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Abstract Based upon recent evidence from abundance patterns of chemical elements in so-
lar energetic particles (SEPs), and, ironically, the belated inclusion of H and He, we can
distinguish four basic SEP populations: (1) SEP1—pure “impulsive” SEPs are produced by
magnetic reconnection in solar jets showing steep power-law enhancements of 1 ≤ Z ≤ 56
ions versus charge-to-mass ratio A/Q from a ≈ 3 MK plasma. (2) SEP2—ambient ions,
mostly protons, plus SEP1 ions reaccelerated by the shock wave driven by the narrow coro-
nal mass ejection (CME) from the same jet. (3) SEP3—a “gradual” SEP event is produced
when a moderately fast, wide CME-driven shock wave barely accelerates ambient protons
while preferentially accelerating accumulated remnant SEP1 ions from an active region fed
by multiple jets. (4) SEP4—a gradual SEP event is produced when a very fast, wide CME-
driven shock wave is completely dominated by ambient coronal seed population of 0.8–
1.8 MK plasma usually producing a full power law vs. A/Q for 1 ≤ Z ≤ 56 ions. We begin
with element abundances in the photosphere that are fractionated during transport up to the
corona based upon their first ionization potential (FIP); this important “FIP effect” for SEPs
provides our reference abundances and is different for SEPs from that for the solar wind. We
then show evidence for each of the processes of acceleration, reacceleration, and transport
that conspire to produce the four abundances patterns we distinguish.

Keywords Solar energetic particles · Shock waves · Coronal mass ejections · Solar flares ·
Solar system abundances · Solar wind

1 Introduction

Relative abundances of the chemical elements have been a key to understanding the physics
in many astrophysical settings. Solar energetic particles (SEPs) are no exception, and for
these SEPs, abundance measurements continue to produce surprising new results. The first
evidence for the existence of SEPs was reported by Forbush (1946) who observed what we
now call ground level events (GLEs) produced when SEPs at GeV energy fragment in nu-
clear cascades through the atmosphere to produce secondary particles seen at ground level.
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Of course, these GLEs provide no information at all on the incoming SEP abundances. Di-
rect measurements of SEP abundances were made when nuclear emulsions flown on sound-
ing rockets from Fort Churchill, Manitoba first measured C, N, and O (Fichtel and Guss
1961) and eventually Fe (Bertch et al. 1969). Measurements have progressed for individual
elements up through Fe (Teegarden et al. 1973; McGuire et al. 1979; Cook et al. 1984;
Meyer 1985; Reames 1995a, 2014, 2017a, 2018a; Mewaldt et al. 2002) and groups of
elements throughout the rest of the periodic table (Reames 2000; Mason et al. 2004;
Reames and Ng 2004; Reames et al. 2014a). Yet, surprising new patterns have begun to
emerge only recently as we extended abundances down to H (Reames 2019b, 2019c, 2019d).

Suggestions for the physical source of SEPs evolved slowly. Originally SEPs were be-
lieved to be accelerated somehow in solar flares, the only associated feature then visible on
the Sun. But how could point-source flares distribute SEPs across magnetic fields over more
than half of the heliosphere? Imaginative schemes such as the “bird cage” model of Newkirk
and Wenzel (1978), allowing ions to hop from loop to loop across the face of the Sun, were
taken quite seriously. After many years, Kahler et al. (1984) showed that SEPs had a strong
(96%) association with wide, fast coronal mass ejections (CMEs), only discovered a few
years before, and thus with the extensive shock waves that they drive out from the Sun. The
review by Gosling (1993) entitled “The Solar Flare Myth” highlighted the emerging mod-
ern understanding that SEPs in the large, persistent “gradual” SEP events were accelerated
along the broad fronts of expanding, CME-driven shock waves (e.g. Reames 1995b, 1999,
2013, 2015, 2017a, 2019e). Shock acceleration is relatively well understood (Bell 1978;
Lee 1983, 2005; Jones and Ellison 1991; Zank et al. 2000, 2007; Sandroos and Vainio 2007;
Ng and Reames 2008) and this model has advanced considerably (Kahler 1992, 1994, 2001;
Reames et al. 1996, 1997; Cliver et al. 2004; Cliver and Ling 2007; Gopalswamy et al. 2012;
Mewaldt et al. 2012; Lee et al. 2012; Cliver 2016; Desai and Giacalone 2016), including cor-
related spatial studies of CMEs and SEPs (Rouillard et al. 2011, 2012, 2016; Kouloumvakos
et al. 2019) and SEP onset timing (Tylka et al. 2003; Reames 2009a, 2009b).

From the earliest element abundance measurements of SEPs in these large, gradual
events, there were attempts to compare them with abundances in the solar corona and pho-
tosphere, where measurements were also evolving slowly with time. The relative enhance-
ment of SEP and coronal abundances was found to depend upon the first ionization potential
(FIP) of the elements (Webber 1975; Meyer 1985). Elements with low FIP (below ∼ 10 eV),
which are ionized in the photosphere and chromosphere, are enhanced by a factor of nearly
3 over high-FIP elements, which begin their outward journey as neutral atoms. All elements
become highly ionized in the 1-MK corona. The solar “FIP effect” is now believed to result
because the ions are preferentially conveyed upward by the ponderomotive force of Alfvén
waves (Laming 2015) which affect ions but not neutral atoms. However, we have found that
the underlying FIP pattern of SEPs differs from that of the solar wind (Mewaldt et al. 2002;
Reames 2018a).

Meyer (1985) found that all SEP events showed evidence of the FIP effect while individ-
ual events showed his “mass effect” or additional enhancement or suppression of abundances
that depended upon the mass-to-charge ratio A/Q of the ions. Breneman and Stone (1985)
showed this to be a power law in A/Q for some events, with Q based upon the ionization-
state measurements of Luhn et al. (1984). We can now understand this as a power-law de-
pendence upon the magnetic-rigidity of ion scattering during transport out from the Sun
(Parker 1963; Ng et al. 2003). If we compare abundances of different ions at the same ve-
locity (or energy per nucleon), as we always do, this rigidity dependence becomes simply
a relative dependence upon A/Q. For example, if Fe scatters less than O, then Fe/O will
become enhanced early in an event and depleted later; solar rotation can then turn this time
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dependence into longitude dependence. Of course, Q values are a function of the effective
source plasma temperature T , so the power-law dependence of enhancements on A/Q can
be used to determine a best-fit value of T for each event (Reames 2016a, 2016b) using theo-
retical values of Q vs. T (e.g. Mazzotta et al. 1998). While straightforward, the technique of
using element abundances vs. A/Q to derive source plasma temperatures is also explained
in reviews by Reames (2017a, 2018b).

