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The Advanced Space-based Solar Observatory (ASO-S) is a mission aiming at exploring

solar flares, coronal mass ejections (CMEs), solar magnetic field and their relationships.

To fulfill its major scientific objectives, ASO-S has three elaborately-designed payloads

onboard: the Full-disk vector MagnetoGraph (FMG), the Lyman-alpha Solar Telescope

(LST), and the Hard X-ray Imager (HXI) dedicated to observe vector magnetic fields,

CMEs, and flares, respectively. Beside the scientific objectives, we have an operational

objective to observe solar eruptions and magnetic field for making related space weather

forecasts. More specifically, we have set a priority for the downlink of CME data observed

by LST, and will distribute those data to different space weather prediction centers in

China within 2 h once the Science Operation and Data Center (SODC) of ASO-S receive

the data. After data downlink and archiving, different automatic detection, tracking, and

cataloging procedures are planned to run for the most critical solar eruptive features. On

the other hand, based on the distributed and downloaded data, different space weather

prediction centers are to activate their forecast systems for the ASO-S observed solar

eruption events. Our particular interests are currently focused on nowcast of different

eruption events, prediction of CME arrivals, forecast of solar flares and the onset of solar

eruptions. We are also working on further forecast potentials using the ASO-S data to

make contributions to other possible important issues of space weather.

Keywords: Sun: solar-terrestrial relations, Sun: magnetic fields, Sun: coronal mass ejections (CMEs), Sun: flares,

Sun: filaments, Sun: prominences, Sun: solar wind

1. INTRODUCTION

The Sun is the major driver of space weather. Coronal mass ejections (CMEs) are eruptions of
plasma and magnetic field from the solar corona, and solar flares are sudden enhancement of
radiation. On the Sun they are twomost relevant phenomena to space weather impacts at Earth and
even in the heliosphere. CMEs are the sources of major geomagnetic storms which results in intense
currents in the Earth’s magnetosphere, changes in the radiation belts, and in the ionosphere. Severe
storms can cause extra drag on low-orbit satellites, disrupt navigation system, create errors in the
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positioning service of GPS, and harm the power grids and
pipelines. Usually a CME takes several days to reach Earth.
However, for very fast events, the arrival time can be as short as 18
h. Therefore, the prediction of CME arrivals as precise as possible
is crucial. There have been quite a number of propagationmodels
developed for CMEs and their driven shock. For a list of the
models and their corresponding references, we refer readers to
https://swrc.gsfc.nasa.gov/main/cmemodels. A CME arrival time
scoreboard is also provided where users can submit their forecast,
view all forecasts at once in real-time, and compare forecasting
results when the CME arrives at Earth.

The forecasting of solar flares is another important topic of
space weather research. The radiation of flares has an almost
immediate effect of the sudden ionospheric disturbances, which
disturb radar communication systems in the sunlit hemisphere.
The solar energetic particles (SEPs) accelerated by the magnetic
reconnection during flares and CME-driven shocks have broad
space weather impacts as well. Therefore, it is highly desirable
to be capable of predicting the occurrence time and magnitude
of a flare before it is observed. Barnes et al. [1], Leka et al.
[2, 3] published a series of review papers on the comparison
of different flare forecasting methods for operational solar
flare forecasting systems, which include rigorously measure the
performance of different methods and evaluate temporal patterns
of forecasting errors.

Forecasting the onset of a solar eruption event is a more
challenging space weather task. There have been lots of efforts
in this direction. e.g., searching the magnetic null points [4–7],
calculating the critical decay index [8], twist number [9], etc,
based on the computed magnetic fields. However, we are not at a
stage that operational forecasts of eruption onset are available yet.

