
Virtues of Including Hydrogen in the Patterns of Element 

Abundances in Solar Energetic Particles 

Donald V. Reames 

Institute for Physical Science and Technology, University of Maryland, College Park, 
MD 20742-2431 USA, email: dvreames@umd.edu  
 

Abstract We revisit a multi-spacecraft study of the element abundances of solar ener-

getic particles (SEPs) in the 23 January 2012 event, where the power-law pattern of en-

hancements versus the mass-to-charge ratio A/Q for the elements C through Fe was partly 

disrupted by a break near Mg, which turned out to be an unfortunate distraction.  In the 

current article we find that extending that least-squares fits for C – Fe down to H at A/Q = 

1 lends much more credence to the power laws, even though H itself was not included in 

the fits.  We also investigate the extent of an adiabatically invariant “reservoir” of mag-

netically-trapped particles behind the shock wave in this event. 
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1. Introduction 

Many years ago it was shown that the abundances of the elements with atomic numbers 6 

≤ Z ≤ 30 in large solar energetic particle (SEP) events, relative to a corresponding refer-

ence (coronal) abundances for these events, could increase or decrease as a power law in 

the mass-to-charge ratio A/Q of the ions (Breneman and Stone, 1985).  Since the pattern 

of Q-values for the elements depends upon the electron temperature of the ion source 

plasma, this has become a means of actually estimating this source temperature by select-

ing the best-fit power law (Reames, 2015, 2016, 2017a, 2018b).   While this technique 

seems to be broadly applicable to large “gradual” SEP events, a multi-spacecraft study 

comparing power-law abundance patterns for events, observed simultaneously by Wind 

and the two Solar TErrestrial RElations Observatory (STEREO) spacecraft, was stymied 

by the event of 23 January 2012 where an apparent break in the power law near Mg, seen 

at all three spacecraft (Reames, 2017b), led to questions of the applicability of the tech-

nique to this event. 

More-recent studies have extended A/Q techniques to include H (Reames, 2019), 

a significant extension in A/Q from 2 down to 1.  For most gradual events, especially the 

larger ones, H usually agrees well with the extension of the power-law fit line of abun-

dance enhancements versus A/Q from the elements with Z ≥ 6 (Reames, 2019, 2020). 

There are two primary sources of SEP events, historically designated “impulsive” 

and “gradual” (e.g. Reames, 1988, 1995b, 1999, 2013, 2017a; Gosling, 1993).  In small 

“impulsive,” or 3He-rich, SEP events (Mason 2007; Bučík 2020), acceleration occurs at 

sites of magnetic reconnection in solar jets (Kahler, Reames, and Sheeley, 2001; Bučík et 

al., 2018a, 2018b; Bučík 2020).  Here, element abundances, relative to those in the co-

rona, are enhanced as a steeply increasing power of A/Q, increasing a factor of ≈1000 

across the periodic table from H or He to Pb (Reames, 2000; Mason et al., 2004; Reames 

and Ng, 2004; Reames, Cliver, and Kahler, 2014a, 2014b) during the reconnection itself 

(e.g. Drake et al., 2009).   On average, abundance enhancements increase as (A/Q)3.64 ± 0.15 

with A/Q determined at a temperature T ≈ 3 MK in impulsive SEP events (Reames, 

Cliver, and Kahler, 2014a). 
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By way of contrast, the larger “gradual” SEP events (Lee, Mewaldt, and Giaca-

lone, 2012; Desai and Giacalone, 2016), involve acceleration at shock waves, driven by 

fast, wide coronal mass ejections (CMEs; Kahler et al., 1984; Lee, 1983, 2005; Reames, 

Barbier, and Ng, 1996; Zank, Rice, and Wu, 2000; Cliver, Kahler, and Reames, 2004; Ng 

and Reames, 2008; Gopalswamy et al., 2012; Cohen et al., 2014; Kouloumvakos et al., 

2019), that usually sample ambient coronal material (Reames, 2020).  Coronal abun-

dances sampled by SEPs differ from those in the photosphere by a factor that depends 

upon the first ionization potential (FIP) of the element.  High-FIP (>10 eV) elements 

travel as neutral atoms across the chromosphere while low-FIP elements are ionized ini-

tially and are preferentially boosted upward by a factor of ≈3 in intensity by the action of 

