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ABSTRACT

One of the main goals of solar physics is the timely identification of eruptive active regions. Space missions

such as Solar Orbiter or future Space Weather forecasting missions would largely benefit from this achievement.

Our aim is to produce a relatively simple technique that can provide real time indications or predictions that an

active region will produce an eruption. We expand on the theoretical work of Pagano et al. (2019) that was able

to distinguish eruptive from non-eruptive active regions. From this we introduce a new operational metric that

uses a combination of observed line-of-sight magnetograms, 3D data-driven simulations and the projection of

the 3D simulations forward in time. Results show that the new metric correctly distinguishes active regions

as eruptive when observable signatures of eruption have been identified and as non-eruptive when there are no

observable signatures of eruption. After successfully distinguishing eruptive from non-eruptive active regions

we illustrate how this metric may be used in a “real-time” operational sense were three levels of warning are

categorised. These categories are: high risk (red), medium risk (amber) and low risk (green) of eruption.

Through considering individual cases we find that the separation into eruptive and non-eruptive active regions

is more robust the longer the time series of observed magnetograms used to simulate the build up of magnetic

stress and free magnetic energy within the active region. Finally, we conclude that this proof of concept study

delivers promising results where the ability to categorise the risk of an eruption is a major achievement.

Keywords:

1. INTRODUCTION

The ability to identify eruptive active regions prior to an eruption is crucial for improving current space weather forecasting

capabilities and to select targets for Solar Orbiter’s observing campaigns. The fundamental aim is to predict as early as possible

the location of the source region that the next solar eruption will originate from and correspondingly the time of the eruption.

Significant advances in this area have been made over the past few years due to the wealth of full disk data available from the

Solar Dynamic Observatory (SDO). In particular, flare forecasting techniques have improved significantly. For a summary of

state-of-the-art flare forecast models we refer readers to Barnes et al. (2016). To predict the occurrence of solar flares previous

studies have accomplished this by examining either the active region properties from a physical perspective (Georgoulis & Rust

2007; Kontogiannis et al. 2017; Jonas et al. 2018; Kontogiannis et al. 2018; McCloskey et al. 2018), or by using sophisticated

computational techniques of data analysis (Ahmed et al. 2013; Bobra & Couvidat 2015; Boucheron et al. 2015; Liu et al. 2017;

Nishizuka et al. 2017; Raboonik et al. 2017; Nishizuka et al. 2018; Florios et al. 2018; Benvenuto et al. 2018; Liu et al. 2019;

Domijan et al. 2019). However, increasing our capability of identifying flaring regions alone is currently not enough to improve

space weather forecasting, as flares are only one component of eruptive solar activity. Space Weather events are largely pro-

duced by Coronal Mass Ejections (CMEs) that can be related to flares, but both phenomena can also occur without the other

(Gopalswamy 2004). Green et al. (2018) provides a thorough analysis of solar eruptions in relation to their predictability. A

significant advancement in this area has been made by Murray et al. (2018) which has combined two large-scale projects to pro-

vide a crucial connection between the prediction of flares (FLARECAST Georgoulis et al. 2018) and how this can support the
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prediction of CMEs studied in the HELCATS catalogue (Bothmer et al. 2018). Also, Murray et al. (2017) illustrated an example

of how agencies are preparing for operations of flare forecasts. In addition to flares, efforts have been deployed to predict the oc-

currence of CMEs, either using observable precursors (Baker et al. 2012), machine learning (Bobra & Ilonidis 2016) or statistical

approaches (Aggarwal et al. 2018).

In parallel to these studies, a large number of papers have significantly improved our understanding of the physical mecha-

nisms that cause solar eruptions. While predictive techniques tend to empirically identify key parameters that are proxies of the

eruption process, other studies identify what physical mechanisms trigger CMEs. Schmieder et al. (2015) and Green et al. (2018)

provide recent overviews of the models of CMEs and flares, while Pagano et al. (2015) considers aspects related to numerical

simulations. Very generally speaking, we can distinguish CME models in two main categories that describe how the Lorentz

force imbalance that triggers the eruption is generated. We have MHD instability theories, where existing structures are in a

metastable equilibrium, where the runaway from it can be catastrophic (Forbes & Isenberg 1991), or it can follow either the

Kink (Sakurai 1976; Török & Kliem 2005), or Torus (Kliem & Török 2006; Démoulin & Aulanier 2010; Aulanier et al. 2010)

instability. Alternativelly, the force imbalance is generated by the removal of confining structures, such as in the Breakout model

(Antiochos et al. 1999; Lynch et al. 2008). Morever, other eruption mechanims can be triggered outside or at the border of active

regions, such as blowout jets (Chandra et al. 2017).

The aim of this paper is to provide a proof of concept study for a new approach to identify eruptive active regions based on

the physical analysis provided by Pagano et al. (2019), which we will now refer to as Paper I. In Paper I, we analysed the 3D

magnetic field evolution of a set of active regions using the magnetofrictional relaxation model of Mackay et al. (2011). We then

derived a theoretical metric that discriminated eruptive from non-eruptive active regions. We identified an empirical threshold

(based on the small sample of active regions considered) and we developed a magnetogram projection technique that allowed

us to successfully apply the theoretical metric to both observed magnetograms and magnetograms projected forward in time.