A surprising class of SEP events, the small “impulsive” events, emerged when mea-
surements began to find large enhancements in 3He/4He, relative to (4.08 ± 0.25) × 10−4

in the solar wind (e.g. Gloeckler and Geiss 1998). At first, these enhancements were con-
sidered as possible evidence of nuclear fragmentation, as had been seen in galactic cos-
mic rays, but then Serlemitsos and Balasubrahmanyan (1975), for example, found a huge
value of 3He/4He = 1.52 ± 0.10, with no evidence of 2H or secondary elements Li, Be,
or B. Limits on Be/O or B/O in SEP events are < 2 × 10−4 (e.g. McGuire et al. 1979;
Cook et al. 1984). Thus fragmentation was completely excluded and a resonance process
was required. Early proposals of wave-particle interactions could produce selective heating
of 3He but failed to suggest a mechanism of acceleration. Then, Temerin and Roth (1992)
suggested that copious non-relativistic electrons, observed to be streaming from impulsive
SEP events (Reames et al. 1985) and producing radio type III bursts (Reames and Stone
1986), could also generate electromagnetic ion-cyclotron waves, near the gyrofrequency of
3He, that drove the acceleration. Separately, Liu et al. (2006) were able to use stochastic
acceleration to fit the complex spectra of 3He and 4He.

Almost as spectacular as the increases in 3He were the enhancements in heavy ele-
ments which were found to increase all the way from He up to 1000-fold enhancements
of heavy elements near Au or Pb (Reames 2000; Mason et al. 2004; Reames and Ng 2004;
Reames et al. 2014a). These enhancements of the heavy elements, rising as a power law in
A/Q, appear to be accelerated in magnetic reconnection regions, according to particle-in-
cell simulations (e.g. Drake et al. 2009). The study of these increases as an indication of
source-plasma temperatures grew slowly. Modest increases were first observed in Fe/O and
elements up to Fe, in 3He-rich events. Reames et al. (1994) noticed that He, C, N, and O were
relatively unenhanced in impulsive events, Ne, Mg, and Si, were enhanced by a factor of 2.5
and Fe was enhanced by a factor of ≈ 7. They noted that at a temperature of 3–5 MK, He, C,
N, and O would be fully ionized, or nearly so, Ne, Mg, and Si would all be in a similar stable
state with two orbital electrons so that Q/A ≈ 0.43, and Fe would have Q/A ≈ 0.28, giving
a nascent power law in Q/A, or A/Q. When heavier elements were observed, this power
law was subsequently extended across the periodic table at T ≈ 3 MK as a 3.64 ± 0.15
power of A/Q, on average (Reames et al. 2014a). When we fit abundance enhancements of
individual impulsive SEP event as power-laws vs. A/Q, we try A/Q values at many values
of T and select the value of T giving the smallest χ2. Nearly all impulsive events fall in the
2.5–3.2 MK region (Reames et al. 2014b, 2015). Improving accuracy shows that enhance-
ments in impulsive SEP events increase with Ne > Mg > Si, opposite the Z order; this order
of A/Q is unique for the T ≈ 3 MK region.

While gradual SEP events were associated with wide, fast CMEs, impulsive SEP events
either had no significant CME or narrow CMEs (Kahler et al. 2001) which led them to
be associated with solar jets, and the events have subsequently been associated directly with
solar jets (Bučík et al. 2018a, 2018b). Early measurements had shown that the charge state of
Fe in impulsive events was 20.5±1.2 (Luhn et al. 1987) while that for gradual events varied
from 11 to 15 (Luhn et al. 1987; Mason et al. 1995, Leske et al. 1995, 2001; Tylka et al.
1995; Klecker 2013), over a wide range of energies. However, subsequent measurements in
impulsive events showed that Q-values varied with energy, probably because of stripping to
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an equilibrium charge state by passage through a small amount of material after acceleration
at a depth found to be ≈ 1.5 solar radii (DiFabio et al. 2008). This increases the importance
of estimates of T = 2.5–3.2 MK obtained from abundances in impulsive events (Reames
et al. 2014b, 2015) since these temperatures and the corresponding ionization states were
determined at the time of acceleration, before stripping. The strong power-law abundances
imparted during acceleration are sufficiently persistent to dominate any weaker effects of
later transport with altered ionization states.

For a time it seemed that impulsive and gradual SEP events could be distinguished by the
presence or absence of 3He alone, since 3He seemed to be a signature of an impulsive event,
but new complexity emerged when Mason et al. (1999) found a small but significant increase
in 3He in large SEP events that would otherwise qualify as being gradual. Shock waves could
easily reaccelerate residual suprathermal ions from earlier impulsive SEP events, perhaps
even preferentially, since higher-velocity ions could more easily overtake the shock from
downstream, especially in cases where the magnetic field lies near the plane of the shock
(Desai et al. 2003; Tylka et al. 2001, 2005; Tylka and Lee 2006). For as many as 25% of
gradual events, reacceleration of the 3-MK impulsive suprathermal ions actually dominates
the abundances of the elements with Z > 2. These events seem to involve weaker shocks
and perhaps quasi-perpendicular shocks, where the angle between the field B and the shock
normal θBn > 60◦, so that thermal ions downstream would have difficulty in overtaking the
shock in order to scatter back and forth to gain energy (Tylka et al. 2005; Tylka and Lee
2006; Reames 2019d).

It is only when we include the abundance of the element H, which significantly ex-
tends the span of A/Q, that we find revealing upward breaks in the power-law dependence
that could be direct evidence of two-component seed population for shock acceleration,
at least for weak shocks, and is therefore a signature of shock-acceleration itself (Reames
2019b, 2019c, 2019d). The intermediate energies we study allow us to exploit the sim-
ple power-law behavior in A/Q, avoiding high-energy spectral breaks (e.g. Mewaldt et al.
2012), for example, to inter-compare a wide range of sizes and strengths of gradual and
impulsive SEP events.

In this review we suggest a broad overall organizational pattern affecting the origin of
element abundances in SEP events from the photosphere outward, indicating the dominant
processes that modify abundances, and showing examples to justify each type of suggested
behavior. Perhaps this new organization can provide a more complete framework for our
understanding and for guiding future studies.

Measurements of element abundances in this article are from the Low-Energy Matrix
Telescope (LEMT) onboard the Wind spacecraft, near Earth (von Rosenvinge et al. 1995;
see also Chap. 7 of Reames 2017a). LEMT measures elements from H through Pb in the
2–20 MeV amu−1 region, although energies of H are limited to 2–2.5 MeV and LEMT
resolves only element groups above Fe as shown by Reames (2000, 2017a). As a basis,
we consider impulsive events listed and studied by Reames et al. (2014a, 2014b) and the
gradual events listed and studied by Reames (2016a). CME data used are from the Large
Angle and Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Ob-
servatory (SOHO) reported in the SOHO/LASCO CME catalog (Gopalswamy et al. 2009;
https://cdaw.gsfc.nasa.gov/CME_list/).