Alfvén waves (Laming, 2015; Reames, 2018a; Laming et al., 2019); these FIP-processed 

coronal ions form the reference abundances sampled as SEPs much later (Webber, 1975; 

Meyer, 1985; Reames, 1995a, 2014).  After acceleration, ion scattering during transport 

can depend upon a power of the ion magnetic rigidity, and hence abundances depend 

upon A/Q for ions compared at a constant velocity (Parker, 1963; Ng, Reames, and Tylka, 

1999, 2001, 2003, 2012; Reames, 2016, 2019), leading to the observed power-law de-

pendence.  For example, since Fe scatters less than O, Fe/O is often enhanced early in an 

event and therefore depleted later, producing a power-law dependence upon A/Q that in-

crease early and decrease later (e.g. Breneman and Stone, 1985, Reames, 2016, 2019).   

The distinction of impulsive and gradual SEP events becomes complicated when 

local shock waves at CMEs in jets reaccelerate the impulsive ions pre-accelerated in the 

magnetic reconnection, and also, large pools of impulsive suprathermal ions can collect 

near active regions with many jets, producing 3He-rich, Fe-rich background levels often 

seen (Desai et al., 2003; Bučík et al., 2014, 2015; Chen et al., 2015).  These pools of im-

pulsive suprathermal seed ions are preferentially accelerated (Desai et al., 2003; Tylka et 

al., 2005; Tylka and Lee, 2006) and even dominate SEPs with weaker shocks that need 

this boosted injection, while stronger shocks are more-easily seeded by ambient coronal 

plasma.  Reames (2020) has identified four paths for element abundances: (i) the “pure” 

impulsive events, SEP1, (ii) impulsive events with shocks, SEP2, (iii) gradual events 

dominated by impulsive seed ions, SEP3, and (iv) strong gradual events dominated by 

ambient corona, SEP4.  We might expect that events typically seen by multiple, widely-
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separated spacecraft would tend to be the strong SEP4 events where the H generally fits 

on the abundance power law with the other elements (Reames, 2020). 

Another especially interesting phenomenon is observed behind the shock wave in 

large gradual events: the SEP “reservoir.”  Reservoirs contain magnetically-trapped, in-

variant populations of particles of interest because particle intensities decrease adiabati-

cally, maintaining their spectral shape and abundances, as the magnetic bottle containing 

them expands (see Sect. 5.7 of Reames 2017a; Reames, Kahler, and Ng, 1997).  Early 

measurements on the Pioneer spacecraft found comparable intensities of ≈20 MeV pro-

tons extending ≈180° in longitude around the Sun late in SEP events (e.g. McKibben, 

1972).  Later, equal intensities were found in large events over 2.5 AU radially between 

Ulysses and IMP 8 near Earth by Roelof et al. (1992) who coined the term “reservoir.”  

A priori one might expect higher-rigidity or higher-velocity particles to scatter 

less, to sample boundaries more often, penetrate them more easily, and to slowly leak 

away, so that spectra steepen and abundance ratios, like Fe/O, decrease with time.  How-

ever, this does not happen within reservoirs, where spectra and abundances tend to be in-

variant in space and time, as if all intensities decrease in unison as the volume of the 

magnetic bottle increases with time.  Particle transport is nearly scatter-free within reser-

voirs as we see when newly-injected 3He-rich events traverse them (Mason et al., 1989; 

Reames, 1999, 2013, 2017a).  It seems especially amazing to the author that SEPs are so 

well contained at CMEs and reservoirs, while CMEs and even magnetic clouds are so 

easily penetrated and filled from outside by anomalous cosmic rays (ACRs; Reames, 

Kahler, and Tylka, 2009) at solar minimum, although these latter CMEs do lack shocks.  

Are these regions magnetically open or closed?  This makes reservoirs sufficiently inter-

esting to take this opportunity to extend our study of the reservoir in the 23 January 2012 

event and compare it with reservoirs seen in previous solar cycles (e.g. Reames, Kahler, 

and Ng, 1997; Lario, 2010; Reames, Ng, and Tylka, 2012). 

