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Resum

El Sol és la principal font de partícules que podem trobar al medi interplanetari del sistema

solar, i els esdeveniments de partícules energètiques solars són la principal font de radiació dins

de l’heliosfera. L’estudi i predicció d’aquest tipus d’esdeveniments i les seves causes i conse-

qüències ha esdevingut una àrea d’especial interès per la seva importància enfront dels perills

que suposa aquesta radiació per a les telecomunicacions i la salut durant missions espacials

tripulades.

Aquesta tesi doctorat s’ha desenvolupat en tres àmbits: i) l’estudi observacional d’esdeveniments

de partícules energètiques solars; ii) la simulació d’esdeveniments mitjançant models de trans-

port; iii) el desenvolupament d’eines i models d’instruments de partícules per fer-los servir con-

juntament amb els models preexistents per la simulació d’esdeveniments.

Hem portat a terme un estudi observacional d’esdeveni-ments graduals de partícules on hem

estudiat la dependència de les distàncies longitudinal i radial sobre la porció de la fluència

mesurada després del pas del xoc associat a l’esdeveniment (post xoc) sobre la fluència de la

duració total, fent servir dades del catàleg SEPEM (basat en dades de la missió GOES) i de les

missions espacials ACE, STEREO i Helios. Primer hem expandit el catàleg d’esdeveniments

contingut a SEPEM, estudiant els vint-i-cinc esdeveniments ocorreguts entre 2010 i 2013. Hem

comparat els esdeveniments vistos des de la posició de la Terra amb les deteccions de les dues

sondes STEREO, que es trobaren a diferents heliolongituds. Aquest anàlisi ens ha permès es-

tablir una dependència de la proporció post xoc de la fluència mesurada amb la longitud relativa

entre la sonda i la fulguració solar que dóna origen a l’esdeveniment de partícules. Hem trobat

que els esdeveniments observats a l’est presenten major proporció de fluència post xoc que els

observats a l’oest, extraient una relació per tot el rang de longituds. Seguidament, hem estès

l’estudi a aquells esdeveniments observats per la missió Helios, composta de 2 sondes que van

orbitar a l’heliosfera interior als anys 70, arribant a un periheli de 0.29 AU. Hem estudiat els

esdeveniments observats per aquesta missió recopilats prèviament pel nostre grup en un catà-

leg de 125 esdeveniments de protons a diferents longituds relatives a la font i distàncies radials.

L’estudi dels esdeveniments d’Helios, tot i que no ha comptat amb prou nombre d’esdeveniments

per establir dependències específiques per a cada distància, ha permès comprovar que les tendèn-

cies observades a 1 UA es segueixen complint i hem extrapolat les dependències obtingues allà

a distàncies més petites. Aquestes noves dependències radials s’han implementat posteriorment

al model de SEPEM de l’ESA, per millorar el model de predicció de fluències acumulades.

Seguidament, en col·laboració amb el grup d’investigació espacial de la Universitat de Al-

calá, hem estudiat les diferències en el transport d’electrons quasi relativistes en dos esdeveni-

ments impulsius observats l’1 d’agost de 2014 per les sondes bessones STEREO (A i B) quan

aquestes estaven separades només 34º. En un estudi observacional previ (Klassen et al. 2016)



es feia notar que la sonda amb millor connexió magnètica amb la font de partícules al Sol

(STEREO B), a priori, observava menys intensitat d’electrons i un inici de l’esdeveniment pos-

terior, en comparació amb la sonda pitjor connectada (STEREO A). Fent servir l’eina SEPinver-

sion prèviament desenvolupada pel nostre grup, i adaptant-la convenientment per fer-la servir

directament amb les dades de l’instrument SEPT d’STEREO hem modelitzat els esdeveniments

trobant, per cada esdeveniment i cada observador, els perfils d’injecció al Sol i el recorregut lli-

ure mig radial(λr) que millor ajusten les dades. Per STEREO A, aquests són de 0.31 UA i 0.37

UA pel primer i segon esdeveniment respectivament, i per STEREO B, 0.1 UA i 0.06 UA. Igual-

ment, hem trobat perfils d’injecció de partícules curts que concorden amb els temps i la durada

de les emissions de ràdio al Sol. Veient que els resultats dels recorreguts lliures mitjos són con-

siderablement inferiors per les observacions d’STEREO B, podem concloure que les partícules

arribant a aquesta sonda van patir més difusió al llarg del seu viatge a través del camp magnètic

interplanetari. Això explica satisfactòriament les diferències observacionals, fent servir només

les diferències en el transport de les partícules.

A continuació, hem estudiat els esdeveniments impulsius d’electrons observats per la missió

Helios, composta de dues sondes bessones, fent servir les dades de l’instrument E6, proveïdes

pel grup de l’Institut de Física Extraterrestre a la Universitat de Kiel. Hem recopilat els es-

deveniments observats durant tota la missió, trobant quinze esdeveniments susceptibles de ser

modelats amb tècniques d’inversió com la prèviament mencionada. Un cop extretes les carac-

terístiques observacionals de cada esdeveniment, hem modelitzat i estudiat la resposta angular

de l’instrument així com la seva resposta energètica basada en l’estudi de Bialk et al. (1991).

Llavors, hem desenvolupat un conjunt de programes per realitzat la inversió total dels esde-

veniments, és a dir, fer la modalització i inversió dels mateixos tenint en compte les respostes

angular i energètica de l’instrument, i fent servir les funcions de Green que caracteritzen les

condicions de transport de les partícules. Els resultats de la inversió donen valors de λr al rang

del transport dèbil-enfocat per deu casos i dins del rang del transport enfocat (valors més grans)

per quatre casos. Només un cas presenta valors prou petits de λr. Respecte als perfils d’injecció,

hem obtingut perfils que s’ajusten bé a les emissions de ràdio i raigs X observades. També hem

trobat que els perfils d’injecció resultants es separaven en dos grups diferenciats, depenent de

la durada de la injecció d’electrons (més o menys de trenta minuts). Hem relacionat els perfils

extensos amb la connexió magnètica a la corona, que fa dependre el ritme d’injecció amb la

proximitat de la font a línies de camp obertes (connectades amb el medi interplanetari). No hem

trobat relació entre λr i la distancia entre el Sol i l’observador. També, hem vist que alguns dels

esdeveniments estudiats podrien no ser visibles a 1 UA, cosa que pot explicar perquè hi ha molt

pocs esdeveniments fortament difusius observats des d’aquesta distància.

A l’última part de la tesi, hem explorat diferents aplicacions dels resultats obtinguts. Primer,

hem realitzat un estudi de les dependències radials dels pics de les intensitats i de les anisotropies

als pics d’intensitat. Fent servir els perfils d’injecció obtinguts pels esdeveniments d’Helios,
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hem convolucionat aquests amb les funcions de Green corresponents a 13 distàncies radials

diferents per obtenir els perfils d’intensitat d’electrons a aquestes distàncies per cada esdeveni-

ment. Això ens ha permès ajustar una funció potencial, del tipus f (r) = brα, als valors de les

intensitats màximes de cada perfil, en funció de la distància radial, i fer el mateix pel valor de

l’anisotropia al pic d’intensitat. Trobem que les funcions fiten bé les dades obtingudes per tots

els casos dels pics d’intensitat, donant un rang de valors de α entre 2.08±0.03 i 3.47±0.07, i per

les anisotropies excepte en el cas de l’esdeveniment del 5 d’abril de 1980 (per una menor resolu-

ció de les dades), amb un rang de α entre 0.13±0.02 i 1.0±0.1. També hem buscat una relació

entre els paràmetres α obtinguts i els λr de cada esdeveniment, trobant molt poca correlació. Fi-

nalment hem relacionat aquesta α amb la duració dels episodis d’injecció més intensos, dins de

cada perfil, trobant una r = 0.94 entre aquestes variables i un pendent de la regressió de −0.024,

indicant que la durada de la injecció té un paper important a l’hora d’establir la intensitat màxima

dels perfils d’intensitat.

En segon lloc, hem fet l’estudi de la resposta angular de l’instrument EPT que anirà a bord de

la sonda Solar Orbiter. Fent servir els resultats previs dels esdeveniments modelats per Helios,

hem aplicat la resposta obtinguda per EPT al resultat de la convolució de les funcions de Green

amb els perfils d’injecció obtinguts per a cada esdeveniment, obtenint el que hauria observat EPT

en el lloc d’E6. Per tots els casos, els resultats de EPT permeten observar els esdeveniments amb

intensitats semblants a les observades per E6. Els resultats confirmen, a més a més, que EPT

presenta una bona cobertura en general, millorant a la cobertura d’Helios quan el camp magnètic

local queda fora del pla de l’eclíptica.

Per tancar l’apartat d’aplicacions, hem fet servir SEPEM per estudiar les diferències en la

predicció dels resultats de les fluències per la missió Solar Orbiter d’acord amb l’òrbita amb

data de llançament a l’octubre de 2018 (actualment descartada). Fent servir la versió de SEPEM

sense actualitzar prèvia al treball realitzat en aquesta tesi i al projecte de l’ESA SOL2UP, i

comparant els seus resultats amb els obtinguts amb la versió que conté les noves dependències

radials, hem vist que la nova versió corregeix les fluències obtingudes per SEPEM, especialment

per energies baixes on la versió anterior presentava problemes, donant fluències acumulades per

la missió més baixes que les que proporciona el model ECSS vigent actualment. Això permetria

abaratir els costos relacionats amb el blindatge de les naus i satèl·lits en viatges interplanetaris. A

més a més, hem comparat la fluència obtinguda per Solar Orbiter per l’actualment vigent òrbita

amb llançament el febrer de 2020. Hem trobat que les fluències acumulades i els espectres

d’ambdues òrbites presenten una variació inapreciable.

xv





Chapter 1

Introduction

1.1 Solar energetic particles and solar eruptive phenomena

The Sun is the main source of all kind of Solar Energetic Particles (SEPs) in the Solar System,

electrons, protons and ions with energies from few keV to several GeV. These particles are

released from the solar corona and spread through the interplanetary space, the heliosphere,

influenced by the interplanetary magnetic field and arriving to the Earth and interacting with the

terrestrial magnetosphere. The effects of SEP interactions with space-based devices, manned

missions and the Earth atmosphere are encompassed by what is known as space weather.

1.1.1 Particle populations in the heliosphere

The solar wind is a collisionless plasma flow originated in the external part of the solar atmo-

sphere, the corona, which extends until the heliopause filling the whole solar system. It is mainly

formed by protons, electrons and ionised Helium within 1.5 – 10 keV. That plasma stream has

embedded the solar magnetic field frozen-in while travelling through the heliosphere.

Together with the solar wind particles, we can find in the interplanetary medium several

other particle populations known as cosmic rays. It is known that particles in the heliosphere

are produced in a wide variety of different sources, not only the Sun but also we find particles

accelerated by planets or coming from the interstellar or intergalactic medium.

Depending on their origin, each particle population has characteristic properties which tell

us information about how and where they were produced, i.e. their source and the acceleration

mechanism that triggers them into the interplanetary medium. Figure 1.1 shows how the dif-

ferent heliospheric populations of oxygen ion organise in terms of intensity vs. energy. Their

general characteristics are (Kallenrode, 1998):

i) Galactic Cosmic Rays: high energetic particles (up to 1011GeV) arriving isotropically and

uniformly from beyond the solar system and modulated by the solar cycle.
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FIGURE 1.1: Differential intensity energy spectra for oxygen ions in the heliosphere regarding
their source. Adapted from Lee et al. (2012)

ii) Anomalous Cosmic Rays: neutral particles from the interstellar medium that become

ionised travelling through the heliosphere towards the Sun.

iii) Solar Energetic Particles (SEPs): particles coming from the Sun which are released and

accelerated by solar flares or Coronal Mass Ejections (CMEs). These are the main topic

of this thesis and are further treated below.

iv) Energetic Storm Particles (ESPs): this name is used to refer specifically to SEPs accel-

erated by interplanetary shocks, but they share most of the SEP’s properties except the

ion composition ratios, which vary depending on the origin of the particles and the ac-

celeration process they suffered. Although originally considered a different population,

nowadays ESPs are know as SEPs as they generally share the same triggering phenomena.

v) Corotating: these particles are accelerated at Corotating Interaction Regions (CIRs) which

are the turbulent regions formed when fast solar wind overtakes western slow solar wind

streams resulting in the compression of the magnetic field and the acceleration of the

particles trapped there. This accelerated particles show a typical energy of about 10 MeV.

We define SEPs as high energetic particles, i.e., electrons, protons and ions, which constitute

a type of cosmic rays whose origin is related to the Sun. The typical SEP energies can vary
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from few tens of keV up to GeV. They are accelerated at the Sun, from the lower corona into the

heliosphere by several mechanisms like current sheet reconnection in form of flares or erupting

filaments. Furthermore, these particles can also find acceleration processes in interplanetary

shocks arising from CMEs that are originated in the solar corona. Particles suffer the intense

magnetic field fluctuations at the interplanetary shocks driven by CMEs which are a well known

acceleration-driven mechanism to accelerate particles away from the Sun. The events caused by

these shocks are known as ESP events, when crossing the observer.

1.1.2 Solar eruptive phenomena

Solar phenomena are the most powerful natural accelerators of particles in our solar system. We

find several types of occurrences triggered by the Sun, related with magnetic disturbances, that

cause energy outbursts which release great amounts of energy and particles from all the spectra

into the heliosphere.

Solar flares are eruptive phenomena characterised by a sudden outburst of energy observed

as a gleam of brightness across a very broad spectrum accompanied by a narrow jet of ionised

plasma. They are usually associated with active regions and sunspots, and with the emission

of energetic particles. Electrons up to several hundreds of MeV are accelerated during solar

flares and it is possible to observe their source regions due to the collisions of these energetic

electrons with the ambient plasma they go through. When colliding, electrons produce X-ray

and γ-ray electromagnetic emissions, depending on the plasma density, by the bremsstrahlung

mechanism. Solar flares are typically classified regarding their intensity in two of their usually

most characteristic emissions, Hα and X-rays, although their spectra can encompass from the

radio range to hard X-rays or even γ-rays in lower proportion.

From the observational point of view, a CME can be described as an extended bubble of

ionised plasma emission (mostly protons and electrons) confined within a complex magnetic

field structure and travelling outwards the solar corona. With a wide span of observed speeds,

CMEs move with speeds between few tens of km s−1 to a maximum above 3000 km s−1 (Gopal-

swamy et al., 2005, Lario et al., 2008) on the sky-plane, based on SOHO/LASCO (Brueckner

et al., 1995) measurements. They are called solar prominences when their initial speed does not

allow them to leave the corona. If they have enough speed to travel through the heliosphere, then

they are known as Interplanetary CMEs (ICMEs). Even in the interplanetary medium, ICMEs

are dominated by the magnetic field structures from the source filament and it is possible to

distinguish three different parts in a typical ICME, namely i) a bright nucleus containing the

hot-ionised ejected material, ii) a dark hollow space of low-density plasma that is embedding

the nucleus, probably formed by the ejected flux rope, and iii) an external front bright region

which is a strong source of radio emission. They form a closed magnetic cloud in space with

clearly different signatures from the surrounding medium (Klein, 2018).
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FIGURE 1.2: (a) γ-ray peak image of the 2005 January 20 flare ribbons where TRACE 1600 Å
is shown together with hard X-ray emission in two spectral bands from RHESSI, 12 – 15 keV
in red contours and 250 – 500 keV in blue contours (Krucker et al., 2008). (b) Sketch showing
the origin of electromagnetic emission and particle population release during a flare (Klein and

Dalla, 2017).

Interplanetary shocks are disturbances related to ICMEs that propagate outwards the Sun

through the solar wind, and arise when a CME is travelling faster that the Alvén/sound speed

of the solar wind. Interplanetary shocks can be identified by in-situ measurements owing to

discontinuities observed in the plasma and magnetic field parameters. Shocks are characterised

by an increase in the solar wind density, speed and temperature, as well as a rise of the magnetic

field strength. Interplanetary shocks are the main accelerators of SEPs during the largest solar

events (Cane et al., 1988).

Furthermore, we find a sharp boundary between solar wind streams with slow and fast speeds

as the IMF of the fast stream is less curved than the slow stream one. This sudden change of

speed in the stream borders remains, mixing and slowly blurring while the solar wind prop-

agates outwards into the heliosphere. This fact makes that the IMF inside these borders gets

compressed and rotated with the solar wind forming the CIRs. These regions of compressed

plasma can develop shocks propagating into both streams which are able to accelerate particles

outwards the Sun as well as towards it (e.g., Wijsen et al., 2019, , and references therein).

1.2 Particle events observed in the heliosphere

1.2.1 SEP intensity-time profiles

SEP events are sudden intensity enhancements of particles accelerated at flares or CMEs shocks

measured in the heliosphere. These events can persist from a few hours up to several days. We

can classify them into three major groups (Reames, 1999, 2013, Vainio et al., 2007):
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i) impulsive events, often attributed to flares. They last few hours (see Fig. 1.3), and they

are rich in electrons, 3He and heavy ions. These events are typically limited to an spread

range of about an angle of 30◦ in longitude with respect the footpoint of the magnetic field

line connecting the observer with the source;

ii) gradual events that can last from several hours to few days (see Fig. 1.4). They are as-

sociated with a CME-driven shock which is accelerating the particles as it moves. These

events are generally proton rich, and present ion abundances that are consistent with typ-

ical coronal composition. Moreover, these events present electron poor profiles but have

generally higher intensities and fluences. They can also present a wider dispersion in lon-

gitude as a result of being prompt by a broad interplanetary shock that can magnetically

connect with a larger longitudinal range in the heliosphere (see Fig. 1.5).

iii) hybrid events (Kocharov and Torsti, 2002), which are events that present characteristics

of both former types, pointing to the fact that they are related to the two acceleration

processes, i.e., flares and ICMEs. Generally, shock accelerated particles will dominate

the fluence with a contribution of a concomitant flare, i.e., the flare that is associated in

time with the lift off of the CME.

It is interesting to note that, even though most of the observed CMEs present an associated

flare taking place at the same time, not all events occurred under these circumstances present

any of the typical impulsive characteristics, so they cannot be considered as hybrid.

For the in-situ observations of the particle intensity profiles, it is very important to take into

account the flux tube connecting the spacecraft with the acceleration source. For impulsive

events, particle acceleration will occur at the active region that produced the flare, so only ob-

servers magnetically well-connected to it will measure the SEP event. The resulting profiles at

the spacecraft location will be consequence of the particle injection into the flux tube and the

transport conditions that particles will find along the IMF. The large scale of the IMF presents

an Archimedean spiral configuration, the Parker spiral, due to the magnetic field frozen in the

solar wind together with the solar rotation (e.g., Aran et al., 2018). Therefore, solar eruptive

events observed at the western hemisphere of the Sun tend to present a better connection and

hence, a faster intensity rising as well as a higher peak intensity and fluence, due to the fact

that particles can reach the observer directly following the magnetic field lines. On the other

hand, particles arriving from eastern solar eruptive events are those which underwent scattering

processes which brought them far from their nominal connection field lines, which implies a

smaller mean free path and more time to get to the observer. These events show lower intensi-

ties and a delayed onset time, as no particles accelerated in the solar source will make it directly

to the observer (e.g., Dröge et al., 2016).

On the other hand, for gradual events we find that the intensity-time profiles is mainly related

with the evolution of the magnetic connection of the observer to the particle-accelerating shock.
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FIGURE 1.3: SEP impulsive event on 2014 May 29 observed by STEREO B. Coloured curves
depict intensity-time profiles and for different energy channels from SEPT (electrons) and LET

(protons, multiplied per 100) instruments.