The Advanced Space-based Solar Observatory (ASO-S)
mission [10] will be the first Chinese solar mission in space.
It aims at exploring solar flares, CMEs, solar magnetic field
and their relationships. Flares and CMEs have energies from
the magnetic field. Therefore, simultaneous observations of
the magnetic field, flares and CMEs, and their corresponding
studies are of particular importance. We also have an operational
objective, that is, to observe solar eruptions and magnetic fields,
and provide data products to different space weather prediction
centers in China for designing suitable forecast products and
making corresponding forecasts. To fulfill its major scientific
and operational objectives, the Chinese solar physics community
proposed the ASO-S mission, which has three elaborately
designed payloads: the Full-disc vector MagnetoGraph (FMG,
[11, 12]), the Lyman-alpha (Lyα) Solar Telescope (LST, [13–15]),
and the Hard X-ray Imager (HXI, [16, 17]) dedicated to observe
magnetic fields, CMEs, and flares, respectively.

Based on the scientific and operational objectives, payloads
and available data products of ASO-S, in this paper, we mainly
review on the space-weather products which are applicable to
the ASO-S mission, and are developed by different prediction
centers in China. They are the Space Environment Prediction
Center (SEPC) of the National Space Science Center, the Solar
Activity Prediction Center (SAPC) of the National Astronomical
Observatories, and the National Center for Space Weather
(NCSW) of China Meteorological Administration (CMA),

State Key Laboratory of Astronautic Dynamics. The products
presented in the paper are the outcome of a few workshops we
held on space weather with ASO-S. At the moment, our space
weather products cover the solar eruption nowcast, prediction
of CME arrivals, flare forecast, and eruption onset forecast.
Moreover, we are currently improving these products and
tailoring them to the data products of ASO-S. We also welcome
further contributions from the space weather community to
fulfill the operational objective of the mission.

2. OVERVIEW OF THE ASO-S MISSION

The ASO-S is a mission proposed by the Chinese solar
community for the solar activities close to the 25th solar
maximum. There are three major scientific objectives and
one major operational objective for this mission [10]: (1) To
simultaneously acquire non-thermal images of solar flares in hard
X-rays, and the initiations of CME in Lyα waveband, in order to
understand the relationships between flares and CMEs; (2) To
simultaneously observe the full-disk vector magnetic field, the
energy build up and release of solar flares, and the formation of
CMEs, in order to understand the causality among them; (3) To
record the response of solar atmosphere to eruptions, in order to
understand the mechanisms of energy release and transport; (4)
To observe solar eruptions and the evolution of magnetic field, in
order to provide clues for forecasting space weather.

To fulfill these objectives, there are three elaborately-designed
payloads onboard. FMG measures the vector magnetic fields
in the photosphere on the solar disk. It has a larger field
of view (34 arcmin) and higher time cadence (120 s) than
the magnetograph onboard Hinode. And it has a simpler
observation mode and a higher measurement precision than
the magnetographs onboard SDO and SOHO. FMG has six
sub-systems: optical imaging, polarization, electronics, thermal
control, imaging stability, and data processing [10]. LST consists
of three instruments observing in Lyα and white light: solar disk
imager (SDI), solar coronagraph imager (SCI), and white-light
solar telescope (WST). SDI and SCI can observe CMEs seamlessly
from solar disk to 2.5 R⊙, in Lyα with high temporal and spatial
resolution. The hydrogen Lyα line is the strongest line in UV.
Our Lyα observations will provide new diagnostics of CMEs
and flares. SCI also has a white-light polarimetric coronagraph.
WST mainly observes white-light flares, an important aspect
of flare research. HXI is designed for flare observations and
images the full solar disk in the energy range from about 30
to 200 keV. It has a high angular resolution and time cadence.
The imaging principle of HXI is similar to the hard X-ray
telescope onboard YOHKOH using indirect imaging technique
of spatial modulation. The main characteristics of three payloads
are summarized in Table 1.

3. ASO-S DATA SUPPORT FOR SPACE
WEATHER

The inflight telemetry from ASO-S is received by the Science
Mission Operation Center (SMOC) in the National Space Science
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TABLE 1 | The main parameters of three instruments aboard ASO-S. This table is

adapted from Gan et al. [10].

