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ABSTRACT

Solar flares and coronal mass ejections (CMEs) are closely coupled through magnetic
reconnection. CMEs are usually accelerated impulsively within the low solar corona,

synchronized with the impulsive flare energy release. We investigate the dynamic evolu-
tion of a fast CME and its associated X2.8 flare occurring on 2013 May 13. The CME

experiences two distinct phases of enhanced acceleration, an impulsive one with a peak
value of ∼5 km s−2 followed by an extended phase with accelerations up to 0.7 km s−2.

The two-phase CME dynamics is associated with a two-episode flare energy release.
While the first episode is consistent with the “standard” eruption of a magnetic flux

rope, the second episode of flare energy release is initiated by the reconnection of a
large-scale loop in the aftermath of the eruption and produces stronger nonthermal

emission up to γ-rays. In addition, this long-duration flare reveals clear signs of ongo-

ing magnetic reconnection during the decay phase, evidenced by extended HXR bursts
with energies up to 100–300 keV and intermittent downflows of reconnected loops for

>4 hours. The observations reveal that the two-step flare reconnection substantially
contributes to the two-phase CME acceleration, and the impulsive CME acceleration
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precedes the most intense flare energy release. The implications of this non-standard

flare/CME observation are discussed.

Keywords: magnetic reconnection — Sun: corona — Sun: coronal mass ejections

(CMEs) — Sun: flares — Sun: X-rays, gamma rays

1. INTRODUCTION

Coronal mass ejections (CMEs) are clouds of magnetized plasma that erupt from the Sun’s

atmosphere and propagate into the interplanetary space. They are often accompanied by a large
amount of magnetic energy release and can cause extreme space weather events when arriving at the

Earth. Studies have revealed that CMEs usually undergo three stages of dynamic evolution: a slow
rise, a fast acceleration, and a propagation phase (Zhang et al. 2001, 2004). The final speed of a CME

varies in a wide range of about 100–3500 km s−1 (e.g., Gopalswamy et al. 2009; Lamy et al. 2019),
while its main acceleration usually takes place within a few to tens of minutes at low coronal heights

(e.g., Zhang et al. 2001; Vršnak et al. 2007; Temmer et al. 2008; Bein et al. 2011; Veronig et al. 2018),
where the Lorenz force that accounts for the liftoff of a CME is strong.

The launch of a CME is often accompanied by a rapid release of magnetic free energy in the
solar atmosphere, in the form of flares that emit radiations across the entire electromagnetic spectrum.

The two phenomena are closely coupled through magnetic reconnection. By reconfiguring magnetic
filed lines, reconnection on one hand provides for the impulsive and vast energy release that is used

for plasma heating and particle acceleration in flares (see the review by Shibata & Magara 2011, and

references therein), on the other hand facilitates the CME acceleration by reducing the tension of
the overlying arcade and supplying additional poloidal magnetic flux to the erupting structure (e.g.,

Lin & Forbes 2000; Vršnak 2008). The close relationship between flares and CMEs are presented in
various studies by revealing a close temporal correlation between the flare soft X-ray (SXR) flux and

the CME velocity profile (Zhang et al. 2001, 2004; Vršnak et al. 2004), and even the synchronization
between the flare hard X-ray (HXR) emission and the CME acceleration (Temmer et al. 2008, 2010;

Berkebile-Stoiser et al. 2012). A number of statistical studies (e.g., Maričić et al. 2007; Bein et al.
2011; Berkebile-Stoiser et al. 2012; Cheng et al. 2020) provide further evidence for the close relation

between the flare energy release and the CME impulsive acceleration, suggestive of a close link
and feedback relationship between the CME dynamics and flare reconnection (Temmer et al. 2010;

Vršnak et al. 2004; Vršnak 2008; Veronig et al. 2018).
The positive feedback between the CME dynamics and the associated flare is established via

magnetic reconnection in the current sheet (CS), which is most intense in the flare impulsive phase
(for observational signatures of the hot elongated CS, see, e.g., Cheng et al. 2018; Warren et al. 2018;

Chen et al. 2020). The vertical CS becomes observationally more prominent in the flare decay phase

after the peak of the GOES SXR flux (e.g., Liu 2013), which can usually be observed above the
candle-flame-shaped flare loops that are considered as direct evidence of magnetic reconnection (e.g.,

Tsuneta 1996; Lin et al. 2005; Gou et al. 2015, 2016). Due to the magnetic tension force, these newly
reconnected cusp-shaped field lines quickly retract to form more relaxed round-shape ones, which is

widely known as the field line shrinkage (Forbes & Acton 1996; Vršnak et al. 2006). Meanwhile above
the flare arcade, tadpole-like supra-arcade downflows (SADs) and bright supra-arcade downflow loops

(SADLs) quickly descend from the reconnection site and merge into the dense flare loop region (e.g.
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McKenzie & Hudson 1999; Savage & McKenzie 2011; Liu et al. 2013; Innes et al. 2014; Chen et al.