This connection point, known as cobpoint (Heras et al., 1995), is from where particles are as-

sumed to be injected by the shock in a different way depending on if it is located in the center of

the shock, the "nose", where the efficiency will be higher as it is the most acceleration efficient

part, or the flanks (or wings) of the shock, where the particle density and the shock acceleration

power is be lower, triggering less particles towards the observer (Lario et al., 1998, Reames,

2013). Of course, particles accelerated at the shock will also suffer from the transport processes

along the IMF so, as a consequence, they can suffer from turbulence causing diffusion along the

flux tube.

As shown in Figure 1.4, we can distinguish two parts in the behaviour of a gradual event

profile. Before the shock arrives to the observer position (upstream), the observer is connected

to the front shock and observing the particles that this is accelerating into the connecting flux

tube. Once the shock arrives at the observer, the observer generally detects a strong peak,

especially at lower energies, due to the measurement of the pool of particles trapped inside the

shock, and once passed (downstream), the intensity decays as there is no magnetic connection

with any particle source. This asymmetry of the profiles due to the acceleration mechanisms at
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FIGURE 1.4: SEP gradual event on 1989 October 19 from the SEPEM RDS catalogue.
Coloured curves depict proton intensity-time profiles for different energy channels. The red
vertical dashed line shows the flare time and on the top it is indicated the flare intensity and
location. The vertical solid black line shows the shock passage time at the spacecraft position.

the shock-front is highly dependent on the relative longitude between the observer and the shock

nose, which will yield very different intensity-time profiles if the shock nose is crossing close to

the observer, where most particles are accelerated, or if the latter is just connected to a wing of

the shock, which implies a smaller jump in the plasma parameters and less injection of particles

towards the observer (Lario et al., 1998).

However, the analysis of these events needs to take into consideration several aspects about

how the data is gathered. When interpreting the time-intensity particle profiles, we should be

aware that, generally, instruments can have low sensitivity and be limited to a certain range of the

energy spectra. Having a high noisy signal can also make it difficult to distinguish clearly some

of the traits of the events and introduce an error factor in the measurements. Furthermore, we

can also have deviations from the ideal measurements due to instrumental effects that can induce

uncertainties in the results. On the other hand, there are other known causes of uncertainties

and errors such as poor determination of the measurement parameters as the magnetic field

structure along where particles are propagating, the interplanetary transport conditions or the
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FIGURE 1.5: Sketch showing the configuration of a CME travelling through the heliosphere
and the typical observational profiles as seen at different longitudinal distances from the source.
The plots, corresponding to events occurred in the years 1999 and 2000, show the ion intensity
profiles measured by ACE/EPAM (Gold et al., 1998) and IMP-8 (Sarris et al., 1976), with
energies between 195 keV and 25.0 MeV. The relative longitude with respect to the source is
indicated in the upper left corner. Dashed lines indicate the event starting time and the solid
ones indicates the pass of the shock. Adapted from: Radiation and the International Space

Station, National Academy of Sciences, USA, and Lario and Simnett (2004)

determination of the angular position of the solar source and the observer footpoint. Finally,

we need to note that even if we can reduce all these errors, our in-situ observations will still be

restricted to a certain position in space, so if we want to extract the general characteristics of

an event, we could be committing an important error using the local measurements to explain

the behaviour of the event in other parts of the heliosphere. Thus, multi-spacecraft analysis,

boosted during the last years thanks to the STEREO mission, has become an essential tool to

help us understand the difference in spatially separated measurements.

1.2.2 Multi-spacecraft analysis of events

In the study of the event characteristics and their associated transport conditions, the possibility

of monitoring the in-situ particle flux from several points in the heliosphere has demonstrated to

be a priceless tool. As SEP events show different characteristics regarding the longitude angle

between the source and the observer, multi-spacecraft observations allow the comparison of

separated measurements related to the same event to infer the different transport and magnetic

connection conditions, for impulsive as well as for gradual events. Furthermore, it has been

possible to study differences in connectivity and transport conditions regarding the latitude of
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the observer (Lario et al., 2004, Agueda et al., 2012a) by using Ulysses mission data (Marsden

et al., 1986), a mission whose main characteristic was achieving a high heliographic latitude that

allowed also the study of the Sun polar regions.

Many studies have been elaborated about the broad spread of the accelerated particles regard-

ing shock associated events (Beeck et al., 1987, Dresing et al., 2012, Lario et al., 2013, Wieden-

beck et al., 2013, Richardson et al., 2014, Gómez-Herrero et al., 2015, Dröge et al., 2016), which

were observed over a wide longitudinal range, even by observers separated 180◦ in longitude.

Lately, taking advantage of the temporal narrow separation between the two STEREO space-

craft, other studies (Klassen et al., 2015, Klassen et al., 2016, Pacheco et al., 2017a) inferred

the injection and transport characteristics of short impulsive events. These studies conclude that

even contiguous flux tubes can present very different transport conditions, which is only possible

to untangle with limited configurations of the spacecraft constellation. This approach is also use-

ful when studying CME properties because providing in-situ measurements from several points

allows us to reconstruct the magnetic cloud structure (Al-Haddad et al., 2019). Furthermore,

also magnetic structures originated in the solar wind as CIRs have been under the multi-point

study scope, finding changes on narrow stream structures and CIRs-associated shocks regarding

the observer (Dresing et al., 2009). These results point towards the need of a broad constellation

of spacecraft monitoring the Sun and heliosphere from multiple locations allowing 3D studies

of the interplanetary space plasma properties.

Luckily, a new era for multi-spacecraft studies is about to start, since Parker Solar Probe

was launched in August 2018 and Solar Orbiter will be launched in February 2020. These two

missions orbiting the inner heliosphere together with the pre-existing ones orbiting at 1 AU will

allow multiple kind of approximations to study radial, longitudinal, or even latitudinal depen-

dences of SEP and plasma parameters. The new data expected from these missions will fill the

gap in the observations that is needed to test most of the current heliospheric models.

1.3 Interplanetary Transport Processes

Space based observatories as the Solar & Heliospheric Observatory (SOHO; Domingo et al.,

1995), the Geostationary Operational Environmental Satellite (GOES; Space-Systems-Loral,

1996), or the Solar Dynamics Observatory (SDO; Schwer et al., 2002), detect SEP events quite

frequently. As most of current space missions are at a radial distance of ∼1 AU either orbiting

around the Sun or the Earth, part of the information about the source of the SEP at the Sun is

veiled by the effects that these particles suffer during their travel through the inner heliosphere.

SEPs travel faster than the solar wind following the magnetic field lines frozen in it, being the

typical speed of the solar wind ∼400 km s−1. The solar magnetic field in the heliosphere expands

radially and, as a first approximation, is ideally shaped as an Archimedean spiral, called Parker

spiral, consequence of the Sun’s rotation. That expansion also makes the magnetic field to
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diverge and it decreases outwards the heliosphere, which produces a focusing effect over the

charged particles travelling along the IMF. The magnetic field curvature forming the Parker

spiral will depend on the solar wind speed, the faster the smaller the bending of the field lines.

Particles are accelerated during CMEs, either in the corona or at ICMEs at their front shock,

and at flares, and propagate along the IMF lines. Of course, ideal conditions are commonly

vanished by turbulent phenomena in the IMF, as passing shocks from ICMEs or CIRs formed

between different solar wind streams. Thus, the principal processes affecting SEPs during their

travel along the IMF are the streaming effect along the magnetic field lines, the aforementioned

adiabatic focusing due to the divergent smooth IMF, and the pitch-angle scattering caused by

the turbulences the particles find in the IMF. Hence, the particle transport in the heliosphere is

the result of the competition of these effects. The efficiency in the acceleration of particles at

source, the magnetic connectivity, the transport effects and the solar wind conditions are the

main considerations to understand what is influencing the characteristics of the intensity time

profiles of SEP events, such as the peak intensity and the fluence, and the dependence of these

quantities with the radial distance between the solar source and the observer. For that reason,

transport processes have been widely studied to understand their role on the development of the

SEP events along the IMF.

Scattering of SEPs has been proved to be a major effect on shaping SEP event profiles (Wib-

berenz and Cane, 2006, Agueda and Lario, 2016, Pacheco et al., 2019a) dimming the initial

characteristics of the event. The seed particle population with energies below ∼200 keV suffers

also from significant cooling effects and the adiabatic deceleration plays an important role in the

SEP transport which diminishes towards higher energies (Mason et al., 2012) being negligible

for relativistic particles.

SEPs travelling along the IMF being under the influence of several effects allow us to extract

clues about the IMF structure that these particles have travelled along. The angular distribution

of particles regarding the local magnetic field is known as pitch-angle distribution (PAD), and is

used to analyse the effects of the solar source and the transport processes in the interplanetary

space. The pitch-angle scattering is due to small irregularities at a non-ideal Parker spiral (Aran

et al., 2018) given by transient magnetic structures. It is related to the mean free path of the par-

ticles and can be described by the pitch-angle diffusion coefficient, Dµµ, knowing the turbulence

power spectrum. The dependence of the turbulence and the evolution in time strongly depends

on the local properties of the IMF and, given that we usually obtain the turbulence power spectra

at 1 AU, it is necessary to go under several assumptions that introduce significant uncertainties

to any conclusion about the SEP transport we could achieve.

Observing these events from closer distances is, then, a crucial opportunity to disclose their

characteristics and few previous missions, as Helios, have allowed that. Solar Orbiter and Parker

Solar Probe are expected to yield very useful measurements in a near future which will test the

current transport SEP models. Also researches studying the longitudinal variation of SEP events
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have been carried out finding an strong dependence of their characteristics in longitude (e.g.,

Lario et al., 2006, 2013, Gómez-Herrero et al., 2015). Different connection points with the Sun,

even from observers nearby, can give totally different intensity-time profiles, due to distinct

different transport conditions (Pacheco et al., 2017a). Particles crossing the heliospheric current

sheet (Agueda et al., 2013) or turbulences in the magnetic field are able to spread particles in a

wide span of longitudes making an event observable from distant locations, as well as transport

perpendicular to the IMF by particle drifts or cross field diffusion.

There are several mechanisms that cause perpendicular transport of particles in the helio-

sphere. Turbulence in the IMF can produce cross field motion (Dröge et al., 2010, Wijsen et al.,

2019) and magnetic field meandering which can result in a wide-longitudinal release for SEPs

close to the Sun. Moreover, particles crossing the heliospheric current sheet (Agueda et al.,

2013) and charged particle drifts, which directly affects to the plasma composition due to be

charge-to-mass ratio dependent (Dalla et al., 2017), may also result in an enhancement of the

perpendicular transport. For these reasons, it is important a careful selection of the events taking

into account IMF conditions when applying models that do not include perpendicular transport

processes. Several studies (Strauss et al., 2017, Dröge et al., 2016) treat the modelling of the

physical processes leading to the perpendicular transport. Strauss et al. (2017) point towards the

fact that perpendicular transport processes are not efficient over high-energy electrons, which

are the ones considered in our studies. Also, they found that for distances close to the Sun

the transport of SEPs is dominated by focusing, and hence SEPs propagate ballistically to the

spacecraft, especially in cases where there is a good magnetic connection.

1.4 Space Weather and Radiation Environment

Space weather research aims at understanding and forecasting, whenever possible, the physical

and phenomenological state of the space environment. The domain of space weather includes the

Sun and its activity, the heliosphere, especially the interplanetary space, and planetary environ-

ments, particularly the Earth’s magnetosphere and ionosphere, as well as the effects on ground

such as induced geomagnetic currents. As a part of this thesis work, we focus on describing

the particle radiation environment in the inner heliosphere, and more concisely, on depicting the

fluence (i.e., the time integral of the particle intensity) spectra of SEP events.

Due to the SEP energy spectra and high intensities, SEP radiation constitutes the principal

hazard in the heliospheric environment regarding not only the maximum intensities that can

eventually be reached during a given SEP event, but also the accumulated fluence during the

total operative life of space missions. While Galactic Cosmic Rays are the main contributors to

the radiation dose at high energies (specially during solar minima), SEPs dominate the spectra

below some hundreds of MeV. The most energetic part of the SEP spectra can be observed by
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neutron monitors at ground level when arriving to the Earth. Those detections are called ground-

level events (GLEs). In addition anomalous cosmic rays contribute substantially to the fluence

at the low-energy spectrum of galactic cosmic rays during a solar cycle minimum. Finally, the

main planetary magnetospheres are known to accelerate high-energy particles (mainly electrons)

towards the inner heliosphere. For instance, jovian electrons dominate the electron lower ∼MeV

spectrum in the heliosphere and have been detected routinely at the near Earth environment by

for example the ISEE3 and SOHO missions (e.g., Vogt et al., 2018, and references therein) .

Several studies (e.g., Kunow, 1994, Daly et al., 1996, Zeitlin et al., 2013, Heynderickx et al.,

2014, Jiggens et al., 2014a,b, McKenna-Lawlor et al., 2015, Quinn et al., 2017, Cucinotta et al.,

2017) have been developed to analyse the impact of the SEP radiation over electronics and living

tissues. These studies aimed at understanding the real behaviour of electronic components under

different SEP environment conditions as well as at evaluating the potential risks for prolonged

interplanetary manned missions. In this regard, protons with energies above 30 MeV can cause

damage to humans in space. Also, ions > 1 MeV/nuc may traverse typical shielding conditions

and contribute to radiation doses. Heavy ions are the particle species more penetrative, but

> 10 MeV protons are the main contributors to radiation doses (e.g., Aran and Vainio, 2013). For

a detailed list of the effects and sources of the different SEP species and energies see Feynman

and Gabriel (2000).

At the near-Earth space, SEP events have been routinely measured since the early 1970s.

From the past five solar cycles, we know that SEP events occurrence is highly variable in fre-

quency and that about 100 events with > 10 MeV protons are measured per solar cycle. From

these events, on average, only < 10 are large SEP events with individual fluences account-

ing for a significant fraction of the total fluence accumulated over a solar cycle (see e.g., Aran

and Vainio, 2013, and references therein). Although the occurrence of SEP events may not be

completely random (Jiggens and Gabriel, 2009), the current lack of understanding on the un-

derlying physics and the fact that SEP events may not be predictable over long periods of time

(see Aminalragia-Giamini et al., 2018, and references therein), makes it necessary the use of

probabilistic models for the description of the cumulative fluence and maximum intensity that

could be attained during the duration a given space mission. Such radiation estimates are needed

for spacecraft and payload design. A summary of recent modelling and data analysis work for

estimating different radiation risks and for enabling reliable cost-effective spacecraft design can

be found in Mishev and Jiggens (2019) and Jiggens et al. (2018a).

1.5 SEP environment models at 1 AU

Probabilistic SEP fluence or peak flux models are based on the wealth of SEP data collected in

the vicinity of the Earth, and provide the probability that a specified fluence (or peak flux) level

is exceeded for different confidence levels, as required by the user. As defined by the European
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Cooperation for Space Standardization (ECSS) E-10-04C document (April 2008), the current

standard model is the Prediction of Solar particle Yields for Characterizing Integrated Circuits

(PSYCHIC) model (Xapsos et al., 2000, 2004, 2007). This model, initially called Emission of

Solar Protons (ESP) model, provided peak flux and worst case fluence estimates for any mission

duration based on the selection of the best probability distribution from the maximum entropy

principle. Such probability distribution was a truncated power-law for these magnitudes. For

the cumulative fluence this best distribution resulted to be the lognormal distribution, and the

ESP model was extended to describe the cumulative fluence over different years based on fitted

annual lognormal distributions (Xapsos et al., 2000).

A comparison among different probability distribution functions performed by Jiggens et al.

(2012) showed that the lognormal distribution, as used in the previous wide-used JPL model

(Feynman et al., 1993, 2002), over-predicted the possibility of very high fluence (and peak flux)

events. Also they showed that the truncated power-law distribution (Xapsos et al., 1998, 1999)

yielded a maximum event fluence very close to the highest event fluence in the data set; thus,

preventing the prediction of larger events than those measured during the last ∼35 years. This

may be an optimistic constrain since the Carrington Event in 1859 September 1 is thought to

exceed the largest SEP event in the event list used, as well as other historical events like 1960

November 12 and 1946 July 25, which showed the largest > 30 MeV fluences among the events

occurred over the 18 – 23 solar cycles (Smart et al., 2006). According to Jiggens et al. (2012),

the cut-off power-law distribution employed by the Moscow State University (MSU) model

(Nymmik, 2007, 2011) provides the best fits to data for fluence distributions, since the results

are similar to the truncated power-law, but it allows the possibility of larger events than those

in the data set (1973 – 2009). Furthermore, the JPL, PSYCHIC and MSU models make use

of Poisson distributions to model the event occurrence, and hence assume that SEP events are

random. However, this is not the case as shown by Jiggens and Gabriel (2009). Hence, under

the ESA’s Solar Energetic Particle Environment Modelling (SEPEM) project1, a new model

for protons was developed. This model is based on a new statistical method named, Virtual

Timelines Method (VTM). VTM takes into account both the time lapse between events (waiting

times) and the duration of the events. Also, the size of the SEP events (that is, either their

peak intensity or their event fluence) is linked to their duration; thus creating a time-line of

events (Jiggens et al., 2012). The waiting times probability density is then fitted with a Lévy

distribution for active year periods and by a time-dependent Poisson distribution for the solar

minimum phases (see a detailed discussion in Jiggens et al., 2012). An upgrade to this model,

the ‘Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment’ (SAPPHIRE)

has been developed by Jiggens et al. (2018a,b) very recently, after the work related to SEPEM

in this dissertation was completed.

1http://sepem.eu
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1 INTRODUCTION

1.6 Modelling of the radiation environment in the inner heliosphere

The scarce amount of SEP data measured at heliocentric radial distances < 1.0 AU from the

centre of the Sun prevents the development of statistical models based solely on SEP observa-

tions, in order to describe the radiation environment in the inner heliosphere. Instead, power-law

dependences with the heliocentric radial distance, r, are used to extrapolate the fluence and peak

intensities for spacecraft orbiting away from 1 AU. The standard ECSS recommendation for

fluence extrapolations is to assume the following dependences: r−2 for r < 1 AU and r0 for

r > 1 AU. These extrapolations are mainly based in the old paradigm that SEP events are

produced by fixed sources at the Sun, i.e., by flares, and hence they do not take into account

the continuous acceleration of particles by interplanetary shocks driven by CMEs (see e.g., Daly

et al., 2005). Further, an observational study using 72 simultaneous measurements of SEP events

by spacecraft located at 1 AU and by the Helios spacecraft (that orbited the Sun from 0.31 AU

to 0.98 AU) showed that less steep radial dependences than the inverse squared law might be

expected, and that these dependences are highly variable from event to event (Lario et al., 2006).

First attempts to incorporate more variability in the radial dependences for SEP fluence mod-

els allow the inclusion of different prescribed power-law dependences with the heliocentric ra-

dial distance of the spacecraft. Jun et al. (2007) extended the JPL model with such capability

and applied it to a short duration orbit for Parker Solar Probe. Lario and Decker (2011a) present

a different SEP probabilistic model that uses daily proton fluence averages for estimating mis-

sion integrated fluences and hourly averages for the peak intensity. The model is applied to an

orbit of the Parker Solar Probe mission (see also Lario and Decker, 2011b) by assuming sev-

eral power-law dependences with the heliocentric radial distance of the spacecraft. The radial

distance extrapolations used in this model yielded larger SEP fluence predictions than the JPL-

based model, especially for low-energy protons. However, these two models use the same radial

distance extrapolation for all events in their event lists and for all proton energies considered.

