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Introduc)on and goals 1

§ Coronal Mass Ejections (CMEs) are gigantic eruptions
of magnetised plasma from the Sun -- primary cause
of intense space weather disturbances at Earth

§ Reliable predictions of their impact at our planet and
other target locations are the key to taking prompt
protective measures

§ Be]er understanding the role of CMEs as space weather drivers throughout the heliosphere

§ Improve current predic_ve capabili_es (e.g. 𝐵𝑧 at 1 AU) for such kind of events

§ Modelling tool: 

ULTIMATE GOALS SDO/AIA SOHO/LASCO 2015-06-21 04:54



The 4-6 September 2017 CMEs 2

§ Two successive CMEs on 4 September (19:00 UT and 20:36 UT) followed by a faster CME            
on 6 September (12:24 UT)

§ CME1 and CME2 merged in the corona (CME1+CME2) 
§ Interac_on of CME3 with CME1+CME2 during propaga_on triggered a major geomagne_c storm

SOHO/LASCO observa_ons EUHFORIA simulation (equatorial plane) 

Earth

CME1+ 
CME2

CME3



The 4-6 September 2017 CMEs at Earth 3
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§ Interac_on of CME3 with CME1+CME2 at 1 AU amplified the geo-effec_veness of this structure
by a factor ~2 (shock embedded in preceding ejecta; Lugaz+2005,2016; Shen+2018)



Science ques)ons: complex CME events 4

§ Interaction of CME3 with CME1+CME2 at 1 AU amplified the geo-effectiveness of this structure
by a factor ~2 (shock embedded in preceding ejecta; Lugaz+2005,2016; Shen+2018)

Q1 How did this amplifica_on evolve in space and _me as the CMEs propagated from the Sun
to the Earth (i.e. as a func_on of the interac_on phase)? 

Q2 Is there a range of radial distances where interac_ng CMEs are more likely to trigger strong 
space weather disturbances (i.e. a characteris_c ’’helio-effec_veness amplifica_on zone’’)?

Terminology throughout this presentation:
Geo-effective ⇔ impact at Earth (1 AU)
Helio-effective ⇔ potential impact at a generic heliocentric distance



Ambient solar wind in 5

PFSS model (1 to 2.6 𝑅⊙) SCS model (2.3 𝑅⊙ to 0.1 AU)

Synop_c magnetogram (1 𝑅⊙)

Image credit: 
NSO/GONG

0.1 AU
2.3 𝑅⊙

𝒗, 𝑩, 𝑛, 𝑇 in the inner heliosphere 
(0.1 to 2.0 AU)

CORONA: semi-empirical WSA model HELIOSPHERE:
_me-dependent

ideal MHD model 
GONG

Empirical rela_ons: 
MHD parameters at 0.1 AU
𝑣-

Pomoell & Poedts (2018), Journal of 
Space Weather and Space Climate,
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CME models in 6
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§ CMEs inserted as _me-dependent inner boundary condi_ons at 0.1 AU 

§ Cone-like model (unmagne_sed) ⇢ Pomoell&Poedts2018; Scolini+2018,2020

§ Spheromak model (flux rope) ⇢ Verbeke+2019

§ Fri3D, toroidal, Gibson-Low models (coming soon) ⇢ Isavnin+2016; Pomoell+2020 (in prep)

Used in this work



CME ini)al parameters at 0.1 AU 7

§ CME kinematics/geometry: from coronagraphic images (ideally close to 0.1 AU)

§ CME magnetic structure: need to look closer to the Sun

1. Chirality: inferred from low-coronal proxies (Palmerio+2017)

2. Axis orientation: inferred from photospheric and/or low-coronal proxies

3. Axial magnetic flux: based on reconnected flux given by area covered by low-coronal
proxies: post-eruptive arcades (Gopalswamy+2017), flare ribbons (Kazachenko+2017), 
coronal dimmings (Dissauer+2018a,b)

4. Others (e.g. twist) -- note: the spheromak model assumes constant, uniform twist

Forecasting perspective
⇢ they need to be determined from observations near the Sun

How to determine the parameters of the CMEs to inject?



Kinema)c/geometric parameters 8
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§ CME direction, width, propagation speed in the corona estimated by applying the Graduated
Cylindrical Shell (GCS) model (Thernisien+2006,2009) to SOHO/LASCO and STEREO/COR2A images

§ Extrapolation to 0.1 AU assuming self-similar expansion and no deflections -- good approximation
for the particular CMEs under study

COR2A LASCO C3
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Chirality and orientation 9

§ EUV sigmoids provide an estimate of the AR chirality (Demoulin&Pariat2009; Palmerio+2017) –
in most cases this is consistent with the chirality of the erupted flux rope
(Bothmer&Schwenn1998; Palmerio+2018) – notable exceptions reported (e.g. Chandra+2010; 
Romano+2010; Zuccarello+2010)

§ PIL orientation used as a signature for the flux-rope axis orientation -- neglects rotations in the 
corona (Vourlidas+2011; Kay+2015), difficult to univocally estimate for irregular PILs (as in the 
case of the CMEs under study)

EUV sigmoid PIL orienta_on

AIA 94 HMI LOS

CM
E3



Reconnected flux 10
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§ Axial magnetic flux 𝝋𝒕 estimated from the amount of reconnected flux 𝝋𝐑𝐂 during an eruption

