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Abstract We revisit a multi-spacecraft study of the element abundances of solar ener
getic particles (SEPs) in the 23 January 2012 event, where the power-law pbdte-
hancementsersusthe mass-to-charge rat#tdQ for the elements C through Fe was partly
disrupted by a break near Mg, which turned out to be an unfortunate distraction. In the
current article we find that extending that least-squares fits for&€deWwn to H aA/Q =

1 lends much more credence to the power laws, even though H itself was not included in
the fits. We also investigate the extent of an adiabatically invariantVmsSeof mag-

netically-trapped particles behind the shock wave in this event.
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1. Introduction

Many years ago it was shown that the abundances of the elements with rmtarbers 6
<Z<30in large solar energetic particle (SEP) events, relative to a cuncesg refer-
ence (coronal) abundances for these events, could increase or decrease assavpowe
the mass-to-charge rathdQ of the ions (Breneman and Stone, 1985). Since the pattern
of Q-values for the elements depends upon the electron temperature of the ion source
plasma, this has become a means of actually estimating this source taredeyaelect-
ing the best-fit power law (Reames, 2015, 2016, 2017a, 2018b). While this technique
seems to be broadly applicable to large “gradual” SEP events, a multi-sfiasteicha
comparing power-law abundance patterns for events, observed simultanedishdby
and the twdSolar TErrestrial RElations Observato($TEREQO) spacecraft, was stymied
by the event of 23 January 2012 where an apparent break in the power law near Mg, seen
at all three spacecraft (Reames, 2017b), led to questions of the applicabiigyteth-
nique to this event.
More-recent studies have extend€@ techniques to include H (Reames, 2019),
a significant extension iA/Q from 2 down to 1. For most gradual events, especially the
larger ones, H usually agrees well with the extension of the power-law fit ladeuof
dance enhancementsrsus A/From the elements witd > 6 (Reames, 2019, 2020).
There are two primary sources of SEP events, historically designaded Sive”
and “gradual” ¢.g.Reames, 1988, 1995b, 1999, 2013, 2017a; Gosling, 1993). In small
“impulsive,” or *He-rich, SEP events (Mason 2007;8u2020), acceleration occurs at
sites of magnetic reconnection in solar jets (Kahler, Reames, and Sheele\B &K &t
al., 2018a, 2018b; Riik 2020). Here, element abundances, relative to those in the co-
rona, are enhanced as a steeply increasing powdQpfncreasing a factor 6f1L000
across the periodic table from H or He to Pb (Reames, 2000; Maabn2004; Reames
and Ng, 2004; Reames, Cliver, and Kahler, 2014a, 2014b) during the reconnection itself
(e.g.Drakeet al, 2009). On average, abundance enhancements increas¢®)as*c >
with A/Q determined at a temperatufe: 3 MK in impulsive SEP events (Reames,
Cliver, and Kahler, 2014a).
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By way of contrast, the larger “gradual” SEP events (Lee, Mewaldt, ama-Gia
lone, 2012; Desai and Giacalone, 2016), involve acceleration at shock waves, driven by
fast, wide coronal mass ejections (CMEs; Kakleal, 1984; Lee, 1983, 2005; Reames,
Barbier, and Ng, 1996; Zank, Rice, and Wu, 2000; Cliver, Kahler, and Reames, 2004; Ng
and Reames, 2008; Gopalswaetyal, 2012; Cohert al, 2014; Kouloumvakost al,

2019), that usually sample ambient coronal material (Reames, 2020). Coronal abun-
dances sampled by SEPs differ from those in the photosphere by a factor thdsdepe
upon the first ionization potential (FIP) of the element. High-FIP (>10 eV)egl=m

travel as neutral atoms across the chromosphere while low-FIP elemeontszae ini-

tially and are preferentially boosted upward by a factei3oh intensity by the action of
Alfvén waves (Laming, 2015; Reames, 2018a; Laneingl, 2019); these FIP-processed
coronal ions form the reference abundances sampled as SEPs much later (Webber, 1975;
Meyer, 1985; Reames, 1995a, 2014). After acceleration, ion scattering during transport
can depend upon a power of the ion magnetic rigidity, and hence abundances depend
uponA/Q for ions compared at a constant velocity (Parker, 1963; Ng, Reames, and Tylka,
1999, 2001, 2003, 2012; Reames, 2016, 2019), leading to the observed power-law de-
pendence. For example, since Fe scatters less than O, Fe/O is often enhrnicedrea
event and therefore depleted later, producing a power-law dependenc®/Qqbat in-

crease early and decrease lateg.Breneman and Stone, 1985, Reames, 2016, 2019).