Building on Pagano et al. (2019), the goal of this paper is to develop a new operational metric that can be quickly computed and

used to determine whether an active region is at risk of producing an eruption. In order to achieve this goal, we first determine

the most suitable features in the time evolution of the theoretical metric that indicate the risk of an eruption and secondly we

construct a method to summarise this analysis into a single value ranging from 0-1 that measures the risk of an active region

producing an eruption.

The structure of the paper is as follows: in Sec.2 we summarise the data-driven magnetofrictional model used to simulate the

3D structure of the active regions, along with the main properties of the active regions used in this study. In Sec.3 we discuss

a new approach in the application of projected magnetograms to predict the future time evolution of the active regions. Next in

Sec.4 we present the practical application that classifies eruptive and non-eruptive active regions in the context of an operational

model. In Sect.5 we draw conclusions and consider future advancements of the technique.

2. SUMMARY OF THE MODEL AND SIMULATIONS

To simulate the data-driven, 3D evolution of active regions we use the magnetofrictional relaxation model of Mackay et al.

(2011). This technique uses a 3D cartesian domain where the initial coronal magnetic field is extrapolated from the first mag-

netogram in the time series evolution of the active region and is assumed to be potential. Next, the time sequence of observed

line-of-sight magnetograms is applied as an evolving lower boundary condition where the evolution injects free magnetic energy

and helicity into the coronal field. The coronal field then responds by evolving through a sequence of Nonlinear Force-Free states.

As the initial condition is a potential field, we find that a ramp-up phase corresponding to approximately 35 magnetograms (2

days) is needed before the coronal magnetic field significantly departs from this initial configuration. After this time, the de-

scription of the active region magnetic field follows from the evolution of the applied line-of-sight magnetograms as it has lost

its memory of the initial condition. Full details of the applied technique can be found in the papers of Mackay et al. (2011),

Gibb et al. (2014), and Yardley et al. (2018b).

From the time series of the 3D magnetic field configurations for each active region, we derived a theoretical metric ζ (x, y, t)

that can be used to distinguish eruptive from non-eruptive active regions, where x and y are the horizontal directions on the solar

surface and t is time. Full details regarding the computation of ζ (x, y, t) can be found in Section 3 of Paper I. However, in simple

terms ζ (x, y, t) is the product of three different functions that are also normalised:

ζ (x, y, t) = ω (x, y, t) µ (x, y, t)σ (x, y, t) . (1)

The terms composing ζ (x, y, t) are now described: (i) ω (x, y, t) is close to 1 at the location where a magnetic flux rope is present,

(ii) µ (x, y, t) is close to 1 where the Lorentz force is directed outwards and (iii) σ (x, y, t) is close to 1 where the Lorentz force

is heterogeneous in space. In principle ζ (x, y, t) can take a value anywhere from 0-1 but in practise the value is found to be
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small with a strong spatial variation, In Paper I, we studied eight individual active regions, five of which were associated with

an observed eruption and three which were not. Through considering the bi-dimensional time-dependent distribution of ζ (x, y, t)

we extracted a time dependent quantity, ζmax (t), i.e. the maximum of ζ (x, y, t) at each time that represents how the theoretical

metric associated with an active region evolves in time. Furthermore, a single number ζ̄, that is the time average of ζmax (t) over

an extended period of time (hours to ∼ 1 day), is able to distinguish between eruptive and non-eruptive active regions. Using our

sample of active regions, we find an empirically derived threshold, ζ̄th = 0.028, for the value of ζ̄ that discriminates between the

eruptive and non-eruptive active regions.

An important aspect considered in Paper I is that this metric remains useful in discriminating eruptive and non-eruptive active

regions when we introduce projected magnetograms. Projected magnetograms were used to project the magnetic field evolution

forward in time using the most recently available observed magnetograms. This was achieved by using the final two observed

magnetograms to measure the electric field at the lower boundary of the 3D magnetofrictional simulation, as a function of space

(x, y) assuming it was constant thereafter, throughout the time of the projection. In Paper I, we ran a set of simulations where

we replace observed magnetograms with projected ones and found that the metric ζ̄ is not significantly altered when enough

observed magnetograms are used prior to the projection.

In the present paper, we develop a practical application of the theoretical approach presented in Paper I that illustrates the

possible operational use of this technique. In this application, we test the possibility of using the data-driven magnetofrictional

simulations of Mackay et al. (2011) combined with the metrics identified in Paper I for the continuous monitoring of active

regions. We illustrate how the technique could be used to issue warnings of the risk of eruptions when the observed and forecasted

magnetic field configurations produce values of ζ̄ above a critical value. To carry out this application we use a mixture of observed

magnetograms and projected magnetograms over a limited time period. A key new aspect of the present paper, compared to the

technique used in Paper I is that, (i) here we use projected magnetograms for a fixed time span only and (ii) we introduce

a more advanced measure to quantify the risk for an active region to produce an eruption. This advanced metric builds in

more information from the active region evolution compared to that used in Paper 1 and develops the theoretical metric into an

operational context. The work-flow of the technique is a follows:

• We first run a set of magnetofrictional simulations where we vary the time when we switch from observed to projected

magnetograms.

• Next, we derive a function from the theoretical metric ζ (x, y, t) that measures how the metric changes between the projected

and observed evolution and how it relates to the empirical threshold identified in Paper I.

• Based on this new metric we classify the state of the active region at a given time as either, red ∼ high risk, amber ∼

medium risk or green ∼ low risk to serve as a warning for potential forthcoming eruptions.