2 Physical Processes that Control SEP Abundances

Figure 1 provides a roadmap for our discussion of the way physical processes combine to
determine the element abundances in SEP events. From the abundances of the solar photo-

https://cdaw.gsfc.nasa.gov/CME_list/
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Fig. 1 The schematic shows the locations and physical processes leading to the acceleration of SEP events
with four different patterns discussed in this article. (a) Elements experience different FIP processing on open
and closed fields, B. (b) SEP acceleration can occur in magnetic reconnection regions or by shock accelera-
tion. (c) SEPs with 3He- and high-Z-rich ions escape from open B in jets, but not flares. (d) Weaker shocks
prefer pre-accelerated SEP1 suprathermal seed ions while strong shocks deeply sample ambient corona.
(e) Fast CMEs in jets reaccelerate the SEP1 ions to produce SEP2 (f) Rigidity-dependent scattering mod-
ifies abundances, especially in gradual events where high intensities produce self-generated waves

sphere, we begin with the FIP effect after location (a) in Fig. 1, which is different for SEPs
and the solar wind. Dominant acceleration mechanisms occur in magnetic reconnection re-
gions or at CME-driven shock waves after (b). After Fig. 1(c) open field lines in jets allow
SEPs to escape to produce SEP1 ions, or later, the shock-reaccelerated SEP2 ions after (e),
while the corresponding ions in flares are trapped. After Fig. 1(d) shock properties deter-
mine the mix of SEP1, 2, ions and ambient corona in gradual SEP events: SEP3, where
SEP1 seed ions dominate, and SEP4, where they do not. Transport can impose an A/Q

modification at (f), more strongly in intense gradual events with self-generated waves than
in scatter-free impulsive events. Examples of these SEP ions will be exhibited and discussed
in the remainder of this article.

2.1 Entering the Corona: The FIP Effect

The making of the element abundance patterns of SEPs begins early when those elements
are transported across the chromosphere into the corona. Figure 2(a) shows average gradual
SEP abundances divided by photospheric abundances (Caffau et al. 2011; Lodders et al.
2009; see also Asplund et al. 2009) compared with recent calculations of Laming et al.
(2019) for loop-like structures. See abundances listed in Table 1.
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Fig. 2 Average abundances of
(a) SEPs, (b) CIR ions and
(c) slow solar wind (SSW;
Bochsler 2009), relative to solar
photospheric abundances, (solid
blue) are shown as a function of
the FIP of each element and
compared with theoretical
calculations (open red) by
Laming et al. (2019) for loop
structures (a), and for the SSW
(b and c). All abundances are
normalized at O. The light blue
band compares elements C, P,
and S that are suppressed like
high-FIP elements in SEPs, but
are elevated like low-FIP
elements in the solar wind.
However, decreasing the
photospheric C/O ratio by 20%
would greatly improve the
agreement of observation and
theory for all three samples:
SEPs, CIRs, and SSW

It has been well established that SEP abundances differ from those of the solar wind
(Mewaldt et al. 2002; Desai et al. 2003; Kahler and Reames 2003; Kahler et al. 2009;
Reames 2018a, 2018b). The elements C, P, and S behave as high-FIP elements, suppressed
in SEPs as shown in Fig. 2(a), but are elevated like low-FIP elements in the solar wind in
Figs. 2(b) and 2(c) (Reames 2018a, 2018b; Laming et al. 2019). In terms of the theory in
which the ponderomotive force of Alfvén waves enhances low-FIP elements (Laming 2015;
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Table 1 Photospheric, reference SEPs, CIR, and slow solar wind abundances

Z FIP
[eV]

Photosphere1 SEPs2 CIRs3 Interstream
solar wind4

H 1 13.6 (1.74 ± 0.04)×106* (≈ 1.6 ± 0.2)×106 (1.81 ± 0.24)×106 –

He 2 24.6 1.46 ± 0.07×105 91000 ± 5000 159000 ± 10000 90000 ± 30000

C 6 11.3 550 ± 76* 420 ± 10 890 ± 36 680 ± 70

N 7 14.5 126 ± 35* 128 ± 8 140 ± 14 78 ± 5

O 8 13.6 1000 ± 161* 1000 ± 10 1000 ± 37 1000

Ne 10 21.6 195 ± 45 157 ± 10 170 ± 16 140 ± 30

Na 11 5.1 3.47 ± 0.24 10.4 ± 1.1 – 9.0 ± 1.5

Mg 12 7.6 60.3 ± 8.3 178 ± 4 140 ± 14 147 ± 50

Al 13 6.0 5.13 ± 0.83 15.7 ± 1.6 – 11.9 ± 3

Si 14 8.2 57.5 ± 8.0 151 ± 4 100 ± 12 140 ± 50

P 15 10.5 0.501 ± 0.046* 0.65 ± 0.17 – 1.4 ± 0.4

S 16 10.4 25.1 ± 2.9* 25 ± 2 50 ± 8 50 ± 15

Cl 17 13.0 0.55 ± 0.38 0.24 ± 0.1 – –

Ar 18 15.8 5.5 ± 1.3 4.3 ± 0.4 – 3.1 ± 0.8

K 19 4.3 0.224 ± 0.046* 0.55 ± 0.15 – –

Ca 20 6.1 3.72 ± 0.60 11 ± 1 – 8.1 ± 1.5

Ti 22 6.8 0.138 ± 0.019 0.34 ± 0.1 – –

Cr 24 6.8 0.759 ± 0.017 2.1 ± 0.3 – 2.0 ± 0.3

Fe 26 7.9 57.6 ± 8.0* 131 ± 6 97 ± 11 122 ± 50

Ni 28 7.6 2.95 ± 0.27 6.4 ± 0.6 – 6.5 ± 2.5

Zn 30 9.4 0.072 ± 0.025 0.11 ± 0.04 – –

Se–Zr 34–40 – ≈ 0.0118 0.04 ± 0.01 – –

Sn–Ba 50–56 – ≈ 0.00121 0.0066 ± 0.001 – –

Os–Pb 76–82 – ≈ 0.00045 0.0007 ± 0.0003 – –

1Lodders et al. (2009). Ratios to O of elements from Lodders et al. (2009) are taken before correction of O
by Caffau et al. (2011)
*Caffau et al. (2011)

2Reames (1995a, 2014, 2017a)

3Reames et al. (1991); Reames (1995a)

4Bochsler (2009)

Laming et al. 2019), Alfvén waves resonate with the loop length in closed loops resulting
in reduced C, P, and S abundances in SEPs, but cannot do so for open fields leading to so-
lar wind (Reames 2018a, 2018b; Laming et al. 2019). While we have not shown the fast
(coronal hole) solar wind, the abundances of C and S are identical for the fast and slow
(interstream) wind (Bochsler 2009; P is not listed).