2017). Although the exact physical process is still unclear, it is believed that these features are closely
related to the downward outflows of magnetic reconnection.

We study the dynamics of a fast CME and its relation to the associated X2.8 flare occurring on
2013 May 13. This event is the second X-class flare from NOAA active region 11748 on that day and

has been studied before. Mart́ınez Oliveros et al. (2014) and Saint-Hilaire et al. (2014) presented the
unusual loop-prominence system in polarized white light that formed after the flare, indicative of high

coronal densities. Gou et al. (2019) presented detailed observations of the buildup of the magnetic
flux rope and large-scale CME from the coalescence of multiple small-scale plasmoids during the early

stage of the flare. Gou et al. (2017) focused on the two distinct episodes of the flare energy release
associated with two-step reconnection. The first episode is characterized by the “standard” flux rope

eruption, and the second one is initiated by the reconnection of a loop leg behind the eruption, which
leads to even stronger particle acceleration observed in emissions of high-energy HXRs and γ-rays.

In this letter, we concentrate on the dynamic evolution of the associated CME and find that

the two strong episodes of the flare energy release are associated with two distinct phases of CME
acceleration. We also find that the distribution of the CME acceleration and the flare nonthermal

emission is different between the two phases, distinct from the standard flare model where they are
supposed to be synchronized. To our knowledge, this is the first time that two distinct episodes of

impulsive acceleration could be identified in a fast CME, suggestive of a different energy distribution
from its associated flare.

2. DATA AND INSTRUMENTS

We use the high spatial and temporal resolution EUV imagery (0.′′6 and 12s) by the Atmo-

spheric Imaging Assembly (AIA; Lemen et al. 2012) on board the Solar Dynamics Observatory (SDO;
Pesnell et al. 2012) to study the dynamic evolution of the eruption in the inner corona, and mainly

focus on the 131 Å channel (primarily Fe XXI emission line, with a peak response temperature of
logT=7.05). We use X-ray observations from the Reuven Ramaty High-Energy Solar Spectroscopic

Imager (RHESSI; Lin et al. 2002) and the Gamma-ray Burst Monitor (GBM) onboard the Fermi
Gamma-ray Space Telescope (Fermi hereafter), to study the energy release of the associated flare.

The subsequent white-light CME is observed by the Solar and Heliospheric Observatory/Large An-
gle and Spectrometric Coronagraph (SOHO/LASCO, C2: 1.5–6 R⊙, C3: 3.7–30 R⊙; Brueckner et al.

1995), and the coronagraphs (COR1: 1.5–4 R⊙ and COR2: 2.5–15 R⊙; Howard et al. 2008) on
both the “Ahead” and “Behind” satellites of the Solar Terrestrial Relations Observatory (STEREO;

Kaiser et al. 2008, STA and STB hereafter), which are about 136.3° and 141.6° separated from the
Earth on 2013 May 13, respectively. In addition, radio observations obtained by STB/WAVES

(Bougeret et al. 2008) are also included.

3. RESULTS

3.1. Event Overview

The event under study originates from NOAA active region 11748 near the northeast solar
limb on 2013 May 13 (Figure 1). It manifests as the eruption of a magnetic flux rope as ob-

served in the SDO/AIA 131 Å filter (see Figure 1, also Gou et al. 2019 for details), the bottom
of which connects the cusp-shaped flare loops underneath by the vertical CS, in good accordance

with the standard model of solar eruptions (e.g., Carmichael 1964; Sturrock 1966; Hirayama 1974;
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c) SDO/AIA 131 18:20:08 UT

Figure 1. Solar eruption on 2013 May 13 observed by SOHO/LASCO and SDO/AIA 131 Å. In panel (a),
the white circle indicates the solar limb, and the rectangular shows the field of view (FOV) of panels (b,c).