FMG

Diameter 140 mm

FOV 34′

Spatial resolution 6 1.5′′

Spectral line FeI532.4 nm

FWHM 0.011nm

Time resolution Normal mode: 2 min; Fast mode: 40 s

Accuracy of polarization 0.0015 for normal mode

HXI

FOV 40′

Energy range ∼30–200 keV

Energy resolution 27%@32 keV

Time resolution 0.5 s

Spatial resolution < 3′′@32 keV

Number of grid collimators 91

LST SCI SDI WST

Diameter 60 mm 60 mm 130 mm

FOV 1.1–2.5 R⊙ 0–1.2 R⊙ 0–1.2 R⊙

Wavelength 121.6 ± 10.0 nm 121.6 ± 7.5nm 360 ± 2.0 nm

700±40.0 nm

Spatial resolution 4.8′′/pixel 1.2′′/pixel 1.2′′/pixel

Time cadence 15–60 s 4–40 s 1–120 s

Center of China to produce level 0 data, then transferred by
using a dedicated network for ASO-S to the Science Operation
and Data Center (SODC, [18]) in Purple Mountain Observatory
(PMO) for further data processing. Q0 and level 0 are obtained
directly from SMOC. ASO-S follows the open data policy in the
international solar and space weather communities. After SODC
receives data from SMOC, the data products of different levels
are expected to be ready for distribution within 24 h routinely. In
the future, users can access and download data from the official
ASO-S website which are in both English and Chinese.

We have set priority to the data products dedicated to the
space weather predictions. In particular, the images containing
CME structures observed by the SCI white-light coronagraph of
LST are distributed to collaborative prediction centers within 2
h after SODC receives the data from SMOC. Note that SMOC
also requires some hours to receive the raw telemetry, process and
distribute them to SODC. In the case of SCI, it takes nomore than
18 h in principle. Therefore, the SCI data with CMEs will usually
flow to our prediction centers within a total of no more than 20 h
after CMEs are observed by the spacecraft.

As only the coronagraph data with CMEs are distributed, we
plan to classify the future white-light coronagraph images into
two categories, i.e., the CME-detected category and the CME-
not-detected category. The former category includes images
which contain CME structures in the images, while the latter
category not. To implement such classification, we have applied a

machine learning technique and have tested it with the LASCO
C2 data. Convolutional neural networks (CNNs) have shown
excellent performance in image classification in recent years.
We have used a trained CNN LeNet to classify the coronagraph
images. More details of the image classification with CNN can be
found in Wang et al. [19].

4. PREPARATIONS FOR THE FUTURE
SPACE WEATHER PRODUCTS BASED ON
THE ASO-S DATA

Space weather predominantly encompasses the impact of solar
eruptions at the Earth and in the heliosphere. The operational
objective of ASO-S is to observe solar eruptions and evolution
of solar magnetic field, and provide data products to different
space weather prediction centers in China for designing forecast
products and making corresponding forecasts. To fulfill the
operational objective of ASO-S, we have established a space
weather working group which involves the ASO-S team and
members from different prediction centers. The following
subsections mainly summarize the outcome of a couple of
workshops that we had. At the moment, our space weather
products cover the solar eruption nowcast, prediction of CME
arrivals, flare forecast, and eruption onset forecast.

4.1. Solar Eruption Nowcast
Foreseeing the large amount and different types of data streams
after the launch of ASO-S, an integrated image viewing system
is crucial for monitoring the solar activities observed by ASO-S.
Classifying different features observed by ASO-S is very helpful
for users to search interested targets for analyses. Categorized
computer vision modules designed for the Solar Dynamics
Observatory (SDO) which provide the entries to the Heliophysics
Events Knowledgebase (HEK) are good examples for such
purposes [20].

