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Abstract

Coronal Mass Ejections (CMEs) are one of the primary drivers of extreme space

weather. They are large eruptions of mass and magnetic field from the solar corona and

can travel the distance between Sun and Earth in half a day to a few days. Predictions

of CMEs at 1 Astronomical Unit (AU), in terms of both its arrival time and magnetic

field configuration, are very important for predicting space weather. Magnetohydro-

dynamic (MHD) modeling of CMEs, using flux-rope-based models is a promising tool

for achieving this goal. In this study, we present one such model for CME simulations,

based on spheromak magnetic field configuration. We have modified the spheromak

solution to allow for independent input of poloidal and toroidal fluxes. The moti-

vation for this is a possibility to estimate these fluxes from solar magnetograms and

extreme ultraviolet (EUV) data from a number of different approaches. We estimate

the poloidal flux of CME using post eruption arcades (PEAs) and toroidal flux from

the coronal dimming. In this modified spheromak, we also have an option to control

the helicity sign of flux ropes, which can be derived from the solar disk magnetograms

using the magnetic tongue approach. We demonstate the applicability of this model

by simulating the 12 July 2012 CME in the solar corona.
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1 Introduction

Coronal Mass Ejections (CMEs) are one of the most violent events in our solar system. The

total energy released in these events can range between 1022 to 1025 Joules [Vourlidas et al.,

2002]. A CME can be ejected with speeds ranging between 20 km/s and 3500 km/s. CMEs

have an average speed of 300 km/s during solar minima and 500 km/s during solar maxima

[Yashiro et al., 2004]. Thomson scattering of white light from CME electrons allows us to

calculate the total mass of CMEs, which has been found to be between 1014 and 4× 1016 g,

with an average of 1015 g [Gopalswamy , 2010]. One of the important CME features is their

magnetic flux rope structure, which is primarily responsible for the CME’s geoeffectiveness.

Particularly, a CME is more geoeffective if its flux rope has a large negative Bz component of

magnetic field at Earth. This is because of the favorable conditions for magnetic reconnection

between the flux-rope field and Earth’s magnetic field in the day-side magnetosphere.

CME predictions at 1 AU remain an area of active research. MHD simulations are clearly

of importance for achieving better accuracy as compared with the simple empirical models

[e.g. Vandas et al., 1996, Brueckner et al., 1998, Gopalswamy et al., 2001, 2005, Wang et

al., 2002, Manoharan et al., 2004]. Many case studies have been done using MHD models

that show reasonable agreement between the simulated and observed properties of CMEs

[Manchester et al., 2004, Jin et al., 2017, Singh et al. , 2018, 2019, and references therein].

Current MHD CME models are broadly divided into two categories: (1) over-pressured

plasmoid models, such as the blob model [e.g., see, Chane et al., 2005, Odstrcil & Pizzo,

1999] and (2) flux-rope-based models, such as the Titov–Demoulin model [Titov & Demoulin,

1999], the Gibson–Low (GL) [Gibson & Low, 1998] model, and their variations. Since the

magnetic flux rope of a CME is primarily responsible for its geoeffectiveness, flux-rope-based

models are clearly more realistic and promising for space weather predictions.

Accurate predictions at 1 AU are impossible without constraining a CME model with

observations. The parameters that must be constrained during a CME eruption are: 1)

CME speed, 2) direction, 3) orientation (the tilt angle between the horizontal and the axis

of the flux rope at its apex), 4) poloidal flux, 5) toroidal flux, 6) helicity sign, and 7) mass.

In this study, we have modified the force balanced spheromak solution, so that the above-

mentioned CME properties can be constrained substantially in simulations. We also discuss

some of the existing methods being used to derive these parameters from the observations.

In Sec. 2, we present the data-driven solar wind model and the modified spheromak model.

Section 3 describes various data and methods being used to find CME parameters. In Sec.

4, we present an example of the application of our simulation model. Our conclusions are

presented in Sec. 5.