§ (Signed) reconnected flux:                                              where 𝐴 = area of observational proxy

§ Different observational proxies map different regions in the photosphere ⇢ provide different
estimates of 𝜑BC -- consistency to be assessed in the particular event studied

§ Comparison with results from statistical relations (more forecasting “friendly”)        
(Kazachenko+2017; Tschernitz+2018; Dissauer+2018a,b,2019; Pal+2018) 

𝜑BC =
1
2FG

|𝐵IJK| 𝑑𝐴
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Results: reconnected flux es)mates 11

CME1 CME2 CME3 Different proxies cover different areas
⇢𝜑BC ranges over 1 order of magnitude

Uncertain_es expected to be up to ±50% of
the es_mated 𝜑BC values ⇢ es_mates from
different proxies are actually consistent;
provide an order of magnitude for 𝜑BC

(in units of 1021 Mx) Good agreement with 
estimates from 
statistical relations 
based on flare peak 
intensity; these could 
be potentially 
employed for 
operational forecasting



EUHFORIA simula)ons 12

§ To assess the role of interactions on the helio- and geo-effectiveness of CME1, CME2 and CME3 we 
run a total of 5 simulations: 1 for the ambient solar, 3 ”block runs” progressively adding individual 
CMEs to the chain (from CME1 to CME3), 1 simulation with only CME3

§ Best prediction can be slightly offset wrt Earth location (Verbeke+2019; Scolini+2019); uncertainty 
on initial CME direction reconstructed from GCS model around ±10° (Thernisien+2009) ⇢ virtual
spacecraft placed at 1 AU around Earth to assess spatial sensitivity of model results

Summary of EUHFORIA simulations

Sun
Earth

virtual spacecrat
around Earth

virtual spacecraft
along Sun—Earth linewith CME ini_al parameters based on observa_onal methods 

(see previous slides) except for the spheromak axial orienta_on



Results: CME-CME interactions 13

Pre-interaction
Shock-ejecta interac_on

Shock-sheath interac_on§ CME-CME interac_ons are not point-like phenomena; 
their treatment require a descrip_on of the magne_c 
field inside magne_c ejecta ⇢ use of magne_sed CME 
models needed (e.g. Lugaz+2005,2017)

§ We characterise the interac_on of CME1+CME2 with 
CME3 in space/_me with par_cular focus on the   
evolu_on along the Sun—Earth line

Pre-interaction Shock-ejecta
interac_on

Shock-sheath
interaction

Interaction along
the Sun—Earth line 

in space/time



Results: helio-effectiveness amplification 14

§ Close correla_on between interac_on phase
and amplifica_on of poten_al helio-
effec_veness of the preceding CME(s)

§ Existence of maximum amplificaSon phase
hints to existence of a characteris_c
’’helio-effecSveness amplificaSon zone’’

§ Maximum amplifica_on around 0.9 AU         
⇢ intense storm at Earth caused by impact 
during maximum amplificaSon phasePre-interac_on
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§ Amplification of helio-effectiveness of CME1+CME2 caused by CME3 calculated along the 
Sun—Earth line at various times in our simulations, as

𝐴RS =
min 𝐵S in run 010101
min 𝐵S in run 010100

𝐴R =
max 𝐵 in run 010101
max 𝐵 in run 010100and 

CME1+CME2 helio-effectiveness amplification



measured value (Wind)

geo-effec_veness
amplifica_on
by factor 2.5 

measured value

geo-effectiveness
amplification
by factor 1.8

predicted value (Wind)

Minimum 𝐵S from EUHFORIA Minimum Dst index from EUHFORIA + 
coupling function (O’Brien&McPherron2000)

Results: geo-effectiveness amplification 15

§ Simula_ons es_mate the geo-effecSveness of CME1+CME2 was amplified by a factor 1.8 -- 2.5 
due to interac_on with following CME3 -- results are consistent with previous observa_on-based
es_mates by Shen+2018 

CME1 CME1+CME2 CME1+CME2 
+CME3

CME1 CME1+CME2 CME1+CME2 
+CME3

Earth virtual spacecrat around Earth



Summary and conclusions 16

§ In this study: we use EUHFORIA to inves_gate a series of geo-effec_ve CMEs in September 2017

§ Ques_ons addressed: what is the role of CME-CME interac_ons in amplifying the helio- and geo-
effec_veness of individual CMEs? How does it evolve in space and _me? 

→ Reconnected fluxes from different low-coronal proxies are consistent with results from 
staSsScal relaSons, which are faster and easy to apply ⇢ need to further inves_gate their 
poten_al for opera_onal forecas_ng

→ Analysis of CME helio-effec_veness in space/_me from simula_ons indicates a maximum 
amplificaSon is reached at the end of the shock-ejecta interacSon phase ⇢ hints to existence
of a characterisSc ’’helio-effecSveness amplificaSon zone’’ for each pair of interac_ng CMEs

§ For the events under study: intense geomagneSc storm caused by impact during maximum 
amplificaSon phase – amplifica_on by a factor of 2.5 in 𝐵S (1.8 in Dst)

→ More case studies + parametric studies required to build a sta_s_cal picture



Thank you for your interest! 17

The results presented in this work have been recently published in the Astrophysical Journal 
Supplement Series as Scolini et al. (2020), DOI: 10.3847/1538-4365/ab6216
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