A sample of solar wind abundances is also provided by particles accelerated at shock
waves formed in corotating interaction regions (CIRs) where high-speed solar-wind streams
overtake slow wind emitted earlier in the solar rotation (Reames et al. 1991; Richardson
2004; Reames 2018c) and shown in Fig. 2(b). C and S are elevated like Si and Fe in the CIR
ions but behave like O, N, and Ar in the SEPs. Note also that the high-FIP elements, and
especially He, agree well with the theory for the CIR ions; these elements have large errors
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in the SSW. He/O is suppressed for SEPs but elevated for CIR ions, both in the observations
and in the theory.

The distinction between the FIP patterns in SEPs and in the solar wind is important for
the origin of both. According to theory, the FIP pattern depends upon the open or closed
field at the base of the corona, long before that plasma will be accelerated outward as SEPs
or solar wind. It is not so surprising that plasma that will later become SEPs originates in
active regions, but it is surprising that these originally-closed loops contribute little to the
slow solar wind. The slow wind may come from small coronal holes from which field lines
are highly divergent (Wang and Sheeley 1990).

The most significant theoretical difference in Fig. 2(a) is for C (see also Table 1). C/O is
0.420 ± 0.010 on average in SEPs, and is < 0.5 in all individual SEP events, but is 0.550 ±
0.076 in values quoted for the photosphere (see also Asplund et al. 2009). We see no way
to reconcile the difference unless the photospheric C/O ratio is actually 20% lower. A lower
value of the photospheric C/O ratio would improve the agreement of observation and theory
for all three samples shown in Fig. 2: SEPs, CIRs, and SSW.

It has become common to use spectral line measurements of Si and S to measure the
spatial distribution of the FIP effect in the solar corona (Brooks et al. 2016; Doschek and
Warren 2019). These full-Sun maps are appropriate and extremely helpful for SEPs. It turns
out that the region of high Si/S seems confined to closed magnetic loops and active regions
which comparisons of SEP abundances with FIP theory (Fig. 2(a); Reames 2018a; Laming
et al. 2019) have told us to be the origin of SEPs. This helps to confirm the origin of plasma
that will become SEPs.

Thus, the Si/S ratio is an excellent measure of FIP for SEPs (Fig. 2(a)). However, the Si/S
ratio is a terrible measure of FIP for the solar wind (Fig. 2(b) or 2(c)). As seen from both
CIRs and the slow solar wind in Fig. 2 and Table 1, and from publications (Reames 2018a;
Laming et al. 2019), S is elevated as a low-FIP element like Si in the solar wind so Si/S
cannot measure the FIP bias of atoms destined to form the solar wind. What we lack are
images of measures like Mg/Ne which we would expect to be elevated for the origin of both
SEPs and the solar wind. One of the advantages of SEPs for coronal studies is that a large
number of elements are measured at a time, spanning a large part of the FIP pattern. SEPs
are an actual sample of coronal plasma.

3 Impulsive SEP Events

3He/4He would seem to be the obvious way to choose impulsive events, but what value of
3He/4He should we require, and at what energy? This ratio varies by orders of magnitude
with energy within individual events (Mason 2007) and we know that some 3He is reac-
celerated in large gradual events (Mason et al. 1999). Probably all SEP events have some
3He and there is no obvious boundary. Element abundances such as Fe/O are better be-
haved. Bimodal abundances of Fe/O have been observed for a long time (Reames 1988;
Reames and Ng 2004) and, with the improved statistics of more-sensitive instruments, they
provide an obvious distinction. Figure 3(a) shows a histogram of normalized abundances of
Ne/O vs. Fe/O for 19 years of 8-hr averages at the lowest energies observed by the LEMT
telescope on the Wind spacecraft. The two peaks in this figure define periods of impulsive
and gradual SEP events (Reames et al. 2014a; Reames 2015, 2018b). The resulting average
abundance pattern for the 111 impulsive SEP events that were identified and listed is shown
in Fig. 3(b) (Reames et al. 2014a). All of the impulsive events which we will classify as
SEP1 or SEP2 were distinguished in this way.
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Fig. 3 (a) Normalized values of enhancements of Ne/O vs. Fe/O near 3 MeV amu−1 are binned for all 8-hr
intervals during 19 years which have errors of 20% or less. The periods near the origin at (1, 1) represents
average gradual SEP event periods, that determine the normalization factors. The peak near (7, 3) defines the
selection of impulsive SEP events. Candidate “impulsive” periods were chosen to have ≥ 4 on the abscissa.
(b) Average enhancements of elements, relative to coronal values, are shown for the impulsive SEP events
(SEP1 and SEP2) vs. A/Q at 3 MK (Reames et al. 2014a; Reames 2018b)

Impulsive and gradual SEP events were once distinguished by the duration of associated
X-ray bursts, but that no longer seems appropriate or relevant. It is true that most impulsive
events themselves last for hours while gradual events last for days, but these durations are
not completely distinct. In fact, the clearest separation of these two event classes now is that
based upon bimodal distribution of abundances shown in Fig. 3(a) (Reames 1988, 2015,
2018b; Reames and Ng 2004; Reames et al. 2014a). The resulting impulsive events, thus
defined, turn out to have the abundance pattern in Fig. 3(b) and the associations with narrow
CMEs (Kahler et al. 2001), if any, and with jets (Bučík et al. 2018a, 2018b).

3.1 Power-Law Fits in A/Q and Temperature

It is important to recognize how strongly the power-law fits to the enhancements vs. A/Q

cluster near ≈ 3 MK in impulsive SEP events. The region near T ≈ 3 MK is unique because
(A/Q)Ne > (A/Q)Mg > (A/Q)Si here, and the abundance enhancements turn out to be
in the same order, with Ne > Mg > Si; usually the A/Q values tend to increase with Z.
The characteristic enhancement of Ne/O in impulsive events (Fig. 3(a)) is a direct result
of this behavior near T ≈ 3 MK. The examples in Fig. 4 show an analysis of a cluster of
impulsive SEP events. The temperatures at minimum χ2/m, and the corresponding fits of
enhancement vs. A/Q, are shown for each event. Note how the minima of χ2/m fall near
3 MK for these events in Fig. 4(d), as we see for nearly all impulsive SEP events (Reames
et al. 2014b, 2015). Protons could not be distinguished from background for the events in
Fig. 4(a) and hence were not be included in Fig. 4(e).