The distinction of impulsive and gradual SEP events becomes complicated when
local shock waves at CMEs in jets reaccelerate the impulsive ions pteratin the
magnetic reconnection, and also, large pools of impulsive suprathermal ions cein colle
near active regions with many jets, produciHg-rich, Fe-rich background levels often
seen (Desagt al, 2003; Buik et al, 2014, 2015; Cheet al, 2015). These pools of im-
pulsive suprathermal seed ions are preferentially accelerated @Desa?003; Tylkaet
al., 2005; Tylka and Lee, 2006) and even dominate SEPs with weaker shocks that need
this boosted injection, while stronger shocks are more-easily seeded by aroloeal
plasma. Reames (2020) has identified four paths for element abundances: (i)¢he “pur
impulsive events, SEP1, (ii) impulsive events with shocks, SEP2, (iii) graduasevent
dominated by impulsive seed ions, SEP3, and (iv) strong gradual events dominated by

ambient corona, SEP4. We might expect that events typically seen by multges-wi



Virtues of Including H in SEP Abundances D. V. Reames

separated spacecraft would tend to be the strong SEP4 events where the i dieneral
on the abundance power law with the other elements (Reames, 2020).

Another especially interesting phenomenon is observed behind the shock wave in
large gradual events: the SEP “reservoir.” Reservoirs contain madiyetiapped, in-
variant populations of particles of interest because particle intensitiesadeadiabati-
cally, maintaining their spectral shape and abundances, as the magneticonddiieing
them expands (see Sect. 5.7 of Reames 2017a; Reames, Kahler, and Ng, 1997). Early
measurements on tikeoneerspacecraft found comparable intensities2® MeV pro-
tons extending'180° in longitude around the Sun late in SEP evengsNIcKibben,
1972). Later, equal intensities were found in large events over 2.5 AU radially betwee
Ulyssesand IMP 8 near Earth by Roeleff al. (1992) who coined the term “reservoir.”

A priori one might expect higher-rigidity or higher-velocity particles to scatter
less, to sample boundaries more often, penetrate them more easily, and to slowly le
away, so that spectra steepen and abundance ratios, like Fe/O, decreasewiHoti-
ever, this does not happen within reservoirs, where spectra and abundances tend to be in-
variant in space and time, as if all intensities decrease in unison as the volume of the
magnetic bottle increases with time. Particle transport is neattgist@e within reser-
voirs as we see when newly-injectite-rich events traverse them (Masairal, 1989;
Reames, 1999, 2013, 2017a). It seems especially amazing to the author that S&Ps are s
well contained at CMEs and reservoirs, while CMEs and even magnetic clowds are
easily penetrated and filled from outside by anomalous cosmic rays (AC&sgRe
Kahler, and Tylka, 2009) at solar minimum, although these latter CMEs do lack shocks.
Are these regions magnetically open or closed? This makes reservouaiestiyfinter-
esting to take this opportunity to extend our study of the reservoir in the 23 January 2012
event and compare it with reservoirs seen in previous solar cgadeR¢ames, Kahler,
and Ng, 1997; Lario, 2010; Reames, Ng, and Tylka, 2012).

The original study of the power-law abundance pattern of the 23 January 2012
event that we would like to revisit is that of Reames (2017b), comparing the wegaly s
rated platforms: STEREO-Ahead (A) and -Behind (B) Earth in solar orbit, anlitite
spacecraft near Earth. During this large SEP event, we now include the aleuoididnc

with the relative abundances of the elements He, C, N, O, Ne, Mg, Si, S, Ar, Ca, and Fe
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from theLow-Energy Matrix Telescod@EMT; von Rosenvinget al, 1995) onwind
and theLow-Energy Telescopd&ETs; Mewaldtet al, 2008; see also Luhmasenal.,
2008) on STEREO. Abundances are taken primarily from the 3.2—-5 MeV iatewval
on LEMT, although H is only available near 2.5 MeV dmWe use the 4-6 MeV arilu
interval for the ions on LET (S is not available on LET; all LET data are from
http://www.srl.caltech.edu/STEREO/Levell/LET public.HtmAbundance enhance-
ments are measured relative to the average SEP abundances listed by Reanaesée
also Reames, 1995, 2014, 2020).

2. The 23 January 2012 SEP Event

The source temperature analysis\ind observations of this event is shown in Figure 3
of Reames (2018b), while Figure 4 of Reames (2017b) shows the comparative anhalysis
STEREO A (without H). A similar analysis of STEREO B data (Figure 5 afies,
2017b) breaks down because of the relatively flat pattern of abundestsas A/Qearly
and especially because of the poor statistics of the STEREO B data lateevenhe
Source temperatures can only be determined when the relative abundaresteearis-
ing or fallingversus A/Q This time, we surmount the problem of flat abundarmeesus
A/Q simply by assuming for STEREO B the well-determiiied1.6 MK seen on both
Windand STEREO A (Reames, 2017b).

Panels (c), (d), and (e) of Figure 1 compare the time evolution of the power-law
fits of the relative abundance enhancemeatsusA/Q for the three spacecraftVind
data are spaced at 8-hr intervals while the STEREO data are for davgistevith the
beginning time of each interval listed to the right of the fitted data.