A key element of this study is the selection of active regions used to present the new technique. Full details of the active regions

can be found in Paper I and Yardley et al. (2018b,a, 2019) where Table1 presents the main properties of the active regions. The

technique applied in this paper is applicable to all types of active region. However, for the present study, we have focused on an

initial small sample of young isolated active regions as this allows us to capture the full evolution of the active region (from birth

to decay) in the NLFFF simulations. The magnetic field evolution of the active regions under consideration can then be analysed

using the metric that is based only on the magnetic field properties and its time evolution. In principle, any model that accurately

reproduces the magnetic field configuration and evolution of the active region can be used to apply this metric, even if some

technical difficulties might need to be overcome. Examples of potential technical challenges that need to be overcome in terms of

the NLFFF model, such that arbitrary active regions can be studied are: i) maintaining a high spatial resolution over large fields

of view, ii) modelling active regions that have merged and undergone significant evolution and the injection of non-potentiality

and iii) non-localised active regions where the equilibrium is perturbed by eruptions occurring elsewhere. In the future we will

refine the NLFFF model used in the proof of concept study carried out here to tackle these challenges.

3. ROLLING PROJECTION OF THE ERUPTION METRIC

In Paper I, we have shown that through studying the evolution of the 3D configuration of the magnetic field of an active region

it is possible to distinguish eruptive from non-eruptive active regions. We also concluded that the introduced theoretical metric

was robust in identifying eruptive active regions when we use projected magnetograms as part of the time sequence instead of

observed magnetograms. In this section, we address whether the same modelling technique can be used with a rolling projection

time corresponding to 10 magnetograms and how the metric derived from these simulations can be used to identify eruptive active
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Table 1. Active region properties, as in Pagano et al. (2019). These active regions have been previously studied by Rodkin et al. (2017),

James et al. (2018), Yardley et al. (2018b), Yardley et al. (2018a), Yardley et al. (2019).

Active region Observation Start Observation End Magnetogram cadence Eruption at Publication

AR11561 2012.08.29 19:12:05 2012.09.02 01:36:04 96 min 2012.09.01 23:37 Yardley+2018b, 2019

AR11680 2013.02.24 14:23:55 2013.03.03 19:11:56 96 min 2013.03.03 17:27 Yardley+2018b, 2019

AR11437 2012.03.16 12:47:57 2012.03.21 01:35:58 96 min 2012.03.20 14:46 Yardley+2018a,b, 2019

AR11261 2011.07.31 05:00:41 2011.08.02 06:00:41 60 min 2011.08.02 05:54 Rodkin+2017

AR11504 2012.06.11 00:00:08 2012.06.14 22:24:08 96 min 2012.06.14 13:52 James+2018

AR11480 2012.05.09 11:12:05 2012.05.14 00:00:05 96 min none Yardley+2018b, 2019

AR11813 2013.08.06 01:36:07 2013.08.12 00:00:07 96 min none Yardley+2018b, 2019

AR12455 2015.11.13 04:47:55 2015.11.18 23:59:54 96 min none Yardley+2018b, 2019

regions. We note that the 10 magnetograms represents either a projection time of ∼ 10 hrs or ∼ 16 hrs depending on whether the

cadence of the magnetograms, ∆t, is 60 or 96 minutes).

To implement the rolling projection we define t0 as the start time when we switch from observed to projected magnetograms.

The value of t0 must lie between the first and final observed magnetogram and, in practical terms, we vary t0 such that in

successive simulations more observed magnetograms are used prior to the period of projection. This reproduces the situation of

observing an active region up to a given time, t0 and then projecting its evolution forward in time. From the time t0 we then run the

3D magnetofrictional simulation forward for a time period equivalent to the acquisition of 10 magnetograms, i.e. until the time

t = t0 + 10∆t. The final time of the projected simulations may be either before or after the time of the last observed magnetogram

in our time series given in Tab.1 depending on when the projection starts. For these projected simulations we compute ζ̄ by

averaging the value of ζmax (t) over only the time span of the 10 projected magnetograms. This method of computing ζ̄ is different

from that used in Paper I, as it is now only computed during the projected interval. In our study we start from a value of t0
that is at the end of the ramp-up phase i.e. the initial phase during which the magnetic field loses memory of its initial potential

configuration. To implement the rolling nature of the simulations after each period of projection we return and increase t0 by

∆t through using another observed magnetogram before carrying out another projection. This process is repeated until we reach

the time t f of the final magnetogram in the observation time series. In a real application, this study corresponds to starting

from an initial time series of magnetogram observations and as soon as more observational information becomes available, t0 is

increased by ∆t, and the projection is repeated after the observed evolution is updated using the most recent measurements. Such

a technique, where our simulations temporal window moves can be used to determine whether the ζ̄ associated with an active

region is going to be above or below the threshold for eruptions and whether it will increase or decrease. In an operational sense,

this will partially address the question of whether an eruption is becoming more or less likely.