1



2 Simulation models

In this study, we perform the CME simulations in two steps. First, we create a solar wind

background from 1.03 R� to 30 R� using solar synoptic magnetograms. Then the flux rope

model is inserted into the domain and it erupts as a CME due to pressure imbalance. We

use Multi Scale Fluid Kinetic Simulation Suite (MS-FLUKSS, Pogorelov et al. [2014, 2017]).

MS-FLUKSS is a highly parallelized code that can be used for MHD treatment of plasma

and fluid or kinetic treatment of neutral hydrogen atoms. Both the solar wind model and

the flux rope model are described in the following subsections.

2.1 Solar wind model

In this study we use the global MHD solar corona model [Yalim et al., 2017] driven by

radial synoptic maps from the Solar Dynamics Observatory’s Helioseismic and Magnetic

Imager (SDO-HMI). The ideal MHD equations are solved in the solar co-rotating frame, with

volumetric heating terms providing the required acceleration to the solar wind [Nakamizo et

al., 2009]. These volumetric heating terms consist of an exponential heating function that

takes the expansion factor into account and a Spitzer-type thermal conduction term that

conducts heat along the magnetic field lines. The initial distribution of the magnetic field is

found using the Potential Field Source Surface (PFSS) model [Toth et al., 2011]. The rest of

the initial plasma parameters are computed using Parker’s 1D isothermal solar wind solution

[Parker, 1958]. We describe the implementation of boundary conditions in more detail in

Sec. 4.

2.2 Modified Spheromak model

Here, we describe a flux rope model based on the spheromak solution in which magnetic

forces are balanced by plasma pressure gradient forces to create a spherical spheromak in

equilibrium [Gibson & Low, 1998, Lites, 1995]. The ∇ ·B = 0 condition is specifically taken

into account in this procedure. The magnetic field morphology thus achieved can be seen

in Fig. 9 of Lites [1995], Fig. 4 in Gibson & Low [1998] and Fig. 1 in Singh et al. [2018].

The analytical solution for the spheromak model, as given in Apendix B2 of Gibson & Low

[1998] , is:

~b =
1

r sin θ

(1

r

∂A

∂θ
r̂ − ∂A

∂r
θ̂ + α0Aφ̂

)
, (1)

A =
4πa1
α2
0

[ r20
g(α0r0)

g(α0r)− r2
]

sin2 θ, (2)
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g(α0r) =
sin(α0r)

α0r
− cos(α0r), (3)

with α0 and r0 related as α0r0 = 5.763459, which is the first root of the Bessel function J5/2.

Here, r0 is the spheromak radius. The magnetic field strength in the spheromak is controlled

by the parameter a1. The plasma pressure in a spheromak is given by P = a1A. The origin

of the spherical coordinate system r , θ and φ is placed at the spheromak center. We can

perform coordinate transformations to shift this sphere to some off-center position and also

rotate it. Gibson & Low [1998] built on this solution by including a stretching parameter

that can turn a spherical torus into a tear drop shape. Several studies have been done to

show the applicability of this model to simulate flux-rope-driven CMEs [e.g. Manchester et

al., 2004, Lugaz et al., 2005, Jin et al., 2017, Singh et al. , 2018]. When the force-balanced

flux-rope model is superimposed with the background solar wind, the pressure imbalance

inside and outside the flux rope results in its eruption.

There are two major drawbacks of using this model for CME simulations. Firstly, the

poloidal and toroidal magnetic fluxes cannot be controlled independently in this model,

since there is only one parameter a1 that controls the magnetic field strength of the flux

rope. For different CME sizes and magnetic strength parameters, we find that the poloidal

and toroidal fluxes do not differ more than 10% from each other. This is not necessarily true

in an actual CME, so using the correct magnetic fluxes in the model is a key requirement

for Bz-prediction at 1 AU. Secondly, the spheromak solution is unable to control the helicity

sign of the flux rope. The helicity sign defines the direction of magnetic field line winding in

the flux rope. The change in its sign can result in a completely different magnetic field at 1

AU.