Kopp & Pneuman 1976; see also reviews by Shibata & Magara 2011; Holman 2012). The eruption

produces a fast halo CME with a velocity of ∼1850 km s−1 (according to the SOHO/LASCO CME
catalog, http://cdaw.gsfc.nasa.gov/CME list/), and an intense long-duration X2.8 flare that starts at

15:48 UT and peaks at 16:05 UT. This flare is associated with strong particle acceleration as observed
in emissions of high-energy HXRs and γ-rays (see details in Gou et al. 2017). Here we concentrate

on the dynamic evolution of the CME in the solar corona, especially on the impulsive acceleration
process and its relation to the flare energy release and high-energy particle acceleration.

3.2. CME Dynamics

SDO/AIA observes the eruption in the inner corona at the northeast limb, which allows us
to study its dynamics with least projection effects. We measure the leading front of the magnetic

ejecta in AIA 131 Å images to obtain its height-time evolution. The white-light CME in the outer
corona is observed after 15:55 UT by the coronagraphs on board STA, STB and SOHO from three

different viewpoints (Figure 2). This fast CME drives a shock in front of it. Based on the stereoscopic
observations, we use the Graduated cylindrical shell (GCS; Thernisien et al. 2006, 2009) model to

reconstruct the three-dimensional morphology of the eruption (Figure 2). The model assumes a flux
rope structure of the CME, and it is determined by three geometry and three position parameters:

the aspect ratio κ, the half-angle α and the tilt of the croissant representing the CME, the longitude
and the latitude of the source region, and the height of the CME apex. We also model the shock

in front of the CME by geometrically reproducing a sphere (α = 0, κ = 1). Figure 3(a) shows the

obtained height-time evolution of the CME (measured along the apex of the GCS fitting), as well as
the lower boundary of the flux rope in the model, which basically corresponds to the upper tip of

the CS underneath the erupting CME.
We combine the height-time measurements to study the complete kinematics of the CME in

the corona (Figure 3). To derive the velocity and acceleration profiles, we first smooth the height-
time data and derive the first and second time derivatives. The smoothing algorithm is based on

the method described in Podladchikova et al. (2017) and applied in Dissauer et al. (2019), extended

http://cdaw.gsfc.nasa.gov/CME_list/
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STB/COR2 16:54:27-16:39:27 UT
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Figure 2. GCS reconstruction of the CME (green) and the shock (yellow) at ∼16:54 UT using simultaneous
observations by STB/COR2 (left), LASCO/C3 (middle), and STA/COR2 (right). The inset in the top
middle panel shows the positions of STA (A) and STB (B) relative to the Sun (S) and the Earth (E) on
2013 May 13.

toward non-equidistant data. From the obtained acceleration profiles, we further interpolate to
equidistant data points based on the minimization of the second derivatives and reconstruct the

corresponding velocity and height profiles by integration. We also obtain the errors of kinematic
profiles by assuming that the measurement errors of heights amount to 6 AIA pixels in the inner

corona and 3% of GCS heights in the outer corona. Figure 3(b,c) shows the obtained velocity and

acceleration profiles (dark green curves with errors in light green), and they are well aligned with
the direct numerical derivatives of the data points (dark green dots). The magnetic ejecta starts to

accelerate at ∼15:41 UT, several minutes earlier than the GOES flare start (15:48 UT), suggestive
of the role of an ideal instability to trigger the eruption. The CME achieves its highest velocity of

2190(±158) km s−1 at 16:25 UT (i.e., 20 min after the peak of the GOES SXR flux) at a height of
6.07(±0.26) R⊙ (with respect to the solar center). For comparison, the CME velocity at the flare

peak time (i.e., 16:05 UT) is 1607(±68) km s−1 at a height of 2.58(±0.09) R⊙.
The acceleration of the CME exhibits two distinct phases, an impulsive peak (15:41–16:00 UT)

followed by an enhanced gradual phase (16:00–16:25 UT), as marked by the vertical dashed lines in
Figure 3. The first phase of impulsive acceleration achieves a peak value of 4.88(±0.52) km s−2 at