4.1.1. Integrated Image Viewing Systems
High-resolution, high-cadence, and multi-band observations
have brought a large amount of data, which leads a problem
to space weather forecasters who want to quickly understand
the comprehensive situation of the Sun. The Solar Activity
Prediction Center (SAPC) of the National Astronomical
Observatories, Chinese Academy of Sciences (NAOC) is a
professional institution in China dedicated for the solar activity
monitoring and forecasting [21–23]. SAPC suggests an overall
solar activity monitoring and nowcast scheme based on the ASO-
S observations. In the nowcast scheme by the SAPC, all the
instruments of the ASO-S including FMG, LST/SDI, LST/SCI,
LST/WST, HXI are employed to yield an overall view of solar
activity. The contents of the solar activity nowcast include: (1)
the global solar activity condition nowcast; (2) the flare activity
nowcast; and (3) the CME activity nowcast. In addition to the
solar images taken by the ASO-S mission, the coronal magnetic
field as well as the physical measures of the photospheric and
coronal magnetic field in the source regions of solar eruptions
are also calculated from the observed data and visualized.
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TABLE 2 | Solar activity nowcast products based on the ASO-S observations.

Nowcast content Employed instrument Nowcast product

FMG LST/SDI LST/SCI LST/WST HXI

Global Solar Activity

Condition Nowcast

√ √ √ √
1. Full disk images of the photospheric longitudinal magnetic field by FMG, the

photosphere by WST, and the chromosphere by SDI

2. Images of the photospheric vector magnetic field by FMG, the photospheric

sunspots by WST, and the chromosphere by SDI in solar active regions

3. Diagrams of the chromospheric filaments (prominences) and plages by SDI

4. Coronagraph images by SCI

Flare Activity Nowcast
√ √ √ √

1. Animations of chromospheric images by SDI, photospheric images by WST, and

photospheric vector magnetic field images by FMG in flare source regions

2. Animations of hard X-ray images by HXI in flare source regions

3. 3D coronal magnetic field line images and physical measure distribution images in

flare source regions

CME Activity Nowcast
√ √ √ √

1. Animations of coronagraph images by SCI during CME eruption

2. Animations of chromospheric images by SDI, photospheric images by WST, and

photospheric vector magnetic field images by FMG in CME source regions

3. Field line images of large-scale 3D coronal magnetic field in CME source regions

The nowcast products of solar activity are a synthesis of the
observed images, the visualized field lines and physical measure
distributions, and the animations of flare and CME eruptions.
Table 2 gives a full list of the nowcast products based on the
ASO-S observations.

The National Center for Space Weather (NCSW) is the
space weather operational unit of China Meteorological
Administration (CMA) and it provides monitoring, early
warning, nowcast, forecast and other space weather services for
nearly two decades. We develop the solar synoptic chart (SSC)
method to improve the daily operational efficiency of space
weather forecast. The SSC is an integrated image viewing system
based on the survey of both literatures and observations, and it
is focusing on the key objects of solar activities, tracing magnetic
fields, and visualizing quantitative data. The quantitative data is
as important as observational images in the SSC. For example,
the non-potential parameters of the solar magnetic fields are
closely related to the eruption of flares [24], and the multi-band
solar images can show the observational characteristics of
flares [25]. Case studies show that comprehensive information
of the SSC reveals the general state of solar atmosphere as
well as eruptions, which proves that it is a beneficial tool for
space weather forecasting [26]. At present, the SSC contains
four EUV channels of SDO/AIA, 4500 continuum images and
longitudinal magnetic fields of SDO/HMI, and Hα data of
NCSW. We will add the data of the three payloads of ASO-S
to the SSC in the future. The near-real-time and high-quality
data of ASO-S will be useful to identify active regions, coronal
holes, filaments/prominences, and the eruption of flares and
CMEs, and to improve the numerical prediction and the space
weather service.

4.1.2. Feature Detection and Cataloging
Building different catalogs for different solar features is very
useful for data users to search their interested objects for

further case and statistical studies. Therefore, the SODC in
PMO and different space weather prediction centers are working
together to develop automatic detection techniques for different
features and set up catalogs for active regions, CMEs, filaments,
prominences, flares, etc. These catalogs will be shared through the
official ASO-S website and the website of our prediction centers.