To address these shortcomings in the original spheromak solution, we propose to modify

it by introducing two extra parameters γ and δ in Eq. 1 so that

~b =
1

r sin θ

(
γ

1

r

∂A

∂θ
r̂ − γ ∂A

∂r
θ̂ + δα0Aφ̂

)
This new solution is no longer in the force-balance condition. This means that this model

cannot be used to simulate pre-eruption, force-balanced flux ropes and their initiation phase.

This model, however, can be readily used to simulate flux ropes of erupting CMEs, which are

already in a force-imbalance condition. It should be noted that erupted flux ropes of CMEs

are considerably different from pre-eruptive flux ropes. This is because magnetic reconnection

occurring during an eruption modifies the poloidal flux of a CME considerably [Longcope

et al. , 2007, Qiu et al., 2007, Gopalswamy et al., 2018]. Using such a force imbalanced

flux rope model not only makes the simulation more robust, it also facilitates the input

3



of observed magnetic flux into it. Force–imbalanced models have been successfully used in

previous works as well. E.g., Manchester et al. [2004] modified a force balanced Gibson-Low

flux rope by reducing its density by 20% before superimposing it on the background solar

wind. They further modified density and pressure inside the flux rope such that they do not

drop below 25% of the background values. These modifications result in force imbalance in

the initial flux rope itself. Similarly, Lugaz et al. [2007] used a modified Titov-Demoulin flux

rope by removing the strapping magnetic field lines from flux rope that were keeping it in

force balanced condition. Thus, their initial flux rope was in force–imbalanced condition as

well.

Our modified flux rope still satisfies the ∇ · B = 0 condition. Plasma density inside

the flux rope is assumed constant initially, and it depends on the mass of the simulated

CME. Now, in this model, the toroidal flux is proportional to a1 while the poloidal flux is

proportional to the product γa1. This gives us an independent control over the two fluxes

by varying a1 and γ. We have explained the method of deriving the poloidal and toroidal

flux of a flux rope in Appendix A. Figure 1 shows the effect of varying γ on the magnetic

configuration of the flux rope. The poloidal flux increases proportionally to γ while the

toroidal flux remains unchanged in all cases. We show only a few magnetic field lines here to

demonstrate the increase in the number of turns in response to an increasing poloidal flux.

The translucent slice is colored by plasma density. Since we initially assume constant density

inside the flux rope when it is added to the background solar wind, one can see the flux rope

edge as an enhanced density region. In this example, the size parameter r0 is 1 R�. The flux

rope is shifted by r1 = 1 R� from the Sun center. This means that we are using roughly only

one half of the spheromak in our simulation. This geometry roughly resembles a bent–tube

flux rope. Therefore, the force responsible for its eruption will be the Lorentz hoop force,

arising due to the curvature of the flux rope. This force is at least partially responsible for

the propagation of the eruption in actual CMEs [Chen , 2017, Green et al., 2018]. In this

example, we have kept the flux rope in the direction S12W06 while the orientation angle was

53 degrees with respect to the solar equator. All this can be done easily by transforming

the spheromak solution from a local coordinate system to a shifted and rotated coordinate

system.

The helicity sign of the flux rope can be controlled by δ. The only values it can take

are ±1. The plus sign will result in a positive helicity flux rope. Using δ = −1 and adding

180 degrees to the orientation of the flux rope results in a negative helicity flux rope. This

effect is shown in fig. 2. Two flux ropes are shown with the same size and magnetic field

parameters. They differ only in their twist direction, i.e., the helicity sign. Here again, the

flux rope edge can be inferred from the density enhancement seen in the slice.
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Figure 1: From left to right : flux rope with γ = 1, 2, and 4 respectively. The yellow sphere
represents the Sun, with magnetic field lines given by arrowed black lines. The slice through
the flux rope is colored by the plasma density.

Figure 2: Flux ropes with positive (left panel) and negative (right panel) helicity.

