide the basis of re-
vised weighted values a' = (a + c) × Ai/(Ai + Ci) and c' = (a + c) × Ci/
(Ai + Ci), keeping b and d fixed and a' + c' = a+c. The chief weakness 
of this scheme is that we can't assign intensities to elements b and d, 
consisting of unobserved events, so at this point, we do not change b or d. 
The original table event numbers a to d still provide guidance in terms of 
how much SEP intensity is observed and not observed, and n is kept con-
stant, so a' + b + c' + d = a + b + c + d = n. Figure 4 shows a schematic 
contingency table with the intensity exchanges we discuss here indicated 
with the red letters and arrow.

We next deal with the second population of 71 small (1 pfu < Ip < 10 pfu) 
observed events, which exceeds the total number of 67 Ip ≥ 10 pfu events 
in our data set. They are shown in the two bins to the left of the dashed 
lines of Figures 1–3 and fall into three categories, the first being those 
forecasted by PPS as Ip > 10 pfu events, but observed as small events and 
shown in yellow in Figures 1–3, a subset of the number b in Figure 1, with 
total intensities Bi. The second category is events observed with a forecast 
of no event, a subset of group d of Table 1 with total intensities Di. The 
third category is events for which small or no X-ray flares or 8800 MHz 
bursts precluded any PPS forecast and are hence excluded from all groups 

KAHLER AND DARSEY

10.1029/2020SW002604

6 of 14

Table 2 
Continued

Peak UT Ip
> M5 
flare > M5 flare 8800 MHz

Date Time (p/cm2 s sr) Only & 8800 MHz > 500 sfu

5/9/1992 20:35 9.18 e e e

6/25/1992 22:35 36.6 a a a

10/31/1992 6:50 210 a a a

11/2/1992 5:50 312 a a a

3/4/1993 14:00 2.45 e e e

3/12/1993 20:10 4.71 b b e

9/25/1993 5:40 1.34 e e e

2/20/1994 6:00 1.51 e e e

9/3/1994 9:10 37 c c c

9/4/1994 9:05 16.3 c c c

9/5/1994 10:15 11.2 c c c

9/6/1994 9:45 58.3 c c c

11/4/1997 9:20 9.98 d b e

11/6/1997 18:25 115 a a a

4/21/1998 13:25 103 c c c

5/2/1998 15:20 24.3 c a a

5/6/1998 8:55 19.3 a a a

8/25/1998 1:50 10.9 c c c

9/30/1998 19:55 30.3 c c c

11/14/1998 9:50 27.9 c c c

6/2/1999 7:30 2.24 e e e

2/18/2000 10:15 1.26 e e e

6/10/2000 18:10 6.25 d b e

7/15/2000 9:35 1,670 c a a

7/22/2000 13:10 1.57 e e e

9/12/2000 22:50 1.95 e e e

10/16/2000 10:05 1.44 e e e

11/9/2000 3:40 1880 a a c

11/24/2000 18:00 4.98 e b e

11/26/2000 20:10 19 a a a

1/28/2001 21:05 1.89 e e e

4/3/2001 7:45 53.5 c c c

4/9/2001 19:45 1.2 d b e

4/10/2001 14:55 3.69 d b e

4/12/2001 17:50 5.75 b b e

4/15/2001 15:40 275 a a a

4/18/2001 6:40 40 c c c

5/20/2001 11:30 1.52 e e e

6/15/2001 17:30 1.7 d e e

8/16/2001 3:55 144 c c c



Space Weather

of Table 1. We let the total intensities of that group be Ei. The categories 
of Bi, Di, and Ei are shown in black letters in Figure 4. The basic question 
is how to reward or penalize the forecast model for forecasting or missing 
small events. We want a clear separation of all observed intensities into 
the a (forecasted) and c (missed) categories of Figure 4 while maintaining 
the a to d elements format of Table 1.