A suite of automatic procedures for the detection of
solar active regions (ARs), calculations of AR key magnetic
parameters, and recognition of the ARmorphology are presented
in Fang et al. [27] and Li et al. [28]. A CNN method
is applied for the characteristic recognition of solar active
regions including sunspot umbra and penumbra, which has a
productive performance in identification of the magnetic types
and McIntosh classification. These results are very beneficial to
forecast solar activity and space weather.

For CMEs, both automatic and manual detection tools [29]
are used at SEPC [30]). An algorithm using J-maps [31, 32]
and the Hough transform [33] is adopted to detect and identify
CMEs automatically. Hough transform is a feature extraction
method that is used to identify lines in an image classically. The
detection runs in real-time and the detected CME results are one
of the important references for forecasters. A human-computer
interaction tool has been developed, and is expected to help us to
identify rather faint fronts of a halo CME where the automatic
detection does not work well. The manual detection improves
the fitting accuracy of a halo CME, and consequently the forecast
accuracy from the CME propagation model. Recently, the SODC
of ASO-S also developed a detection and tracking method
CAMEL using machine learning techniques. Currently we have
finished the method development, and are setting up a catalog
for LASCO C2 data. For details of the method please see Wang
et al. [19]. A comparison of the detection results by CAMEL and
by a few other existing methods for the most geo-effective halo
CMEs can be seen in Figure 1. The aforementioned techniques
will be tested on the LST/SCI white-light coronagraph data.
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FIGURE 1 | Comparison of the detection and tracking results between CAMEL and a few other existing methods for the CME event on 2012 March 21. This figure is

adapted from Wang et al. [19].

By collaborating with Nanjing University, we plan to generate
a filament catalog based on LST/SDI observations. The catalog
will include some basic information of filaments, such as location,
area, perimeter, alignment, length of main axis, number of barbs,
etc. The algorithm has already been established and the codes
have been developed. They have been tested with currently
available ground-based and space-borne observations in both
visible and ultraviolet wavebands [34, 35]. Prominence is another
interesting feature to detect beyond the solar limb from LST/SDI
data. The technique we are going to implement is adopted from
the Solar Limb Prominence Catcher and Tracker (SLIPCAT, [36])
and has been successfully applied to the STEREO/EUVI data at
304 Å. Both codes will be optimized for the ASO-S observations
when available. In addition, a flare catalog is currently being
developed and tested.

4.2. Prediction of CME Arrivals
Prediction of CME arrivals is the major space weather task
for ASO-S. FMG produces synoptic magnetic maps for a
given Carrington rotation which is one of the inputs for the
background solar wind modeling. LST/SCI has a white-light

coronagraph with the capability of polarimetric measurements
[15]. The 3D reconstruction of CMEs based on the coronagraph
images yield key parameters of CME, e.g., speed, width,
propagation direction, which are the main input parameters for
the CME propagation models. In this Section, we describe the
methods that we will adopt in the future for the prediction of
CME arrivals with the FMG and LST data.