The plasma β is very low in flux ropes. Therefore, we do not include the plasma pressure

into our model. The magnetic pressure dominates and is primarily responsible for CME

eruption. However, we observe that introducing thermal pressure comparable to magnetic

pressure in the flux rope can significantly change its eruption speed. This is equivalent to

increasing the plasma energy density in the flux rope. This can be used to constrain simulated

CME’s speed. We can also specify the CME mass uniformly distributed throughout its

volume. The stretching operation, similar to the one described by Gibson & Low [1998], can

still be applied to this spheromak to convert the shape from sphere to a tear–drop shape.

This shape conversion can bring the two legs of the flux rope closer to each other, thus

reducing the width of the flux rope. This makes it possible to match the initial shape of our

simulated CME with the observed CME, as shown in Singh et al. [2018].
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3 CME observations

In this section we discuss the measurable properties of CMEs, which can be used to con-

strain our CME model. We will briefly discuss how each quantity can be derived from

observations. We use data from Solar Terrestrial Relations Observatory (STEREO) and

Solar and Heliospheric Observatory (SOHO) coronagraphs, SDO magnetograms and SDO

extreme ultraviolet (EUV) images to get these CME properties.

3.1 Speed, Direction and Orientation

Coronagraphs are one of the primary instruments used to study CME evolution in the corona.

However, a single viewpoint image is not sufficient to resolve the 3-D structure of a CME. To

overcome these limitations, the twin STEREO spacecraft [Kaiser et al., 2008] were launched

to see the same CME from multiple viewpoints. The triangulation techniques can then be

used to study the CME in 3D space. This helps us to remove the projection effects and

get the true kinematic properties of a CME. One of the best models for utilizing the three

viewpoints of STEREO A&B and SOHO coronagraphs to find 3D CME evolution is the

Graduated Cylindrical Shell (GCS) model [Thernisien , 2011]. This model fits a typical

CME shape, i.e., the curved front with conical legs, to observations, giving us an estimate

for the CME height, direction and orientation with respect to solar equator. Figure 3 shows

this model applied to a CME that erupted on July 12, 2012. Fitting this model for a time

series can be used to estimate its speed from the height-time profile [see e.g. Hess & Zhang

, 2014].

3.2 Poloidal Flux

The poloidal magnetic flux of a CME can be measured from the reconnected flux either using

flare ribbons or Post Eruption Arcades (PEAs). Gopalswamy et al. [2017] showed that both

of these methods are highly correlated. The PEA method requires EUV data only at the

time when the PEA structure has fully matured, typically in the decay phase of the flare,

whereas the flare ribbon method requires 1600 Å data throughout the flaring time. Since the

PEA method is more robust and easy to implement, Gopalswamy et al. [2018] propose to use

it in their Flux Rope from Eruption Data (FRED) model. When the overlaying magnetic

field lines gets stretched and reconnected during a flux rope eruption, one half of the lines

reconnect down in the active region forming PEAs and the other half contributes to the

poloidal flux of the flux rope. This process can be understood more clearly looking at the

flux rope eruption cartoon in Fig. 1 of Klein [2017]. Gopalswamy et al. [2017] show that the
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Figure 3: (Top panel, from left to right) July 12, 2012 CME seen in STEREO B Cor2,
SOHO C2 and STEREO A Cor2 coronagraphs respectively. (Bottom panel) The same
images overlapped with GCS model.

poloidal flux of the CME is half the unsigned flux in the area covered by the PEAs.

The left panel of Fig. 4 shows the PEA for 12 July 2012 eruption in SDO AIA 94, 131, and

193 Å composite data at 22:30 UT, when the PEA has fully matured, ∼ 6 hrs after the flare

started. We chose these wavelengths because they are sensitive to temperatures exceeding 5

MK (See Fig. 1 in Cheung [2015] for SDO response functions in different wavelengths). The

PEAs are composed of hot loops and can be best seen in high temperature observations. We

then trace the footpoints of the PEA loops, shown here as red contours. The area between

these contours and the red dotted lines should give us the area covered by the PEA. The

area spanned by the green contour marks is the area of ambiguity, which can be a part

of either the PEA structure or of pre-existing coronal loops. The right panel of Fig. 4

shows the corresponding active region in SDO HMI data, along with the same contours.