Judging the fitted data in Figure 1, it is true that some time periods seem to show
a systematic departure from the power-law fit, if we view theZ6< 26 data alone; note,
for example, the bottom fits in Figure 1(d). However, it is also true that the pawer-|
fits based upon the6Z < 26 elements project remarkably close to A/& =1. H is not
included in any of these fits. Thus, we must say that despite some modesdeigar
tures, the power-law behavior dominates the abundances. If we know the abundances of
heavy elements C — Fe at any time and place in this event, we can faathyrpliedict

the abundance of H at the same velocity.
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Figure 1 Intensities lpwer panel$ of “He, O, and Fe oWind are compared with those om) STEREO A
and b) STEREO B.Upper panelsshow relative enhancements, labeledzbyersusA/Q with the best-fit

power law for elements with > 6 extrapolated down to H &/Q = 1, displaced at each listed time foy (
STEREO A, @) Wind and €) STEREO B. The sketch at thap of the figure shows the spacecraft loca-

tions around the Sun relative to the downwardlgdied CME-driven shock.

Figure 1(a) shows that a reservoir slowly evolves to include\lvatd and

STEREO A late on 26 January where the intensities and spectra of all elesties sp
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become equal. At this time the shock wave would have moved well beyond the space-
craft to about 2 AU. Actually, the slopes of the power-law fitdftmd and STEREO A
begin to stabilize and agree as early as 25 January. The reservoir does not extehd ar
as far as STEREO B.

Does this reservoir only exist so late in the events when it is seen by both space-
craft? Itis also possible to detect a reservoir on a single spacédcvatnormalize in-
tensities of particles of different species and different energiesiagle time in a reser-
voir, those intensities will stay normalized at later times, becausedhashapes and
abundances are invariant.

Figure 2 shows intensities for a variety of particle species and enavgiéable
on theWind spacecraft, all normalized at 1000 UT on 25 January 2012. The patrticle in-
tensities show significant invariant behavior for much of the time after the sheskgea
until they reach background or lack adequate statistics. The reservoinexist@ot
limited to the tiny time interval on 27 January whé&/mdand STEREO A overlap, as

seen in Figure 1(a).
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3. Discussion and Conclusions

Adding H abundances can significantly increase the leverage for deternmaipgwer-

law behavior for those SEP4 events (Reames, 2020) where the H abundance is usually
part of the power law. For the SEP3 events, with “excess protons” from ambiena plasm
in addition to enhanced > 2 ions reaccelerated from impulsive suprathermal ions, H
abundances would not help because H does not fall on the power law. However, the
weaker SEP3 events are less likely to be studied at all on widely separatsdadpac

For example the event of 4 August 2011 (Coékal, 2014) can be well studied on

Wind while on STEREO A the event is still clearly Fe-rich but it is too small inelef
power-law abundances. Using different techniques, Cetah(2014) have concluded

that longitudinal spatial transport is not rigidity dependent, an additional confimmudt

this finding that was first proposed for spatial distributions by Mason, Gloeckter, a
Hovestadt (1984) to justify shock acceleration. As seen in Figure 1, rigidity deygende
i.e. slope of the power law, does tend to steepen with time at a given longitude early in
the event as higher-rigidity ions flow away because of their reduced scattering

Individual SEP events can be quite complex. In general, we have invoked this
simplifying assumption that the behavior of SEP ions will depend upon their velodity a
as a power law upon their rigidity. This assumption seems to work for a surprising num-
ber of cases and for broad variety of categories of SEP events, although exakptions
exist (Reames, 2020). For example, streaming protons can modify Alfvén waves tha
subsequently affect ion scattering and disrupt simple power laws in rigitityReames,
and Tylka, 1999, 2003; Reames, Ng, and Tylka, 2000; Reames and Ng, 2010). We cer-
tainly do encounter events where the simple power-law assumption does no¢\gork (
Reames 2020).

However, when searching for power lawsA\iQ, the increased leverage gained
by the additional factor of two from including protons, can be critical. In our previous
study (Reames, 2017b) the omission of protons, typical before 2019, led to an unfortunate
focus on less significant variations. Proton abundances have greatly improved-this pi
ture for the 23 January 2012 SEP event as seen in Figure 1. More generally, pnoton abu

dances that do or do not agree with fits from those of heavier ions have provided a pow-



Virtues of Including H in SEP Abundances D. V. Reames

erful new measure of SEP physics of shock acceleration and its seed populatmesRea
2019, 2020).

Considering reservoirs, the regions of multi-spacecraft overlap of reseirvaire
STEREO erad.g.Cohen 2014; Reames 2017b) seem to be much smaller than those we
saw in theHelios —IMP 8 —Voyagerera (Reames, Kahler, and Ng, 1997; Reames, Ng,
and Tylka, 2012). However, this is partly becauseHibieos pacecraft were typically
separated by 30° — 45° in longitude with several spacecraft within <90° of the CME
source longitude. The STEREO spacecraft were launched just prior to a long solar
minimum, and they separated rapidly, so that significant SEP events were not geen unt
the spacecraft were eash20° from Earth. Thus we suspect that reservoirs are just as
potent in Solar Cycle 24 as they were in Solar Cycle 21, and we have seen that they do
extend over 120° from their source, relatively late in an event. We are not yet gure wh
CME-based magnetic structures would contain SEPs so well, but exclude ACRs so
poorly. However, it is possible that turbulence at the shocks that accelerateb8&Rte
missing for ACRs, play a greater role than magnetic structure of CME®viarping
outward SEP escape. Converging fields reflect particles near the Sun.
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