4.2.1. Background Solar Wind Modeling
The operational solar wind prediction system [29] in SEPC first
calculates the background solar wind on the source surface at 2.5
R⊙. Using the PFSS model [37, 38] we extrapolate the magnetic
field to the source surface from the photospheric magnetic field
synoptic map obtained from the Global Oscillation Network
Group (GONG; [39]). To compute the solar wind speed at the
source surface, we apply the empirical WSA method [40–43].
Beyond the source surface, we apply the empirical HAF model
to simulate the propagation of the solar wind using the solar
wind parameters at the source surface as part of the initial inner
boundary conditions [44, 45]. Our system can be used to predict
solar wind conditions at 1AU.
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4.2.2. 3D Reconstruction of CMEs
There have been quite a number of methods for 3D
reconstruction of CMEs as reviewed by Howard [46] and
Feng et al. [47]. Here we only include those methods which will
possibly be used for the ASO-S mission by our team members.
The operational solar wind prediction system [29] in SEPC adopt
the ice-cream cone model [48] for the geometric fitting of the
detected CMEs. It is the simplest model for 3D reconstruction
of CMEs. Another geometric fitting method with an assumed
CME shape that is mostly used is the Graduated Cylindrical
Shell (GCS) model [49]. To avoid the assumption of a specific
shape for a CME, [50] developed the mask-fitting method and
used the traced CME periphery in the images observed from
multi-viewpoints to constrain the 3D CME volume. Besides
the geometrical methods, the polarization ratio (PR) method
[51, 52] is often used when we have the observation from only
one perspective. As LST offers the polarimetric observations
with polarizers at three different positions in white light [53],
the PR method can be considered as an important candidate for
calculating 3D parameters of a CME observed from only a single
viewpoint at Earth.

The polarization of the sunlight scattered by coronal electrons
is well known. According to the Thomson scattering theory, the
polarization degree of the scattered light is determined by the
electrons distributed along each light of sight (LOS), i.e., for a
given LOS, the further the electron is away from the plane of
the sky, the lower the polarization degree in white light. The PR
technique can convert the polarimetric observations to average
distances of the contributing electrons off their sky plane in 3D.
The technique is generally applied to limb CMEs, while for halo
CMEs, it is rarely applied. Lu et al. [54] made this technique
applicable to halo CMEs with a careful processing of polarimetric
observations, such as subtracting a well-prepared background
image, isolating and removing irrelevant background structures,
and so on. For halo CMEs, one unavoidable problem is the
missing of part of their most front due to the occultation of
typical coronagraphs. To obtain the 3D information of the entire
CME, we apply the widely used GCS model to fit the 3D
points derived from the PR technique. Our results in Figure 2

suggest that the combination of the GCS model with the PR
method (GCS-PR) can give a reliable estimate of the direction
of CME propagation.

Dai et al. [55] classified the ambiguity into explicit and
implicit type during CME reconstruction using the PR method
based on the polarimetric white light data from coronagraphs
onboard STEREO. Such classification evaluates the reliability of
the reconstruction results. We can reconstruct CMEs without
ambiguity under explicit condition. On the other hand, we
can not reconstruct CMEs without ambiguity under implicit
condition. Dai et al. [56] pointed out that the intrinsic ambiguity
of polarization ratio method does not affect the mass calculation
of CMEs. They applied the method to obtain a more accurate 3D
position of electrons along each line of sight (LOS) corresponding
to each pixel on the CME images to improve the accuracy of mass
calculation. Combination of the work of Dai et al. [55, 56] may
give us a more reliable CME reconstruction with more accurate
location and mass using data from only one viewpoint.

4.2.3. CME Propagation Models
The operational solar wind prediction system [29] in SEPC
adopted the modified HAF model to propagate CMEs by taking
into account the background solar wind, the eruption source
information, and the 3D CME parameters. We adopted a
deceleration function for the CME speed profile. The initial speed
distribution is calculated from the fitted CME speed and angular
width over the source surface. Our system has the capability to
predict solar wind disturbances near Earth, especially the arrival
time of CMEs. Figure 3 is a simulation snapshot of the solar wind
and CME on April 18, 2014.

On the other hand, the results of 3D reconstruction of
CMEs can be used as key input parameters of the CME
propagation model in the frame of the Space Weather Modeling
Framework (SWMF) [57, 58]. The CME is firstly inserted
into the Solar Corona (SC) component and then propagate
into Inner Heliosphere (IH) by the coupling between SC
and IH. Block-Adaptive Tree Solar wind Roe-type Upwind
Scheme [59] (BATS-R-US) algorithm is used to solve the
3D magnetohydrodynamics (MHD) equations to simulate the