3.2 Including H in the Abundances

Representatives of impulsive SEP events with three different properties are shown in Fig. 5.
On the left are two small simple impulsive events which we will identify as SEP1 events.
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Fig. 4 Panel (a) shows intensities of various ion species and (b) shows abundance ratios. Onset times show-
ing event numbers in (b) and locations in (a) are color coded. Least-squares fits show χ2/m vs. T (m is
the number of degrees of freedom) in (d) with the best-fit T for each event in (c) and the corresponding
enhancement vs. A/Q in (e), all color coded, with numbers indicating Z of the ions

Here the proton intensities are well predicted by extrapolating the fit line obtained for el-
ements with Z > 2. In the center is a larger event with excess protons compared with the
extrapolation of the Z > 2 fit line that will become a SEP2 event (Reames 2019b). On the
right is an impulsive SEP event with a large suppression of He compared with the fit line,
but with no proton excess, which will make this event also a SEP1 event (Reames 2019a).

A more-complete understanding of the proton behavior in impulsive SEP events can be
found in Fig. 6. Figure 6(a) shows that the events with a significant proton excess tend to
be larger events, usually with fast CMEs where CME-driven shock waves have probably re-
accelerated the ions to produce SEP2. Figure 6(b) suggests possible two-component SEP2
events and Fig. 6(c) shows energy spectra in a seed population where different H/O ratios
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Fig. 5 Intensities are shown below and enhancements vs. A/Q above for three periods with impulsive SEP
events. Two events have “normal” proton abundances on the left. An event, with an associated 1360 km s−1

CME, has a “proton excess” in the center. On the right is shown an event with “He suppression”, when
compared with the fit line for Z > 2 ions, but no proton excess

of different components allow weak shock waves to select H from the corona and ions with
Z > 6, shown as O, from pre-enhanced SEP1 ions.

The selection of ions from the SEP1 seed population in Fig. 6(c) follows the same logical
pattern as the selection of different Fe/O ratios suggested by Tylka et al. (2005). This dual-
source selection provides more H than would be available from SEP1 ions alone, which have
low H/O. We will see that this is not the only way to generate a proton excess but it seems
the most likely way for weak or quasi-perpendicular shocks, including the relatively weak
shocks in jets. Weaker shocks probably require higher injection energy (Tylka et al. 2005),
although the “injection problem” (Zank et al. 2001) is not yet solved.

3.3 Smaller Impulsive Events

Impulsive SEP events are small and often occur in a high proton background. Only 70 of
the 111 impulsive SEP events listed by Reames et al. (2014a) have measurable proton in-
tensities above background (Reames 2019b). Figure 6(a) suggests that the proton excess
and proton peak intensities help distinguish SEP1 and SEP2 events. Of course, an associ-
ated CME speed > 500 km s−1 is the best evidence of a SEP2 event in any case, but high
intensities of He or O are also weak proxies if CME and proton data are absent.

Our criteria of using Fe/O to define impulsive events (see Fig. 3(a)) have been justified
above. However, it is possible to find many more smaller impulsive SEP events by using
3He/4He. This is because there are about 50 times as many 4He ions as O ions in impulsive



   20 Page 12 of 29 D.V. Reames

Fig. 6 Panel (a) shows the peak
intensity of ≈ 2 MeV protons vs.
the proton excess in impulsive
SEP events with color and size of
each point showing the speed of
the associated CME, if any.
Events with proton excesses tend
to be large events with fast
CMEs. Panel (b) shows a
possible mix of
shock-accelerated ions from a
seed population with both
impulsive (SEP1) ions and
ambient coronal ions. SEP1 ions
are known by their steep positive
slope and T ≈ 3 MK. Panel (c)
sketches the way the threshold of
a weak shock can select protons
from one component of the seed
population and O etc. from the
other. SEP1 ions have a lower
H/O ratio (Reames
2019b, 2019d)

events, so we can get a statistically significant number of He ions without seeing any Z > 2
ions. Some of these smaller events have been included in previous studies (e.g. Nitta et al.
2006) but protons were not considered there, and, of course, power-laws in A/Q could not
be studied for these small events. Nevertheless, it might be possible to study other impulsive
event properties using these more-numerous small 3He-rich events.
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3.4 Flares

Flares branch from the path that leads to impulsive SEP events at Fig. 1(c). Magnetic recon-
nection in flares and jets would be expected to produce similar ion acceleration. Energetic
ions on magnetic loops in flares eventually scatter into the loss cone producing nuclear reac-
tions in the low corona that emit neutrons (Evenson et al. 1983, 1990) and γ -ray lines (e.g.
Ramaty and Murphy 1987; Kozlovsky et al. 2002) in the footpoints of the magnetic loops,
eventually leading to hot, bright plasma filling the loops. Analysis of γ -ray lines from large
flares has suggested that the accelerated “beam” is both 3He-rich (Mandzhavidze et al. 1999;
Murphy et al. 2016) and Fe-rich (Murphy et al. 1991), just like the impulsive SEP events
that escape into space from jets.

However, flares exist, and they are bright and hot because all of the energetic particles
accelerated in them are magnetically trapped and do not escape into space. The plasma
reaches temperatures of 10–40 MK. There is no evidence of either hot plasma or nuclear
reaction products in the SEPs we observe in space. Reconnecting closed field lines with
other closed lines cannot directly produce open fields (Reames 2002).

4 Gradual SEP Events

For gradual events, the value of Fe/O, averaged over the event, is less than four times the
coronal value of 0.131, as seen in Fig. 3(a). SEP events selected in this way are large, per-
sistent events associated with wide, fast CMEs (Kahler et al. 1984). Owing to their long
durations and high intensities we can analyze each of them in several 8-hr intervals; for
magnetically well-connected events, differences in ion transport causes Fe/O to be enhanced
early and decline to an Fe-depleted value later, with the A/Q-dependence also following
this trend. We can only determine temperatures when the A/Q-dependence of the abun-
dance enhancements is either rising or falling, not when it is flat. It has been gratifying that
we usually find similar estimates of temperature in both the rising and falling phases of an
event.

Perhaps it is surprising that as many as 25% of gradual events, listed by Reames (2016a),
have steeply ascending A/Q-dependence that persists throughout the events with source
plasma temperatures of ≈ 3 MK. When we extend the power-law fit lines to H we find that
all of these events also have proton excesses just like the SEP2 events (Reames 2019c).

Shock waves continue to accelerate ions far out from the Sun. However, during this
journey, they continue to reaccelerate the intense energetic ions that they originally selected
from the denser seed populations very early in the event when they were much stronger
and closer to the Sun, typically beginning at 2–3 solar radii (Reames 2009a, 2009b, Cliver
et al. 2004). This onset occurs after the shock speed exceeds the local Alfvén speed, and the
shock exits any significant magnetic loops, except possibly from preexisting structures like
streamers (Kong et al. 2017). It is ironic that plasma destined to become SEPs must enter
the corona on closed loops to produce the right FIP pattern, but later must be accelerated on
open field lines to escape the Sun as SEPs we can measure.