In order to include the effect of coronal/interplanetary shocks as sources of SEPs in the radial

variations of the peak intensities and fluences of SEP events, a physics-based model, the Shock-

and-Particle (SaP) model (Aran et al., 2011a, Pomoell et al., 2015), was developed during the

ESA’s SEPEM project. From this model, a new tool, the SOLar Particle Engineering COde-2

(SOLPENCO2) was developed (Aran et al., 2011b, Crosby et al., 2015). This tool was used

to simulate the proton intensity-time profiles of six SEP events observed at 1 AU in the 5 –

200 MeV range. These reference events describe different SEP event categories discriminated

by (Aran et al., 2011b, Crosby et al., 2015): (i) the observation of an interplanetary shock

at 1 AU; (ii) the longitudinal position of the parent solar eruptive event and (iii) the intensity

level reached at the 7.8 – 10.26 MeV channel of the SEPEM Reference data set (RDSv1) as

described in Jiggens et al. (2012). For each of these reference events, proton intensity-time

profiles were simulated for virtual spacecraft located at radial distances of 0.2, 0.4, 0.6 0.8,

14



1.6 Modelling of the radiation environment in the inner heliosphere

FIGURE 1.6: Results from the SEPEM/SOLPENCO2 tool for the 2012 March 13 SEP event
(left) and for the 2001 September 24 SEP event (right). Peak intensity (circles) and fluence
(squares) variations with the heliocentric radial distance of the simulated virtual spacecraft for
three different proton energy channels (as indicated by different colours). The power-law fits

(dashed lines) and indices are also shown. Adapted from Aran et al. (2017a).

1.0, 1.3 and 1.6 AU along the same nominal IMF line as the 1.0 AU-observer. The synthetic

profiles are computed from the onset of the event until the shock passage by each spacecraft

(i.e., the upstream portion of the SEP intensity profile). From these simulations, different power-

law radial dependences were derived for peak intensities and event fluences for each reference

case. As an example, Fig. 1.6 shows the radial dependences obtained for two of the reference

events modelled. The power-law indices obtained vary also with the energy channel (Aran et al.,

2011b). These radial dependences derived from SOLPENCO2 are implemented into the SEP

statistical VTM of SEPEM (Jiggens et al., 2012, Crosby et al., 2015), by assigning each SEP

event in the SEPEM reference event list at 1 AU to one of the event categories defined by the

reference events. In this way, different radial dependences are considered in the same model

run for mission trajectories in the inner heliosphere (Crosby et al., 2015). In the recent ESA’s

’Updating SOLPENCO2 and New Analysis on Downstream Fluence’ (SOL2UP) Project Aran

et al. (2017a), the reference cases were extended to ten cases; thus providing more variety to

the radial dependences considered in the SEPEM statistical model for interplanetary missions.

A description of the modelled reference cases and the implementing method into the statistical

modelling of the radial dependencies can be found in Aran and Pacheco (2017), Aran et al.

(2017b,a) and in the SEPEM help pages2.

2http://sepem.eu/help/solpenco2_intro.html
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1 INTRODUCTION

1.7 Objectives, methodology and outline of the thesis

The main objective of this Ph.D. thesis is to progress in the understanding and modelling of

the SEP radiation environment that the ESA’s mission Solar Orbiter will encounter. This objec-

tive comprehends three main research lines: i) the analysis of observations in order to improve

prediction tools, such as the SEPEM/SOLPENCO2 tool, focusing on the characterisation of

the SEP radiation conditions in the inner heliosphere, where Solar Orbiter will travel through

(0.28 AU to 1.1 AU ); ii) the development of new tools for the study of SEP directional inten-

sities to be applied to the Solar Orbiter instruments, and iii) the study and modelling of particle

radiation in the inner heliosphere, including both the description of individual SEP events and

the statistical modelling of SEP fluences for long periods of time (years).

In order to accomplish with this main objective, the specific goals of this work have been:

i) to study the contribution to the fluence of the post-shock portion of the proton differential

intensity-time profiles (hereafter termed as ‘downstream fluence’) of gradual events to

improve the predictions of the SEPEM/SOLPENCO2 modelling tool;

ii) to model multi-spacecraft SEP events measured by particle detectors of similar character-

istics to those of the Solar Orbiter payload, both to better interpret the future observations

by this mission and to further understand the effects of the solar wind on the transport of

energetic particles;

iii) to model the angular response of detectors to improve the interpretation of the observed

particle directional intensities;

iv) to model SEP events measured in the inner heliosphere, at different heliocentric radial

distances < 1 AU, to deepen on how the interplanetary transport conditions will affect the

evolution of the SEP intensity and anisotropy (or of the PADs) of the events detected by

spacecraft travelling to the Sun.

To fulfil these objectives, we used different approaches such as observational studies, mod-

elling of the instrumentation response to the incident particle intensities and the application of

inverse modelling techniques to characterise SEP events. Summarising, the work carried out

during this thesis can be divided into three different methodological blocks:

1. Observational studies based on the analysis of the data measured by several interplane-

tary spacecraft. We worked with both proton and electron measurements and with solar

wind plasma and interplanetary magnetic field data provided by the corresponding ‘in-

situ’ instruments on board GOES, STEREO, Helios, ACE and the Wind spacecraft. We

performed the characterisation of the SEP events, including the study of the solar erup-

tions generating the particle events by using remote sensing observations. We also per-

formed an identification and classification of events showing common traits and analysed

the consequent sample.
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2. Development of tools for data analysis of observational SEP events. We developed these

tools using IDL programming language and used them to study the maximum (peak) in-

tensity and the downstream fluence variation with the heliocentric radial distance. We

performed the analysis of synthetic events for the future interpretation of the particle in-

tensities and PADs derived from the Solar Orbiter measurements.

3. Development of models to interpret SEP events. We modelled the angular response of

instruments on-board Helios (E6) and Solar Orbiter (EPT) missions and coupled it with

the Monte-Carlo particle transport model previously developed by our group, in order

to simulate SEP events observed in the inner heliosphere and to infer how these events

would have been seen by the Solar Orbiter EPT instrument. In addition we modelled the

energy response to electrons of the Helios E6 experiment and coupled it with the results

of the particle transport model. We also adapted SEPinversion code developed by our

group in order to use data directly from the STEREO spacecraft, performing an analysis

of multi-spacecraft SEP events.

The structure of this dissertation is divided into 6 chapters. Chapter 1, provides a general in-

troduction of the field, aims and methodology of the work. Chapter 2 presents an observational

study on the variation of the downstream fluence of SEP events with the longitudinal separa-

tion of the spacecraft with respect to the solar source generating the particle event. This study

includes SEP events observed by Helios to infer the longitudinal variation of the downstream

fluence with the heliocentric radial distance. Further, the analysis of the peak intensities and

fluences of these SEP events is presented and we provide the guide-lines for the inclusion of

these results into the SEPEM/SOLPENCO2 tool. In Chapter 3 we present a multi-spacecraft

study of two particular events observed by both STEREO probes on 2014 August 1 when these

two spacecraft were separated by only ∼ 30◦ but exhibited differences in the observed SEP pro-

files. Chapter 4 describes the modelling of the angular and energetic response of the E6 Helios

instrument and the subsequent use of this model to study a sample of 15 electron events ob-

served by this mission by performing a full inversion analysis. In Chapter 5 we briefly introduce

the Solar Orbiter mission and apply the results obtained in the previous chapters to infer the

characteristics of the SEP events that this mission will potentially observe, as well as the SEP

environment it will encounter. We present the analysis of the dependence of the peak intensities

and anisotropies with the heliocentric radial distance (between 0.3 AU and 1.0 AU) derived from

the events studied in Chapter 4. Further, we present the modelling of the angular response of

the EPT detector of Solar Orbiter and its application to three modelled events. Next, we use the

SEPEM statistical model for interplanetary missions, in which the results of the work performed

in Chapter 2 are implemented, to perform the analysis of the expected proton fluence over the

total Solar Orbiter operational mission, as a function of the energy. Finally, in Chapter 6 we

present a summary and future perspectives of this thesis work.
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Chapter 2

Analysis of the downstream fluence of
gradual SEP events

2.1 Introduction

The statistical SEP environment model for interplanetary missions of the SEPEM project of

ESA is based on the heliocentric radial distance dependences (hereafter shortened to ‘radial

dependences’) of peak intensities and fluences of SEP events derived from the SOLPENCO2

tool (Aran et al., 2011b, Crosby et al., 2015). At present, SOLPENCO2 provides the proton

synthetic intensity-time profiles for a set of ten reference SEP events, from the onset of the

particle event up to the interplanetary shock crossing by near-Earth spacecraft. SOLPENCO2 is

built from the Shock-and-Particle (SaP) model (Aran et al., 2011a, Pomoell et al., 2015). The

SaP model uses a two-dimensional magnetohydrodynamic model to simulate the propagation

of interplanetary shocks driven by CMEs, from 4 R� to 1.6 AU. From this MHD model, the

position on the shock front of the point magnetically connecting with a given observer (i.e.,

‘the cobpoint’, after Heras et al., 1995) in the ecliptic plane is extracted. The evolution of the

cobpoint up to the position of that observer is then used as input to the particle transport model by

Lario et al. (1998). In this way, the SaP model, and consequently, the SOLPENCO2 tool, provide

the simulation of proton differential intensity-time profiles for the pre-shock (upstream) portion

of the SEP event profiles. As it can be seen in three of the events in Figure 1.5, the upstream

region extends from the dashed to the solid vertical lines. For the remainder case, the shock

associated with the CME was not observed at 1 AU. For the ten modelled events, the synthetic

proton intensity profiles were calibrated with 1 AU data using the SEPEM Reference Data Set

(RDS) version 2.0 (RDSv2) by Sandberg (2014), Sandberg et al. (2014) and Heynderickx et al.

(2017). For each of the modelled events, the synthetic profiles for observers away from 1 AU are

calculated for a set of seven virtual spacecraft located at different radial distances but along the

same IMF line as the actual spacecraft at 1 AU that gathers the SEP observations. In this way,
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2 ANALYSIS OF GRADUAL SEP EVENTS

the virtual observers share the same time-history of particle injection at the shock, and hence,

proper radial dependences are derived for the peak intensities and the event fluences since the

source longitudinal-dependence variations are minimised.

The post-shock or downstream portion of the intensity-time profiles is not provided by the

SaP model, nor by other models such as the iPATH model (Hu et al., 2017, 2018), due to the

inherent difficulties of (i) shock propagation models to correctly reproduce the magnetic struc-

ture behind the shock front, and (ii) particle acceleration and transport models to reproduce the

observed intensity-time profiles downstream of the interplanetary shock. In SOLPENCO2, the

downstream fluence of the modelled events at 1 AU is calculated from the observed post-shock

time profile. The total fluence, or event-fluence, of an event is then the addition of the upstream

and downstream fluences. For the virtual spacecraft located away from 1 AU, between 0.2 AU

and 1.6 AU, and for the eleven energy channels provided by the RDSv2 data, the portion of the

event-fluence corresponding to the post-shock region is added to the fluence of the simulated

upstream profile by assuming the same ratio of the total-fluence to the upstream-fluence as that

of the observed event at 1 AU. This assumption was taken to keep the radial extrapolations sim-

ple, as explained in Aran et al. (2011b) and Crosby et al. (2015). However, several works (e.g.,

Cane et al., 1988, Reames et al., 1996, Lario and Simnett, 2004) have shown that the shape of

the proton intensity-time profiles of SEP events associated with interplanetary shocks depends,

among other factors (see e.g., Cane and Lario, 2006), on the relative longitudinal distance of the

spacecraft with respect to the direction towards the leading edge of the shock-front (a.k.a. ‘the

nose’) of the interplanetary shock1. Accordingly, Eastern events tend to show higher intensi-

ties in the downstream (post-shock) portion of their profiles than Central Meridian and Western

events (see also Appendix I in Lario, 1997). However, this dependence is difficult to characterise

and quantify, given the existing large variety of profiles observed in gradual SEP events. This

is relevant for the SOLPENCO2 predictions because the observers located along the same IMF

line have different relative longitudes with respect to the nose of the travelling shock.

Moreover, Reames et al. (1996) show the 1978 September 23 event observed by the IMP-8

spacecraft at 1 AU and by the Helios 1 and 2 spacecraft at 0.70 AU and 0.72 AU. In these SEP

events, the 3 – 6 MeV proton time profiles have the same duration despite that the upstream

duration is shorter for the events seen by the two Helios spacecraft, while later they were similar

at the three spacecraft. This suggests that the assumption taken in SOLPENCO2 may not hold

in some cases. Fortunately, at present and during the last two solar cycles, the STEREO mission

1Historically, the main direction of propagation of interplanetary shocks was assumed to be the direction given
by the location of the concomitant flare, because of the lack of stereoscopic information about the propagation of the
shocks. According to the observational study by Ontiveros and Vourlidas (2009), a CME-driven shock wave could be
easily directed 10◦ – 20◦ off of the flare site, in addition to other possible deviations due to non-nominal interplanetary
IMF connections between the source and the spacecraft. STEREO observations help to ease this situation. In the
multi-spacecraft analysis presented in this chapter, we have checked if approximately the shock direction coincides
with the flare direction, and checked our associations against those provided by other authors (e.g., Lario et al.,
2013, Richardson et al., 2014). The task of reconstructing in detail the direction of the propagating shock by using
white-light high quality images provided by STEREO has not been undertaken in this work.

20



2.2 Event selection and fluence computation

provides us with the opportunity to study the same event measured at very similar heliocentric

radial distances (at ∼1 AU) but at very different heliolongitudinal positions with respect to the

parent source of particles (i.e., the direction of the associated shock nose). This permits us to

study, with improved instrumentation than in the 1970s, whether there is a dependence of the

fluence of the events, and in particular, of the contribution of the downstream fluence to the

total fluence of the event, with the relative longitudinal position between the source site and the

Sun-spacecraft line (i.e., the heliolongitude). To accomplish this, we used the SEPEM RDSv2

gathered by spacecraft at the near-Earth space and data from the STEREO-A and B spacecraft.

We also further exploited observations by the Helios spacecraft in order to determine, if possible,

any radial dependence for the downstream fluences. The way of how the obtained results are

implemented in the SOLPENCO2 tool is also discussed. The work presented in this Chapter

was developed from May 2015 to July 2016 as part of the SOL2UP project, and it is detailed in

the Technical Note by Pacheco et al. (2017b) and summarised in the final report of the project

(Aran et al., 2017a).

2.2 Event selection and fluence computation

2.2.1 Data and Event lists

We extended the SEPEM Radial dependent Event List (REL), that consisted of 147 SEP events

from 1986 to 2007, to include the SEP events observed in the period from August 2010 to March

2013. In the time interval from January 2007 to August 2010, there was no event complying with

the selection criteria established for the SEPEM event list (Jiggens et al., 2012, Crosby et al.,

2015) but there were 25 events in the period from August 2010 to March 2013. These latter

are the events we analysed in order to find their parent solar sources and to split multiple SEP

events into individual SEP enhancements (i.e., SEP events). Furthermore, we used data gathered

by the STEREO twin spacecraft (Russell, 2008) during the same period of time to study multi-

spacecraft SEP events. Finally, in order to draw conclusions on the radial dependence of the

downstream fluence, we used proton omnidirectional intensity observations measured by the

two Helios spacecraft (Porsche, 1975), covering the heliocentric radial distances from 0.29 AU

to 0.85 AU.

2.2.1.1 Events at 1 AU

One of the main aims of the SEPEM project was to provide the community with a standard data

set covering the longest possible time-span, as allowed by the current data samples, in order to

develop a useful statistical tool to analyse SEP events. For that reason, it was also important to

assure that such data set keeps the highest levels of uniformity and continuity considering the
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2 ANALYSIS OF GRADUAL SEP EVENTS

fact that the low quality of the previous SEP data sources used in previous SEP fluence mod-

els, such as the JPL model, were substantially limiting the modelling capacities (Rosenqvist and

Hilgers, 2003, Rosenqvist et al., 2005, Glover et al., 2008). Consequently, the SEPEM reference

proton data set (SEPEM RDSv1) (Jiggens et al., 2012, Crosby et al., 2015) was constructed on

base of GOES 5-11/Space Environment Monitor (SEM) data (Onsager et al., 1996, Sellers and

Hanser, 1996), GOES 13/Energetic Particles Sensor (EPS) data (Rodriguez et al., 2014), and

Interplanetary Monitoring Platform 8 (IMP 8)/Goddard Medium Energy (GME) data (McGuire

et al., 1986). We used a newer version of this data set, the SEPEM RDSv2 proton data set, avail-

able at the beginning of the SOL2UP project (Sandberg, 2014, Sandberg et al., 2014). The

SEPEM RDSv22 comprehends proton omnidirectional differential intensities collected from

1973 to 2013 and divided in 11 reference differential energy channels, logarithmically-equally

spaced from 5 MeV to 298.22 MeV. This data is based on the data measured by GOES/SEM

and cross calibrated with IMP8/GME data (Sandberg, 2014) and it was processed by remov-

ing spikes or periods with contamination and saturation. Therefore, data gaps were introduced

on periods of time where bad data was found. Also, in GOES data a small number of data

gaps during events were found and filled with linear interpolation between closest flux values

(e.g., Crosby et al., 2015). Once the data was cleaned, the individual data point spectra was

re-binned into the reference energy spectrum, and merged of the individual GOES data sets into

an overlapped sample (Sandberg et al., 2014).

Further, in order to ease the identification process of individual SEP events in the period

from 2010 to 2013, we utilised low-energy proton data from the LEMS120 telescope of the

EPAM instrument (Gold et al., 1998), on-board the ACE spacecraft. In particular, we used 5-

minute averages of spin-averaged intensities of the 0.31 – 0.58, 0.587 – 1.060,1.060 – 1.90,1.9 –

4.8 MeV channels, publicly available at http://www.srl.caltech.edu/ACE/ASC/le

vel2/lvl2DATA_EPAM.html. We also used 175 – 315 keV electron intensities from the

ACE/ EPAM/ LEMS30 telescope, to better determine the start time of the proton event.

In the case of solar wind data, we used merged 64-second averaged data from the SWEPAM

(McComas et al., 1998) and MAG (Smith et al., 1998) experiments on board ACE, available

at the ACE Science Center web site http://www.srl.caltech.edu/ACE/ASC/leve

l2/lvl2DATA_MAG-SWEPAM.html. Specifically we used solar wind ion data for proton

density, solar wind speed and proton temperature, as well as the magnetic field components in

the GSE reference system. In order to confirm the interplanetary shock detections, we used

the ACE and Wind spacecraft shock data base available at https://www.cfa.harvard

.edu/shocks/, as well as the SOHO shock list (http://umtof.umd.edu/pm/FIGS.

HTML).
2Recently, an updated SEPEM RDSv2 has been released (Heynderickx et al., 2017). This proton data covers the

period from 1974 to 2016 and its obtention is reviewed in Jiggens et al. (2018a).
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2.2 Event selection and fluence computation

Starting with the 25 events identified in the period from 2010 to 2013 in the REL, we looked

for SEP events observed by STEREO-A and STEREO-B in the same time periods. To carry out

this analysis, we used different data sets from the IMPACT investigation (Luhmann et al., 2008)

on board the twin STEREO spacecraft. Particularly, we used:

• Level 1 low-energy proton 10-minute averages differential intensities from the LET in-

strument (Mewaldt et al., 2008): 1.8 – 3.6 MeV (from the ‘summed’ data set), 4.0 – 4.5,

4.5 – 5.0, 5.0 – 6.0, 6.0 – 8.0, 8.0 – 10.0 and 10.0 – 12.0 MeV ‘standard’ energy channels

(http://www.srl.caltech.edu/STEREO/Public/LET_public.html).

• High-energy proton 15-minute averages differential intensities from the HET instrument

(von Rosenvinge et al., 2008): 13.6 – 15.1, 14.9 – 17.1, 17.0 – 19.3, 20.8 – 23.8, 23.8 –

26.4, 26.3 – 29.7, 29.5 – 33.4, 33.4 – 35.8, 35.5 – 40.5, 40.0 – 60.0 and 60.0 – 100.0 MeV.