FIGURE 2 | Projections of the reconstructed CME with the GCS-PR method onto different planes. The red arrows indicate the direction from the Sun to the center of

the GCS reconstructed CME. This figure is adapted from Lu et al. [54].
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FIGURE 3 | A snapshot of the cone plus HAF simulation on the solar wind and CME in the ecliptic plane on April 18, 2014. The panels from left to right and from top

to bottom are proton density, magnetic field strength, dynamic pressure, and solar wind speed, respectively. The red dot represents the Earth. The inward and

outward field lines are indicated by blue and green lines. This Figure is adapted from Wang et al. [29].

propagation of the reconstructed CME. Component SC and IH
are coupled between 18 and 20 R⊙. The computational domain
for SC simulation is defined by −24 R⊙ < x,y,z < 24 R⊙ and for
IH by −240 R⊙ < x,y,z < 240 R⊙. A successful demonstration
of the CME propagation in the interplanetary space can be
found in Jin et al. [60]. The working group have tested the
propagation model with a few CME events, and compared the
simulated density, velocity and magnetic field with the Advanced
Composition Explorer (ACE) [61] in situ measurements. It’s
shown that the prediction precision can be less than 10 h.

4.3. Solar Eruption Forecast
4.3.1. Solar Flare Forecasting Models
Although the physical mechanism of solar flare is not yet
very clear, there has been a great deal of efforts to establish a
probabilistic flare forecasting model. The basic idea of solar flare
forecast is to find sensitive precursors, and build a forecasting
model which characterizes the relationships between precursors
and solar flares.

From the point of view of precursors, lots of morphological
or physical parameters are extracted from active regions. For
example, McIntosh classifications [62], the effectively connected
magnetic field (Beff ) [63], magnetic neutral line [64, 65], a
weighted measure of the magnetic flux near the neutral line [66],
free magnetic energy [67], Magnetic helicity [68], the magnetic
energy spectrum [69], active longitudes [70] and so on. From the
point of view of modeling methods, quite a number of statistical
and machine learning methods are applied to set up a forecasting
model. For example, superposed epoch analysis [71], neural
networks [72], decision tree [73], the Random Forest Algorithm
[74], Bayesian network [75] and so on.

So far, solar flare forecast is still a challenging task. Because of
the random nature of solar flares, it is difficult to find an effective
precursor. In the recent development of solar flare forecast,
deep learning methods [76–79] are used to automatically extract
forecasting patterns from the observational data and finally build
a forecasting model. Depending on the big observational solar
data, deep learning methods may be one of ways to improve
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FIGURE 4 | Structure of the convolutional neural network in the deep learning method for flare forecasting. The method uses the line-of-sight magnetogram as input.

This Figure is adapted from Huang et al. [76].

the performance of solar flare forecast. For example, based on
the line-of-sight magnetograms of active regions and soft X-
ray observations of flares, Huang et al. [76] developed a flare
forecasting model using the CNN in deep learning. Figure 4
illustrates the structure of the CNN. The authors showed that
the performance of the proposed model is comparable to that of
the state-of-the-art flare forecasting models. The method is not
sensitive to the forecasting periods of 6, 12, 24, or 48 h. Case
studies revealed that the deep-learning-based forecasting method
pays attention to regions in the line-of-sight magnetograms of
active regions with the polarity-inversion line or strong magnetic
field. The input of the forecast, i.e., the magnetograms will be
provided by FMG, flare information can be acquired from LST
in Lyα and white light and HXI in hard X-ray in the future.

The FMG instrument can obtain time series of photospheric
vector magnetograms in active regions with high spatial and
temporal resolution. The time evolution of the photospheric
vector magnetic fields can be traced continuously for nearly
all active regions appearing on the solar disk except for the
marginal area near the solar limb. By numerical modeling of
the coronal magnetic fields with the sophisticated nonlinear
force-free field (NLFFF) model from the observed photospheric
vector magnetograms [80, 81], the time series data of the coronal
magnetic fields corresponding to the time series photospheric
vector magnetograms can also be obtained. Then the numerical
analysis can be performed on the coronal magnetic field data, and
the time evolution of the internal coronal structures as well as the
evolution of the non-potentiality in active regions can be revealed
[82, 83]. The deduced quantitative measures of the coronal
magnetic fields from the numerical analysis, such as electric
current density, force-free factor, and magnetic energy density,
can be utilized in the solar flare forecasting and for establishing
the solar flare prediction model. Through the numerical analysis
of the time series magnetic fields in active regions, it is expected
to predict location, class, and timing of flares.