We treat the peak intensities of the three categories of small events in the 
following ad hoc way. Bi + Ai form the total forecasted SEP intensities. 
Initial weighted element a' is replaced with a” = a' × (Ai + Bi)/Ai to keep 
a” weighted by the ratio of the total forecasted intensities to the correctly 
forecasted intensities. To keep a new b' + a” the same normalized value 
of a' + b, we make b' = b − a' × (Bi/Ai). We treat the total intensities of 
elements c' and d similarly, except for the additional step of including in-
tensities of the third category of unforecasted small events, defined above 
as Ei, in the new element c”. Thus c” = c' × (Ci + Di + Ei)/Ci, and d' = d 
− c' × (Di + Ei)/Ci. While this procedure of dealing with small events 
is somewhat arbitrary, it does accomplish several goals. The sums of all 
forecasted intensities, Ai  +  Bi, are retained in the a” and b' elements, 
and a” + b' = a' + b. Similarly, the sums of all unforecasted intensities, 
Ci + Di + Ei are retained in the new c” and d' elements and c” + d' = c' 
+ d. The Ei term is awkward because, being neither a forecasted nor an 
above threshold event, it was not contained in the original contingency 
matrix. Adding it to the total intensity of c” penalizes the model for its 
failure to forecast the associated small events composing Ei. In our in-
tensity-weighted redistribution, a” + b' + c” + d' = a + b + c + d = n is 
conserved. Finally, we would emphasize that if only large events are of 
concern to the user, reevaluation of the contingency table for small events 
Bi, Di, and Ei may be ignored because their sum is 266.95 pfu, two orders 
of magnitude less than Ai + Ci = 28,265.35 pfu. That imbalance may not 
be the case for other applications, however.

In Table  3 we compare the original event number-based contingency 
elements of the three PPS forecast inputs of KWL17 with their revised 
values based on sums of event intensities. We compare the HSS and TSS 
scores along with the POD, which now measures the fraction of all SEP 
intensity forecasted by the model, and the FAR.

The intensity-based scores of the first group of ≥M5 flares are only slight-
ly improved over the number-based group, probably because the fore-
casted (33) and missed (34) events are evenly divided and a” and c” are 
only slightly shifted from a and c. The results for both 8800-MHz groups 
are very different, however, showing large adjustments in a” and c”, with 
corresponding large increases in HSS, TSS, and POD. The large number 
of false alarms b = 197 and 208, for those cases results in only slight de-
clines in the intensity-based FAR. An initial assessment of the identical 
number-based a = 44 and b = 23 values of the two 8800-MHz models 
suggests little choice in their performance, but the intensity-based skill 
scores show that the 8800-MHz and > M5 flare input outperforms the 
8800-MHz ≥ 500 sfu input.

Because of their small sizes, the 71 small (1 < Ip < 10 pfu) events of this 
study play only a minimal role in the intensity weightings above. How-
ever, we can ask how they compared with the many runs of the PPS that 
produced correctly forecasted null events, the group d of Table 1. Those 
d numbers were 603, 417, and 356 for the three models shown in Table 3. 
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Table 2 
Continued

Peak UT Ip
> M5 
flare > M5 flare 8800 MHz

Date Time (p/cm2 s sr) Only & 8800 MHz > 500 sfu

9/25/2001 22:30 273 c a a

10/2/2001 8:45 24.5 c c c

10/22/2001 21:05 2.5 d e e

11/6/2001 2:20 2,120 c a a

11/23/2001 12:25 162 a a a

12/26/2001 7:30 180 a a a

4/21/2002 10:25 208 a a a

8/22/2002 5:10 5.98 d b e

8/24/2002 2:50 76.2 a a a

11/9/2002 23:25 1.37 e e e

11/10/2002 5:40 1.46 e e e

5/31/2003 5:20 2.92 d b e

10/26/2003 19:30 10.3 a c a

10/27/2003 3:20 8 e b e

10/29/2003 1:00 1630 a a a

11/2/2003 22:10 153 a a a

11/5/2003 6:10 9.75 b b e

7/26/2004 22:50 1.86 e e e

9/19/2004 20:10 2.5 e e e

11/1/2004 7:00 5.64 e e e

11/7/2004 23:25 4.93 d b e

11/10/2004 10:20 13.2 a a a

1/16/2005 17:10 11 c a a

1/17/2005 17:00 350 a a a

1/20/2005 7:10 1070 a a a

6/16/2005 23:50 7.05 e e e

7/15/2005 4:50 1.75 e b e

8/23/2005 2:35 3.95 b b e

9/10/2005 2:50 50.6 c c c

9/14/2005 10:10 1.47 e b e

12/7/2006 18:30 103 c c c

12/13/2006 5:30 167 a a a

12/15/2006 0:15 11.6 a a a

6/7/2011 10:25 14.4 c c a

8/4/2011 8:05 8.43 d b e

8/9/2011 8:55 8.65 b b e

9/7/2011 5:00 1.61 d b e

1/23/2012 15:30 76.18 c a a

1/28/2012 1:00 47.2 a a a

3/7/2012 15:25 299.6 c c c
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The 71 small events might be expected to show up predominately in group 
b of false positives or of d, the large number of true negatives. However, 
we find corresponding totals of only 28, 27, and 3 of the 71 events in the 
b and d groups of Table 3. We note that KWL17 erroneously attributed 22 
small events to group b for the input of 8800-MHz bursts > 500 sfu, where 
the correct number is 3, and 68 of the 71 small events were outside any 
forecasted group. Thus, in each model input, no forecasts were made for 
the majority of the small SEP events, so those events, with total intensi-
ties Ei (Figure 4) lie outside their associated contingency tables.