Fig.1 considers the value of ζ̄ obtained in these projected simulations (blue asterisks) as a function of t0, shown for the eruptive

active regions. In each plot the black curve gives the variation of the maximum of ζ (x, y, t), deduced from Paper I (defined as

ζmax (t)) when only observed magnetograms are used. The black line is split into two segments where the black dashes are during

the ramp-up phase of the magnetofrictional simulation and solid black line after the ramp-up phase. In each plot the solid magenta

line denotes the time of the observed eruption, te, where the plots are normalised with respect to te, such that (t0 − te)/∆t = 0. The

dashed magenta line denotes the time, (t0 − te)/∆t = −10, such that the end time of the projected simulation occurs at the time of

the eruption te. In general the quantity ζ̄ determined for the projected magnetograms is larger than the value of ζmax (t) obtained

from the full observational data set. We now consider the evolution of ζ̄ and compare them with ζmax (t) for each individual active

region.

For AR11561 care must be taken, as we start using projected magnetograms immediately after the end of the ramp-up phase

of the magnetofrictional simulation. Due to this it has the least amount of prescribed observational evolution prior to the start of

the projections. The value of ζ̄ at (t0 − te)/∆t = −10 is slightly larger than the value of ζmax (t) at the same time. Both quantities

initially decrease in value, however they start to increase again shortly before the time of the observed eruption. While all the

values of ζ̄ remain above the indicated threshold, ζth, it is difficult here to identify a precise time when the active region becomes

eruptive from the projected simulation. However, the active region is classified as eruptive throughout the entire projected time

period.

As we already discussed in Paper I, AR11680 is an active region that remains classified as eruptive for a significant period of

time, as it consistently shows high values of ζmax (t). Over the time period of −70 < (t0− te)/∆t < −50 the projected magnetogram
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Figure 1. The black line represents the evolution of ζmax (t) for the eruptive active regions. Blue asterisks at each t0 − te/∆t are the values of ζ̄

obtained from the simulation that ran for 10 projected magnetograms after the observed one at t0. The magenta vertical lines represent the time

of eruption, te (continuous) and t0 − te = −10∆t (dashed). The horizontal dashed black line represents the value of ζ̄th = 0.028.

simulations show an increasing value of ζ̄. During this time period, ζmax (t) also increases and the values of ζ̄ and ζmax (t) plateau

together. In this case, the only plausible conclusion is that an eruption is likely anytime after ζ̄ plateaus.

For AR11437, just after the ramp-up phase there is a significant difference between ζ̄ and ζmax (t). The estimated value of ζ̄

then converges towards the value of ζmax (t). Near (t0 − te)/∆t = −10 the value of ζ̄ increases sharply to a value similar to that

found for ζmax (t) at the eruption time (t0 − te)/∆t = 0. Then, the value of ζ̄ decreases after (t0 − te)/∆t = −10, in the same way as

ζmax (t) does after the eruption time (t0 − te)/∆t = 0. The fact that the evolution of ζ̄ about (t0 − te)/∆t = −10 resembles that found

for ζmax (t) about (t0 − te)/∆t = 0, is a remarkable result for the magnetogram projection technique. Additionally, in Paper I a

decline in ζmax (t) was explained by the occurrence of an eruption, after which the magnetic field releases free energy and evolves

to a simpler configuration. This simpler configuration is naturally associated with smaller values of ζ (x, y, t).

For AR11261 the magnetogram time series is probably too short to produce conclusive results. At (t0 − te)/∆t = −10 we find

values of ζ̄ that are much larger than those found for ζmax (t). This can be attributed to one of two reasons. It could be related to

the occurrence of the eruption that follows shortly afterwards or it could be due to the overestimation in ζ̄ that tends to occur just

after the ramp-up phase. However, this active region would also be characterised as eruptive.

Finally, AR11504 shows a behaviour similar to AR11437 where the values of ζ̄ are larger than ζmax (t) after the ramp-up phase.

This is followed by an increase in the value of ζ̄ near (t0 − te)/∆t = −10 which is a signature of the eruption. Afterwards, the

value of ζ̄ converges towards the value of ζmax (t) where both steadily decrease.

We also apply this technique to the non-eruptive active regions where the results can be seen in Fig.2. As these active regions do

not have any observed eruptions the results are presented with respect to the time of the final observed magnetogram, t f . We find

that for AR11480 the estimations of ζ̄ converge to a value under the threshold and therefore it would be classified as non-eruptive.



6 Pagano et al.

Figure 2. The black line represents the evolution of ζmax (t) for the non-eruptive active regions. Blue asterisks at each t0− te/∆t are the values of

ζ̄ obtained from the simulation that ran for 10 projected magnetograms past the observed one at t0. The horizontal dashed black line represents

the value of ζ̄th = 0.028.

For AR11813 the value of ζ̄ is initially very high after the ramp-up phase, but it converges to be below the threshold. Thus while

during the early part of the projected evolution it would be classified as eruptive, for the later stages it would be non-eruptive.

Finally, AR12455 presents a very oscillatory behaviour for both ζmax (t) and ζ̄, where both values oscillate above and below the

threshold. The amplitude of the oscillations decay and near the end the values sit below the threshold.

All projected simulations show a value of ζ̄ that converges to a value that is larger/smaller than the empirical threshold ζ̄th
(dashed line), for the eruptive/non-eruptive active regions respectively. Thus the value of ζ̄ can discriminate between eruptive and

non-eruptive active regions over a prediction time period of ∼ 10 magnetograms (10-16 hrs).

In summary, for eruptive active regions we find that the projected evolution of ζ̄ is consistently larger than the empirical

threshold ζth that we have identified in Paper I. This means that many of these active regions would be classified as eruptive.