The poloidal flux calculated using just the area spanned by red contours is 1.35× 1022 Mx.

Including the green area in our calculations increases the poloidal flux to 1.47× 1022 Mx, a

9% increase. This gives us an estimate of the subjective error possible due to the manual

PEA area selection in this method. Gopalswamy et al. [2018] found the poloidal flux for the

same event to be 1.42× 1022 Mx using just the 193 Å data, a very similar result compared
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with the one we obtained using the composite image. Therefore, it may be sufficient to use

just the 193 Å data for this analysis.

Figure 4: (Left panel) SDO AIA 94, 131, and 193 Å composite data on 12 July 2012 22:30
UT. (Right panel): SDO HMI magnetogram on 12 July 2012 16:10 UT. In both the cases,
the area enclosed by PEAs is shown with red contours. The poloidal flux of the erupted
CME is half the unsigned flux in this area. The area enclosed by the green contours has
some ambiguity on whether it is a part of the PEA or some pre-eruption loops. Including
this area into the PEA calculation increases poloidal flux by 9%. The cutout size is 300 Mm
× 300 Mm.

3.3 Toroidal Flux

The toroidal flux of a CME, also known as the axial flux, or the core flux in the literature,

can be found if the footpoints of the erupting CME are found [see, e.g., Webb et al., 2000].

Dissauer et al. [2018] describe a way to do this using the coronal dimming. When a flux

rope erupts, a clear dimming is seen in EUV images. This is due to the mass loss during

the eruption. Dissauer et al. [2018] show that this dimming can be separated into two

categories, 1) core dimming and 2) secondary dimming using appropriate thresholds. These

core dimming regions show higher mass loss and are seen during the first 30 minutes of the

eruption. Once the core dimming regions have been found, the toroidal flux of a CME is

given by the unsigned average magnetic flux in the positive and negative polarity footpoints.

In Fig. 5, we show the procedure we followed to find the toroidal flux in the 12 July 2012

CME. We use 193 Å data in our analysis, which is shown to be most suitable to study coronal

dimming by Dissauer et al. [2018]. A pre-event image is found by taking a pixel-by-pixel

median of 10 images within a half hour before the eruption starts (left panel of Fig. 5).

Then, during 1 hour after the eruption has started, we use 2-minute-cadence data to detect
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the pixels where the logarithm of the ratio of any post-event image data and the pre-event

image data falls below -0.19. These are the regions showing coronal dimming. We also record

the lowest value of logarithmic ratios during the selected time interval among these pixels.

This forms a minimum intensity logarithmic base ratio image which has non-zero values only

in the coronal dimming pixels. This is shown in the middle panel of Fig. 5. Similarly, a

minimum intensity base difference image is formed by taking differences at each pixel, rather

than logarithmic ratios. Once these two minimum maps have been formed, we find a subset

of the pixels that reside in the core dimming regions using the following thresholds from

Dissauer et al. [2018].

A = ĪBD − 0.6σBD

B = ĪLBR − 0.6σLBR

Here, ĪBD and ĪLBR are the mean intensities over all pixels in the minimum-intensity loga-

rithmic base ratio image and the minimum-intensity base difference image, respectively. σ

values give the corresponding standard deviations. The pixels flagged as core dimming pixels

are shown in red color in the right panel of Fig. 5. We can see that one group (inside a violet

circle) represents the positive footpoint, whereas the other (inside a green circle) represents

the negative footpoint of the erupting flux rope. The unsigned flux in these core dimming

pixels can be used as an estimate for the toroidal flux. The toroidal flux calculated using

these pixels is 2.13× 1021 Mx. By changing the thresholds A and B by ±5%, for error esti-

mation, as suggested by Dissauer et al. [2018], we find that the toroidal flux varies between

1.97×1021 Mx and 2.31×1021 Mx. Therefore, the toroidal flux varies by ≈ ±8%. We notice

that the toroidal flux for this CME is ≈ 15% of its poloidal flux. Such a CME cannot be

reliably simulated by the original spheromak model because the poloidal and toroidal fluxes

do not differ by more than 10% from each other in this model when it is inserted near the

Sun as discussed in Sec. 2.2.