4. Extreme Intensity Variations with Fixed Event 
Numbers
We discussed in Section 1 the extreme condition in which the same skill 
scores result for two model inputs identical except that one forecasts a 
large event and misses a small one and the other input has the reverse 
forecast. As a demonstration of the effect of total intensity on our mod-
ified skill scores using our E  >  50  MeV SEP events, we construct two 
extreme outcomes for each of our three inputs of Table 3 and Figures 1–3. 
We keep the same numbers of observed and missed events, a and c, given 
in Table 3, but from the 67 events of Ip > 10 pfu we first assume the worst 
case that a consists of the smallest Ip events and c the largest Ip events. 
Then we assume the reverse best case that a consists of the largest Ip 
events and c the smallest. Here we ignore the population of Ip < 10 pfu 
events, so the replacement of a and c numbers with their associated total 
intensities a' and c' varies only those parameters, not b and d. Table  4 
compares the skill scores with the two extreme intensity configurations 
for each of the three inputs. Figures 5 and 6 contrast the intensity distri-
butions for the worst and best cases of the example 8800-MHz and ≥ M5 
flare input model of the PPS.

We find that the HSS and TSS scores turn negative in each of the worst 
cases, but stay positive for the best cases. POD values depend only on the 
varied a' and c' values, so are driven close to 0 and 1 for the worst and best 
cases. Variations of the FAR = a'/(a' + b) are limited by the large fixed 

values of b in each case. These contrived cases demonstrate that when space weather models are evaluated 
without consideration of the sizes or weightings of the individual events of the a and c elements of the con-
tingency table, evaluation information is ignored.

5. Discussion
When the population of all space weather events of a particular type are of equal sizes or impacts, then 
only the numbers of forecasted and missed events are of consequence to the user. We note that Lopez 
et  al.  (2007) approached this ideal in testing various models forecasting whether the geosynchronous 
GOES-10 was inside or outside the magnetopause during a two-day disturbed period. They treated each of 
the total 2,880 min as individual events of equal weight in their contingency table to compare the forecasted 
and observed location of the GOES-10. However, most situations are defined by many small events and few 
large events, likely in the form of a power law (Aschwanden, 2019) or lognormal distribution (Verbeeck 
et al., 2019) for the entire population. For practical forecasting and user value, a size threshold is invoked, 
and this leads to the issue addressed here, of differentiating numbers of events from their total intensities 
or impacts. The standard skill scores, based solely on numbers of events, give some first-order guidance for 
evaluating forecast models, but the selected input variables of the models may well be biased toward selec-
tions of events of different sizes, and that is what we try to mitigate with our intensity-based skill scores.
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Table 2 
Continued

Peak UT Ip
> M5 
flare > M5 flare 8800 MHz

Date Time (p/cm2 s sr) Only & 8800 MHz > 500 sfu

3/13/2012 18:40 24.09 a a a

5/17/2012 3:00 78.29 c a a

7/7/2012 7:25 1.83 d b e

7/9/2012 1:30 3.31 d b e

7/19/2012 12:20 5.17 b b e

7/23/2012 22:15 3.24 e e e

4/11/2013 14:10 8.52 d e e

5/22/2013 22:30 26.4 c c c

9/30/2013 7:15 1.83 e e e

12/28/2013 22:15 1.56 e e e

1/6/2014 10:25 11.9 c c c

1/8/2014 6:00 48.09 c a a

2/20/2014 8:45 3.59 e e e

2/25/2014 21:05 3.27 d e e

2/28/2014 9:00 1.28 e e e

4/18/2014 14:55 2.44 d b e

9/3/2014 13:50 1.69 e e e

9/11/2014 4:25 4.47 d b e

10/29/2015 6:15 5.71 e e e

Note. a, b, c, and d elements are shown in Table 1 and Figure 4. Elements 
e are events for which no forecast was made and no > 10 pfu event was 
observed.
Abbreviations: PPS, proton prediction system; SEP, solar energetic 
particles.
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We have kept to the contingency format of Table 1, for which each el-
ement is well defined in terms of the observations and forecasts. This 
is advantageous for using the redefined event outcomes in the familiar 
skill score values and definitions. The primary drawback of our scheme 
of replacing numbers of events with their intensities is the asymmetry 
between known intensities of observed events (elements a and c) and 
undefined intensities of the false positive forecasts (element b). For the 
large SEP events, we elected to keep the redefined a' + c' = a + c, while re-
taining unchanged the values of b and d. For the small events, we reward 
the model forecasts by moving those event intensities Bi from the false 
negatives of b to a' (Figure 4) and reducing b by a comparable amount. 
Similarly, we have penalized the forecasts by moving observed intensities 
Di from the d element to the total intensities of missed events of c'. To 
account for the many small events for which no model forecast was done, 
we further penalize the models by adding those intensities Ei to element 
c' and decrease element d by the same amount. Better mathematical pro-
cedures may be possible, but each step has resulted in better or worse 
skill scores (Table 3) to reflect the inclusion of small events in the models.