15:52 UT, when the CME is at a height of 1.15(±0.01) R⊙. The second phase undergoes an extended
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Figure 3. CME kinematics (scaled by the left y-axes) compared with flare X-ray fluxes (scaled by the right
y-axes). The green cross symbols in panel (a) indicate the height of the flux rope front observed in AIA
131 Å images. The colored diamonds in panel (a) indicate the heights of the CME apex (dark green) and
the lower boundary of CME (purple) measured in the GCS model. All heights are with respect to the solar
center. The dark green dots in panels (b,c) indicate direct numerical derivatives of the measured data points
in panel (a). The dark green curves in (a–c) are smoothed kinematic profiles, with errors indicated by light
green shadows. GOES, RHESSI and Fermi X-ray fluxes are plotted in panels (b,c) in different colors as
indicated by the legends. Fermi GBM observations from 16:04–16:30 UT are added to fill in the RHESSI

data gap between 16:07–16:16 UT when it crosses the South Atlantic Anomaly (SAA). The two vertical
dashed lines mark the two acceleration phases of the CME.
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acceleration of several hundreds m s−2 (up to 0.73(±0.31) km s−2 at 16:11 UT), and it raises the

CME velocity from 1387(±100) km s−1 at a height of 1.93(±0.07) R⊙ to 2190(±158) km s−1 at
6.07(±0.26) R⊙, which is considerable as compared to the velocity increment during the first phase.

We study the mechanism of the CME acceleration and give interpretations in terms of the flare
reconnection in the following sections.

3.3. Flare Energy Release

3.3.1. Two-Step Reconnection

The GOES X2.8 flare associated with the CME experiences two distinct episodes of energy re-

lease attributed to a two-step magnetic reconnection process, as reported by Gou et al. (2017). Here
we summarize some observational evidences in Figure 4(a–e) so as to compare with the CME dynam-

ics. One can see that after the first step of flux rope eruption that exhibits typical characteristics
of an eruptive flare–CME event, the second-step reconnection is directly imaged by SDO/AIA at

∼16:00 UT, manifesting as the disappearance of the cool loop-leg inflow in 304 Å and simultaneous
fast outflows of hot plasma indicative of reconnection outflow jets. The second episode of energy

release is associated with even stronger particle acceleration than the first one, evidenced by stronger
bursts of HXR emissions and even γ-rays (Figure 4(e)). In addition, STB/WAVES observes signif-

icant injections and increases of type III radio emission at ∼3 MHz (Figure 4(f,g)) that coincide
with the RHESSI HXR bursts after 16:00 UT, indicative of an increased number of accelerated elec-

trons escaping from the Sun. The timing confirms that the second-step reconnection is associated
with strong acceleration of electrons, which propagate both downward to the chromosphere to emit

in HXRs by the nonthermal bremsstrahlung mechanism and upward into the interplanetary space

to excite fast-drift type III radio burst. STB/WAVES also observes decameter-hectometric type II
radio bursts (Figure 4(f,g); fundamental and harmonic components at frequencies between 16 MHz

and 3 MHz from 16:10 to 16:30 UT, and later one component at about 0.9-0.3 MHz from 17:50 to
19:20 UT), which provide evidences for the propagation of the shock driven by the fast CME.

We note that the two strong episodes of flare energy release are temporally related to the two
phases of CME acceleration. The resultant two-phase evolution of the CME velocity are also asso-

ciated with a two-episode enhancement of the GOES SXR flux as well as that of flare temperature
evolution (Figure 4(d–e)). It implies that the second-step reconnection not only gives rise to another

stronger episode of energy release in the flare, but also contributes to an additional phase of the CME
acceleration, impulsively increasing its speed beyond the main phase.

3.3.2. Ongoing Reconnection in Flare Decay Phase

After peaking at 16:05 UT, the flare experiences a long decay phase that lasts over 4 hours

(see Figure 5 and its animation). During this stage, the vertical CS and the cusp-shaped flare loops

underneath become prominent, and the whole post-flare loop system grows higher as observed in
SDO/AIA 131 Å images. The growth is also evidenced by the temporal evolution of the RHESSI

loop-top (LT) source location in Figure 5(f,h), which shows that the post-flare loop system grows
higher with a speed of several km s−1 throughout the flare decay phase. Different from the apparent

rising of the loop system, a multitude of individual post-flare loops are observed to contract downward
toward the solar surface (see Figure 5(d,e) and its animation), indicative of the shrinkage of newly