3.4 Helicity sign

The helicity sign of a flux rope can be determined from the pre-eruptive active region mag-

netic field configuration [Bothmer and Schwenn , 1998]. For example, Luoni et al. [2011]

show how the magnetic tongues in the ARs can be used to estimate the helicity sign in the

overlaying flux ropes. The helicity sign is easy to determine if one can estimate the direction

of magnetic field lines on the axis of the flux rope and the overlaying loops, which eventually

contribute to the poloidal flux of a CME during an eruption, as discussed in Sec. 3.2. In

Fig. 6, we show how the helicity sign can be found if we know the flux rope footpoints and

the neutral line (NL) above which the flux rope exists in corona. This NL is typically in the
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Figure 5: (Left panel) SDO AIA 193 Å data showing the pre-eruption median image of
the active region. (Middle panel) The minimum intensity logarithmic ratio image showing
coronal dimming after the eruption. (right) The core dimming pixels are plotted over the
SDO HMI magnetogram. This data is for July 12, 2012 15:40 UT. The violet and green
circles enclose the areas containing the footpoints of the flux rope, predominantly in the
positive and negative flux regions, respectively. The flux in these core dimming regions
provides an estimate for the toroidal flux inside a CME. (Cutout size is 1000 arcsec)

middle of the PEA area. The method to find footpoints has already been discussed in Sec.

3.3. If we follow the NL in the direction from a positive footpoint to a negative footpoint with

the thumb and curve the fingers in such a way that they follow the overlaying field, we can

tell whether the helicity sign is positive or negative based on whether the right or left hand

follows the lines properly. In the example shown in Fig. 6 for July 12, 2012 magnetogram,

we know that the axial field is directed from the right to the left, since the positive footpoint

is on the right as seen in Fig. 5. This determines the direction of orange arrow in Fig. 6.

The overlying field lines are shown in green color, while the direction is simply from positive

to negative polarity. We can see that this configuration is consistent with the right-hand

rule. Therefore, the helicity sign is positive in the erupting flux rope. The helicity sign of

this event was found by Gopalswamy et al. [2018] using a different method.

3.5 Mass

Mass of a CME can be found using the CME brightness in the coronagraph images. The

brightness is due to the Thomson scattering of photospheric light by the plasma electrons

[Billings, 1966]. By integrating over the CME area and removing the projection effects using

multiple coronagraph viewpoints, we can calculate the true mass of a CME [Colaninno,

2009].

10



 

Figure 6: Helicity sign estimates can be made by following the axial field lines (orange) with
the thumb and curving the fingers along overlying field lines (green). This example is for 12
July 2012 CME and shows that the erupted flux rope will have positive helicity., since the
field lines are traced properly by right hand.

4 Results

We will show now the applicability of our approach to an observed CME. We choose the July

12, 2012 CME as an example. This CME erupted from AR 11520 at 15:54 UT. The location

of the AR was 15 degrees south and 1 degree west at the time of eruption. The reason for

choosing this event is that the source active region is close to solar disk center, thus enabling

more accurate estimation of the AR magnetic field strengths. At this time, the STEREO

spacecraft were observing at nearly right angles to the Sun-Earth line. This increases the

accuracy of the GCS method, thus allowing us to accurately determine the speed, direction,

and orientation of the CME. Moreover, this event has been studied in detail by many authors

[see e.g. Gopalswamy et al. , 2013, Hess & Zhang , 2014, Shen et al., 2014, Gopalswamy et

al., 2018], thus allowing us to verify the accuracy of our derived quantities.

We determined the properties of this CME using the methods described in the previous

section.

1. The CME speed was found to be 1210 km/s at the height of 15 R�. This was found

by fitting a quadratic function to the height-time profile found using the GCS method.