4.1 Weak Shocks, T ≈ 3 MK, SEP3

Figure 7 shows an analysis of the gradual SEP event of 18 April 2014. This event with
T ≈ 2.5 MK, and rising A/Q-dependence up to an intensity peak at the local shock pas-
sage on 20 April, has the signature of typical SEP1 impulsive suprathermal ions with the
persistent proton excess we have just associated with shock-reaccelerated SEP2 events. For
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Fig. 7 Panel (a) shows selected particle intensities and (b) shows abundance enhancement ratios for the
SEP3 event of 18 April 2014. Panel (c) shows color-coded best-fit temperatures vs. time while panel (d)
shows χ2/m vs. T for each time interval and panel (e) shows best-fit enhancement vs. A/Q for each time
interval displaced ×0.1, with numbers indicating Z of the ions (Reames 2019c). The shock in this event
samples SEP1 seed particles; even a few 34 ≤ Z ≤ 40 and 50 ≤ Z ≤ 56 ions persist

the last time interval analyzed, on 20 April, the power law is too flat to define an accurate
value of T . The high intensities and duration of several days already tends to distinguish
this event from impulsive events. CME observations show an associated halo CME with a
moderately high shock speed of 1203 km s−1 (Reames 2016a). We will show a comparison
of relative shock strengths later, but for now it seems these gradual SEP3 events derive their
proton excess from a dual seed population, like the SEP2 events described in Fig. 3(b) and
Fig. 3(c). The seed population for SEP3 events could also contain some SEP2 ions with a
built-in proton excess.

The important difference between the SEP2 and SEP3 events is shown in Fig. 8. We envi-
sion a SEP2 event with a CME-driven shock from a single local jet reaccelerating the SEP1
ions from that same jet, as shown in Fig. 8(a). In Fig. 8(b), a wide, fast, CME-driven shock
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Fig. 8 Panel (a) shows a local CME-driven shock wave from a single jet that reaccelerates SEP1 ions to
produce an SEP2 event. Abundances vary from event to event as shown to the right. In (b) the shock from a
wide, fast CME is poised to sweep up residue from many precious SEP1 or SEP2 jets, generating averaged
abundances with much smaller variations in the corresponding distribution to the right. At T ≈ 3 MK, He and
C are fully ionized and should not participate in A/Q-dependent enhancements, only event-to-event source
fluctuations (Reames 2019d)

samples suprathermal residue from many (N) previous SEP1 and SEP2 events producing
average abundances with variations reduced by a factor of

√
N (Reames 2019d). He, C, and

O are likely to be fully ionized at T ≈ 3 MK so these variations probably do not come from
Q variations, they must exist in the local source plasma.

For many years we have known that summing over “quiet” period between SEP events
near solar maximum will produce 3He-rich, Fe-rich material (Richardson et al. 1990), even
above 1 MeV amu−1. There is a background of SEP1 ions from events that are too small
to resolve individually. There are long periods of strong and recurrent enhancements in
3He/4He and Fe/O that are now seen in otherwise quiet periods (Desai et al. 2003; Bučík
et al. 2014, 2015; Chen et al. 2015), but only when an active region is magnetically con-
nected during very quiet times (Mason et al. 2009).

As we proceed to smaller and smaller flares, their number increases as a power law (e.g.
Lin et al. 1984), leading Parker (1988) to suggest that “nanoflares” are sufficiently numerous
and energetic to heat the corona. Solar jets, as the open-field version of flares, are likely to
have similar size behavior, and, while we do not know how the acceleration scales with size,
it may be “microjets” or “nanojets” that provide the often-observed SEP1 seed particles for
SEP3 events. Whatever we label these small jets, a substantial background population of
SEP1 ions is observed to be available for shock acceleration and the process of averaging
over a large number of individual sources reduces the variations of the abundances in SEP3
events. To reduce the 30% spread of abundances of the single-jet SEP1 and SEP2 events
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to the 10% spread of an SEP3 events requires averaging over the remnants of ≈ 10 single
jets of comparable size. Since He and C are fully ionized at 3 MK, variations in C/He, for
example, are not caused by A/Q.

4.2 Strong Shocks, T < 2 MK, SEP4

An abundance analysis of two large western gradual events is shown in Fig. 9. These events
come from the “Halloween” series of events, and the second event on 28 October 2003 is a
GLE (Cliver 2006; Gopalswamy et al. 2012; Mewaldt et al. 2012).

The power-law fits of the ions with Z > 2 in Fig. 9(e) do well at predicting the intensity
of H throughout the two events studied, even when the slope switches from ascending to
descending with A/Q. These are both large events and the associated CME speeds are 1537
and 2459 km s−1, respectively. However, many large gradual SEP events, especially eastern
events, have declining power-law dependence on A/Q, like the event shown in Fig. 10.
Again, the proton enhancements fall close to the Z > 2 fit lines in Fig. 10(e).

Finally, however, a counter example in Fig. 11 shows an event which has proton excesses
early (Fig. 11(e)) that vanish later in the event.

The event in Fig. 11 follows the classic pattern for a western event where Fe/O is en-
hanced early but depleted later because Fe scatters less than O, and the behavior of the
power-law fit follows this pattern. However, proton excess cannot be explained by the two-
component seed-population model because the temperature does not indicate the presence
of any SEP1 ions; i.e. the Z > 2 ions appear to have the same temperature as the ambient
plasma, early and late in the event.

The power-law fits we are using for gradual events are based upon the approximation that
the scattering mean free path has a power-law dependence on magnetic rigidity. This is not
necessarily the case early in large gradual SEP events when intensities of streaming protons
are adequate to amplify Alfvén waves and alter their own transport, causing wave spectra
to vary in time and space (Ng et al. 1999, 2003). The wave number of resonant waves is
k ≈ B/μP where P = pc/Qe is the rigidity of a particle of charge Qe, and momentum p,
and μ is the cosine of its pitch angle relative to B . For example, 10-MeV protons propagate
out early with μ ≈ 1 to generate resonant waves that scatter our 2.5-MeV amu−1 He and
other elements with A/Q ≥ 2, delaying their arrival, but the 2.5 MeV protons arriving early
with μ ≈ 1 encounter no increase in the ambient pre-event waves; this early increase and
subsequent decrease in H/He (also in H/O) has been studied previously (Reames et al. 2000)
and is seen in Fig. 11(b) but not the events in Figs. 9(b) or 10(b), which have high pre-event
proton background. Since the waves are amplified almost entirely by protons the break in
the behavior comes between H and He. Intense SEP4 events break the power-law rules,
especially early in the events.