The three PPS model inputs of KWL17 were reevaluated with tradition-
al skill scores after taking account of both the >10 pfu and the 1 to 10 
pfu populations of observed SEP events to account for intensities of all 
events, above and below the model thresholds. The revised skill scores 
(Table 3) better reflected the merits of the models, in particular, the dif-
ference between the two inputs based on 8800 MHz radio bursts, which 
appeared quite similar in their event number forecasts. We then carried 
out an exercise to look for the extreme limits of the inputs by assuming 
that forecasted events were only the worst-case smallest and then only 
the best-case largest of the same 67 targets SEP events. Skill score results 
(Table 4) were dramatically different, as expected.

We suggest that our intensity-based evaluation scheme could easily be ap-
plied to other forecast models using the binary outcomes of Table 1. The 
primary challenge would be to determine a reasonable method of weight-
ing the forecast event variables, and that may mean incorporating a user 
impact in place of or combined with the size value of the predictand. One 
could expand beyond the simple fixed cost and loss (C and L) values of pre-
vious work (Mozer & Briggs, 2003; Owens & Riley, 2017; Park et al., 2017; 
Wilks, 2001) to assign economic values dependent on event intensities. The 
qualitative test of the method is then whether the chosen weighting scheme 
appears to perform better than the standard event number-based method at 
differentiating model outcomes, as we have shown in Table 3 for the PPS.

Perhaps more important is to seek and test alternative analytic meth-
ods to our ad hoc procedure indicated in Figure 4. We emphasize again 
that this work is only an exploration, whose robustness and utility re-
main undefined. The utility of POD and FAR and the sensitivity to bias 
B and event rate are also unknown. A comparison of Receiver Operating 
Characteristic (ROC; Wilks,  2006, chapter 7) diagrams could furnish a 
clear comparison of the merits of intensity-based versus number-based 
versions of a given model. The motivation here is that valuable observa-
tional intensity or size information is discarded when we reduce the data 
down to categorical event numbers to be employed in contingency tables 
(Table  1). The scheme here uses the previously discarded information 
while retaining the simplicity of scalar outputs of the standard HSS and 
TSS evaluation tools.
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Figure 1. Size distribution of SEP events of KWL17 in units of pfu for 
the PPS model input of ≥ M5 peak flare fluxes. The pink bar on the left 
indicates the total number of forecasted false alarms of ≥ 10 pfu events 
with the ≥ M5 solar X-ray flare input option of the PPS. Numbers of 
observed events in each half decade >1 pfu are shown in blue. Dashed 
vertical line shows the 10-pfu threshold for the PPS forecast model. Yellow 
areas show the subset of events forecasted as ≥ 10 pfu events; those left of 
the dashed line are a subpopulation of the false positive group b and those 
to the right constitute all of group a. Blue events left of the dashed line 
are small events, which are not included in the number-based elements of 
Table 3 because no PPS forecast was made. PPS, proton prediction system; 
SEP, solar energetic particles.

Figure 2. The same format as Figure 1 but for the PPS input option of 
8800-MHz bursts with associated ≥ M5 solar X-ray flares. PPS, proton 
prediction system.
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A situation faced in terrestrial weather forecasting is an emphasis on extreme events, in which one selects 
for evaluating forecast models only forecasts of the very largest events with serious economic consequences. 
This selectivity, at the expense of overall forecasting merit, is the forecaster's dilemma, discussed in the In-
troduction. It can, however, lead to the discredit of models that perform well outside the extreme range and/
or support for models that systematically overforecast. For PPS forecasts we propose here to weight events 
with intensities Ip, but an alternative method would be simply to raise the forecast threshold for unweight-
ed events, say to 1,000 pfu, keeping to the deterministic forecast format of Table 1. An increased threshold 
might be equivalent or even preferred if the impacts of large events were sufficiently greater than those of 
sub-threshold events and an impact difference among the range of larger events were not significant. We 
have already seen in Section 3 that the 71 small (<10) SEP events of the PPS study had a minimal impact on 
the skill scores of models with intensity weightings. In situations with different event weighting schemes 
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Figure 3. The same format as Figure 1 but for > 500 sfu 8800-MHz bursts.