reconnected field lines (Forbes & Acton 1996; Priest & Forbes 2002; Vršnak et al. 2006). In the upper
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Figure 4. Two acceleration phases of the CME. a–c) SDO/AIA 131 and 304 Å images showing the flux
rope eruption, loop-leg inflow and upward outflow of the second-step reconnection. d,e) Stack plots derived
from SDO/AIA 131 and 304 Å imagery along slits S1 and S2 as shown in panels (a,b) (the starts are labeled
as “0”). f,g) Dynamic radio spectra observed by STB/WAVES. The yellow and light green curves in panels
(d–f) (scaled by the right y-axes) represent the GOES plasma temperature, GOES 1–8 Å flux, CME velocity
and acceleration profiles, respectively. RHESSI photon fluxes are plotted in panel (e) on arbitrary y-axes.
The white arrows in panel (f) mark several injections of type III radio bursts. The vertical dashed line in
panels (d–g) marks the onset of the second-step reconnection.
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h,i) Stack plots of slit S3 in panel (a), the y-axes indicate the height above the solar limb. The blue plus
symbols in panel (h) indicate the heights of the RHESSI LT source, labeled with rising speeds of linear fits
for each time period. The dotted lines in panels (h,i) indicate the linear fits of various tracks left by the
moving loops, labeled with the resultant speed in km s−1. The speeds for individual retracting loops are also
plotted in panel (g) with blue and purple diamonds, scaled by the right y-axis. An animation is available
for the SDO/AIA 131 Å observations and its running difference images from 16:00 UT to 21:00 UT on 2013
May 13.
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CS region, the SADLs are observed to move downward rapidly and merge into the dense flare LT

underneath.
We place a virtual slit across the flare LT along the CS (Figure 5(a); with a width of 8 AIA

pixels) to study in detail the dynamics during the flare decay phase. In the generated stack plots
in Figure 5 (h,i), one can see the downward motion of the high-altitude SADLs and the shrinkage

of low-altitude flare loops, both of which can be clearly identified until 20:00 UT. For the former,
the speed in the early decay phase is about 1000 km s−1, higher than many earlier reportings (e.g.,

Savage & McKenzie 2011; Innes et al. 2014) and comparable to the typical Alfvén speed in the active
region corona that determines the local reconnection outflow speed. After 19:00 UT, the speed

decreases to ∼100 km s−1, and its temporal evolution (see the blue diamonds in Figure 5(g)) is
similar to that of the Alfvén speed distribution above solar active regions, which starts to decrease

at a height of ∼4 R⊙ (e.g., see Figure 6 in Mann et al. 2003). For the latter, the speeds are about
20–95 km s−1, much smaller than those of the SADLs and consistent with the earlier measurements

(e.g., Liu et al. 2013). One can see that these two kinds of motions almost merge together with

similar speeds in the late decay phase (Figure 5 (h,i)) as the reconnection site rises high enough.
This finding supports the idea that they may correspond to different stages of the contraction of

newly reconnected loops, which always shrink fastest at the moment they are formed and released
from the reconnection region, and thereafter decelerate when approaching the rising flare loop system

(see also Lin 2004; Liu et al. 2013). All these characteristic features identified, i.e., the dynamic CS,
the growth of the post-flare loop system, fast retraction of SADLs, and the intermittent shrinkage

of post-flare loops, provide clear indications that there is still very efficient magnetic reconnection in
process during the extended decay phase of the flare.

Another strong evidence for ongoing reconnection is the significant energy release in the form
of strong HXR bursts that are recorded by both RHESSI and Fermi GBM (Figure 5(g)). One can

see that as the SXR flux decreases after the flare peak, Fermi GBM records two groups of HXR
bursts at 16:09–16:11 UT and 16:18–16:22 UT, at energies up to 100-300 keV. Similarly, RHESSI

records a group of several HXR bursts at 16:18–16:22 UT up to 100–300 keV. In addition, RHESSI
shows HXR bursts occurring until 16:45 UT up to energies of 50–100 keV. By reconstructing X-

ray images, we find that the high-energy HXR emissions (50-300 keV) mainly originate from two

footpoints of flare loops (Figure 5(a,b)), indicative of accelerated electrons moving downward to the
chromosphere. Nearly at the same time of the HXR bursts detected at around 16:18 UT, one can

see a large increase in the type III radio emission at around 3 MHz (Figure 4(e–g)). It suggests an
increased number of accelerated electrons escaping from the Sun along open field lines, which finally

merge into a large branch of an interplanetary type III burst (Figure 4(g)). The HXR and radio
emissions further indicate that there is still efficient particle acceleration even beyond the flare rise

phase, most probably caused by the ongoing magnetic reconnection process.
This can nicely explain the second CME acceleration period during the flare decay phase, which

is well in line with the extended HXR bursts (Figure 3). Namely, the ongoing magnetic reconnection
beyond the flare rise phase is still coupled to the impulsive acceleration of the associated fast CME

up to a height of ∼6 R⊙.