Figure 12 shows the distributions in CME speed of the SEP3 and SEP4 events. The mean
CME speed for the SEP3 events is 1250 km s−1 and that for SEP4 events is 1764 km s−1.
The SEP3 events tend to be found at the beginning of the solar cycle and they dominate the
weak Solar Cycle 24.

While the proton excess or suppression may be dependent on the time evolution of the
wave spectrum, and thus may occasionally increase or decrease in large gradual events, these
SEP4 events are clearly distinguished from the SEP3 events by their acceleration of ambient
plasma with T < 2 MK.

4.3 Undefined Temperatures

Temperature measurements do play a role in distinguishing SEP3 and SEP4 events. The
list we have studied contains 45 gradual events for which temperatures have been assigned
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Fig. 9 Panel (a) shows selected particle intensities and (b) shows abundance enhancement ratios for the
two SEP4 events of 26 and 28 October 2003. Panel (c) shows color-coded best-fit temperatures vs. time
while panel (d) shows χ2/m vs. T for each time interval and panel (e) shows best-fit enhancements vs.
A/Q for each time interval displaced ×0.1, with numbers indicating Z of the ions (Reames 2019c). Proton
enhancements at A/Q = 1 fall close to the fit lines from Z > 2 in all periods in (e)

(Reames 2016a) which came from a list of 62 candidate events. This event selection re-
quired at least 4 reasonably consistent 8-hr temperature measurements. The most common
problem with the 17 rejected events was that the abundance enhancements were too flat to
define a temperature, i.e. the observed abundances were so similar to the reference coro-
nal abundances in Table 1 that no preferred dependence upon A/Q could be found. There is
nothing wrong with these events. These events with undefined temperatures are undoubtedly
mostly SEP4 events because they clearly lack the strong ascending power-law dependence
at T ≈ 3 MK required of SEP3 events. Temperature measurements are not strictly necessary
to identify the source of the dominant shock-accelerated seed population.
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Fig. 10 Panel (a) shows selected particle intensities and (b) shows abundance enhancement ratios for the
event of 24 August 1998. Panel (c) shows color-coded best-fit temperatures vs. time while panel (d) shows
χ2/m vs. T for each time interval, and panel (e) shows best-fit enhancements vs. A/Q for each time interval
displaced ×0.1, with numbers indicating Z of the ions (Reames 2019c). Proton enhancements at A/Q = 1
fall close to the fit lines from Z > 2 in all periods in (e)

5 Comparisons

Having defined all four event classes it seemed appropriate to try to exhibit and compare
all four in a single figure. The left side of Fig. 13 shows impulsive SEP events and the
right side gradual SEP events. The lower panels, (a) and (d), show representative particle
intensities at the same scales of time and intensity, central panels show the best-fit source-
plasma temperatures for the times shown, and the upper panels show the best power-law fits
vs. A/Q for each time interval, color coded with the temperature below.
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Fig. 11 Panel (a) shows selected particle intensities and (b) shows abundance enhancement ratios for the
SEP4 event of 29 September 2013. Panel (c) shows color-coded best-fit temperatures vs. time while panel
(d) shows χ2/m vs. T for each time interval, and panel (e) shows best-fit enhancements vs. A/Q for each
time interval displaced ×0.1, with numbers indicating Z of the ions (Reames 2019c). Early proton excesses
cannot be explained by two-component seed population

We have listed impulsive Event 96 as a possible SEP1 event, even though it has some
proton excess, because the excess is barely one standard deviation away from the fit line. Of
course we cannot really exclude some reacceleration by a shock, but no CME is associated
with Events 96 or 97. Perhaps we have failed to include a pure SEP1 this time, but this event
sequence is quite interesting in its own right. Event 98 has a 1044 km s−1 CME associated
and a large proton excess; it is clearly a SEP2 event. Note that the proton excess seems to
increase systematically from Event 96 to 97 to 98.

Another unusual feature of the impulsive events in Fig. 13(c) is the strong He suppression
in Event 96. This He suppression seems to diminish in Events 97 and almost disappears in
Event 98 when the full measure of He finally arrives. The apparent coupling among these
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Fig. 12 The distributions of
CME speed is shown for SEP3
events (upper panel) and SEP4
events (middle panel). The lower
panel shows the dates of SEP
events with different associated
CME speed with the source
plasma temperature indicated by
the point size and color.
Unfortunately, these CME speeds
are not usually determined for the
same magnetic flux tube as the
SEP abundances (Reames 2019d)

three events is remarkable and of unknown origin; the proton excess increases while the He
suppression decreases. We should caution, however, that Events 34 and 35 (Reames 2019b)
have the opposite behavior, the proton excess decreases and the He suppression increases
with time, so any apparent coupling may be coincidental. Note also that Event 14, shown
in Fig. 4(e), shows some suppression of He while the other four events in that figure show
little.

The two gradual events on the right in Fig. 13 are well defined. Event 42 is a SEP3 event
with a source temperature of 2.5 MK throughout and a strong proton excess, despite the pre-
event proton background. Event 42 even appears to have a rare He excess, which is probably
also accelerated from the ambient plasma, like the protons. Event 43 is a clear SEP4 with
T ≈ 0.8 MK. The small proton excess may all be background from the previous event. The
associated CME speed for Event 42 is 1402 km s−1 and that for Event 43 is 1830 km s−1,
i.e. the SEP3 event has a weaker shock than the SEP4.

6 Discussion

Measuring power-law abundance patterns is a useful way to estimate source plasma temper-
atures in SEP events and to distinguish the signature of ≈ 3 MK plasma of impulsive-SEP,
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Fig. 13 The lower panels compare same particle intensities for (a) impulsive and (d) gradual SEP events at
the same scale. Onsets times are flagged with event numbers for impulsive (96, 97, 98, from Reames et al.
2014a) and gradual events (42, 43, from Reames 2016a). Central panels, (b) and (e), show fitted source
plasma temperatures, vs. time, for measured intervals, and upper panels, (c) and (f) show enhancements vs.
A/Q for each interval, color coded. See text

i.e. SEP1 material, an imprint originally produced by magnetic reconnection in solar jets.
Proton excesses combined with these SEP1 abundances generally reveal the additional ac-
tion of shock acceleration on two-component seed populations to produce SEP2 or SEP3
components. However, proton excesses can also be produced by changes in the scattering
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produced by proton-generated waves that disrupt the simple power-law behavior in some
large gradual or SEP4 events. Wave generation in SEP3 events would mostly enhance the
two-component proton excess that is already present.

SEP3 and SEP4 components are easily distinguished by their dominant source plasma
temperatures. In comparing CME speeds of these two populations there is always the unfor-
tunate issue that the CME speeds are not determined along the same magnetic flux tube as
the SEP abundances are measured. Also, we have not been able to determine θBn near the
region of early acceleration near the Sun. The work of Kouloumvakos et al. (2019) suggests
a possible remedy for this problem.