Figure 4. Contingency table showing original locations of SEP intensities. Sums of large events are Ai and Ci, in red 
font and sums of minor events are Bi, Di, and Ei. The first step (red arrow) is only to weight new elements a' and c' in 
proportion to their intensities Ai and Ci, with a' + c' (not shown) = a + c. In the next step (black arrows) the additional 
weighting of a' with Bi reflects the successful model forecasting of events with small intensities. Similarly, the weighting 
of c' with Di and Ei reflects the model failure to forecast events with those SEP intensities. The result is increased a” and 
c” and decreased b' and d', but a” + b' + c” + d' = a + b + c + d. SEP, solar energetic particles.
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reflecting more equity of impact among events of various sizes, and with flatter parent size distributions, 
selecting a higher event-size threshold could on the other hand lead to degraded skill scores failing to char-
acterize true model values for forecasting the smaller but still significant events. The variation of event 
weighting schemes and associated size thresholds provides a new parameter space for exploring alternative 
constructions of deterministic forecast models.
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Solar variable Forecast Observed Not observed HSS TSS POD FAR

Number-based Yes 33 64 0.33 0.40 0.49 0.66

 ≥M5 flares No 34 603

Intensity-based Yes 35.58 63.90 0.36 0.43 0.53 0.64

 ≥M5 flares No 32.05 602.47

Number-based Yes 44 197 0.16 0.34 0.66 0.82

8800-MHz &M5 No 23 417

Intensity-based Yes 58.71 196.67 0.25 0.55 0.87 0.77

8800-MHz &M5 No 8.92 416.70

Number-based Yes 44 208 0.13 0.29 0.66 0.83

8800-MHz > 500 No 23 356

Intensity-based Yes 53.98 207.95 0.19 0.43 0.80 0.79

8800-MHz > 500 No 13.65 355.42

Abbreviations: PPS, proton prediction system; SEP, solar energetic particles.

Table 3 
Comparison of Verification Measures of PPS Forecasts Based on Event Numbers versus Total SEP Intensities Ip for Three 
Input Groups of KWL17

Solar variable Forecast Observed Not observed HSS TSS POD FAR

Lowest Ip Yes 1.94 64 −0.67 −0.67 0.03 0.97

>M5 flares No 65.06 603

Highest Ip Yes 65.06 64 0.62 0.88 0.97 0.50

>M5 flares No 1.94 603

Lowest Ip Yes 4.60 197 −0.13 −0.25 0.07 0.98

8800-MHz & M5 No 62.40 417

Highest Ip Yes 62.40 197 0.27 0.61 0.93 0.76

8800-MHz & M5 No 4.60 417

Lowest Ip Yes 4.60 208 −0.15 −0.30 0.07 0.98

8800-MHz > 500 No 62.40 356

Highest Ip Yes 62.40 208 0.24 0.56 0.93 0.77

8800-MHz > 500 No 4.60 356

Abbreviations: PPS, proton prediction system; SEP, solar energetic particles.

Table 4 
Comparison of Verification Measures of PPS Forecasts Based on Extremes of Total SEP Intensities Ip for Three Input 
Groups of KWL17
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Data Availability Statement
All data and methodology for this paper are described in Sections 3 and 4 and are based on data of Table 2.
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corresponding to the largest of the 67 observed SEP events. SEP, solar energetic particles.

Acknowledgments
S. Kahler was funded by AFOSR Task 
18RVCOR122 and benefitted from 
discussion with J. Mozer. H. Darsey was 
supported by the AFRL Phillips Schol-
ars Program. The authors acknowledge 
the detailed criticisms and extensive 
suggestions of the editor and two 
reviewers of this work, which greatly 
changed the presentation.

https://doi.org/10.1016/j.asr.2019.05.046
https://doi.org/10.3847/1538-4357/ab29f4
https://doi.org/10.3847/0004-637X/829/2/89
https://doi.org/10.1007/s11207-007-9071-x
https://doi.org/10.1088/2041-8205/747/2/L41


Space Weather

Bobra, M. G., & Couvidat, S. (2015). Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. 
Astrophysical Journal, 798, 135. https://doi.org/10.1088/0004-637X/798/2/135

Bobra, M. G., & Ilonidis, S. (2016). Predicting coronal mass ejections using machine learning methods. Astrophysical Journal, 821, 127. 
https://doi.org/10.3847/0004-637X/821/2/127

Casati, B., Wilson, L. J., Stephenson, D. B., Nurmi, P., Ghelli, A., Pocernich, M., et al. (2008). Forecast verification: Current status and future 
directions. Meteorological Applications, 15, 3–18. https://doi.org/10.1002/met.52