This data is available at http://www.srl.caltech.edu/STEREO/Public/HET_

public.html

• 0.7 – 1.4 MeV electron 15-minute averages differential intensities from HET to better de-

termine the onset time of the SEP event.

We utilised 10-minute resolution level-2 data to study the magnetic field (magnetic field

components and intensity) and the solar wind plasma (proton speed, density and temperature),

from the IMPACT MAG (Acuña et al., 2008) and PLASTIC (Galvin et al., 2008) experiments,

respectively. This data is available at http://aten.igpp.ucla.edu/forms/stereo/

level2_plasma_and_magnetic_field.html. We compared the plasma data with the

STEREO/IMPACT shock list (http://www-ssc.igpp.ucla.edu/~jlan/STEREO/

Level3/STEREO_Level3_Shock.pdf) to determine if there was an interplanetary shock

associated with the particle event and its crossing time by the spacecraft.

In order to determine the main solar sources generating each SEP enhancement, flares and

CMEs, we used different catalogues. To look for the parent CMEs, we consulted the SO-

HO/LASCO catalogue (http://cdaw.gsfc.nasa.gov/CME_list/), the CACTus cat-

alogues (http://sidc.be/cactus/) and the STEREO CME catalogue (https://co

r1.gsfc.nasa.gov/catalog/) from COR-1 observations. For solar flares, we used the

SolarSoft catalogue to determine the associated flares (http://www.lmsal.com/sola

rsoft/latest_events_archive.html), and the EUVI list of events from STEREO

(http://secchi.lmsal.com/EUVI/euvi_events.txt). We also employed on-line

GOES X-ray flare catalogues (ftp://ftp.ngdc.noaa.gov/STP/space-weather/s

olar-data/solar-features/solar-flares/x-rays/goes/xrs/). Further, we

revised the splitting of the events, of the whole REL, into particle enhancements; for events

prior to the SOHO era, we consulted the Solar Geophysical Data (SGD) reports to determine the

parent solar sources.
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2 ANALYSIS OF GRADUAL SEP EVENTS

The final event list compiled consists of 25 SEP event episodes divided into 35 SEP events

detected simultaneously at the near Earth space and by the two STEREO spacecraft. These

events are listed in Appendix A, in Tables A.1, A.2 and A.3, for the near Earth space, STEREO-

A and STEREO-B respectively. The SEP events start and end times are listed together with the

information of their parent solar source (start time, location and class of the X-ray flare) and

the time of the shock crossing at the ACE or the STEREO spacecraft, as well as the solar wind

type. In order to determine the solar wind type, we computed the mean value of the solar wind

over the duration of the upstream (pre-shock) portion of the SEP event. That is, from the start

of the X-ray flare up to the shock arrival at 1 AU. According to this mean solar wind speed,

vsw, the solar wind is classified as ‘slow’ if vsw ≤ 480 km s−1, otherwise it is classified as ‘fast’.

We also compared our parent solar source associations against available literature (Lario et al.,

2013, Richardson et al., 2014, Rouillard et al., 2012, Gómez-Herrero et al., 2015).

After this study, the REL list, that we renamed as the SOL2UP REL (SREL) list, consists of

172 events, from 1988 January 1 to 2013 March 15, with a total of 263 individual SEP events

(or SEP enhancements). The complete SREL is shown in Appendix A in Table A.4. This table

lists the same information as in Tables A.1 but for the 172 events in SREL and with the addition

of the events classification according to the ten reference cases of SOLPENCO2 (Aran et al.,

2017a). This classification is described in Appendix B.

2.2.1.2 Events seen by Helios

For the study of SEP events measured between 0.29 AU and 0.85 AU we used data from the

Helios 1 and 2 spacecraft (Porsche, 1975). For the particle intensities, we used hourly aver-

ages proton omnidirectional intensities measured by the Helios/E6 experiment (Kunow et al.,

1975). This data is publicly available at the NASA’s OMNIweb site (https://omniweb.gs

fc.nasa.gov/ftpbrowser/flux_spectr_m.html) or at the European Union’s 7th

Frame Program SEPserver project site (http://server.sepserver.eu). We used the

same data set as presently available in SEPserver but with updated nominal geometric factors

provided by the group of Kiel (Müller-Mellin, private communication, 2009; B. Heber, pri-

vate communication, 2014). Proton differential intensity channels used are: 3.77 – 12.81 MeV,

12.81 – 26.76 MeV, 26.76 – 36.63 MeV and 36.63 – 50.70 MeV for H1 and 3.68 – 12.73 MeV,

12.73 – 27.36 MeV, 27.36 – 37.34 MeV and 37.34 – 51.00 MeV for H2. Hereafter, each energy

channel, Ei – Ee, is represented by its mean energy value, E =
√

Ei· Ee.

For the solar wind, we used 40 seconds merged solar wind plasma data and interplanetary

magnetic field data from the SPDF server of NASA for the two Helios spacecraft (at ftp://

spdf.gsfc.nasa.gov/pub/data/helios/helios1/merged/he1_40sec/, and

at ftp://spdf.gsfc.nasa.gov/pub/data/helios/helios2/merged/he2_40s
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2.2 Event selection and fluence computation

ec/). These data sets were provided to NASA by R. Schwenn from the HELIOS/E1 experi-

ment (Schwenn et al., 1975) for the solar wind data, and by F. Neubauer from the HELIOS/E2

experiment (Musmann et al., 1975) for the magnetic field data. We used these data sets to

compute the mean solar wind speed in the pre-shock region and to identify the interplanetary

shock passages by the spacecraft. We further checked these identifications with the interplan-

etary shock list compiled by A. de Lucas (de Lucas et al., 2011a,b) and publicly available at

http://www.dge.inpe.br/maghel/EN/index.html.

The list of SEP events was compiled by our group in the scope of the Spanish Research

Project AYA2013-42614-P. There are a total of 125 SEP events detected by Helios-1, from

1974 to 1985, and 47 events by Helios-2, from 1976 to March 1980, when Helios-2 stopped

transmissions. We have determined one by one the start and end times of the SEP events,

their interplanetary shock associations, and compiled the spacecraft heliocentric radial distance

from the Sun as well as the relative source location of the Helios spacecraft with respect to the

longitude of the solar source. The event list is presented in Appendix A in Table A.5 for Helios-1

events and in Table A.6 for Helios-2 events.

2.2.2 Selection of the events for the downstream analysis

We selected from the lists mentioned above, the SREL (Table A.4), STEREO-A (Table A.2),

STEREO-B (Table A.3) and Helios (Table A.6), the events that fulfil with the following criteria:

1. The SEP events are clearly associated with one main solar source.

2. An interplanetary shock is detected in the in-situ plasma data.

3. For the energy channels showing a proton enhancement, the intensity-time profiles permit

a clear identification of the upstream and downstream portions of the SEP events.

In those cases where the downstream part of the intensity-time profiles of an event is inter-

rupted by the onset of a new proton enhancement, the event was selected for the downstream

analysis only if the intensities have significantly decreased from their value at the shock cross-

ing. Figure 2.1 illustrates such an instance, for the event on 2003 October 28 (event 128b in

Table A.4). In the case of SEP events for which two-to-three shocks are detected, we did select

the event and we chose as the main shock the strongest, after inspecting that the other shocks

only influenced the intensity-time profiles slightly. We also checked that the resulting transit

time of the shock3 is feasible. In the next section, Figure 2.2 shows two examples of such cases.

During the event on 1977 November 22 (right panel in Figure 2.2), two interplanetary shocks

(indicated by black solid vertical lines) crossed by the Helios-2 spacecraft at 0.59 AU. The two

3We define the transit time of the shock as the time elapsed from the first appearance of the CME in the corona-
graphs (i.e., SOHO/LASCO C2 or STEREO/COR-1) up to the time of the shock detection at the spacecraft. When
the CME information is not available, we take instead the start time of the associated flare.
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2 ANALYSIS OF GRADUAL SEP EVENTS

FIGURE 2.1: Proton differential inten-
sities from the SEPEM RDSv2 for the
2003 October 28 SEP event. The dashed
red vertical line marks the start time
of the flare and the black vertical line
the time of the interplanetary shock pas-
sage. The grey shaded zone of the
proton intensity-time profiles marks the
event’s upstream region (from the onset
to the shock) and the downstream region
(from the shock to the onset of the new

event on day 29).

TABLE 2.1: Number of events selected for the downstream fluence analysis

Event list SREL STEREOs Helios

No. Events 156 13 42

shocks show similar jumps in the plasma parameters but the second is affecting more the shape

of the intensity profiles, while the first only slightly modifies them. Hence, in this case, the sec-

ond shock is used to determine the upstream and downstream regions. In the case of the event

on 1976 March 28 (left panel in Figure 2.2), the first shock shows higher jumps in solar wind

density and magnetic field, and the particle intensities decrease fast after the shock crosses the

Helios-2 spacecraft (at 0.49 AU). The second shock, however, does not modify the shape of the

SEP profiles. Hence, we took the first shock in this case to determine the downstream region.

For the study of the downstream fluence, the number of selected events from near-Earth ob-

servations, from the STEREO-A and STEREO-B spacecraft and from the two Helios spacecraft

are listed in Table 2.1. The selected events are marked with a ‘Y’ for ’yes’ in the corresponding

‘Downstream Analysis’ column in Tables A.4, A.2, A.3 and A.6.

2.2.3 Fluences

In this analysis, we refer to ‘fluence’ as a short name for the differential fluence; that is, to the

time-integral of proton differential intensities (in units of [MeV cm2 sr s]−1) over a given period

of time. In order to convert the time-integrated intensities to units of differential fluence, [MeV

cm2]−1, we assume that intensities are gathered from all directions and multiply the resulting
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2 ANALYSIS OF GRADUAL SEP EVENTS

values by 4π sr. In this section we describe the tasks performed to calculate the upstream fluence

(hereafter, UF), the downstream fluence (hereafter, DF) and total fluence (hereafter, T F) of the

selected SEP events, in the case of STEREO and Helios, and for all events in the SREL. We

only calculate the fluences for the selected events of the STEREO and the Helios events list

because we use these data for the downstream analysis. In the case of SREL, all events are

needed for the implementation of the results to the SEPEM statistical model for interplanetary

missions (Pacheco et al., 2017b, Aran et al., 2017a). Finally, we point out that in the following

the number of an SEP event refers to the number of the event in the SREL list (Table A.4).

2.2.3.1 Background Subtraction

For the calculation of the fluence of a given event, it is necessary to remove the background (pre-

event) intensity level of a given energy channel, in order to account correctly for the fluence of

the SEP event at that energy. This is especially important for those profiles that reach low levels

of intensity above the background, since then most of the time-integrated intensity would be

accountable to the background.

In the case of the SEPEM RDSv2, we scanned the background intensity levels for the eleven

reference energies from 1988 to 2013. We determined that the background levels varied in

different periods of time, irrespectively whether the same GOES spacecraft was operating or

not. Therefore, we decided to compute the background intensities prior to the following set of

events: ’001’, ’003’, ’006a’, ’008’, ’010a’, ’012’, ’017’, ’019’, ’020’, ’027’, ’032’, ’043’, ’046’,

’053’, ’056a’, ’060’, ’061’, ’062’, ’064’, ’073’, ’077’, ’081a’, ’083’, ’084a’, ’086’, ’089’, ’093’,

’097’, ’106a’, ’116’, ’121’, ’125a’, ’130’, ’132a’, ’134’, ’135’, ’139a’, ’145a’, ’147a’, ’150’,

’157’, ’158’, ’161’, ’164’ and ’169’. Figure 2.3 shows two examples of the background levels

(i.e., pre-event intensities) computed, indicated by horizontal coloured lines. For each energy,

the background intensity is computed as the mean value of the intensity over the 24 hours prior

to the onset of the SEP event.

In several cases, we found that the intensity background levels after the end of the SEP

event were lower than those prior to the onset of the event. In these cases, the mean value of the

intensity was computed over 24 hours centred at the end time of the event; then, the lowest value

of the two computed background levels was chosen for that event and energy. Figure 2.4 shows

two examples for which the > 45 MeV intensity levels at the end of the event are smaller than

those computed prior to the onset of the event on 1989 March 6 (event 6a, the first enhancement

in the event number 6). As can be appreciated for the blue and purple energy channels in the

right panel of Figure 2.4, this correction might not work if another event starts right after the end

time of the next event. The events slightly affected by this issue are events 41e and 162b (in the

three higher energy channels) and events 128c and 139c (in the two higher energy channels). To

solve such situations, only the 12 hours prior to the end of the event should have been considered
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2.2 Event selection and fluence computation

FIGURE 2.3: Proton differential intensities from the SEPEM RDSv2 for the 1989 March 6 and
2011 March SEP 7 events. The dashed red vertical line marks the start time of the flare and the
black vertical line the time of the interplanetary shock passage. The grey shaded zone of the
proton intensity-time profiles marks the event’s upstream region (from the onset to the shock)

and the downstream region (from the shock to the end of the SEP enhancement).

FIGURE 2.4: Proton differential intensities from the SEPEM RDSv2 for the 1989 March 17
(right) and 10 (left) SEP events. Examples of different intensity levels prior to and after the

event.
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2 ANALYSIS OF GRADUAL SEP EVENTS

FIGURE 2.5: Examples of the level of intensities measured by the twin STEREO spacecraft
during quiet or low-activity periods. The left panel corresponds to STEREO-B observations
in April 2010 and the right panel to STEREO-A observations in August 2012. The horizontal
lines are the mean intensity values calculated over a day. The energy channels are coloured

coded as shown in the legends.

when computing the mean value. We left this for a further improvement of the algorithm due to

the tiny impact in computing the fluences of these events.

In the case of the STEREO and Helios data we proceeded differently when computing the

background levels due to the intensities observed. Figure 2.5 shows STEREO-B (left panel) and

STEREO-A (right) observations during quiet or low-activity periods in 2010 and 2012, respec-

tively. The left panel shows that, for some periods, the background levels coincide independently

of the energy of the particles, and/or that data presents gaps for extended periods of time. The

right panel shows a higher background level for 4.0 – 6.0 MeV protons prior to the September

1, but similar values for the energy range of the SEPEM data. Note also that, for example, the

background level of the 60 – 100 MeV channel is higher than that of the 40 – 60 MeV channel;

this could be due to the contribution of galactic cosmic rays not totally removed from the highest

differential channel. Considering the behaviour of the background levels over energies, and that

the smallest background level is approximately 10−4 [MeV cm2 sr s]−1 we took a conservative

approach4 by setting this value as a fixed background level, for all energies and for all analysed

events measured by the STEREO spacecraft.

We found a similar behaviour for the Helios observations. Proton intensities show numerous

data gaps in no-event times. For example, prior to the onset of the event on 1978 September

23 (not shown here), and the intensities show data gaps that prevent the calculation of the back-

ground level for this event. In other cases, the background levels coincide for protons in the

3.6 – 51 MeV range. Figure 2.2 shows two examples of events analysed. For the event on 1977

November 22 (left panel), there are no data gaps prior to the onset of the event and intensity

values coincide. At the end of the event on 1976 March 28 (right panel), the intensity levels

4The lowest values in the data set are > 9.0 × 10−5 [MeV cm2 sr s]−1.
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2.2 Event selection and fluence computation

coincide for the three higher energy channels. The corresponding average value is marked by

the dashed horizontal line shown in these plots. We used this value, 2.0×10−4 [MeV cm2 sr s]−1,

as the fixed background intensity value for all the selected Helios events (that occurred between

March 1976 and December 1982).

2.2.3.2 Filling of data gaps

In the three data sets, we found two kind of data gaps: (i) discontinuities in the temporal arrays

and (ii) 0 values, NaN values, or values denoting bad data in the intensity arrays. In order to

proceed to the calculation of the fluences, we first solved the (i) case, by enlarging the affected

temporal arrays with the same time step as the data set used. For example, in the case of the

SEPEM data, we added a point in the temporal array every 5 minutes, and filled the corre-

sponding value in the intensity arrays with NaNs, in order to facilitate the computation of the

background level.

Next, we treated the NaN values in the intensity arrays. When a NaN value was found, the

program kept the value of the intensity in the previous point and searched for the next finite

value. Then the program performed a linear interpolation with the logarithms of the intensity

values at the two limits of the NaN zone, and saved the interpolated intensity values in the

corresponding array. An example of the application of this algorithm is shown in the right panel

of Figure 2.3 for the higher energy intensities.

2.2.4 Computation of fluences

After the background subtraction and the construction of continuous arrays (in time and differen-

tial intensities), we proceed with the calculation of the fluences (UF, DF,T F). The integration

over time was performed in two ways: (i) a simple multiplication of the value of the intensity by

the temporal step of the data set used (in seconds) and (ii) by applying a 5-point Newton-Cotes

numerical integration algorithm. For this latter, we used the ‘int_tabulated.pro’ routine provided

by the IDL programming and visualisation data package. Since both computing methods lead

to similar values, we decided to continue further calculations with the second method. We want

to point out that for those events in SREL for which an interplanetary shock was not identified,

the UF and the T F coincide. Hence for these events, DF = 0.

2.2.5 Energy spectrum

STEREO and Helios proton data present energy channels different than the SEPEM RDSv2 en-

ergy channels. In order to compare the fluences derived from the various data sets, we fitted the

energy spectra of the fluences (T F, UF and DF) from the selected events observed by STEREO

and Helios spacecraft and extracted (or extrapolated) from the fittings the values corresponding
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2 ANALYSIS OF GRADUAL SEP EVENTS

FIGURE 2.6: Examples of the energy spectra fitting for the total fluence (blue), upstream flu-
ence (red) and downstream fluence (green). Left panel shows the 2012 May 26 SEP event and
the right panel the 2012 July 23 SEP event observed both by STEREO-A. Small circles mark
the fluence computed from observations and triangles mark the interpolated (solid symbols)
and extrapolated (empty symbols) values for the SEPEM reference energy channels. Lines
show the fittings performed for the total fluence (light blue), upstream fluence (mauve) and
downstream fluence (olive green). For additional information, the horizontal dashed lines mark

the fluence of background level set computed over the duration of the event.

to the mean energies of the SEPEM reference energy channels. Several methods to compute

the energy spectra were tested: power-law, exponential roll-over and Weibull functions. None

of them was applicable to all events in the analysis. Moreover, the Helios data presents only

three or four points at most for the fitting, which introduces clear uncertainties in deriving the

most appropriate spectrum shape. Note, that the Helios energy channels are wide, which ren-

ders difficult the identification of any roll-over energy. Therefore, we decided to the use two- or

three-points interpolation method to derive the values of the three fluences for each event.

Figure 2.6 shows the energy spectra of the 2012 May 26 SEP event (left) and the 2012 July

23 SEP event (right) observed both by STEREO-A. The T F, UF and DF values are marked in

blue, red and green, respectively. Small circles mark the fluence computed from observations

and triangles mark the interpolated and extrapolated values for the SEPEM reference energy

channels. Lines show the fittings performed for the T F (light blue), UF (mauve) and DF (olive

green). These two events show a different evolution of the energy spectra that differ from other

events, like the 2012 March 7 SEP event whose energy spectra follows a single power-law. For

both events, the UF is smaller than the DF at low energy, whereas at higher energies, the UF

is larger. Since the fittings are performed independently for the three fluences, we inspected the

events one by one and imposed that T F = UF + DF, for each energy, both for STEREO and

Helios observations.
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2.2.6 Downstream contribution and description of the analysis tool

Once the previous steps were performed, we quantified the relative contribution of DF to the T F

of an event as the Downstream-to-Total Fluence Ratio (hereafter, DTFR), DT FR = DF/T F.