4.3.2. Forecast of the Onset of Solar Eruptions
Violent solar eruptions frequently happen in the magnetic
interfaces among different topology of independent flux system,
named solar magnetic synoptic meteorology by Wang and Li
[84]. Circular flares, jets, and remote brightening are related

to some dome-like fan feature with an outer spine [85–91]. A
CME along a non-radial direction can be related to a coronal
null topology inclined over loops [92]. Catastrophic changes
of magnetic topology, e.g., magnetic reconnection, are often
associated with fast CMEs and large flares [93]. It has been shown
that magnetic topology can determine the internal characters of
CME and flare shape [5, 94]. Once the null points are found in the
extrapolated 3D magnetic fields of an active region, the related
magnetic topology, including null point, fan, spine, separator and
separatrix surface, can be figured out. Usually the evolution of
magnetic field in the solar photosphere are relatively slow. It is
possible to predict the initial clue of eruption by monitoring the
related local activity in the upper solar atmosphere based on the
3Dmagnetic topology skeleton analysis of solar active regions. In
space weather forecasting, it is very important to know whether
a large flare is confined or eruptive. By investigating magnetic
conditions of the eruptive and confined flares in active regions,
we found that eruptive flares with high-speed CMEs tend to take
place in active regions with more free energy and larger decay
index [95].

We also investigated the properties of super active regions
(SARs), which is often recognized to represent the most
significant characteristics of solar activity in each solar cycle.
About more than 40% of all the major flares are produced by
fewer than 0.5% of ARs. Chen et al. [96] selected 45 SARs in cycles
21–23 according to the following four criteria, i.e., maximum
sunspot area, soft X-ray flare index, the 10.7 cm radio peak
flux, and short-term total solar irradiance decrease. Chen and
Wang [97] studied the vector magnetic field properties of 14
SARs and eight large but inactive ARs, which were called fallow
ARs (FARs), in cycles 22 and 23. It revealed that SARs and
FARs had significantly different vector magnetic field properties.
Most of the SARs had a higher net magnetic flux, a higher
total free magnetic energy density in the photosphere, a longer
neutral line with a steeper horizontal gradient of the LOS
magnetic field, and a larger area with strong magnetic shear.
Based on these four characteristics, they put forward a composite
vector magnetic field index. It showed that most of the SARs
had higher magnetic indices. The authors also found a clear
relationship between the flare index and the magnetic field index
for SARs [98].
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5. CONCLUSIONS

ASO-S is a small-satellite mission which will be launched
around 2022. It will be the first solar space mission in China.
To make contribution on the space weather forecasts to the
community, we have made a dedicated operational objective for
ASO-S, that is, to observe solar eruptions and the evolution
of magnetic fields, and provide data for different prediction
centers to make space weather forecasts. We have established
a working group in China and have made detailed working
plans on the space weather products of solar eruption nowcast
which consists of integrated image viewers of ASO-S data
products and various catalogs of solar features; prediction
tools of CME arrivals; solar eruption forecasts including the
flare forecasts and eruption onset forecasts. The products
of the solar eruption forecasts are still on the way to be
operational. This paper basically summarize the space weather
products that will probably be used by ASO-S, the data
supports to these products. Our next step is to test the
proposed space weather products for ASO-S with simulated
data of FMG, LST, and HXI. We are also working on
further space weather potentials with ASO-S, and we welcome

the involvement of other contributions from the solar and
heliophysical communities.
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