While this is the case, the technique cannot currently provide an indication of the time of the eruption, and more work is needed

in future to determine this. For the non-eruptive active regions the projected values of ζ̄ can be highly scattered directly after

the ramp-up phase, e.g. when the projection technique overestimates the effect of flux emergence. During this early stage the

non-eruptive active regions may be initially classified as eruptive, but as the evolution proceeds, the value of ζ̄ falls below the

threshold and the active regions would be classified as non-eruptive. With the presently used theoretical metric the distinction of

eruptive and non-eruptive active region remains over a rolling projection time for this small sample study. However, the values

of the parameters found are subtle. Therefore in the next section we aim to improve this metric into an operational framework by

including more information such that we can more clearly distinguish eruptive and non-eruptive active regions.

4. AN OPERATIONAL METRIC FOR PREDICTING ERUPTIVE ACTIVE REGIONS.

In this section, we develop a new method based on the theoretical method introduced in Sec.3. This new method will be

more suitable to apply operationally. The aim of this operational metric is to provide a measure of the eruptive condition of

an active region at a given time t0, where we run the magnetofrictional simulations using observed magnetograms until t0 and

projected ones after t0 until t0 + 10∆t (10 ∼ 16 hrs). Our results from Paper I (where we used only observed magnetograms or

a long series of projected ones) and from Sec.3 (where we used a limited series of projected magnetograms) clearly show that

our theoretical metric ζ̄ discriminates between eruptive and non-eruptive active regions. At the same time, an ad-hoc analysis

was required to correctly interpret the results of the metric from the magnetofrictional simulations as the interpretation could be

subtle. For instance, we learned that i) we need to discard information obtained too close to the end of the ramp-up phase, ii) the

theoretical metric naturally tends to decrease in the aftermath of an eruption and iii) we need to compare the value of the metric

with our empirical threshold in addition to its previous values. To carry out this analysis manually in an operational context is
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not entirely realistic, as we need the assessment to be carried out automatically by machines. Therefore, there is the need for

a new operational metric to be introduced that encompasses the analysis given in Sect.3 into one simple indicative number that

measures the risk that an active region is going to produce an eruption or not.

The operational metric is defined by the function Λ that depends on the past evolution, present configuration and projected

evolution of the active region. More specifically, it depends on values of ζ̄ when ζmax (t) is averaged over different time windows,

the instantaneous value of ζmax (t), and the time derivative of ζmax (t). In the next section we outline how we derive the value of Λ.

4.1. Computation of Λ

To compute Λ we use the following definitions:

• ζmax (t): the maximum value of ζ (x, y, t) at any given time t.

• ζ̄+10: the value of ζ̄ averaging ζmax (t) over the time period 10∆t from t = t0 (using only projected magnetograms).

• ζ̄−10: the value of ζ̄ averaging ζmax (t) over the time period 10∆t until t = t0 (using only observed magnetograms).

• δζ =
ζmax(t)−ζmax(t−2∆t)

2
: the rate of change of ζmax (t) between the magnetograms at t = t0 and t = t0 − 2∆t.

Using these quantities we next define a set of arctan functions α, that can have values ranging from 0 to 1,
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α+10−10 =
1

π
arctan

(

ζ̄+10 − ζ̄−10

β+10−10

)

+
1

2
(4)

αn =
1

π
arctan

(n − nramp−up

0.5

)

+
1

2
(5)

where n is the magnetogram index, nramp−up is the last magnetogram in the ramp-up phase, βth and β+10−10 are parameters that

determine where and how steeply each α function transitions from values close to 0, to values close to 1. In our application we

use the following values for these parameters, βth = β+10−10 = 10−4 and nramp−up = 35. The latter value is chosen to be 35, as in

Paper I we state that the 35th magnetogram of each sequence is the end of the ramp-up phase.

The rationale of the α functions is the following. Values of αζ+10 close to 1 lead to a higher eruption risk. This happens

when the value of ζ̄+10 is larger than the threshold ζ̄th, which means that the active region is going to be in an eruptive state

according to the magnetic field evolution predicted by the projected magnetograms. The same applies to αζ that depends on how

the instantaneous value of ζmax (t) relates to the same threshold ζ̄th. Values of α+10−10 close to 1 also indicate an increased risk

of eruption and are found when ζ̄+10 is larger than ζ̄−10. This happens when the projected magnetograms predict that the active

region is going to be more likely to erupt, compared to what is measured in the evolution of the prior 10 observed magnetograms.

Therefore α+10−10 measures the long term time variation of the metric over the time span corresponding to 20 magnetograms.

Finally, αn takes values close to 1 when the time t0 is far from the ramp-up phase of the magnetofrictional simulations. This is to

mitigate the impact of high values of ζ̄−10, due to the ramp-up phase giving false positives.

Finally, we also use another α function that gives negative values, between -1 and 0

α∆ζ =
1

π
arctan

(

δζ

β∆ζ

)

−
1

2
. (6)

where β∆ζ = 10−3, This function measures the short term time variation of the metric over the time span of 2 magnetograms

and has values close to -1 when the value of ζmax (t) drops. This helps identify times immediately after an eruption has occurred

where the risk of another one is reduced.