In view of future extensions of the SREL, we developed a programme, named ‘sepem.pro’

that provides the fluences for all events in a given input SREL. Figure 2.7 shows the flow dia-

gram of this programme that comprehends all the steps described in the previous sections. The

programmes used for the STEREO and Helios data are similar to this one, but adapted to the

corresponding input data sets, and to the specific caveats of the data sets (i.e., in order to treat

the different types of the data gaps encountered).

The input files to the programs are two: (1) the ‘events.txt’ file, which is the SREL list, in

ascii format and (2) the file, ‘data_sepem.sav’, containing the provided version of the SEPEM

RDSv2. The main program calls several routines, that we outline here:

• ‘read_events.pro’ and ‘read_sepem_data.pro’ that read data from the ‘event.txt’ and the

‘data_sepem.sav’, respectively

• ‘fill_temporalgaps.pro’ that enlarges the arrays in case of missing time steps in the data.

• ‘backgroundmean.pro’, for each event computes the corresponding background intensity

levels to be subtracted.

• ‘fillnans.pro’, replaces NaN-values in the intensity arrays by interpolated intensity values.

• ‘set_time.pro’, provides the temporal array in string format ‘dd/mm/yyyy hh:mm’ for the

output file ‘input_for_radial_dependence_analysis.txt’.

The output files are two: ‘output_sepem.txt’ and ‘input_for_radial_dependence_analysis.txt’.

The first file is the input file used for the next analysis of the DTFRs as a function of the helio-

longitude of the parent event. It is an ascii file with columns that contain: the event/enhancement

number, the ratio of downstream-time duration over the total event duration, the energy channel,

the mean energy of the channel, the peak flux intensity, the T F, the UF, and the DF, the event

type (as shown in App. B), the DTFR, the background intensity, the longitude of the parent

source, the acceptance for the analysis and the type of solar wind. The second file contains

similar information but for all events in the SREL and with the addition of the start date and end

date of the event. Finally, the ‘sepem.pro’ program has the option of writing, in the two output

files, the information only for the events of the SREL selected for the downstream analysis.

2.3 Multi-spacecraft analysis

In this section we analyse those SEP events from the SREL and STEREO event lists, Ta-

bles A.1, A.2, A.3, that (i) are observed simultaneously at least by one of the STEREO spacecraft
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FIGURE 2.7: Flux diagram of the programme used to compute the fluences of the SEP events
contained in the SREL list.
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TABLE 2.2: List of the eight selected pairs of SEP events for the multi-spacecraft study
(top rows: near-Earth observations; middle rows: STEREO-A observations; bottom rows:
STEREO-B observations). We numbered the events from 1 to 25, and used letters to distin-
guish between different episodes inside the same event. We show, from left to right: the event
number; the start and end times of the enhancement; the latitude of the solar parent source
related to the SEP enhancement, being positive (negative) for northern (southern) latitudes; the
heliolongitude of this solar source, being positive (negative) for western (eastern) longitudes;
the observed flare start time (X-ray emission); the shock arrival time to the spacecraft; the solar
wind type, termed as ‘fast’ if vsw > 480 km s−1, and as ‘slow’ otherwise; and the flare class

according to the peak of the X-ray emission.

Event Start time End time Solar origin Solar Event Shock arrival Solar wind X-ray flare
(date & UT) (date & UT) Lat. Long. time (X-ray) time type class

Near-Earth observations - SEPEM data
Event 3 07/03/2011 20:10 13/03/2011 18:00 30 48 07/03/2011 19:43 10/03/2011 05:45 slow M3.7
Event 6 04/08/2011 04:34 08/08/2011 16:00 16 38 04/08/2011 03:40 05/08/2011 18:40 slow M9.3
Event 10 22/10/2011 10:30 26/10/2011 16:00 27 87 22/10/2011 10:00 24/10/2011 17:49 slow M1.3
Event 12 26/11/2011 07:30 30/11/2011 15:00 11 47 26/11/2011 06:09 28/11/2011 21:00 slow C1.2
Event 13-c 27/01/2012 18:00 03/02/2012 03:54 33 85 27/01/2012 17:37 30/01/2012 15:43 slow X1.7
Event 16 17/05/2012 02:05 21/05/2012 17:00 7 88 17/05/2012 01:25 20/05/2012 01:20 slow M5.1
Event 15-b 06/03/2012 23:30 13/03/2012 16:30 18 -31 07/03/2012 00:02 08/03/2012 10:53 slow X5.4
Event 22 01/09/2012 00:00 06/09/2012 16:00 -19 -42 31/08/2012 19:59 03/09/2012 11:21 slow C8.4

STEREO A
Event 3 07/03/2011 20:10 12/03/2011 07:20 23 -40 07/03/2011 19:43 09/03/2011 06:47 slow M3.7
Event 6 04/08/2011 04:34 09/08/2011 11:30 19 -63 04/08/2011 03:40 06/08/2011 12:42 slow M9.3
Event 10 22/10/2011 16:20 25/10/2011 18:45 39 -18 22/10/2011 10:00 25/10/2011 04:50 slow M1.3
Event 12 26/11/2011 07:30 30/11/2011 00:20 20 -59 26/11/2011 06:09 28/11/2011 14:50 slow C1.2
Event 13-c 27/01/2012 18:00 09/02/2012 07:59 30 -23 27/01/2012 17:37 29/01/2012 13:03 slow X1.7
Event 16 17/05/2012 02:05 22/05/2012 15:15 -3 -27 17/05/2012 01:25 18/05/2012 12:42 fast M5.1

STEREO B
Event 15-b 06/03/2012 23:30 13/03/2012 16:30 7 87 07/03/2012 00:02 08/03/2012 13:36 slow X5.4
Event 22 31/08/2012 20:30 08/09/2012 07:39 -8 74 31/08/2012 19:59 03/09/2012 07:11 slow C8.4

and in the SEPEM RDSv2 data, and (ii) for which the DF could be determined. The fact that the

events in the STEREO event list were initially selected from the SEPEM event list, and hence,

restricted to the period between January 2010 and March 2013, caused that in the spacecraft

configuration during the more active period studied, 2011-2012, STEREO-B was located too

eastward from the Earth to detect a relevant SEP enhancement in most of the events. Also, the

longitudinal separation between the two STEREO spacecraft was ∼180◦ in 2011 to ∼230◦ in

June 2012. These two facts establish a bias in favour of pairs of events simultaneously seen at

near-Earth and by one of the STEREO spacecraft (usually STEREO-A) to the detriment of those

events that might have been observed by the two STEREO spacecraft solely.

2.3.1 Event selection

Table 2.2 lists the eight pair of events fulfilling the above criteria. We found 6 events simulta-

neously detected by near-Earth spacecraft and STEREO-A and 2 by near-Earth spacecraft and

STEREO B. The numbering of the events and the information listed in Table 2.2 is the same as

in Tables A.1, A.2, A.3.
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2 ANALYSIS OF GRADUAL SEP EVENTS

In Figure 2.8 and in Figure 2.9, we respectively show an example of a discarded and of

a selected event. In the discarded instance, the SEP event detected at the near-Earth space

on 2012 September 28 started on the 28th at 00:20 UT, as can be seen in the SEPEM data

(left panel in Fig. 2.8). At the same time, STEREO-A detected an SEP enhancement that was

preceded by another enhancement associated by a previous CME on September 27 at 09:55 UT,

observed by the COR-1 coronagraph. This CME was accompanied with extreme ultraviolet

emission detected by EUVI of the SECCHI package (Howard et al., 2008) on board of the

STEREO spacecraft. This latter event was better connected to STEREO-A (W21) than to the

Earth (W146). The overlapping of the intensities from both SEP enhancements at STEREO-A

prevented from satisfactorily separate their contributions to the UF (see also Richardson et al.,

2014).

Figure 2.9 shows the SEP events on the 2012 January 27 observed by STEREO-A (left panel)

and near-Earth (right panel) that were selected for this multi-spacecraft study. The top middle

panel of Figure 2.9 presents the spacecraft configuration. As seen from the Sun, the shock was

directed slightly to the East of STEREO-A (E23), whereas for the near-Earth spacecraft, the

event was a west limb event (W85). The bottom middle panel shows the T F, UF and DF

energy spectra of the STEREO SEP event (see Sect. 2.2.5). At both spacecraft, the rising phase

of the profiles is clearly seen for E > 5 MeV, despite the event is preceded by high intensities, for

E < 40 MeV, due to the event on January 23. In the case of the near-Earth space, the upstream

and downstream regions are clean of other interplanetary structures. For the STEREO-A event,

there is another interplanetary shock (first vertical line in the left panel of Figure 2.9) prior

to the arrival of the main shock (second vertical line). This first shock does not modify the

intensity-time profiles of the particles at its crossing by STEREO-A, and the jumps registered in

the plasma data are small. For this reason, we kept the event in the present analysis and consider

the second as the main shock, to compute the UF and the DF. However, it is possible that this

shock may have acted as a barrier for the main interplanetary shock, enhancing the SEP event.

2.3.2 Fluence Analysis

For the selected eight pairs of events, we studied the variation of the T F and of the downstream-

to-total fluence ratios, DTFRs, with the heliolongitude of the events as seen from each space-

craft. In Figure 2.10, we show the total fluence [p/(cm2 MeV)], for two of the SEPEM reference

energies, 8.70 MeV (top) and 54.99 MeV (bottom), respectively, as a function of the heliolongi-

tude of the parent source with respect to the Sun-spacecraft line, in degrees. Eastern (western)

locations are negative (positive). Each pair of events are plotted with the same colour and la-

belled following the event numbers listed in Table 2.2. Fluences computed from STEREO ob-

servations are indicated with inverted triangles and fluences computed using SEPEM data with

diamonds. In this way, it is easy to compare the fluences for the two SEP events generated by the

same eruptive phenomena, but registered from spacecraft widely separated in longitude; thus,
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2.3 Multi-spacecraft analysis

FIGURE 2.10: Total Fluence variation with the heliolongitude for 8.7 MeV protons (top panel)
and for 54.99 MeV (bottom panel) protons. Diamonds indicate Total Fluence values derived
from SEPEM data, and inverted triangles from STEREO data. Events detected simultaneously

are indicated with the same colour.

meaning, that the magnetic connection to the particles source is established under different con-

ditions. As can be seen in Figure 2.10, there is not a clear trend of the total fluence as a function

of the heliolongitude of the solar parent event at the lower energies. At high-energies, in 6 out of

8 cases, the eastern events show fluences significantly smaller than their western counterparts.

Next, we analysed the contribution of the DF to the T F of each event. Figure 2.11 shows,

for the same energies and with the same format as the previous two figures, the derived DTFRs

as a function of the heliolongitude. In both cases, we can clearly see that the DTFRs are smaller

for the western events (positive values of the heliolongitude) than the DTFRs derived from the

eastern events (negative heliolongitude values). In order to quantify this variation, we computed

the mean DTFRs for the two groups of events that show their western counterparts clustered

around W45 (events 3, 6, and 12) and around W85 (events 13c, 15b and 16).
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2 ANALYSIS OF GRADUAL SEP EVENTS

FIGURE 2.11: Downstream-to-Total fluence ratio (DTFR) variation with the heliolongitude for
8.7 MeV protons (top panel) and for 54.99 MeV protons (bottom panel). Diamonds indicate
Total Fluence values derived from SEPEM data, and inverted triangles, from STEREO data.
Events detected simultaneously are indicated with the same colour. The mean DTFR values of
each group of events are marked by open circles. Vertical error bars mark the standard deviation

of the DTFRs. Horizontal bars indicate the angular separation of the grouped events.

Note that we discarded event 10 (2011 October 22) because the SEP event seen at STEREO-

A only shows an SEP enhancement for E < 26.3 MeV and in SEPEM data, for E < 31.62 MeV;

which prevents the analysis for all energies. In addition, we discarded event 22 (2012 Au-

gust 31) because the heliolongitude for STEREO-B was W74, slightly separated from the three

other western limb events and because the SEPEM data shows only an enhancement for E <

31.62 MeV with very irregular shape in the low-energy profiles. In their ICME list (http:

//www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm), Richard-

son and Cane identify signatures of an ICME passage from the 2012 September 1 at 06:00

UT to 2012 September 3 15:00 UT. A rotation in the polar angle of the magnetic field, indicates

the presence of such interplanetary structure, although its solar counterpart (the CME) is not
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2.3 Multi-spacecraft analysis

identified. Hence, the upstream region of this event is affected by the presence of this ICME,

and consequently, we decided not to include the event in the DTFRs analysis.

In order to compute the mean DTFRs values and their standard deviation, we used the log-

arithm of the total fluence of the events as a weighting factor. The total fluence of the events

is a measure of the size of SEP events. In statistical fluence models, like those available in the

SEPEM web server, larger events have a greater impact on the final results. Hence, in order to

be more accurate when implementing our study of the downstream region in the SEPEM statis-

tical SEP model for interplanetary missions, we biassed the mean values obtained toward larger

events. Note that although we give a higher weight to the larger events (which have less uncer-

tainty in their fluence values because intensities are well above background levels), by taking the

logarithm of the total fluence, we still consider the contribution of smaller events. Figure 2.11

shows the mean DTFRs values (open circles) obtained for the West-limb group (blue) and the

W45 group (cyan). Vertical error bars mark the standard deviation of the fluence ratios and the

horizontal bars indicate the angular separation of the three events in each group.

Owing to the small number of valid events found in our study, we faced a rather large disper-

sion in the DTFR values, especially for the eastern events. Figure 2.12 shows the weighted mean

DTFRs (solid circles) for 6 – 115 MeV protons. Energies are typified by colours and linked by

dashed lines, which indicate the general trend of the studied ratios: western observations yield a

lower DTFR than their eastern counterparts. That trend is shown by all studied energies and we

also find that the weighted mean DTFRs decrease with increasing proton energy. For the group

of events 3, 6, and 12 we do not show the average DTFRs for E > 54.99 MeV because the events

measured by STEREO-A do not show any particle enhancement in the highest energy channel

(60 – 100 MeV). Between the two eastern groups we find no significant difference in the mean

values of the fluence ratios. The same is true for the western groups with the exception of the

two lower energy channels, which show increasing DTFRs towards central meridian longitudes.

2.3.3 Summary

In this multi-spacecraft study we identified eight SEP events simultaneously detected by near-

Earth spacecraft and by one of the STEREO spacecraft and analysed the heliolongitudinal de-

pendence of the downstream contributions to the total fluence of the SEP events. For each pair

of events, we find that the western event has a smaller DTFR than its eastern counterpart. Also,

we find that the DTFRs decrease with the energy of the particles. For the two groups of events

established, the dependence of the DTFR with the heliolongitude varies from event to event,

within events of similar heliolongitude. For the two groups of events, we find no significant

difference in the mean values of the DTFRs between the two eastern groups as well as between

the two western groups.
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2 ANALYSIS OF GRADUAL SEP EVENTS

FIGURE 2.12: Weighted mean DTFRs and tendencies as a function of the energy. Mean
DTFRs derived for each group of events (solid circles) and for all energies (colour coded).

Error bars indicate the same as in previous figures.

The main conclusion of this multi-spacecraft study is that in the case of events originated by

the same solar activity, there is a variation of the DTFRs with the heliolongitude of the parent

event. The contribution of the downstream region fluence to the total fluence of the events is

larger for eastern cases than for western events.

2.4 Analysis of the Downstream-to-Total Fluence Ratios

After confirming that there exists a variation of the DTFRs with the heliolongitude of the parent

solar source in SEP events measured simultaneously by spacecraft located at different positions

in the heliosphere, we extended the study to the whole set of events observed at 1 AU and at

other radial distances from the Sun.

2.4.1 Longitudinal and radial variation

We started with the analysis of the distribution of the DTFRs as a function of the heliolongi-

tude for all events available at ∼1 AU. Figure 2.13 shows the DTFRs for 8.7 MeV protons; all

events shown are labelled with the event number indicated in the SREL (Table A.4), and in the

STEREO event lists (Tables A.2 and A.3). The events in SREL are indicated by using different

colours and symbols corresponding to the seven categories of events associated with shocks, fol-

lowing the SOLPENCO2 reference cases (see App. B). The DTFRs corresponding to STEREO

observations are indicated by red diamonds.
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FIGURE 2.13: Downstream-to-total Fluence Ratios for 1 AU SEP events and for 8.7 MeV
protons of SEP as a function of the heliolongitude of the associated main solar particle source.
Events in SREL are labelled with the corresponding event number and marked with different
symbols and colours according to SOLPENCO2 different event types (as indicated in the leg-
end). Events detected by the STEREO spacecraft are indicated by red diamonds and numbered
as in Tables A.2 and A.3. Sky blue open circles mark the weighted averaged ratios for the
longitude sectors delimited by black dashed vertical lines. The error bars mark the standard
deviations. The sky blue line is a polynomial fit to the average values, in order to show the

tendency followed by the DTFRs as a function of the heliolongitude.

The total number of events in this study is 168: 156 events from the SREL and 12 events

from the STEREO event list5.

The SOLPENCO2 model uses a grid of virtual observers placed at fourteen longitudinal po-

sitions with respect to the simulated interplanetary shock nose (Aran et al., 2011a). Since the

final objective is to include the results from this study into the radial dependences predicted by

SOLPENCO2, we initially considered longitudinal sectors limited by the fourteen angular posi-

tions of the model. The black dashed vertical lines in Figure 2.13 mark the limits of the angular

sectors considered (also indicated in Figure 2.14). The sky blue open circles are the weighted

mean DTFRs calculated as described in Section 2.3.2 and the vertical error bars indicate the
5After performing the whole analysis, we realised that the event 21c observed by STEREO-A was not included

in the analysis. This is the SEP event starting on 23 July 2012, associated with a central meridian source (W04).
Although this event is one of the largest in terms of fluence and peak intensity in the analysed period, given the
dispersion in the DTFRs around central meridian, its inclusion would not have changed the final results significantly
(see next section with the moving mean analysis). Note that for 8.7 MeV protons the DTFR for this event is 0.69,
close to events 60 and 100. This would imply that the mean ratio would have been higher, but only slightly because
in this set of events between W00 and W15, there are other large events, like the 128c (2003 October 29) and 86b
(2000 July 14) with lower DTFRs, 0.41 and 0.33, respectively.
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2 ANALYSIS OF GRADUAL SEP EVENTS

FIGURE 2.14: Number of events per longitudinal and heliocentric radial distance bins. Ex-
ternal red numbers correspond to events observed by spacecraft at ∼1 AU and the internal to
events measured by the Helios spacecraft from 0.3 – 0.6 AU. Blue numbers correspond to events
observed by the Helios spacecraft when located in the intermediate region. Black solid circles
mark the angular position of the near-Earth spacecraft with respect to the solar source for the
reference events simulated with SOLPENCO2. The IMF lines connecting these observers with
the Sun, following a Archimedean spiral geometry, are shown in sky blue(orange) for slow(fast)

solar wind conditions.

standard deviation of the mean values. Owing to the large spread of the values of the DTFRs,

the error bars are large, especially for SEP events with sources originating from central meridian

and eastern solar sites. The number of events used to obtain the mean value for each sector is

indicated at the top of Figure 2.13. In order to show the tendency of the DTFRs with the heli-

olongitude, we fitted a polynomial to the mean values the angular sectors, between ∼E78 and

W80 longitudes (solid sky blue line in Fig. 2.13). In addition, instead of using the angular bins

of SOLPENCO2, we computed the average values of the DTFRs by constructing angular bins

with equal number of events. Both methods yielded similar results.