Chiarini, P. (2013). Space weather in the EU's FP7 space theme. Journal of Space Weather and Space Climate, 3, E01. https://doi.
org/10.1051/swsc/2013054

Cliver, E. W., & D'Huys, E. (2018). Size distributions of solar proton events and their associated soft X-Ray flares: Application of the maxi-
mum likelihood estimator. Astrophysical Journal, 864, 48. https://doi.org/10.3847/1538-4357/Aad043

Echer, E., Gonzalez, W. D., & Tsurutani, B. T. (2011). Statistical studies of geomagnetic storms with peak Dst ≤ − 50nT from 1957 to 2008. 
Journal of Atmospheric and Solar-Terrestrial Physics, 73, 1454–1459. https://doi.org/10.1016/j.jastp.2011.04.021

Falconer, D. A., Moore, R. L., Barghouty, A. F., & Khazanov, I. (2014). MAG4 versus alternative techniques for forecasting active region 
flare productivity. Space Weather, 12, 306–317. https://doi.org/10.1002/2013SW001024

Gopalswamy, N. (2017). Extreme solar eruptions and their space weather consequences. In N. Buzulukova (Ed.), Extreme events in geo-
space Origins, predictability, and consequences, (pp. 37–63). Cambridge, MA: Elsevier (ISBN: 97800-12-812700-1).

Gopalswamy, N., Akiyama, S., Yashiro, S., Michalek, G., Xie, H., & Mäkelä, P. (2020). Effect of the weakened heliosphere in solar cycle 24 
on the properties of coronal mass ejections. Journal of Physics: Conference Series, 1620(012005). Bristol, UK. March 9 - 13, 2020. IOP 
Publishing. https://doi.org/10.1088/1742-6596/1620/1/012005

Henley, E. M., & Pope, E. C. D. (2017). Cost-loss analysis of ensemble solar wind forecasting: Space weather use of terrestrial weather tools. 
Space Weather, 15, 1562–1566. https://doi.org/10.1002/2017SW001758

Inceoglu, F., Jeppesen, J. H., Kongstad, P., Marcano, N. J. H., Jacobsen, R. H., & Karoff, C. (2018). Using machine learning methods to fore-
cast if solar flares will be associated with CMEs and SEPs. Astrophysical Journal, 861, 128. https://doi.org/10.3847/1538-4357/aac81e

Jackson, B. V., Yu, H. S., Buffington, A., Hick, P. P., Tokumaru, M., Fujiki, K., et al. (2019). A daily determination of BZ using the Rus-
sell-McPherron effect to forecast geomagnetic activity. Space Weather, 17, 639–652. https://doi.org/10.1029/2018SW002098

Jiggens, P., Heynderickx, D., Sandberg, I., Truscott, P., Raukunen, O., & Vainio, R. (2018). Updated model of the solar energetic proton 
environment in space. Journal of Space Weather and Space Climate, 8, A31. https://doi.org/10.1051/swsc/2018010

Kahler, S. W., Cliver, E. W., & Ling, A. G. (2007). Validating the proton prediction system (PPS). Journal of Atmospheric and Solar-Terrestrial 
Physics, 69, 43–49. https://doi.org/10.1016/j.jastp.2006.06.009

Kahler, S. W., & Ling, A. G. (2018). Relating solar energetic particle event fluences to peak intensities. Solar Physics, 293, 30. https://doi.
org/10.1007/s11207-018-1249-x

Kahler, S. W., White, S. M., & Ling, A. G. (2017). Forecasting E > 50-MeV proton events with the proton prediction system (PPS). Journal 
of Space Weather and Space Climate, 7, A27. https://doi.org/10.1051/swsc/2017025

Lerch, S., Thorarinsdottir, T. L., Ravazzolo, F., & Gneiting, T. (2017). Forecaster's dilemma: Extreme events and forecast evaluation. Statis-
tical Sciences, 32, 106. https://doi.org/10.1214/16-STS588

Lopez, R. E., Hernandez, S., Wiltberger, M., Huang, C.-L., Kepko, E. L., Spence, H., et al. (2007). Predicting magnetopause crossings at 
geosynchronous orbit during the Halloween storms. Space Weather, 5(1), S01005. https://doi.org/10.1029/2006SW000222

Marsh, M. S., Dalla, S., Dierckxsens, M., Laitinen, T., & Crosby, N. B. (2015). SPARX: A modeling system for solar energetic particle radia-
tion space weather forecasting. Space Weather, 13, 386–394. https://doi.org/10.1002/2014SW001120

McIntosh, S. W., Chapman, S., Leamon, R. J., Egeland, R., & Watkins, N. W. (2020). Overlapping magnetic activity cycles and the sunspot 
number: Forecasting sunspot cycle 25 amplitude. Solar Physics, 295, 163. https://doi.org/10.1007/s11207-020-01723-y