A linear fit to the height-time plot gives us a speed of 1265 km/s for this CME.
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2. The direction of the CME was found to be at 12 degrees south and 8 degrees west.

This is a little different from the source active region location, thus the CME showed

a slight deflection in the lower corona.

3. The CME flux rope orientation, found using the GCS method, was 53 degrees with

respect to solar equator. These GCS results are consistent with the ones reported in

Gopalswamy et al. [2018].

4. The poloidal flux of the CME was found to be between 1.35× 1022 Mx and 1.47× 1022

Mx using the PEA method.

5. The toroidal flux of the CME was found to be between 1.97× 1021 Mx and 2.31× 1021

Mx using the coronal dimming method.

6. As shown in Fig. 6, the CME flux rope has a positive helicity sign.

7. The mass of the CME was found to be 1.65×1016 g. This is the true mass of the CME

with projection effects removed using the multiple viewpoints of STEREO.

The CME simulation is carried out in two steps. First we create a solar coronal MHD

background and then introduce the flux rope model in it. The coronal background is created

in a fully spherical simulation domain, which extends from 1.03 R� to 30 R�. The SDO

HMI synoptic map for Carrington rotation 2125 is used at the inner boundary of the domain

located just above the transition region at 1.03 R�. We relax the initial PFSS magnetic field

to obtain a steady state solution. We used the Total Variation Diminishing (TVD), finite

volume Rusanov scheme [Kulikovskii et al., 2001] to compute the numerical fluxes and the

forward Euler scheme for time integration. In order to satisfy the solenoidal constraint, we

use the Powell et al. [1999] approach. All simulations are performed in the frame corotating

with the Sun. MS-FLUKSS is built on Chombo library, which ensures a highly parallelized

implementation of our numerical schemes [Pogorelov et al., 2017].

At the inner boundary of the computational domain, at 1.03 R�, we specify the dif-

ferential rotation [Komm et al., 1993a] and meridional flow [Komm et al., 1993b] formulae

for determining the horizontal velocity components at the ghost cell centers. Density and

temperature are kept constant as n = 1.5 × 108 cm−3 and T = 1.3 × 106 K, respectively.

The radial velocity component is imposed to be zero at the boundary surface. The radial

magnetic field component is imposed from the magnetogram data. The transverse magnetic

field components are extrapolated from the domain to the physical ghost cells below the

inner radial boundary. No boundary conditions are required at the outer boundary of the
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domain, since it is located beyond the critical point, where the plasma flow is superfast

magnetosonic.

We introduce the modified spheromak into the domain so that the sphere center rests at

the inner boundary. This ensures that only one side of the spheromak is introduced into the

domain, which resembles a flux rope with two legs (see Fig. 1). The flux rope is introduced

so that it replaces the magnetic field in the background corona and the calculated mass of

the CME is uniformly distributed over it. We also adjust the parameters a1 and γ so that

the poloidal and toroidal fluxes introduced into the model match the observations. We still

have one free parameter, namely the radius of the spheromak, r0. This parameter can be

constrained by the speed of the erupting CME. We find that the speed of eruption depends

inversely on the radius of the spheromak, keeping poloidal and toroidal fluxes constant. This

can be easily understood considering the source of flux rope eruption is pressure imbalance.

If we want to have same flux in a smaller flux rope, we need to increase the magnetic field

strength in it. This increases the magnetic pressure inside the flux rope. Therefore, when the

solution is evolving in time, smaller flux ropes erupt at greater speeds. Singh et al. [2019]

reported that the speed of this eruption also depends inversely on the magnetic pressure

in the background solar wind in the region in the direction of CME propagation. We keep

the initial spheromak in the direction and with the orientation found using GCS method.