4. DISCUSSION AND CONCLUSION

We investigate the dynamic evolution of a fast CME, which experiences two distinct phases of

enhanced acceleration, i.e., an impulsive phase with a peak value of around 5 km s−2 and an additional
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gradual phase with extended acceleration up to ∼0.7 km s−2. The associated X2.8 flare exhibits two

strong episodes of energy release associated with two-step reconnection, which coincide with the
two phases of the CME dynamic evolution. Notably, the second phase of flare energy release and

high-energy particle acceleration is substantially stronger than the first one and shows nonthermal
emissions even in the γ-ray range. In addition, this long-duration flare reveals clear signs of ongoing

magnetic reconnection during its long decay phase, evidenced by efficient particle acceleration in the
form of high-energy (up to 100–300 keV) HXR emission, and by prolonged (>4 hours) downflows

of reconnected loops (SADLs), shrinkage of post-flare loops, and continuous growth of the post-flare
loop system observed by both RHESSI and SDO/AIA.

We note that the CME is accelerated as fast as 5 km s−2 during the first phase. This accelera-
tion is among the highest values of CME accelerations ever reported (e.g., see statistical results in

Zhang & Dere 2006; Vršnak et al. 2007; Bein et al. 2011). Considering that the intense CME accel-
eration is facilitated by the flare reconnection that converts the magnetic flux confining the eruptive

flux rope into the rope’s own flux (Temmer et al. 2010; Vršnak 2008; Veronig et al. 2018), we suggest

that a significant part of the magnetic ejecta in this event is formed during the eruption by reconnec-
tion of the overlying magnetic arcade. This generally agrees with observations in Gou et al. (2019)

that the large-scale CME builds up from a small-scale seed during its impulsive rising. Also, we note
that this is consistent with the recent findings for the X8.2 flare/CME on 2017 September 10, where

it was clearly shown that the CME core observed in the white-light coronagraph is due to frozen-in
plasma added to the rising flux rope by magnetic reconnection in the current sheet below and not

due to the erupting prominence material (Veronig et al. 2018).
Moreover, the second phase of the CME acceleration in this event is substantial, and to our

knowledge this is the first case that features two distinct phases of significant CME acceleration. The
peak value during the second phase is>0.7 km s−2, which still falls into the top∼30% of the main peak

accelerations of impulsive flare-associated CMEs in statistical studies (e.g., Bein et al. 2011). Such an
extended acceleration phase contributes to ∼36% of the CME velocity, even though it is substantially

weaker than the first impulsive peak, because the coronal magnetic field magnitude decreases rapidly
as the CME rises into the outer corona. Considering that the full-fledged CME carries much more

mass than during the first phase, the change rate of the momentum may be comparable. Thus, this

second-phase acceleration with high values and a comparable duration to the first phase is distinct
from the residual CME acceleration following the main phase (Zhang & Dere 2006; Cheng et al. 2010),

which generally exhibits much lower values (these may be positive or negative, with maximum values
only up to several tens of m s−2). As a result of the two-phase acceleration, the CME finally reaches

its peak velocity at a height of >6 R⊙ from the solar center. This is among the upper range of
coronal heights where the main acceleration of impulsive flare-associated CMEs typically ends (e.g.,

Bein et al. 2011).
We observe that the second-step magnetic reconnection with rapid curve-in of the loop leg not

only initiates a stronger episode of the flare energy release than the first one, but also contributes
to a second phase of the CME acceleration. Magnetic reconnection beneath the CME enhances its

acceleration by reducing the downward tension of the overlying field and at the same time increasing
the upward magnetic pressure gradient by supplying additional poloidal magnetic flux into the CME