The original study of the power-law abundance pattern of the 23 January 2012 

event that we would like to revisit is that of Reames (2017b), comparing the widely sepa-

rated platforms: STEREO-Ahead (A) and -Behind (B) Earth in solar orbit, and the Wind 

spacecraft near Earth.  During this large SEP event, we now include the abundance of H 

with the relative abundances of the elements He, C, N, O, Ne, Mg, Si, S, Ar, Ca, and Fe 
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from the Low-Energy Matrix Telescope (LEMT; von Rosenvinge et al., 1995) on Wind 

and the Low-Energy Telescopes (LETs; Mewaldt et al., 2008; see also Luhmann et al., 

2008) on STEREO.  Abundances are taken primarily from the 3.2–5 MeV amu-1 interval 

on LEMT, although H is only available near 2.5 MeV amu-1. We use the 4–6 MeV amu-1 

interval for the ions on LET (S is not available on LET; all LET data are from 

http://www.srl.caltech.edu/STEREO/Level1/LET_public.html).  Abundance enhance-

ments are measured relative to the average SEP abundances listed by Reames (2017a; see 

also Reames, 1995, 2014, 2020).   

2. The 23 January 2012 SEP Event 

The source temperature analysis for Wind observations of this event is shown in Figure 3 

of Reames (2018b), while Figure 4 of Reames (2017b) shows the comparative analysis of 

STEREO A (without H).  A similar analysis of STEREO B data (Figure 5 of Reames, 

2017b) breaks down because of the relatively flat pattern of abundances versus A/Q early 

and especially because of the poor statistics of the STEREO B data later in the event.  

Source temperatures can only be determined when the relative abundances are either ris-

ing or falling versus A/Q.  This time, we surmount the problem of flat abundances versus 

A/Q simply by assuming for STEREO B the well-determined T ≈ 1.6 MK seen on both 

Wind and STEREO A (Reames, 2017b). 

Panels (c), (d), and (e) of Figure 1 compare the time evolution of the power-law 

fits of the relative abundance enhancements versus A/Q for the three spacecraft.  Wind 

data are spaced at 8-hr intervals while the STEREO data are for daily intervals, with the 

beginning time of each interval listed to the right of the fitted data. 

Judging the fitted data in Figure 1, it is true that some time periods seem to show 

a systematic departure from the power-law fit, if we view the 6 ≤ Z ≤ 26 data alone; note, 

for example, the bottom fits in Figure 1(d).  However, it is also true that the power-law 

fits based upon the 6 ≤ Z ≤ 26 elements project remarkably close to H at A/Q =1.  H is not 

included in any of these fits.  Thus, we must say that despite some modest high-Z depar-

tures, the power-law behavior dominates the abundances.  If we know the abundances of 

heavy elements C – Fe at any time and place in this event, we can fairly reliably predict 

the abundance of H at the same velocity. 
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Figure 1 Intensities (lower panels) of 4He, O, and Fe on Wind are compared with those on (a) STEREO A 

and (b) STEREO B. Upper panels show relative enhancements, labeled by Z, versus A/Q with the best-fit 

power law for elements with Z ≥ 6 extrapolated down to H at A/Q = 1, displaced at each listed time for (c) 

STEREO A, (d) Wind, and (e) STEREO B.  The sketch at the top of the figure shows the spacecraft loca-

tions around the Sun relative to the downwardly directed CME-driven shock. 

Figure 1(a) shows that a reservoir slowly evolves to include both Wind and 

STEREO A late on 26 January where the intensities and spectra of all element species 
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become equal.  At this time the shock wave would have moved well beyond the space-

craft to about 2 AU.  Actually, the slopes of the power-law fits for Wind and STEREO A 

begin to stabilize and agree as early as 25 January.  The reservoir does not extend around 

as far as STEREO B. 

Does this reservoir only exist so late in the events when it is seen by both space-

craft?   It is also possible to detect a reservoir on a single spacecraft.  If we normalize in-

tensities of particles of different species and different energies at a single time in a reser-

voir, those intensities will stay normalized at later times, because the spectral shapes and 

abundances are invariant. 