It is quite likely that all gradual SEP events have a component of reaccelerated ions from
a SEP1 seed-population source. In SEP3 events they actually dominate, but the SEP4 events
with a small component of 3He found by Mason et al. (1999) suggest the commonality
of small SEP1 contributions. Measurements of charge state distributions could tell us how
much impulsive plasma was present, especially if the SEP1 ions were highly stripped as
observed by DiFabio et al. (2008), but unfortunately such measurements are uncommon,
especially for ions > 1 MeV amu−1. It would be very interesting to know the percentage of
SEP1 ions in gradual events and its dependence upon shock parameters near the base of the
observer’s magnetic flux tube.

If SEP1 ions are stripped after acceleration, as seems to be the case (Luhn et al. 1987;
DiFabio et al. 2008), only the power-law abundances give us information on temperatures
before or during acceleration, charge measurements near Earth do not. However, the change
in the patterns of Q and A/Q caused by stripping mean that transport of the ions after shock
reacceleration in SEP2 and SEP3 populations will actually involve different power-law pat-
terns and effective temperatures after acceleration. Yet, we seem to find the same T ≈ 3 MK
for these populations as well. This is probably because the SEP1 power of A/Q is so steep,
compared with the modest increase or decrease during transport, that transport has little ef-
fect. For example, if acceleration in a jet at T ≈ 3 MK has caused enhancements in the order
Ne > Mg > Si, subsequent transport will be very unlikely to undo this ordering, especially
if all three of these elements at 2–5 MeV amu−1 have been fully ionized after acceleration so
that they now have A/Q = 2 and their relative abundances can no longer change. Similarly,
the large enhancements of heavy ions will be only modestly enhanced or reduced further
by transport after velocity-dependent shock acceleration. The χ2/m selection of tempera-
ture for the SEP3 event in Fig. 7(d) is just as clear as that for the SEP1 or SEP2 events in
Fig. 4(d).

We have not discussed reacceleration of remnant suprathermal ions left over from gradual
SEP events. While this is possible during sequences of gradual SEP events, there may be a
large number of nanojets available to produce SEP1 ions, but no corresponding population
of common small gradual events. Reaccelerated ions from gradual events would also be hard
to distinguish from ambient plasma.

Suppression of He (Reames 2019a) seems to be extreme evidence of the incomplete ion-
ization of He caused by its uniquely high FIP of 24.6 eV, which makes it the last element
to be fully ionized during FIP processing (Laming 2009). FIP processing is usually con-
sidered to be slow and produces He abundances varying by a factor of 2 as observed in
gradual events (Reames 2017b). Does magnetic field motion in some jets suddenly separate
incompletely-processed He ions from the residual neutral atoms? If the He suppressions are
a result of incomplete FIP processing, rather than acceleration, then they might also be found
in the associated CMEs as well as in the SEPs. Are there samples of solar wind associated
with jets that have He/O < 10? He suppression is actually fairly rare in SEP1 events, but
it can be quite striking when it occurs. Events with strong He suppression are some of the
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smallest events we have studied, with some of the steepest powers of A/Q. These studies
reveal interesting and extreme phenomena that are not clearly understood.

7 Summary

Plasma in the solar corona that may later become SEPs has a FIP-dependent pattern of
element abundances, relative to that of the photosphere, which differs from plasma that will
later become solar wind. Theory tells us that the former enters the corona on closed magnetic
field lines and the latter on open field lines.

Element abundances, relative to the coronal abundances, define a paradigm with four
distinct populations of SEPs:

• SEP1 ions are accelerated in islands of magnetic reconnection in solar jets. Relative abun-
dance enhancements increase 1000 fold as a steep power law in A/Q at T ≈ 3 MK from
H to Pb with powers ranging from 3 to 6. There may also be 1000-fold enhancements of
3He/4He. Any CMEs from these jets do not drive shock waves fast enough to re-accelerate
the SEPs.

• SEP2 ions arise in jets with CMEs that drive shock waves fast enough to re-accelerate the
SEP1 ions along with excess protons from the ambient plasma. The steep power law of
the SEP1 ions and T ≈ 3 MK imprint persist for the ions with Z > 2.

• SEP3 ions are accelerated along the front of shock waves driven by wide, fast CMEs
which preferentially sweep up residual SEP1 suprathermal ions, left by a large number of
jets around an active region, along with an excess of protons from the ambient plasma.
Quasi-perpendicular shock waves may also show this dominance of pre-accelerated SEP1
ions. The steep power law of the SEP1 ions and T ≈ 3 MK signature largely persist for
Z > 2 ions, but abundance variations are reduced by averaging over the multi-jets source.

• SEP4 ions are accelerated from the ambient plasma along extremely strong shock waves
driven by wide, fast CMEs. Protons usually fit the same power law in A/Q as Z > 2
ions with no proton excess and the events have 0.8 < T < 2.0 MK. In some events wave-
generation by streaming protons can disrupt the simple power law, especially early in the
event. Any SEP1 ions in SEP4 events are buried.

These categories of events are identified by the behavior of the simple assumed power-
law dependence of abundances on A/Q. The relative abundance of H and the persistent

Table 2 Properties of the four SEP abundance patterns

Observed properties Physical association

SEP1 Power law enhancement vs. A/Q with T ≈ 3 MK
for Z = 1 and Z > 2

Magnetic reconnection in solar jets with no
fast shock

SEP2 Power law enhancement vs. A/Q with T ≈ 3 MK
for Z > 2 ∼30% scatter in He/C, etc. Proton
excess

Jets with fast, narrow CMEs drive shocks that
reaccelerate SEP1 ions plus excess protons
from ambient plasma

SEP3 Power law enhancement vs. A/Q with T ≈ 3 MK
for Z > 2 < 10% scatter in He/C, etc. Proton
excess

Moderately fast, wide CME-driven shocks
accelerates SEP1 residue left by many jets,
plus excess protons from ambient plasma

SEP4 Power law enhancement vs. A/Q with
0.8 < T < 1.8 MK for Z = 1 and Z > 2

Extremely fast, wide CME-driven shocks
accelerate all seed ions so that ambient
plasma dominates
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characteristic behavior of the impulsive SEP1 pattern play special roles in our understand-
ing. Events still fall into the categories of impulsive and gradual events, but each of those
categories has split. SEP1 and SEP2 are distinguished in Fig. 6. SEP2 and SEP3 are distin-
guished in Fig. 8. SEP 3 and SEP4 are distinguished in Fig. 12 and Fig. 6(c). The principle
SEP abundance properties are summarized in Table 2.
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