Figure 2.14 shows the longitudinal sectors into which we divided the ecliptic plane. We

shifted the heliolongitude positions to a reference frame where the spacecraft is positioned at

different longitudes with respect to the flare or the direction of the shock-nose, which is fixed

at 0◦. In this way, eastern events are seen by spacecraft placed in the top left quadrant of
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Figure 2.14, and western events are seen by spacecraft in the right quadrants. Concentric dashed

circles mark the heliocentric distance boundaries that we established to study the DTFRs of

events measured at different radial distances, 0.3 – 0.6 AU, 0.6 – 0.85 AU and ∼1 AU (i.e., 0.96 –

1.09 AU). The number of events found for each longitudinal sector and radial ring are indicated

in the plot (in blue for events observed by Helios between 0.6 – 0.85 AU and in red for events

observed at the other heliocentric radial distances)6. The most eastern sector covers from −65◦

to −180◦ and the last sector in the western heliolongitudes spans from 85◦ to 180◦. From this

figure, one can easily notice that there is a scarce number of events between 0.3 – 0.85 AU

for eastern longitudes between −15◦ and −65◦, and for > 55◦ in the west. We want to point

out that the number of events shown in Figure 2.14 corresponds to the largest number possible

(corresponding to 8.7 MeV protons); the situation worsens for higher energy channels, since the

number of events showing particle enhancements decreases with the energy of the particles.

The DTFRs corresponding to the events observed by the Helios spacecraft, at 8.7 MeV,

are listed in Tables 2.3 and 2.4 together with the corresponding DTFRs derived from 1 AU

observations. DTFRs are shown for the first seven SEPEM standard energy channels which

encompass the actual energy range of the E6 particle experiment of the Helios spacecraft. Due

to the small number of events seen by Helios that could be selected for the analysis of the DF,

we used wider longitudinal bins than in the case of 1 AU observations. As can be seen, standard

deviations are large for most of the longitudinal bins (or sectors) and for the two regions (in

radial distance) because of the small number of events in each bin; some of these sectors contain

less than 2 events. In spite of the reduced number of events, that prevents the inference of any

statistical meaningful quantification of the variation of the DTFRs, it is found, qualitatively, that

the eastern events tend to show larger DTFRs than western events also for distances < 0.85 AU.

Moreover, note that DTFRs are roughly constant with the radial distance for the majority of

angular sectors and energies.

The left graph of Figure 2.15 shows the values of the mean DTFRs derived from all studied

events, per longitudinal sector and for 8.7 MeV protons. The corresponding standard deviations

are shown in the right panel. Owing to the values of the associated standard deviations, the

mean DTFRs found show a roughly constant value with the radial distance, specially in the

case of western events. For eastern events between 0◦ to 55◦ the mean values of the DTFRs

show a slight increase with the heliocentric radial distance of the observers. In the case of far

eastern events, the DTFR mean ratios show a slight increase for decreasing radial distances, at

this energy.

In Figure 2.14 and Figure 2.15, we also show the position of the near-Earth spacecraft for

the reference SEP events modelled with SOLPENCO2 (see App. B and Aran et al., 2017a, for

further details) marked by black solid circles along the dashed circumference at 1 AU. The blue

6We added the event 94 to the study; thus, in the 1 AU W00 to W15 sector, we have 16 events instead of the 15
indicated in Figure 2.14.

45
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FIGURE 2.15: Sector-averaged DTFRs for 8.7 MeV protons (left graph) and corresponding
standard deviations (right graph). Format is the same as in Figure 2.14.

TABLE 2.3: Downstream-to-total fluence mean ratios and standard deviations as a function of
the heliolongitude (in degrees) and proton energy.

Energy Distance Downstream-to-total fluence ratios per longitudinal sector
[MeV] [AU] [-180,-65) [-65,-55) [-55,-45) [-45,-35) [-35,-25) [-25,-15) [-15,0) [0,15)

6.01 1 0.74 ± 0.27 0.58 ± 0.31 0.63 ± 0.17 0.74 ± 0.31 0.72 ± 0.26 0.63 ± 0.26 0.64 ± 0.23 0.45 ± 0.25
0.6 – 0.85 0.92 ± 0.02 0.51 ± 0.31 0.16 ± 0.06 0.40 ± 0.00

0.3 – 0.6 0.90 ± 0.13 0.44 ± 0.36 0.17 ± 0.15 0.23 ± 0.14
8.70 1 0.73 ± 0.28 0.52 ± 0.32 0.57 ± 0.19 0.72 ± 0.32 0.67 ± 0.27 0.59 ± 0.25 0.59 ± 0.24 0.38 ± 0.22

0.6 – 0.85 0.87 ± 0.05 0.49 ± 0.32 0.11 ± 0.02 0.27 ± 0.00
0.3 – 0.6 0.89 ± 0.16 0.39 ± 0.32 0.15 ± 0.13 0.22 ± 0.14

12.58 1 0.71 ± 0.28 0.47 ± 0.32 0.49 ± 0.19 0.68 ± 0.32 0.61 ± 0.28 0.54 ± 0.23 0.54 ± 0.25 0.30 ± 0.20
0.6 – 0.85 0.81 ± 0.08 0.48 ± 0.32 0.09 ± 0.00 0.19 ± 0.00

0.3 – 0.6 0.87 ± 0.19 0.35 ± 0.29 0.13 ± 0.10 0.22 ± 0.13
18.18 1 0.71 ± 0.28 0.41 ± 0.31 0.39 ± 0.15 0.64 ± 0.32 0.55 ± 0.28 0.48 ± 0.22 0.49 ± 0.25 0.24 ± 0.18

0.6 – 0.85 0.74 ± 0.14 0.47 ± 0.32 0.07 ± 0.02 0.13 ± 0.00
0.3 – 0.6 0.86 ± 0.23 0.31 ± 0.25 0.11 ± 0.09 0.22 ± 0.13

26.30 1 0.72 ± 0.26 0.38 ± 0.28 0.35 ± 0.13 0.61 ± 0.30 0.52 ± 0.27 0.46 ± 0.18 0.43 ± 0.24 0.23 ± 0.16
0.6 – 0.85 0.65 ± 0.21 0.47 ± 0.32 0.05 ± 0.02 0.09 ± 0.00

0.3 – 0.6 0.84 ± 0.28 0.28 ± 0.23 0.09 ± 0.07 0.22 ± 0.12
38.03 1 0.70 ± 0.27 0.41 ± 0.23 0.24 ± 0.08 0.57 ± 0.28 0.48 ± 0.27 0.44 ± 0.11 0.42 ± 0.24 0.21 ± 0.15

0.6 – 0.85 0.56 ± 0.25 0.40 ± 0.26 0.06 ± 0.03 0.05 ± 0.00
0.3 – 0.6 0.84 ± 0.26 0.18 ± 0.13 0.08 ± 0.07 0.26 ± 0.14

54.99 1 0.60 ± 0.28 0.29 ± 0.17 0.07 ± 0.00 0.52 ± 0.31 0.38 ± 0.16 0.36 ± 0.07 0.36 ± 0.24 0.20 ± 0.16
0.6 – 0.85 0.51 ± 0.25 0.29 ± 0.19 0.07 ± 0.04 0.03 ± 0.00

0.3 – 0.6 0.85 ± 0.23 0.11 ± 0.05 0.07 ± 0.07 0.26 ± 0.14
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TABLE 2.4: Downstream-to-total fluence mean ratios and standard deviations as a function of
the heliolongitude (in degrees) and proton energy.

Energy Distance Downstream-to-total fluence ratios per longitudinal sector
[MeV] [AU] [15,30) [30,45) [45,55) [55,65) [65,75) [75,85) [85,180)

6.01 1 0.26 ± 0.23 0.22 ± 0.20 0.15 ± 0.13 0.18 ± 0.17 0.12 ± 0.12 0.16 ± 0.14 0.15 ± 0.17
0.6 – 0.85 0.30 ± 0.20 0.19 ± 0.16 0.27 ± 0.32

0.3 – 0.6 0.44 ± 0.38 0.12 ± 0.03 0.15 ± 0.09
8.70 1 0.22 ± 0.20 0.17 ± 0.16 0.14 ± 0.12 0.14 ± 0.15 0.09 ± 0.11 0.12 ± 0.11 0.12 ± 0.15

0.6 – 0.85 0.26 ± 0.16 0.13 ± 0.10 0.24 ± 0.30
0.3 – 0.6 0.39 ± 0.34 0.11 ± 0.03 0.12 ± 0.07

12.58 1 0.18 ± 0.18 0.12 ± 0.13 0.12 ± 0.11 0.10 ± 0.14 0.07 ± 0.11 0.10 ± 0.09 0.10 ± 0.13
0.6 – 0.85 0.21 ± 0.13 0.09 ± 0.07 0.21 ± 0.28

0.3 – 0.6 0.35 ± 0.30 0.11 ± 0.03 0.10 ± 0.07
18.18 1 0.15 ± 0.16 0.09 ± 0.11 0.19 ± 0.22 0.09 ± 0.14 0.03 ± 0.04 0.09 ± 0.08 0.09 ± 0.11

0.6 – 0.85 0.17 ± 0.10 0.06 ± 0.05 0.19 ± 0.25
0.3 – 0.6 0.31 ± 0.26 0.10 ± 0.03 0.09 ± 0.08

26.30 1 0.14 ± 0.15 0.08 ± 0.09 0.19 ± 0.20 0.08 ± 0.15 0.03 ± 0.03 0.09 ± 0.08 0.09 ± 0.10
0.6 – 0.85 0.14 ± 0.07 0.05 ± 0.04 0.16 ± 0.22

0.3 – 0.6 0.28 ± 0.23 0.10 ± 0.03 0.08 ± 0.08
38.03 1 0.12 ± 0.14 0.06 ± 0.08 0.20 ± 0.18 0.08 ± 0.16 0.03 ± 0.03 0.09 ± 0.08 0.08 ± 0.09

0.6 – 0.85 0.12 ± 0.06 0.06 ± 0.07 0.15 ± 0.22
0.3 – 0.6 0.23 ± 0.19 0.11 ± 0.04 0.07 ± 0.08

54.99 1 0.12 ± 0.14 0.05 ± 0.06 0.22 ± 0.16 0.08 ± 0.17 0.03 ± 0.02 0.08 ± 0.08 0.07 ± 0.06
0.6 – 0.85 0.11 ± 0.07 0.09 ± 0.12 0.15 ± 0.22

0.3 – 0.6 0.18 ± 0.13 0.12 ± 0.04 0.07 ± 0.09

(orange) lines indicate the magnetic connection of the spacecraft with the Sun for a nominal IMF

configuration, for the slow (fast) solar wind conditions7. The synthetic intensity-time profiles

of these reference events are provided by SOLPENCO2 for virtual observers located at 0.2, 0.4,

0.6, 0.8, 1.0, 1.3 and 1.6 AU along the IMF lines connecting the 1 AU observer with the Sun,

i.e. along the IMF lines plotted in Figure 2.14. Note, that as we move inwards starting from 1

AU along the IMF lines, the heliolongitude of the observers changes towards eastern locations

because of the IMF curvature. For instance, in the case of the E23 event on 24 September 2001,

the blue IMF line starts at the (−15◦,−25◦) sector at 1 AU and ends, at 0.2 AU, in the last eastern

sector, that shows a larger value of the DTFRs, which in turn is roughly the same as if the

observer had kept moving at 1 AU towards the last eastern sector; and hence, the longitudinal

movement along 1 AU is similar to the radial movement along the IMF line (within error bars).

Then, from this first evaluation, we obtain the same tendency of the variation of the DTFRs

with the longitude and the energy as for the six SEP events of the multi-spacecraft study in the

previous section (Sect. 2.3.2). For the events in the SREL and STEREO lists, we obtain that the

mean values of the DTFRs, when grouping the events into 15 intervals in longitude, increase

towards eastern heliolongitudes and decrease with the energy of the protons, in spite that the

standard deviations found are large. On the other hand, for the events detected by the HELIOS

7The solar wind speeds used to calculate the magnetic connection are vsw = 365 km s−1 for the slow solar wind
and vsw = 595 km s−1 for the fast solar wind (Aran et al., 2011a).
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spacecraft (19 events within 0.3 – 0.6 AU and 22 events within 0.6 – 0.85 AU), the small number

of events prevents us from drawing significant quantitative conclusions, but indicates that the

DTFRs increase with heliolongitude and keep roughly constant (that is, approximately within

error bars) with the heliocentric radial distance.

In conclusion, given that Helios data only permits us to extract qualitative information on

how the DTFRs vary with the heliolongitude and with the radial distance, and that the qualitative

variation derived coincides with the tendency shown by the 1 AU data, we finally decided to use

the tendency in heliolongitude inferred from 1 AU data, which is based on a larger number of

events, to describe the radial dependence of the downstream fluence of the events in the SREL.

This decision is based on: (i) The DTFRs variation with the radial distance is meant to be

used in the predictions of the dependence of the T F of the events with the radial distance pro-

vided by SOLPENCO2. (ii) This model provides the radial dependences for virtual spacecraft

located at different radial distances but along the same IMF line; thus, sharing the same nominal

magnetic connection with the shock front, as it propagates away from the Sun, and consequently,

sharing the same particle source injection function for the accelerated protons escaping from the

shock front. And (iii), our study clearly indicates that the relative contribution of the downstream

portion of the proton intensity-time profiles to the total fluence of SEP events mainly depends

on the longitudinal separation of the spacecraft with respect to the direction of the propagation

of the associated interplanetary shock.

For instance, for the reference event of Type 2c (see App. B), the 6 March 1989 SEP event

(represented by the black solid circle located in the most eastern sector in Figure 2.14), the

radial dependence of the total fluence (equal to the radial dependence of the UF in the first

version of SOLPENCO2) was R+1.26 and R+1.87 for 8.7 MeV and 26.3 MeV, respectively. With

the proposed method and following the polynomial fit shown in Figure 2.13 (i.e., translating the

decreasing heliocentric distance of the virtual observers with the longitudinal translation along

the IMF line towards eastern locations), the radial dependence of the T F for this event would

be, R+0.70 and R+0.44 for 8.7 MeV and 26.3 MeV, respectively.

2.4.2 Results: longitudinal variation of the DTFRs for SOL2UP

Following the main conclusion of the analysis performed in the previous section, we further

investigated the variation of the DTFRs with the heliolongitude of the particle source for the

SEP events at 1 AU.

By considering the large dispersion of points in each angular sector (see, e.g., Fig. 2.13), we

changed the methodology employed to obtain the mean DTFR values. We applied a moving

mean technique in which the lowest and the highest values of the selected sub-set (or moving

window) of data are discarded in the calculation of the mean DTFR value. As in previous

sections, the mean values are weighted considering the total fluence of the events. We tested
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moving windows of 3, 5, 7, 9 and 11 points. The best results for all energies are obtained when

using an 11-points moving mean for 1 AU data. Figure 2.16 shows the resulting mean DTFR

values (red open circles) and standard deviations (red error bars) for 8.7 MeV proton fluences.

The larger mean DTFR values are obtained for the eastern heliolongitudes. At central merid-

ian, around W05, there is a steep decrease of the values of the mean DTFRs (Fig. 2.16). This

feature is observed for E < 79.53 MeV and may be related to the efficiency of the interplanetary

shock in accelerating, injecting and/or trapping (both in the sheath and the downstream regions)

protons up to these energies, that are only measured once the shock has crossed 1 AU.

In order to derive an overall variation with the heliolongitude, we fitted polynomials of differ-

ent orders (3rd, 4th, 5th, and 8th) to the mean DTFR values. None of them fitted well solely the

tendency shown by the mean ratios for all energies. We tried a combination of polynomials in-

stead, and fixed, in heliolongitude, the range of applicability of these polynomials between 90◦

(west limb) and the most eastern mean heliolongitude (which varies with the particle energy,

depending on the available observations). The main reason for choosing such heliolongitude

ranges is twofold: (i) Most of the events were detected prior to the STEREO era; hence, the so-

lar source sites determined off the limbs have a larger uncertainty because they were estimated

from considering the time elapsed between a given active region disappeared (in the case of the

west limb) and the eruptive phenomena occurred, or the time elapsed since the active region

appeared (by the eastern limb) after the eruptive phenomena was detected. (ii) To avoid the di-

vergences of the polynomials in the extreme longitudinal values. For far eastern heliolongitudes

and for western heliolongitudes > 90◦, we assumed for the DTFRs constant values equal to the

values obtained from the polynomial fits.

The black line in Figure 2.16 corresponds to a polynomial obtained by adding the 3rd, 4th and

5th polynomial fits and the grey line corresponds to the addition of 3rd and 8th order polynomial

fits. The mean DTFRs and the resulting combination of polynomials for 6.01 MeV, 18.18 MeV,

54.99 MeV and 115 MeV protons are shown in the corresponding figures of Section C.1 in

Appendix C. The figures for the remainder SEPEM energy references are given in Pacheco et al.

(2017b). For E ≥ 54.99 MeV, both combined polynomials yield similar curves; but for the lower

energies, the latter combination reproduces better the behaviour of the DTFRs for the eastern

heliolongitudes.

Hence, we conclude that the tendency curves derived from the combination of the 3rd and 8th

order polynomial fits better describe the variation of the DTFRs of the SEP events at 1 AU with

the heliolongitude, and we finally implement this result into the modelled fluence predictions by

SOLPENCO2.

For completeness, we applied the moving mean technique to the DTFRs derived from Helios

data. In this case, among the tested options, the 7-points moving window yielded better fits to

the mean values. Figure 2.17 displays the moving mean DTFRs (red open circles) and standard

deviations (vertical error bars), for 8.7 MeV fluences, and for 0.6 – 0.85 AU (top panel) and for
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2.4 Analysis of the Downstream-to-Total Fluence Ratios

FIGURE 2.17: DTFRs for 8.7 MeV of the events detected at 0.6 – 0.85 AU (top panel) and at
0.3 – 0.6 AU (bottom panel) (labels indicate the event number) as a function of the heliolon-
gitude. Red open circles and error bars correspond to the moving mean values and standard
deviations. The black thick line corresponds to the polynomial fit applied to the mean DTFR

values, as explained in the text.

51



2 ANALYSIS OF GRADUAL SEP EVENTS

0.3 – 0.6 AU (bottom panel). Black thick curves correspond to the addition of a 3rd, 4th and

5th order polynomials fits. In contrast to 1 AU data, the DTFRs of eastern events do not show

a ’plateau’ after the increase at central meridian locations. For this reason, in this case, we did

not show the combination of the 3rd and 8th order polynomial fits. It is likely, however, that the

tendency of the DTFRs differs from the 1 AU data due to the scarce number of events measured

by Helios that could be considered in the analysis. Similar figures but for 6.01 MeV, 18.18 MeV,

54.99 MeV and 115 MeV protons can be found in Sections C.1.1 and C.1.2 in Appendix C. The

figures for the remainder SEPEM reference energies can be found in Pacheco et al. (2017b).

As concluded in the previous section, in order to determine the DTFRs at other radial dis-

tances, we used the polynomials derived from data at 1 AU, and assumed therefore that the

longitudinal dependence of the DTFRs is more important than the radial dependence.

The virtual observers away from 1 AU used in SOLPENCO2 are placed along the same

IMF line as the observer at 1 AU. Therefore, as shown before, it is possible to translate the

dependence of the DTFR determined at 1 AU by using the angular separation between a given

virtual observer and the observer at 1 AU provided by the bending of the IMF. This separation

will depend on the solar wind speed detected for each event. In the SREL (Table A.4), the solar

wind is classified as ‘fast’ or ‘slow’ or ‘not determined’, being the threshold value defining the

first two categories vsw = 480 km s−1. In order to consider these three solar wind scenarios,

we took the same solar wind speeds used to model the interplanetary shocks propagation in the

‘slow’ and ‘fast’ cases, vsw = 365 km s−1 and vsw = 595 km s−1, respectively (Aran et al.,

2011a). For the ‘not determined’ cases, we have taken the threshold value for the solar wind

speed.