Figure 2 shows intensities for a variety of particle species and energies available 

on the Wind spacecraft, all normalized at 1000 UT on 25 January 2012.  The particle in-

tensities show significant invariant behavior for much of the time after the shock passage, 

until they reach background or lack adequate statistics.  The reservoir existence is not 

limited to the tiny time interval on 27 January where Wind and STEREO A overlap, as 

seen in Figure 1(a).  

Figure 2 Intensities, at Wind, 

of the particles and energies 

listed, are normalized at 1000 

UT on 23 January 2012 and 

plotted versus time.  
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3. Discussion and Conclusions 

Adding H abundances can significantly increase the leverage for determining the power-

law behavior for those SEP4 events (Reames, 2020) where the H abundance is usually 

part of the power law.  For the SEP3 events, with “excess protons” from ambient plasma 

in addition to enhanced Z > 2 ions reaccelerated from impulsive suprathermal ions, H 

abundances would not help because H does not fall on the power law.  However, the 

weaker SEP3 events are less likely to be studied at all on widely separated spacecraft.  

For example the event of 4 August 2011 (Cohen et al., 2014) can be well studied on 

Wind, while on STEREO A the event is still clearly Fe-rich but it is too small to define 

power-law abundances.  Using different techniques, Cohen et al. (2014) have concluded 

that longitudinal spatial transport is not rigidity dependent, an additional confirmation of 

this finding that was first proposed for spatial distributions by Mason, Gloeckler, and 

Hovestadt (1984) to justify shock acceleration.  As seen in Figure 1, rigidity dependence, 

i.e. slope of the power law, does tend to steepen with time at a given longitude early in 

the event as higher-rigidity ions flow away because of their reduced scattering.   

Individual SEP events can be quite complex.  In general, we have invoked this 

simplifying assumption that the behavior of SEP ions will depend upon their velocity and 

as a power law upon their rigidity. This assumption seems to work for a surprising num-

ber of cases and for broad variety of categories of SEP events, although exceptions do 

exist (Reames, 2020).  For example, streaming protons can modify Alfvén waves that 

subsequently affect ion scattering and disrupt simple power laws in rigidity (Ng, Reames, 

and Tylka, 1999, 2003; Reames, Ng, and Tylka, 2000; Reames and Ng, 2010).  We cer-

tainly do encounter events where the simple power-law assumption does not work (e.g. 

Reames 2020). 

However, when searching for power laws in A/Q, the increased leverage gained 

by the additional factor of two from including protons, can be critical.  In our previous 

study (Reames, 2017b) the omission of protons, typical before 2019, led to an unfortunate 

focus on less significant variations.  Proton abundances have greatly improved this pic-

ture for the 23 January 2012 SEP event as seen in Figure 1.  More generally, proton abun-

dances that do or do not agree with fits from those of heavier ions have provided a pow-
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erful new measure of SEP physics of shock acceleration and its seed population (Reames, 

2019, 2020). 

Considering reservoirs, the regions of multi-spacecraft overlap of reservoirs in the 

STEREO era (e.g. Cohen 2014; Reames 2017b) seem to be much smaller than those we 

saw in the Helios – IMP 8 – Voyager era (Reames, Kahler, and Ng, 1997; Reames, Ng, 

and Tylka, 2012).   However, this is partly because the Helios spacecraft were typically 

separated by 30° – 45° in longitude with several spacecraft within <90° of the CME 

source longitude.  The STEREO spacecraft were launched just prior to a long solar 

minimum, and they separated rapidly, so that significant SEP events were not seen until 

the spacecraft were each ≈120° from Earth.  Thus we suspect that reservoirs are just as 

potent in Solar Cycle 24 as they were in Solar Cycle 21, and we have seen that they do 

extend over 120° from their source, relatively late in an event.  We are not yet sure why 

CME-based magnetic structures would contain SEPs so well, but exclude ACRs so 

poorly.  However, it is possible that turbulence at the shocks that accelerate SEPs, but are 

missing for ACRs, play a greater role than magnetic structure of CMEs, in preventing 

outward SEP escape.  Converging fields reflect particles near the Sun.   
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