Mozer, J. B., & Briggs, W. M. (2003). Skill in real-time solar wind shock forecasts. Journal of Geophysical Research, 108(A6), 1262. https://
doi.org/10.1029/2003JA009827

Murphy, A. H. (1985). Decision making and the value of forecasts in a generalized model of the cost-loss ratio situation. Monthly Weather 
Review, 113(3), 362–369. https://doi.org/10.1175/1520-0493(1985)113%3C0362:DMATVO%3

Núñez, M., Nieves-Chinchilla, T., & Pulkkinen, A. (2019). Predicting well-connected SEP events from observations of solar EUVs and 
energetic protons. Journal of Space Weather and Space Climate, 9, A27. https://doi.org/10.1051/swsc/2019025

Owens, M. J., & Riley, P. (2017). Probabilistic solar wind forecasting using large ensembles of near-sun conditions with a simple one-di-
mensional "upwind" scheme. Space Weather, 15, 1461–1474. https://doi.org/10.1002/2017SW001679

Papaioannou, A., Anastasiadis, A., Kouloumvakos, A., Paassilta, M., Vainio, R., Valtonen, E., et al. (2018). Nowcasting solar energetic par-
ticle events using principal component analysis. Solar Physics, 293, 100. https://doi.org/10.1007/s11207-018-1320-7

Park, J., Moon, Y.-J., Choi, S., Baek, J.-H., Cho, K.-S., & Lee, K. (2017). Application of decision-making to a solar flare forecast in the cost-
loss ratio situation. Space Weather, 15, 704–712. https://doi.org/10.1002/2016SW001532

Richardson, I. G., Mays, M. L., & Thompson, B. J. (2018). Prediction of solar energetic particle event peak proton intensity using a simple 
algorithm based on CME speed and direction and observations of associated solar phenomena. Space Weather, 16, 1862–1881. https://
doi.org/10.1029/2018SW002032

Ryan, D. F., Dominique, M., Seaton, D., Stegen, K., & White, A. (2016). Effects of flare definitions on the statistics of derived flare distribu-
tions. Astronomy & Astrophysics, 592, A133. https://doi.org/10.1051/0004-6361/201628130

Schrijver, C. J., Dobbins, R., Murtagh, W., & Petrinec, S. M. (2014). Assessing the impact of space weather on the electric power grid based 
on insurance claims for industrial electrical equipment. Space Weather, 12, 487–498. https://doi.org/10.1002/2014SW001066

Schrijver, C. J., Kauristie, K., Aylward, A. D., Denardini, C. M., Gibson, S. E., Glover, A., et al. (2015). Understanding space weather to 
shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS. Advances in Space Research, 55, 2745–2807. 
https://doi.org/10.1016/j.asr.2015.03.023

Schrijver, C. J., & Siscoe, G. L. (2010). Heliophysics: Space Storms and Radiation: Causes and Effects. Cambridge, MA: Cambridge University 
Press.

Sillmann, J., Thorarinsdottir, T., Keenlyside, N., Schaller, N., Alexander, L. V., Hegerl, G., et  al. (2017). Understanding, modeling and 
predicting weather and climate extremes: Challenges and opportunities. Weather and Climate Extremes, 18, 65–74. https://doi.
org/10.1016/j.wace.2017.10.003

Stephenson, D. B. (2000). Use of the "odds ratio" for diagnosing forecast skill. Weather Forecasting, 15, 221–232. https://doi.org/10.1175/1
520-0434(2000)015<0221:UOTORF>2.0.CO;2

Svalgaard, L. (2020), Prediction of Solar Cycle 25, arXiv:2010.02370 [astro-ph.SR].