Figure 2.18 illustrates, for the 8.7 MeV reference energy, the translation of the 1 AU tenden-

cies to the other radial distances. The mauve, violet and purple lines in Figure 2.18, show the

grey 1-AU polynomial fit shown in Figure 2.16, translated to a heliocentric radial distance of

r = 0.725 AU (top panel) and of r = 0.45 AU (bottom panel), for the three solar wind options,

over-plotted into the corresponding panels of Figure 2.18. Tendency lines derived for the fast

solar wind are the curves with the smallest displacement in longitude (mauve curves) and those

for the slow solar wind are the lines showing the largest displacement (purple curve). Tendency

lines for the intermediate solar wind lie between the other two (violet curves). The comparison

for 6.01 MeV, 18.18 MeV, 54.99 MeV and 115 MeV protons is shown in Section C.1.1 for 0.6 –

0.85 AU and Section C.1.2 for 0.3 – 0.6 AU. The comparisons for the remainder energies can be

found in Pacheco et al. (2017b).

The 1 AU derived curves are similar to those derived from the Helios data, and reside within

the error bars of the mean DTFRs, with the exception of two points residing in the eastern

longitudes of the 0.6 – 0.85 AU region (see top panel of Fig. 2.18). The same is true for the

remaining energy channels, being better the comparison for the higher energies.
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FIGURE 2.18: DTFRs for 8.7 MeV of the events detected at 0.6 – 0.85 AU (top panel) and at
0.3 – 0.6 AU (bottom panel) (labels indicate the event number) as a function of the heliolon-
gitude. Red open circles and error bars correspond to the moving mean values and standard
deviations.The black thick lines correspond to the polynomial fits applied to the mean DTFR
values, as explained in the text. Tendency lines derived from 1 AU data for the three solar wind
speeds are shown for comparison: mauve lines correspond to the fast solar wind case, violet

lines to the intermediate solar wind speed, and purple lines to the slow solar wind.
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2.4.3 Implementation and impact of the results

In conclusion, we use the polynomial fits (3rd+8th order combination) derived from 1 AU data

to characterise the variation of the DTFRs for the virtual observers located away from 1 AU. In

order to compute the T F away from 1 AU of a given the SEP event in SREL, we vertically trans-

late the tendency curve found, to match the observed DTFR value at 1 AU at the heliolongitude

of the event, and then apply the corresponding angular displacement given by the bending of the

IMF line to each of the other radial positions, following the general tendency curves derived.

That is, we assume that the polynomial fits represent the "Average Variation" with heliolongi-

tude, and apply the same tendency for all events, starting from the observed DTFR value at the

observed heliolongitude. The maximum value allowed for a DTFR is set to 0.99.

This procedure to add the contribution of the DF to obtain the T F of each SEP enhancement

in SREL is outlined as follows:

1. For a given SEP event, the heliolongitude of the parent source, the type of solar wind, and

the UF and DF for the eleven SEPEM reference energies is specified.

2. Next, the difference between the value of the DTFR obtained from the polynomial fit de-

rived at 1 AU and the observed DTFR value for that particular SEP event, ∆R, is computed

for each reference energy.

3. For the corresponding solar wind type, we compute the longitudinal displacement for each

of the seven virtual observers placed along the same IMF line as the observer at 1 AU and

located at heliocentric radial distances of 0.2, 0.4, 0.6, 0.8, 1.0, 1.3 and 1.6 AU. With

this, we obtain the corresponding DTFR values from the polynomial fits, and in turn, the

DTFRs as a function of the heliocentric distance, r.

4. For each energy, we add to the DTFRs(r) found in the previous step the increment ∆R

found in step 2, in order to match the observed and derived DTFR value at 1 AU.

5. Next, we look for DTFRs larger than 0.99 and set those values to 0.99 (this is the largest

value allowed, otherwise we could not distinguish between upstream and downstream

regions) and in case of finding negative value for any DTFR, this is set to 0.

6. Finally, the UF(r) values for each of the virtual observers are multiplied by the corre-

sponding DTFRs(r) to obtain the total fluence of the event as a function of the heliocentric

distance and for each energy. Note that UF(r) values are obtained using the heliocentric

radial distance power-laws derived in Aran et al. (2017a) and shown in Appendix B for

the corresponding reference event.

This procedure is part of the software developed in the frame of the SOL2UP project that

calculates the peak intensity and the total fluence of the SEP events in SREL (Table A.4). The
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outputs finally implemented into the SEPEM statistical SEP model for interplanetary missions

are the ratios to the observed values at 1 AU of the peak intensities and total fluences, for the

seven virtual observers and for the eleven reference proton energies, and for all SEP events

classified in SREL.

In order to illustrate the impact of the DTFRs in the radial dependence of the T F of the SEP

events, we show here the radial dependences obtained in the scope of the SOL2UP project for

some of the events in the SREL.

Figure 2.19 shows the results obtained for the 1989 March 6 SEP event, which is the reference

event of low-energy far eastern events in SREL, Type 2c. In the left panel the values of the UF

obtained from the simulated intensity-time profiles by SOLPENCO2 (Aran et al., 2017a) for

each of the virtual spacecraft located at the selected radial distances, for 6.01 MeV (orange

circles), 18.18 MeV (blue circles) and 79.53 MeV (purple circles). The corresponding power-

law radial dependences derived are indicated by the dashed lines and the radial indices are

provided in the legend, using the colour code.

In the previous version of SOLPENCO2, the DTFR determined at 1 AU was kept constant

for all radial distances, and hence the radial dependence of the T F was equal to the radial

dependence of the UF. The right panel of Figure 2.19 shows the radial dependence of the T F as

derived now, after implementing the DTFRs obtained by the work presented in this dissertation.

Since this is an E69 event, and it developed on slow solar wind conditions, the effect of the

contribution of the downstream region to the radial dependence of the T F is large. The positive

radial index at low-energies for the upstream fluence translates into an almost flat dependence

in the total fluence. For higher energies, the radial dependence softens significantly.

FIGURE 2.19: Type 2c. 1989 March 6 SEP event. Top panels: Radial dependence of the
upstream fluence (left) and total fluence (right) for three different proton energies, 6.01 MeV

(orange), 18.18 MeV (blue) and 79.53 MeV (purple).

55



2 ANALYSIS OF GRADUAL SEP EVENTS

Finally, we show the impact for one of the categories containing the largest events (in terms

both of peak intensity and fluence) in SREL, the Type 4a-np events. This category contains the

four largest events not showing a prompt component in their high-energy intensity-time profiles.

The results for the Type 4a-p events are shown in Appendix D.

For each event shown, the comparison between the left and the right panels highlights the

variation of the radial dependences found for the total fluence of the events with respect to the

previous results obtained during the SEPEM project. The format of the figures is the same as in

Figure 2.19.

FIGURE 2.20: Type 4a-np reference event. 2001 September 24 SEP event. Radial depen-
dence of the upstream fluence (left) and total fluence (right) for three different proton energies,

6.01 MeV (orange), 18.18 MeV (blue) and 79.53 MeV (purple).

For the reference case, that occurred under fast solar wind conditions, the positive radial

dependences obtained for the UF are softened to a flat radial dependence for the low-energies

in the case of the T F and kept positive for the higher energies due to the lower contribution of

the DF. For the remaining three events the radial dependencies vary as shown in Figures 2.20,

2.21, 2.22 and 2.23.

We want to note that for the events belonging to the same event type, the UF radial depen-

dences are the same. This is the result of the assumption made for the DTFRs in the previous

version of SOLPENCO2. In contrast, now, different radial dependences of the T F are obtained

for each event, as shown in the right panels of Figures 2.20, 2.21, 2.22 and 2.23.

2.5 Conclusions

In this chapter, we have presented the results from the analysis of the post-shock fluence from

selected events observed by near-Earth spacecraft and the STEREO spacecraft at 1 AU, and by

the Helios spacecraft at heliocentric radial distances between 0.3 AU and 0.85 AU. We described
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FIGURE 2.21: 1989 August 12 SEP event. Radial dependence of the upstream fluence (left)
and total fluence (right) for three different proton energies, 6.01 MeV (orange), 18.18 MeV

(blue) and 79.53 MeV (purple).

FIGURE 2.22: 1991 March 23 SEP event. Radial dependence of the upstream fluence (left)
and total fluence (right) for three different proton energies, 6.01 MeV (orange), 18.18 MeV

(blue) and 79.53 MeV (purple).

the various data sets used in the analysis and the three event lists compiled. Next, we have shown

the tasks performed for the calculation of the upstream (pre-shock), downstream (post-shock)

and total fluences of the events: the selection of the events for the study, the analysis of the

pre-event background intensity levels to be subtracted, the treatment of the different data gaps

encountered and the energy spectra fits to the STEREO and Helios fluences. Then we described

the coded software used to compute the downstream-to-total fluence ratios for the events in

the updated reference event list (SREL) of the SEPEM statistical SEP model for interplanetary

missions.
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FIGURE 2.23: 2012 March 7 SEP event. Radial dependence of the upstream fluence (left) and
total fluence (right) for three different proton energies, 6.01 MeV (orange), 18.18 MeV (blue)

and 79.53 MeV (purple).

Afterwards, we performed a multi-spacecraft study of SEP events to determine whether there

exists a variation of the downstream fluence of these SEP events with the heliolongitude of

their parent solar source. From the eight pairs of events simultaneously detected by near-Earth

spacecraft and by one of the STEREO spacecraft, we found that the downstream-to-total fluence

ratios do vary with the heliolongitude. Eastern events show higher DTFRs ratios than their

western counterparts.

The extension of the study to 168 events observed at 1 AU permitted us to quantify the

variation of the DTFRs with the heliolongitude, by fitting polynomials to the moving mean

values of these ratios. Moreover, the number of events observed by the Helios spacecraft at

heliocentric radial distances between 0.3 AU and 0.85 AU that were suitable for the downstream

fluence analysis is small, yielding large uncertainties in the mean values found for the DTFRs.

However, the same trend is found as for the 1 AU data: eastern events tend to show higher

DTFRs ratios than western events. On the other hand, we find that the mean DTFRs are roughly

constant with the heliocentric radial distance (within errors). Consequently, we use the fits

obtained from the better statistics gathered from 1 AU observations to determine the evolution

of the downstream-to-total fluence ratios with the heliolongitude.

Considering that, for a given event, SOLPENCO2 provides predictions for spacecraft located

at different radial distances but along the same IMF line, we can translate the variation in helio-

longitude (provided by the curvature of the IMF line) of these spacecraft to a radial variation of

the DFTRs. Therefore, we used the polynomial fits (3rd+8th order combination) derived from

1 AU to characterise the variation of the DTFRs for the virtual observers located away from 1

AU. In the implementation of these results into the total fluence computation of the SREL events

for distances away from 1 AU, we vertically translated the tendency curve found, to match the
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observed DTFR value at 1 AU for each event. Next, we applied the corresponding angular dis-

placement to the radial distances considered, by following the general tendency curves derived.

That is, we assumed that the polynomial fits derived represent the "Average Variation" with he-

liolongitude, and applied the same tendency for all events, starting from the observed DTFR

value at the observed heliolongitude.

Finally, our results were implemented into the SEPEM statistical SEP model for interplan-

etary missions, for all events in the SREL. The resulting radial dependences of the T F vary

from event to event thanks to the contribution of the downstream fluence modelled in this

work. We have shown that strong positive radial dependences of the T F provided previously by

SOLPENCO2 for eastern events are now softened. The same is true for the radial dependence

of the T F of the largest events in SREL. In Chapter 5, we illustrate the impact of these results

on the SEPEM statistical model by simulating the Solar Orbiter mission orbit.
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Chapter 3

Electron events observed over a
narrow range of heliolongitudes

3.1 Introduction

We studied two consecutive solar near-relativistic electron events observed by the Solar Electron

Proton Telescope (SEPT, Müller-Mellin et al., 2008) on board STEREO A and STEREO B on

2014 August 1, when the longitudinal separation between the two spacecraft was of only ∼35◦

(Klassen et al., 2016). The approach of the STEREO mission to the solar conjunction provided

us with the opportunity to study SEP events at 1 AU when the two STEREO spacecraft had

nominally nearly the same magnetic connection to the Sun and explore how the interplanetary

transport conditions can change over narrow angular intervals.

Despite their close location, the two STEREO spacecraft were embedded in different solar

wind streams. The solar eruptions associated with these events were two flares located in the

same active region (Klassen et al., 2016) and there were no signatures of shock waves. The

particle events observed by STEREO A and STEREO B showed strong differences in terms of

onset, peak intensities and evolution of the measured angular distributions. The spacecraft with

the better nominal magnetic connection to the flare detected a later arrival of electrons than the

worse connected one, and a lower peak intensity by a factor ∼5 (Klassen et al., 2016).

Several studies of solar energetic particle (SEP) events have assumed that the longitudinal

distribution of particle peak intensities at 1 AU follows a Gaussian distribution with respect

to the longitudinal separation between the flare site and the nominal magnetic footpoint of the

spacecraft (Wibberenz and Cane, 2006, Lario et al., 2006, 2013, Richardson et al., 2014, Dresing

et al., 2014, Gómez-Herrero et al., 2015). This is also predicted by simulations assuming uni-

form turbulence conditions in the interplanetary medium or, e.g., a symmetric Gaussian distri-

bution of particles released close to the Sun (Dröge et al., 2010, Strauss and Fichtner, 2015).
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In two recent studies, Klassen et al. (2015) and Klassen et al. (2016) reported the observa-

tion of non-symmetric intensity distributions of electrons at 1 AU for several events examined

over relatively narrow angular intervals. The authors hypothesised that the unexpected particle

distributions detected at 1 AU could be attributed to a rippled peak intensity distribution at 1

AU formed by narrow peaks ("fingers") superposed on a quasi-uniform Gaussian distribution

(Klassen et al., 2016). In this scenario, open magnetic field lines from the flaring region would

provide prompt access of SEPs and form the fingers, while large-scale ”closed” magnetic fields

around the active region and/or coronal holes with stronger turbulence would inhibit perpendic-

ular diffusion and partially shield the penetration of particles inside these regions, providing the

valleys.

In this chapter we study under which circumstances the STEREO observations on 2014 Au-

gust 1 could be explained by different transport conditions in different solar wind streams con-

necting each STEREO spacecraft back to the Sun. We review the characteristics of the two

consecutive SEP events observed on 2014 August 1, and model them using SEPInversion tool.

The main results were presented in Pacheco et al. (2017a).

3.2 Observations

We used particle measurements provided by the SEPT experiment on board the two STEREO

spacecraft that measures electrons from 45 to 400 keV. SEPT consists of four identical detectors,

i.e., four fields of view, which are pointing to the ecliptic north, to the ecliptic south, along the

nominal Parker spiral towards the Sun (named as Sun) and in the opposite direction (Antisun).

We complemented this information with IMF measurements by STEREO/MAG (Acuña et al.,

2008) to determine the particle pitch-angle distributions and particle anisotropies and with solar

wind observations from the PLasma and SupraThermal Ion Composition experiment (PLASTIC,

Galvin et al., 2008), to study the in-situ characteristics of the plasma. In addition, we used mea-

surements by the STEREO Radio and Plasma Wave Investigation (SWAVES, Bougeret et al.,

2008) to study the radio emission spectra at frequencies lower than 16 MHz.

We studied two consecutive electron events observed with only a few hours of delay by the

STEREO twin spacecraft on 2014 August 1. On that date, the longitudinal separation between

the spacecraft was of only ∼35◦ (see the longitudinal positions of STEREO A, STEREO B and

Earth and the nominal Parker spiral connecting them to the Sun in Fig. 3.1).

The upper panels of Figure 3.2 show the omni-directional intensities (solid curves) for 45 -

65 keV (top panel) and 65 - 105 keV (second panel) electrons measured by STEREO A (red) and

STEREO B (blue). Dotted (dashed) curves correspond to the intensities measured by the Sun

(Antisun) fields of view (orange curves for STEREO A and grey curves for STEREO B). The

following panels in Figure 3.2 show the solar wind speed, density and temperature, and the IMF

intensity, latitude and longitude angles in the RTN reference frame, as measured by STEREO A
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3.2 Observations

FIGURE 3.1: View from the north ecliptic pole showing the location of the Earth (black sym-
bol), STEREO-A (red symbol) and STEREO-B (blue symbol) on 2014 August 1. Nominal
interplanetary magnetic field lines are shown connecting each spacecraft with the Sun (yellow
circle, not to scale). The black thick line indicates the longitude of the parent active region

(E106 from the Earth, W56 from STEREO-B and W90 from STEREO-A).

(red) and STEREO B (blue). Table 3.1 summarises the main characteristics of the 2014 August

1 electron events. Both particle events showed a significant intensity enhancement, that is, peak

intensities were at least one order of magnitude higher than the pre-event background intensities,

in the energy ranges 45-65 keV and 65-105 keV electrons.

Despite the close location of the two spacecraft, for both events, the electron intensities

observed by STEREO A and STEREO B showed clear differences in terms of onset time, peak

intensity and evolution of the pitch-angle distributions. The events observed by STEREO A

started to rise up to 20 min earlier than at STEREO B, and the peak intensity was about a factor

5 higher at STEREO A. STEREO B observed more isotropic pitch-angle distributions signalled

by the observation of similar profiles by the four fields of view of SEPT (see also the pitch-

angle distribution at the bottom panel of Fig. 10 in Klassen et al., 2016). On the other hand, the

intensity profiles observed by STEREO A were very different, being the most intense intensities

recorded by the Sun field of view, which signals more anisotropic pitch-angle distributions (note

the difference between the orange profiles in Figure 3.2).

Interestingly, as can be seen in the third panel of Figure 3.2, on 2014 August 1, STEREO A

was embedded in a slow solar wind stream, while STEREO B was inside a fast stream region,

due to a coronal hole (Klassen et al., 2016). The mean solar wind speeds, computed during the

first hour after the event onset, are given in Table 3.1. Assuming that the large scale interplane-

tary magnetic field (IMF) was a Parker spiral consistent with the solar wind speed measured in

situ by each spacecraft, the longitudinal separation between the nominal footpoints of the two
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FIGURE 3.2: In-situ measurements by STEREO A (red) and STEREO B (blue). Omni-
directional (solid curves) intensities are shown for 45 - 65 keV (top panel), and for 65 - 105 keV
(second panel) electrons. Intensities for the Sun (STEREO A orange-dotted, STEREO B grey-
dotted) and Antisun (STEREO A orange-dashed, STEREO B grey-dashed) fields of view are
also displayed for both spacecraft in these two panels. The solar wind speed, the density and
the plasma temperature are shown from the third to the fifth panels, respectively. The last three
panels display the magnetic field strength and its direction (latitudinal and azimuthal angles in

the RTN reference frame).

spacecraft was very small, of less than 9◦. However, given the estimated uncertainties in deter-

mining the magnetic connection (i.e., 10◦ as estimated by Nolte and Roelof, 1973a,b, or even

> 20◦, depending on the method employed, e.g., Lario et al., 2014, 2016), one could even claim

that the footpoints of STEREO A and STEREO B were the same.

According to Klassen et al. (2016), the first electron event was associated with a jet appearing
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TABLE 3.1: Main characteristics of the 2014 August 1 electron events (based on Klassen et al.,
2016)

Properties Event I Event II

Type III burst onset [UT] 16:22 23:24
Type II burst onset [UT] No No
CME No No

Connection angle [◦]
STA-flare 27 26
STB-flare 18 22

Electrons onset time [UT]
STA 16:34 23:45
STB 16:54 23:54

Delay STB vs. STA [min] 20 9
Peak intensity ratio, STA/STB 5.5 4.0

Vsw [km s−1]
STA 349 328
STB 557 584

at S22W55, as seen from STEREO B, at 16:13 UT. It was associated with a type III radio burst

detected 9 min later, at 16:22 UT. The second electron event, was associated with a solar flare

from the same active region occurring at 23:16 UT and followed by a type III radio burst at

23:24 UT. No type II radio burst or coronal mass ejections (CMEs) were observed in association

with any of the two events.