These parameter values (βth, β+10−10, and β∆ζ ) have been chosen such that the α functions switch from 0 to 1 within the range

of values encountered for ζ̄+10, ζ̄−10, and ζmax (t) in this present small sample study using young active regions. Finally, we weight

the α functions with w+10−10 = 1, wζ+10 = 4, wζ = 4, w∆ζ = 1 and we compute Λ as

Λ =
w+10−10α+10−10αn + wζ+10αζ+10 + wζαζ + w∆ζα∆ζ

w+10−10 + wζ+10 + wζ + w∆ζ
. (7)
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Figure 3. The evolution of Λ for the eruptive active regions as a function of t0 (black line). The asterisk symbols at each t0 − te/∆t are the

values of Λ for each simulation with a given t0. Symbols are red for Λ ≥ 0.55, amber for 0.35 ≥ Λ < 0.55, and green for Λ < 0.35. The amber

and red dashed horizontal lines represent these thresholds, respectively amber and red. The magenta vertical lines represent te (continuous) and

t − te = −10∆t (dashed).

It should be noted that only the function α+10−10 is multiplied by αn, as it is the only α function that depends on values of the

metric at times before t0 and thus can be affected by the magnetic field description during the ramp-up phase. In this work, the

values for the weight parameters w+10−10, wζ+10, wζ , w∆ζ have been chosen after a number of tests in order to best associate higher

values ofΛ with active regions that are observed to erupt and, more specifically, with the time t0 falling within te−10∆t < t0 < te.

While the qualitative contribution of each α function to Λ is physically motivated and deduced from the properties of the metric ζ̄

defined in Paper I, the quantitative parameters used in each may still need to be refined. In this preliminary study we have selected

by trial and error a set of parameters and weights for the α functions that return high risk of eruption for the eruptive active regions

in the time period before the observed eruptions and low risk of eruption outside of this time period or for non-eruptive active

regions. We note that it is possible to find unique values of parameters and weights that give consistent results for all the 8 active

regions considered. However, care must be taken in the analysis of larger AR samples that contain a wider range of active regions

as these values may depend on the stage of their evolution or vary with different types of active region. Finally, with this new

operational metric defined by Λ we expect active regions to fall in the full range of values from 0-1.

4.2. Operational Application of Λ

To be able to use the functionΛ for an operational application, we empirically define two thresholds to quantify when an active

region is entering an eruptive state. We consider that an eruption is likely (eruptive active region) when Λ ≥ 0.55, it is not likely

(non-eruptive active region) when Λ < 0.35, and the active region is borderline eruptive in the range 0.35 < Λ ≤ 0.55.
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Figure 4. The evolution of Λ for the non-eruptive active regions as a function of t0 (black line). The asterisk symbols at each t0 − te/∆t are the

values of Λ for each simulation with a given t0. Symbols are red for Λ ≥ 0.55, amber for 0.35 ≥ Λ < 0.55, and green for Λ < 0.35. The amber

and red dashed horizontal lines represent these thresholds, respectively amber and red.

Fig.3 shows the evolution of the value of Λ (asterisks) as a function of (t0 − te) /∆t for the active regions which were associated

with observed eruptions. The asterisks are colour coded such that they are: red when Λ ≥ 0.55, amber when 0.35 ≤ Λ < 0.55,

and green when Λ < 0.35. The solid magenta line represents the time of the observed eruption. While the dashed magenta line

gives the time t0 = t f − 10∆t where the first projected simulation includes the observed eruption within its projected time span.

These plots show only the time interval after the ramp-up phase of each simulation.

The ideal outcome is that all of the asterisks in the interval between the dashed and continuous magenta lines are red or amber,

and that the asterisks are green outside of this interval. However, this is not the case and so while this technique is useful in

identifying eruptive active regions, it needs improvement to address the exact time window of the eruption within the active

regions. AR11561 and AR11680 show high values of Λ at all times and are thus considered eruptive at all times. Similarly,

AR11504 is considered eruptive for the vast majority of the time, except near the end of the magnetogram time series where a

decrease of α∆ζ reduces the value of Λ after the time of the observed eruption. AR11437 shows mixed results where the active

region appears eruptive for t0 < te − 10∆t and then it decreases to an amber alert in the time frame before the observed eruption.

However, it immediately decreases to a non-eruptive classification after the eruption, with the exception of a couple of points.

AR11261 shows a rather successful classification, as it is initially categorised as non-eruptive for t0 < te − 12∆t and then it

increases to a red or amber alert during the time period when the active region is expected to be eruptive. From these results it

can be seen that in 4 out of the 5 active regions Λ successfully measures the risk of eruption in the active regions for the time

periods leading up to the observed eruption. For the remain active region it would be borderline eruptive.

Fig.4 shows the evolution of Λ for the non-eruptive active regions, where we also find promising results. A common feature

of each plot is that the initial values of Λ, obtained during the early projection simulations just after the ramp-up phase, are

rather scattered. In contrast, as the simulations progress and more observational information is incorporated, the values of Λ

settle to values less than 0.35, where the active regions are correctly classified as non-eruptive during these times. In Paper I, we

had already found a similar feature, where the magnetofrictional simulation description of the 3D magnetic field configuration

becomes increasingly more accurate as we depart from the ramp-up phase.

5. CONCLUSIONS

In this paper, we have extended the theoretical study of Paper I towards a possible practical application that aims to monitor

active regions and identify which ones are more likely to produce an eruption. In particular, we use the same set of active regions

as in Paper I (5 eruptive and 3 non-eruptive) and simulate their 3D magnetic field evolution with a data-driven magnetofrictional

model. To obtain the future risk of eruptions we develop a technique that uses a combination of observed and projected magne-
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tograms as the lower boundary condition. We then apply the metric, ζ̄, that we have introduced in Paper I to verify that it can

discriminate between eruptive and non-eruptive active regions when using projected magnetograms over a fixed time period of

around 10 magnetograms (10-16hrs). The metric is based on three properties of the magnetic field that are linked to eruptions:

the presence of magnetic flux ropes, the strength and direction of the Lorentz force and finally the Lorentz force heterogeneity.