KAHLER AND DARSEY

10.1029/2020SW002604

13 of 14

https://doi.org/10.1088/0004-637X/798/2/135
https://doi.org/10.3847/0004-637X/821/2/127
https://doi.org/10.1002/met.52
https://doi.org/10.1051/swsc/2013054
https://doi.org/10.1051/swsc/2013054
https://doi.org/10.3847/1538-4357/Aad043
https://doi.org/10.1016/j.jastp.2011.04.021
https://doi.org/10.1002/2013SW001024
https://doi.org/10.31401/sungeo.2020.02.04
https://doi.org/10.1002/2017SW001758
https://doi.org/10.3847/1538-4357/aac81e
https://doi.org/10.1029/2018SW002098
https://doi.org/10.1051/swsc/2018010
https://doi.org/10.1016/j.jastp.2006.06.009
https://doi.org/10.1007/s11207-018-1249-x
https://doi.org/10.1007/s11207-018-1249-x
https://doi.org/10.1051/swsc/2017025
https://doi.org/10.1214/16-STS588
https://doi.org/10.1029/2006SW000222
https://doi.org/10.1002/2014SW001120
https://doi.org/10.1007/s11207-020-01723-y
https://doi.org/10.1029/2003JA009827
https://doi.org/10.1029/2003JA009827
https://doi.org/10.1175/1520-0493(1985)113%3C0362:DMATVO%3E2.010.1175/1520-0493(1985)113%3C0362:dmatvo%3E2.0.co;2
https://doi.org/10.1051/swsc/2019025
https://doi.org/10.1002/2017SW001679
https://doi.org/10.1007/s11207-018-1320-7
https://doi.org/10.1002/2016SW001532
https://doi.org/10.1029/2018SW002032
https://doi.org/10.1029/2018SW002032
https://doi.org/10.1051/0004-6361/201628130
https://doi.org/10.1002/2014SW001066
https://doi.org/10.1016/j.asr.2015.03.023
https://doi.org/10.1016/j.wace.2017.10.003
https://doi.org/10.1016/j.wace.2017.10.003
https://doi.org/10.1175/1520-0434(2000)015%3C0221:UOTORF%3E2.0.CO;210.1175/1520-0434(2000)015%3C0221:uotorf%3E2.0.co;2
https://doi.org/10.1175/1520-0434(2000)015%3C0221:UOTORF%3E2.0.CO;210.1175/1520-0434(2000)015%3C0221:uotorf%3E2.0.co;2


Space Weather

KAHLER AND DARSEY

10.1029/2020SW002604

14 of 14

Swalwell, B., Dalla, S., Kahler, S., White, S. M., Ling, A., Viereck, R., & Veronig, A. (2018). The reported durations of GOES soft X-ray flares 
in different solar cycles. Space Weather, 16, 660–666. https://doi.org/10.1029/2018SW001886

Thomson, A. W. P. (2000). Evaluating space weather forecasts of geomagnetic activity from a user perspective. Geophysical Research Letters, 
27, 4049–4052. https://doi.org/10.1029/2000GL011908

Tobiska, W. K., Atwell, W., Beck, P., Benton, E., Copeland, K., Dyer, C., et al. (2015). Advances in atmospheric radiation measurements and 
modeling needed to improve air safety. Space Weather, 13, 202–210. https://doi.org/10.1002/2015SW001169

Verbeeck, C., Kraaikamp, E., Ryan, D. F., & Podladchikova, O. (2019). Solar flare distributions: Lognormal instead of power law? Astrophys-
ical Journal, 884, 50. https://doi.org/10.3847/1538-4357/ab3425

Verbeke, C., Mays, M. L., Temmer, M., Bingham, S., Steenburgh, R., Dumbović, M., et al. (2019). Benchmarking CME arrival time and 
impact: Progress on metadata, metrics, and events. Space Weather, 17, 6–26. https://doi.org/10.1029/2018SW002046

Wilks, D. S. (2001). A skill score based on economic value for probability forecasts. Meteorological Applications, 8, 209–219. https://doi.
org/10.1017/S1350482701002092

Wilks, D. S. (2006). Statistical methods in the Atmospheric Sciences (Vol. 91). Elsevier.International Geophysical Series
Zheng, Y., Ganushkina, N. Y., Jiggens, P., Jun, I., Meier, M., Minow, J. I., et al. (2019). Space radiation and plasma effects on satellites and 

aviation: Quantities and metrics for tracking performance of space weather environment models. Space Weather, 17, 1384–1403. https://
doi.org/10.1029/2018SW002042

Zhong, Q., Wang, J., Meng, X., Liu, S., & Gong, J. (2019). Prediction model for solar energetic proton events: Analysis and verification. 
Space Weather, 17, 709–726. https://doi.org/10.1029/2018SW001915

https://doi.org/10.1029/2018SW001886
https://doi.org/10.1029/2000GL011908
https://doi.org/10.1002/2015SW001169
https://doi.org/10.3847/1538-4357/ab3425
https://doi.org/10.1029/2018SW002046
https://doi.org/10.1017/S1350482701002092
https://doi.org/10.1017/S1350482701002092
https://doi.org/10.1029/2018SW002042
https://doi.org/10.1029/2018SW002042
https://doi.org/10.1029/2018SW001915

	Exploring Contingency Skill Scores Based on Event Sizes
	Abstract
	1. Introduction
	2. Size Distributions and Weighting of Events
	3. Data Analysis: The Proton Prediction System
	4. Extreme Intensity Variations with Fixed Event Numbers
	5. Discussion
	Data Availability Statement
	References