(e.g., Lin 2004; Vršnak 2008). We can see a time lag between the second episode of flare energy
release shown as high-energy HXR emission (peaking at 16:04 UT) and the second phase of the CME
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acceleration (centered around 16:10 UT; Figure 3(c)). Considering the role of magnetic reconnection

in the CME acceleration by feeding magnetic flux, this would generally correspond to the time that
the reconnection outflow jets need to reach the lower part of the erupting flux rope on Alfvénic time

scales. According to the observation, the reconnection site at the time of the second-step reconnection
is located low in the corona, about 20 Mm above the solar limb (see Figure 4, where the loop-leg

inflow is swept in and outflow plasmas originate; also details in Gou et al. 2017), and the height of the
flux rope’s lower boundary is measured as ∼0.6 R⊙ by the GCS model (Figure 3(a)). If we assume

that the distance between these two is 0.5 R⊙, and the Alfvén speed is in the order of 1000 km s−1 (as
inferred from the speeds of SADLs in Figure 5), the time delay is about 6 minutes. This is generally

consistent with the observation. Thus, for the second acceleration phase when the CME runs far out
and keeps moving fast, the accelerating effect of feeding new flux to the CME will be reduced and

delayed. This can also explain why we observe that the second phase of the CME acceleration is
generally an extended phase of enhanced acceleration, other than a sharp peak during the first phase

when the flux rope is still located low in the corona.

In particular, one can see a different distribution of the CME acceleration and the flare non-
thermal emission during the two phases (e.g., Figure 3). While the impulsive CME acceleration

occurs in the first phase, the flare is associated with much more efficient acceleration of high-energy
particles in the second phase. We note that in the second phase, although the CME runs far out, the

reconnection still occurs at low altitudes, which is capable to accelerate large numbers of electrons
needed for intense HXR emission. On the other hand, the CME acceleration during the second phase

is weaker than what would be expected for such strong HXR emission, which could be attributed
either to the weaker Lorenz force at larger coronal heights or to the larger CME inertia that increases

with time. The observation shows a different scenario from the synchronization between the flare
HXR emission and the CME acceleration as supposed in the standard model, and suggests a different

energy distribution between the flare and the CME in the two phases.
In conclusion, the two strong episodes of energy release in this flare are associated with two

distinct phases of the CME acceleration, and the impulsive CME acceleration occurs at an earlier
stage than the peak of flare nonthermal emission. This unusual two-phase evolution finally produces

a very fast CME and an intense long-duration X-class flare with γ-ray emission, and is suggestive

of a coupling between the flare energy release and the CME acceleration during the two phases but
with different energy distributions among the two phenomena.
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M., & Lin, J. 2006, SoPh, 234, 273,

doi: 10.1007/s11207-006-0093-6

Warren, H. P., Brooks, D. H., Ugarte-Urra, I.,

et al. 2018, ApJ, 854, 122,

doi: 10.3847/1538-4357/aaa9b8

Zhang, J., & Dere, K. P. 2006, ApJ, 649, 1100,

doi: 10.1086/506903

Zhang, J., Dere, K. P., Howard, R. A., Kundu,

M. R., & White, S. M. 2001, ApJ, 559, 452,

doi: 10.1086/322405

Zhang, J., Dere, K. P., Howard, R. A., &

Vourlidas, A. 2004, ApJ, 604, 420,

doi: 10.1086/381725

http://doi.org/10.1088/2041-8205/786/2/L19
http://doi.org/10.1088/0004-637X/730/2/98
http://doi.org/10.12942/lrsp-2011-6
http://doi.org/10.1038/211695a0
http://doi.org/10.1088/0004-637X/712/2/1410
http://doi.org/10.1086/527414
http://doi.org/10.1007/s11207-009-9346-5
http://doi.org/10.1086/508254
http://doi.org/10.1086/176701
http://doi.org/10.3847/1538-4357/aaeac5
http://doi.org/10.5194/angeo-26-3089-2008
http://doi.org/10.1007/s11207-004-4995-x
http://doi.org/10.1007/s11207-006-0290-3
http://doi.org/10.1007/s11207-006-0093-6
http://doi.org/10.3847/1538-4357/aaa9b8
http://doi.org/10.1086/506903
http://doi.org/10.1086/322405
http://doi.org/10.1086/381725

	1 Introduction
	2 Data and Instruments
	3 Results
	3.1 Event Overview
	3.2 CME Dynamics
	3.3 Flare Energy Release
	3.3.1 Two-Step Reconnection
	3.3.2 Ongoing Reconnection in Flare Decay Phase


	4 Discussion and Conclusion