In this paper, we use the metric ζ (x, y, t) and quantities derived from it, such as ζmax (t) and ζ̄, to define a new parameter Λ that,

in this exploratory study is applied to the same set of active region as in Paper I. We show that Λ more clearly predicts the risk of

an eruption in the next 10 to 16 hours (approximately 10 magnetograms at the cadence used in this work).

The parameter Λ is constructed using a combination of quantities derived from ζ (x, y, t) and its value cannot exceed 1 by

construction. In our study we find values in the full range from 0-1 and we identify two empirical operational thresholds for

Λ. When Λ ≥ 0.55 there is a high risk that the active region will produce and eruption (red alert), when Λ < 0.35 the risk is

instead rather low (green alert). We also identify a medium risk when the value of Λ is between the thresholds (amber alert). We

find that in some cases we have clear indications of an eruption becoming more likely as the value of Λ exceeds the thresholds

that we have empirically identified. From the point of view of simple identification of eruptive active regions, the technique

clearly reaches its goal, as all five eruptive active regions are classified as eruptive for the majority of the simulated active region

evolution. Additionally, our technique classifies some of the eruptive active regions as non-eruptive when the evolution is still far

from the eruption time or post-eruption, thus limiting false positives. One limitation of the present technique is that it cannot yet

identify the exact eruption time of a specific eruption. In the near future we hope to overcome this by improving the derivation

of the metrics ζ (x, y, t) and Λ along with their practical applications. We note that this initial specification of the threshold may

need to be revised when the sample of active regions considered is increased.

Presently, it remains to be determined whether a prediction of the eruption time is possible at all with the spatial resolution of

the current instruments. The elusive nature of the eruption time can be a consequence of the sensitive nature of the mechanisms

that trigger solar eruptions. If it is so, it is natural that active regions remain in a metastable equilibrium for a long time before

something at smaller spatial scale or some external trigger causes the runaway from equilibrium and the eruption. If this is

the scenario we are facing, identifying eruptive active regions is the only achievable goal for the next few decades until new

instruments allow us to resolve the dynamics at smaller spatial scales.

We also find that non-eruptive active regions are generally associated with low values of Λ when t0 is far enough from the

end of the ramp-up phase, providing a correct classification. In contrast, a higher number of false positives are found near the

end of the ramp-up phase in the simulation. This phase corresponds to the time required for the simulations to depart from the

initial potential magnetic configuration that we know to be an inaccurate representation of the active region magnetic field. We

have already stressed in Paper I and in other works how crucial it is to have a long time series of magnetograms in order to

reach a satisfactory detailed description of the magnetic field in the active region. Therefore, we believe that these uncertainties

can be reduced if longer time series of magnetograms are available, as we have shown in Paper I. In Paper I, it was also shown

that the projection simulations perform better in reproducing the value of ζ̄ for the active regions where we have a longer time

series available. To mitigate this problem, the best approach would be to develop the code so that the initial field condition is

constructed from an NLFFF extrapolation based on a vector magnetogram. In the future, we intend to develop such a capability,

which would allow extended testing on a wider sample of active regions, whose observations start days or weeks after they have

emerged.

To put our work in context, the forecasting of solar eruptions is a topic that has attracted great interest in recent

years (Huang et al. 2018; Laurenza et al. 2018; Leka et al. 2018; Liu et al. 2017; Nishizuka et al. 2018; Korsós et al. 2015;

Kontogiannis et al. 2017, 2018). One of the most promising efforts has been made by the EU Flare Likelihood and Region

Eruption Forecasting project (FLARECAST; Georgoulis et al. 2017) that associate a number of features readily measurable from

active region observations to the likelihood that an eruption will occur. These studies have generally connected properties derived

from observed magnetograms to some likelihood of eruption. However, the 3D magnetic field which is analysed in our paper

inherently carries more information about the stability of the coronal structures than photospheric observations alone. Existing

NLFFF models, in particular the magnetofrictional model, allow computationally fast continuous simulations of the full 3D mag-

netic field, and the prediction obtained from this approach can be more detailed. The initial work presented in Paper 1 and the

present paper provides a pathway for future research focused on developing a robust model to predict active region eruptions.

Here we have adopted the simplest approach in terms of the metric and projection technique, but we have nevertheless explored

the possibility of identifying eruptive from non-eruptive active regions.