By varying the value of r0 between 0.7 and 1.0 R�, we find that r0 = 0.9 R� results in

the speed of the CME as 1200 km/s at 15 R�, which is similar to the one calculated from

observations. For this value of r0, the a1 was 0.224 Gauss/R2
� and γ was 10.3 for the poloidal

and toroidal fluxes to be 1.4× 1022 Mx and 2.1× 1021 Mx, respectively, which is the average

of the observed range. The parameter δ was kept as +1, since the flux rope was observed

to have positive helicity. In Fig. 7, we show synthetic white-light images to compare the

simulated CME shape with the one observed 1.5 hours after eruption. Since we started with

a uniform-density flux rope, the CME core is not seen clearly. We do, however, see the bright

front and the cavity of this CME. The overall shape of the simulated CME also agrees very

well with the observations. This also implies that the initial force distribution in our model is

realistic, since a non realistic force distribution would have resulted in considerably different

CME shapes compared to observations. Figure 8 shows our simulation results for this CME.

The CME evolution is shown through snapshots at different time steps. The simulated

CME erupts with the proper speed, direction, orientation and magnetic field properties, a

key requirement if we want to use MHD modeling for CME predictions.
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Figure 7: (Top) CME as seen by STEREO A (left) and B (right) COR 2 at 12-July-2012
17:54 UT. (Bottom) Synthetic white light images of the simulated CME at same height, with
observer fixed at the location of STEREO A (left) and B (right). These images are created by
using the ratio of line-of-sight-integrated brightness of the post-event and pre-event images.
The color map is based on this ratio.

Figure 8: (From left to right) The colorplot of the radial speed of simulated CME, 17, 34
and 51 minutes after its initial insertion.
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5 Conclusions

In this study, we modify the spheromak flux rope model so that the poloidal and toroidal

fluxes in it can be controlled independently. The motivation for this is the possibility of

determination of both these fluxes independently from observations. We show how this

model can be used for MHD simulations of CMEs. The pressure imbalance between the

flux rope and the surrounding solar wind background leads to its eruption, resembling the

characteristics of a CME. In the example shown in this paper, we were able to constrain the

speed, direction, orientation, and magnetic properties of the flux rope. We believe that this

approach can become a viable option for predicting CMEs, not only in their arrival time,

but in their magnetic field properties at 1 AU as well.

TS acknowledges the graduate student support from NASA Earth and Space Science

Fellowship. The authors acknowledge the support from the UAH IIDR grant 733033. This

work is partly supported by the PSP mission through the UAH-SAO agreement SV4-84017.

We also acknowledge NSF PRAC award OAC-1811176 and related computer resources from

the Blue Waters sustained-petascale computing project. Supercomputer allocations were

also provided on SGI Pleiades by NASA High-End Computing Program award SMD-16-

7570 and on Stampede2 by NSF XSEDE project MCA07S033. NG was supported in part

by NASA’s LWS TR&T program.

This work utilizes data from SOHO which is a project of international cooperation be-

tween ESA and NASA. The HMI data have been used courtesy of NASA/SDO and HMI

science teams. The STEREO/SECCHI data used here were produced by an international

consortium of the Naval Research Laboratory (USA), Lockheed Martin Solar and Astro-

physics Lab (USA), NASA Goddard Space Flight Center (USA), Rutherford Appleton Lab-

oratory (UK), University of Birmingham (UK), Max-Planck-Institute for Solar System Re-
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A Calculating the poloidal and toroidal flux of a flux

rope

In Fig. 9, we show a flux rope anchored on the Sun, with its curved axis in the x-y plane.

We shaded the areas used to calculate the magnetic fluxes. The blue region is in the x-y

plane and represents the area where Bz > 0, i.e., field lines are coming out of the plane in
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this region. The red region represents the cross section of the flux rope and belongs to the

x-z plane. The poloidal flux of a flux rope in this configuration is

Φp =

∫
Blue area

Bz dA.

The toroidal flux is

Φt =

∫
Red area

By dA.

 

Figure 9: A flux rope with its curved axis in the z = 0 plane is shown anchored to the Sun.
The blue shaded region is in the z = 0 plane and represents the area where Bz > 0. The red
shaded region is in the y = 0 plane and represents the cross-section of the flux rope.
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