For a more practical perspective, we propose that in the future that this technique will be able to run automatically on space

weather systems that focus on active regions monitoring. We imagine that our framework, the St Andrews Space Weather Active

Region Monitor (S2WARM), is particularly useful for issuing timely space weather warnings or supporting scientific missions and
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Figure 5. Example of graphic interface for S2WARM (movies available online). The top panels are used to represent the most updated observed

magnetogram (left) and the projected distribution of ζ (x, y, t) (right), respectively. The lower panel shows the evolution of Λ at the time of the

most recent magnetogram. In this example for AR11261, we show the magenta lines that represent the time of the eruption (continuous line)

and the time of 10 magntograms before the eruption (dashed line), i.e. when the technique should start identifying the active region as erupive.

their target selection for observation campaigns . Fig.5 and the corresponding movies available online show an example of how

the technique can be implemented in a visual interface, where we simultaneously show the most recently available magnetogram

of the active region at t = t0 (upper left panel), the projected distribution of ζ (x, y, t) for t > t0 (upper right panel) and the

evolution of Λ (lower panel). The panels are updated as new magnetogram observations and predictions are acquired. This

framework allows for a constant monitoring of the active regions present on the solar disk and can facilitate decisions in space

weather or mission control centres. Naturally, it is expected that our framework is going to be benchmarked against already

existing space weather predictive tools. For instance, forecasting tools such as MAG4 (Falconer et al. 2011, 2014) that is used

by the National Oceanic and Atmospheric Administration (NOAA) and by NASA’s Space Radiation Analysis Group (SRAG)

and the FLARECAST (Georgoulis et al. 2017, 2018) platform that is developed by a consortium of European based institutions

and includes some follow up applications using machine learning (Florios et al. 2018). The direct comparison between these

approaches can significantly empower our capacity of responding to Space Weather hazards.

Despite the present technique not being currently able to predict the eruption time, it does open new opportunities to give

more advanced warnings through the coupling of space weather models to the low solar corona. A number of space weather

forecasting tools, such as EUPHORIA (Pomoell & Poedts 2018), or WSA-ENLIL (Arge & Pizzo 2000; Odstrcil 2003) rely on

the cone model (Xie et al. 2004). The cone model is a simplified description of the injection of CMEs into the solar wind. The

combination of the magnetofrictional relaxation technique along with the method of projected evolution allows us to identify

eruptive active regions and then run tentative space weather forecast simulations prior to the eruption with different speculated

eruption times to have broad predictions on the trajectory, speed, and properties of the Interplanetary CME (ICME). Also, running

successive magnetofrictional simulations, as more observational data is acquired, will allow us to reduce the uncertainties in the

predicted ICMEs properties. In a more complex scenario, it is possible to couple the results of this approach with full MHD

simulations of the low solar corona as in Pagano et al. (2013), Rodkin et al. (2017), and Pagano et al. (2018) to produce a more

realistic insertion model of the CME into the solar wind. This more realistic model could include the time evolution of the

magnetic field vectors along with the mass and velocity of the ejected material.

Finally, it should be mentioned that this work is fundamentally based on the analysis of a series of 3D magnetic field configura-

tions of active regions. Starting from the previous works where the magnetofrictional model generates an accurate representation

of the 3D magnetic field configuration, we have then been guided by the physical interpretation of the results to derive ζ (x, y, t),
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ζmax (t), ζ̄, and finally the prediction parameter Λ. An alternative route that we have not explored yet is to use machine learning

techniques in order to extract different proxies from the 3D configuration of the magnetic field that may outperform our current

technique. We have thus far preferred a physics-minded approach, as our goal is not only the practical application of this study

for the benefit of space weather predictions and Solar Orbiter operations, but also a deeper understanding of the physics that

govern solar eruptions.
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ApJL, 802, L21

Laurenza, M., Alberti, T., & Cliver, E. W. 2018, ApJ, 857, 107

Leka, K. D., Barnes, G., & Wagner, E. 2018, Journal of Space

Weather and Space Climate, 8, A25

Liu, C., Deng, N., Wang, J. T. L., & Wang, H. 2017, ApJ, 843, 104

Liu, H., Liu, C., Wang, J. T. L., & Wang, H. 2019, ApJ, 877, 121

Lynch, B. J., Antiochos, S. K., DeVore, C. R., Luhmann, J. G., &

Zurbuchen, T. H. 2008, ApJ, 683, 1192

Mackay, D. H., Green, L. M., & van Ballegooijen, A. 2011, ApJ,

729, 97



SpaceWeather tool 13

McCloskey, A. E., Gallagher, P. T., & Bloomfield, D. S. 2018,

Journal of Space Weather and Space Climate, 8, A34

Murray, S. A., Bingham, S., Sharpe, M., & Jackson, D. R. 2017,

Space Weather, 15, 577

Murray, S. A., Guerra, J. A., Zucca, P., et al. 2018, SoPh, 293, 60

Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., & Ishii, M. 2018,

ApJ, 858, 113

Nishizuka, N., Sugiura, K., Kubo, Y., et al. 2017, ApJ, 835, 156

Odstrcil, D. 2003, Advances in Space Research, 32, 497

Pagano, P., Mackay, D. H., & Poedts, S. 2013, A&A, 554, A77

—. 2015, Journal of Astrophysics and Astronomy, 36, 123

Pagano, P., Mackay, D. H., & Yardley, S. L. 2019, ApJ, 883, 112

Pagano, P., Mackay, D. H., & Yeates, A. R. 2018, Journal of Space

Weather and Space Climate, 8, A26

Pomoell, J., & Poedts, S. 2018, Journal of Space Weather and

Space Climate, 8, A35

Raboonik, A., Safari, H., Alipour, N., & Wheatland, M. S. 2017,

ApJ, 834, 11

Rodkin, D., Goryaev, F., Pagano, P., et al. 2017, SoPh, 292, 90

Sakurai, T. 1976, PASJ, 28, 177

Schmieder, B., Aulanier, G., & Vršnak, B. 2015, SoPh, 290, 3457
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