The connection angle, defined as the angular difference between the flare source and the

spacecraft nominal footpoint, was larger for STEREO A than for STEREO B. The apparently

better connected spacecraft, STEREO B, observed a smaller intensity increase and a later event

onset time than STEREO A. In the next section, we explore if this can be due to different electron

transport conditions along the flux tube connecting each spacecraft back to the Sun.

3.3 Modelling

3.3.1 Interplanetary transport model

SEPServer1 currently hosts a database of results of a Monte Carlo interplanetary transport model

(Agueda et al., 2008) to aid the study of near-relativistic (>50 keV) electron events observed by

STEREO/SEPT (Agueda et al., 2012b). The transport model solves the focused transport equa-

tion (Roelof, 1969, Ruffolo, 1995), including the effects of particle streaming along the magnetic

field lines, adiabatic focusing by the diverging magnetic field (Roelof, 1969), interplanetary

scattering by magnetic fluctuations frozen into the solar wind (Jokipii, 1966, Dröge, 2003), con-

vection with scattering fluctuations, and adiabatic deceleration resulting from the interplay of

scattering and focusing (Ruffolo, 1995, Kocharov et al., 1998). Diffusion perpendicular to the

average magnetic field is neglected.

1http://server.sepserver.eu
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The expression ruling the evolution of the particle distribution function, i.e. the focused

transport equation (Roelof, 1969), is given by

∂ f
∂t

+ vµ
∂ f
∂z

+
1 − µ2

2L
v
∂ f
∂µ

=
∂

∂µ
Dµµ

∂ f
∂µ
, (3.1)

where f (z, p, µ, t) is the particle distribution function that depends on the position along the

field line (z), momentum (p), pitch-angle (µ) and time; v is the particle velocity, Dµµ is the pitch-

angle diffusion coefficient and L is the focusing length of the magnetic field which is given

by

1
L(z)

= −
1

B(z)
∂B
∂z
. (3.2)

The model assumes a static source of particles at two solar radii which energy spectrum

follows a power law ( dN
dE ∝ E−γs) and an Archimedean spiral magnetic flux tube connecting the

Sun and the spacecraft. In-situ observations of the solar wind speed and the spectra at the peak

intensity help us constrain the curvature of the Archimedean spiral and the source spectrum,

respectively.

In Equation 3.1, the pitch-angle diffusion coefficient is given by

Dµµ =
ν

2
(1 − µ2), (3.3)

where the scattering frequency, ν, adopts the form (Agueda et al., 2008)

ν(µ) = ν0

(
|µ|

1 + |µ|
+ ε

)
, (3.4)

that allows us to model a range of scattering conditions, from quasi-isotropic (ε & 1) to fully

pitch-angle dependent (ε = 0). The case of isotropic pitch-angle scattering is obtained by taking

ν(µ) = ν0 (see details in Agueda et al., 2008 and Agueda and Vainio, 2013 for a comparison of

the ε-scattering model with the modified standard model).

Once the form of the pitch-angle scattering frequency is fixed, the radial mean free path, λr, is

the only free parameter that describes the amount of pitch-angle scattering processes undergone

by the energetic particles. It is related to the parallel mean free path by

λ‖ = λr sec2 ψ, (3.5)

where ψ is the angle between the radial direction and the local magnetic field. The expression

of the parallel scattering mean free path λ‖ in terms of the Dµµ is given by (Hasselmann and

Wibberenz, 1968, 1970)
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3.3 Modelling

FIGURE 3.3: Omni-directional 45-65 keV electron intensities expected at 1 AU under two
interplanetary transport scenarios assuming that λr = 0.37 AU (red) and λr = 0.10 AU (blue).
The release of particles was assumed to occur at t = 0 for 1030 electrons in both cases. The
particle event starts later and peaks at lower intensities for small values of the mean free path

(more turbulent interplanetary transport conditions).

λ‖ =
3v
8

∫ 1

−1

(1 − µ2)2

Dµµ
=

3v
4

∫ 1

−1

1 − µ2

ν(µ)
dµ, (3.6)

The results of the model are intensity directional distributions of electrons at 1 AU resulting

from an instantaneous release of electrons close to the Sun, i.e., the model provides the Green’s

functions of interplanetary transport. Figure 3.3 shows the intensities expected at 1 AU under

two interplanetary transport scenarios assuming that λr = 0.37 AU and λr = 0.10 AU, and

isotropic pitch-angle scattering. It can be seen that for a given injection function at the Sun, the

peak intensities expected at 1 AU will be larger for larger values of the radial mean free path,

and the pitch-angle distributions more anisotropic (cf. Fig. 2 in Agueda et al., 2012b or Fig. 5

in Strauss et al., 2017 for 2 GV protons). In addition, the event onset time will appear earlier

for larger values of the radial mean free path. Another interesting aspect under the assumptions

of the focused transport model is that for an injection function at the Sun that scales in helio-

longitude following a Gaussian distribution and under the assumption of uniform interplanetary

transport conditions (same radial mean free path in contiguous solar wind streams), the peak

intensities expected at 1 AU follow a Gaussian distribution.

3.3.2 Fit to observed directional intensities

We used the SEPinversion software available in SEPServer to infer the release time history

and the interplanetary transport conditions of near-relativistic electrons for each event in our
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sample. SEPinversion makes use of the database of results of an interplanetary transport model

(i.e, Agueda et al., 2008) to fit spacecraft observations at 1 AU. The fitting is done using the

most direct form of directional data provided by the spacecraft (i.e. intensities recorded in

four fields of view for STEREO/SEPT). SEPinversion assumes that the particle detector is a

conical aperture and integrates the intensities for all the pitch angles in the detector aperture

range according to the angular response of the telescope (Agueda et al., 2012b). The software

uses an inversion approach to fit the observations (Agueda et al., 2008), that is, it computes the

intensities expected at 1 AU for a set of multiple consecutive instantaneous injection episodes

(also refereed as Green’s functions) and then solves a least-square problem determine the relative

weight of each injection episode to best fit the intensities measured at 1 AU.

To find out the best fit scenario for each event, we considered: (i) the two options available in

SEPServer for the description of the pitch-angle diffusion coefficient (isotropic and pitch-angle

dependent with ε = 0.01), (ii) a wide range of interplanetary conditions covering 25 values of the

radial mean free path, logarithmically spaced between 0.05 to 2.77 AU; and (iii) five values of

the spectral index of the electron source (between 2.0 and 4.0, with step intervals of 0.5). Also,

from the solar wind speeds list available in the database (covering from 300 k s−1 to 750 k s−1,

with 50 k s−1 steps), we selected the closest to the measured values at the onset of each event,

shown in Table 3.1

For each transport scenario, the best possible release time history was obtained. The good-

ness of the fit for each case was then evaluated by comparing the observations and the modelled

data (see Agueda et al., 2009, for more details). Each energy channel was fitted separately.

3.4 Results

We selected the time intervals between 16:20 – 19:00 UT for STEREO A and 16:35 – 20:25 UT

for STEREO B to fit Event I, and 23:25 – 01:15 UT for STEREO A and 23:35 – 05:00 UT for

STEREO B to fit Event II. The start time of these intervals was chosen to take into account the

onset of the particle event, for each spacecraft. The end times for STEREO A correspond to the

time when the particle intensity had decreased one order of magnitude from the peak intensity.

For STEREO B, with events showing slowly decreasing intensities, we chose the end time in a

way that the results of the fits and the inferred parameters did not vary under minor time changes.

In Figure 3.4 the resulting values of the goodness-of-fit estimator are shown for each value

of the mean free path tested (between 0.05 and 2.77 AU). We can see that the curves for Event

II show a more clear minimum for both STEREO probes than for Event I. This is related with

the better pitch-angle coverage for Event II combined with the fact that during Event I both

spacecraft, but specially STEREO A, observed changes in the local magnetic field on which

they were embedded (see discussion below).
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FIGURE 3.4: Goodness of the fit for the two events observed by STEREO A and STEREO B
for each value of the mean free path tested.

The two upper panels of Figure 3.5 show for each event (Event I, top row; Event II, bottom

row), the 45 – 65 keV electron intensity-time profiles observed by STEREO A (left column) and

STEREO B (right column) for the four fields of view (thin coloured lines) of the SEPT instru-

ment. For each field of view, the evolution of the pitch-angle cosine, µ observed at the centre

of the telescope is shown in the bottom panels (with the same colour code as the corresponding

intensities) together with the pitch-angle range covered (grey area) given the ∼ 50◦ aperture of

the telescopes.

TABLE 3.2: Best fit radial mean free path inferred for each event and in-situ solar wind speed.

Event S/C λr [AU] Vsw [km s−1]

I
STA 0.31 349
STB 0.06 557

II
STA 0.37 328
STB 0.10 584

The coloured thick solid lines in the two upper panels of Figure 3.5 show the best fit ob-

tained using SEPinversion. We can claim that the model is able to reproduce quite well the

observations, except for some disagreements that could be due to, e.g., the passage of local

interplanetary magnetic field structures that invalidate the Parker field model, or other effects

not included in the model. The results obtained assuming either the isotropic or the pitch-angle

dependent scattering diffusion coefficient yield similar fits, being slightly better over all cases

the fits derived by assuming isotropic pitch-angle scattering.

The electron radial mean free paths that provide the best fit in each case together with cor-

responding solar wind speed are listed in Table 3.2. The electron radial mean free paths that

provide the best fit for Event I are, λr = 0.31 AU for STEREO A and λr = 0.1 AU for STEREO

B; and for Event II, λr = 0.37 AU for STEREO A and λr = 0.06 AU for STEREO B.
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FIGURE 3.5: Two upper panels: Observed (thin curves) directional 45 – 65 keV electron in-
tensities by STEREO A (left column) and STEREO B (right column) for Event I (top row) and
Event II (bottom row). The intensity profiles for each field of view are identified by different
colours as indicated in the inset (Sun and Antisun fields of view at the top panels; North and
South fields of view at the second panels). Thick lines are the corresponding model fits. Bot-
tom panels show the evolution of the pitch-angle cosine measured at the centre of each field
of view (colour curves). The grey area shows the pitch-angle range covered by the telescopes.

The inferred value of the mean free path for each case is shown at the top of each plot.
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FIGURE 3.6: Release functions inferred for Event I (left) and Event II (right). For each event,
from top to bottom: Radio spectra observed by STEREO B/WAVES mirrored in the y-axis,
electron source profile deduced at 2R� for STEREO A and STEREO B in two energy channels,
45 – 65 keV (red) and 65 – 105 keV (blue), and radio flux observed by STEREO A/WAVES.
Injection times are shifted by 500 s for comparison purposes with electromagnetic emissions.

In Figure 3.6, for Event I (left) and Event II (right), the derived injection profiles are shown

in the middle panels (STEREO B, upper panel and STEREO A, lower panel) for the two en-

ergy channels fitted (45 – 65 keV, red and 65 – 105 keV, blue). For each event, the radio spectra

recorded by SWAVES is shown for STEREO B (top panels) and for STEREO A (bottom pan-

els). Note that injection times are shifted by 500 s for comparison purposes with electromagnetic

emissions. For the two events and for both STEREOs, we obtain a set of short injection pro-

files at 2R� which agree with the timing and duration of the type III radio burst emission by

SWAVES (with a 5 min uncertainty). The release of particles is almost simultaneous for both

spacecraft and the injection is higher for STEREO B, the better-connected spacecraft, in both

cases. Klassen et al. (2016) mentioned that different transport conditions could explain the onset

delay and the peak intensity difference between the spacecraft. Our results confirm this idea.

Figure 3.7 shows the electron maximum peak injection at the Sun for Event I (diamonds) and

Event II (triangles) as a function of the angular connection distance between the solar source and

the spacecraft footpoint. STEREO A injections are shown in red as STEREO B injections are

shown in blue for 45 – 65 keV (left panel) and 65 – 105 keV (right panel) electron channels.

Note that for each event the injections lay over a Gaussian distribution centred at the source

site (dashed and dotted curves for Event I and II, respectively); thus, suggesting a Gaussian

distribution of the release of particles at the source, while the observed intensities at 1 AU do

not follow this pattern due to the transport conditions. We can see that STEREO B injections
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FIGURE 3.7: Maximum injection of electrons at the Sun vs. the spacecraft connection angle
with the solar flare location, for 45 – 65 keV (left) and 65 – 105 keV (right) electrons. The in-
ferred values of the maximum injection for STEREO A (red) and STEREO B (blue) are shown
with diamonds (Event I) and triangles (Event II). The dotted/dashed curves show Gaussian

distributions.

are consistently more intense than STEREO A for both channels and events. Nevertheless, the

spacecraft connection angle considered should be taken carefully due to the error associated

with their determination. It is clear from Figure 3.7 that under the assumptions of our model,

the particle injection from second solar eruption was more intense than the first one.

3.5 Conclusions

In this chapter, we studied two consecutive electron events observed by the STEREO twin space-

craft on 2014 August 1 with only a few hours of delay between the events. Both electron events

were associated with an unambiguous type III burst and not accompanied by type II radio bursts

or CMEs (Klassen et al., 2016).

On that date, the longitudinal separation between the spacecraft was of only ∼35◦. Despite

the close location of the two spacecraft, STEREO A was embedded in a slow solar wind stream,

while STEREO B was inside a fast stream region stemming from a coronal hole.

In addition, for both events, the electron intensities observed by STEREO A and STEREO

B showed clear differences in terms of onset time, peak intensity and evolution of the pitch-

angle distributions. The events observed by STEREO A started to rise up to 20 min earlier

than at STEREO B, and the peak intensity was about a factor 5 higher at STEREO A and

more anisotropic. The apparently better connected spacecraft, STEREO B, observed a smaller

intensity increase and a later event onset time than the worse connected spacecraft, STEREO A.
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3.5 Conclusions

We studied if these observations could be explained by different electron transport conditions

along the flux tube connecting each spacecraft back to the Sun. We modelled the two events us-

ing SEPinversion and inferred an almost simultaneous release of electrons for both spacecraft

in both events. The release is consistent with the timing and duration of the type III radio burst

emission and it is larger for STEREO B, the better connected spacecraft. In addition, we ob-

tained different transport conditions in different solar wind streams, signalled by different solar

wind speeds. We found that the stream in which STEREO B was embedded was more diffusive

(λr = 0.1 AU for Event I and λr = 0.06 AU for Event II) than the stream in which STEREO

A was embedded (λr = 0.31 AU for Event I and λr = 0.37 AU for Event II). These different

transport regimes are sufficient to explain the early onset and the larger intensities for the worse

connected spacecraft, STEREO A, as well as the difference in the observed anisotropies. We

conclude that the interplanetary transport conditions can vary drastically between nearby solar

wind streams.
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Chapter 4

Electron events observed by Helios in
the inner (< 1 AU) heliosphere.

4.1 The Helios spacecraft

The Helios mission was launched during the 70’s and it was the product of the collabora-

tion between the German Test and Research Institute for Aviation and Space Flight, Deutsche

Forschungs- und Versuchsanstalt für Luft- und Raumfahrt (DFVLR, at present, DLR), and the

United States National Aeronautics and Space Administration (NASA). The mission consisted

of two almost identical solar probes, Helios 1 and Helios 2, orbiting the Sun with a high eccen-

tricity during solar cycle 21. These spacecraft were spin-stabilised satellites with a spin period

of 1 s. The mission lasted from December 1974 to March 1985 in the case of Helios 1, and from

January 1976 to March 1980 for Helios 2. Both spacecraft reached a heliocentric radial distance

from the Sun of ∼0.3 AU in the perihelion and of ∼0.99 AU in the aphelion with periods of

∼190 days, providing the first in-situ study of the inner heliosphere devoted to the interplanetary

medium and, at present, Helios is still the mission that has provided the largest data set of SEP

events measured in the inner heliosphere. Helios 2 is still the spacecraft that orbited closest to

the Sun until now, with a perihelion of 0.29 AU.

Each probe carried 12 experiments aiming at studying the main physical processes in the

interplanetary space, from a near-Sun environment, specifically, the study of heliospheric ener-

getic particles, the solar wind plasma, the interplanetary magnetic fields and the cosmic dust.

Table 4.1 lists the experiments on board the Helios spacecraft (see Porsche, 1975, Goodwin

et al., 1976).

Helios data have been deeply studied since then and have been crucial in the understand-

ing of the interplanetary transport of solar energetic particles (SEPs). SEP events observed by
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TABLE 4.1: Description of the instruments on board Helios spacecraft.

Num. Experiment Measurements

E1 Plasma Detector Experiment Flux density, velocity, composition, direction and en-
ergy of the charged particles

E2/E3 Flux-Gate Magnetometer Magnetic field strength and direction in the inner helio-
sphere.

E4 Search-Coil Magnetometer Sudden changes in the interplanetary electromagnetic
field in the frequency range of 5 Hz to 3 kHz

E5 Solar Wind Plasma and Ra-
dio Wave Experiment

Low-frequency radio waves in the inner heliosphere.

E6 Cosmic Ray Experiment High-energy charged particles in terms of their energy,
time, charge, mass and direction of incidence.

E7 Galactic and Solar Cosmic
Ray Experiment

High-energy cosmic rays above the range of E6, in-
cluding the X-ray radiation, with three different particle
telescopes for electrons, protons and heavier particles.

E8 High Energy Electron and
Proton detector

Using an inhomogeneous magnetic field to deflect the
heavy charged particles, it measured protons, electrons
and positrons for lower energies than E6.

E9 Zodiacal Light Photometer Intensity of the zodiacal light in 3 wavebands (UV ra-
diation, blue waveband and entire visual band) using 3
photometers oriented at angles of 15◦, 30◦, and 90◦ to
the ecliptic.

E10 Micrometeoroid Counter
and Analyser

Dust particles and determine their mass and energy with
a mass threshold of about 10−15 g.

E11 Celestial Mechanics Experi-
ment

Oblateness of the Sun, general relativity with respect
to both orbital and signal propagation effects, the mass
of the planet Mercury, the Earth-Moon-mass ratio and
others.

E12 Faraday Rotation Experi-
ment

The composition of linearly polarised electromagnetic
waves that travelled across the solar corona and the in-
terplanetary medium.

Helios permitted to study their characteristics and untangle the influence of the Sun over the in-

terplanetary medium (e.g., Schwenn and Marsch, 1990, 1991, Reames et al., 1996, Lario et al.,

2006).

4.1.1 Particle measurements by Helios

The Cosmic Ray Experiment (E6) (Kunow et al., 1975, 1977) was designed at the University

of Kiel to study solar energetic particles. It consisted of five semiconductor-layer detectors and

a sapphire Čerenkov detector, all surrounded in anticoincidence by a plastic scintillator. The

semiconductor detector configuration had a nominal geometrical factor of ∼0.48 cm2 sr and a

nominal full opening angle of 55◦. Table 4.2 lists the nominal energy ranges of the four electron

channels E03, E08 (both sectored), E2 and E3 (both omnidirectional) together with the nominal

energies of the five proton differential channels P1, P4, P13, P27, P37 (all sectored except P37,
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TABLE 4.2: Nominal energy ranges of electron and proton channels of E6, for Helios 1 and
Helios 2.

Electron Energy range (MeV) Proton Energy range (MeV)

channel Helios 1 Helios 2 channel Helios 1 Helios 2

E03 0.3 – 0.8 0.3 – 0.8 P1 1.28 – 3.77 1.66 – 3.68
E08 0.8 – 2.0 0.8 – 2.0 P4 3.77 – 12.81 3.68 – 12.73
E2 2.0 – 3.0 2.0 – 3.0 P13 12.81 – 26.76 12.73 – 27.36
E3 3.0 – 4.0 3.0 – 4.0 P27 26.76 – 36.63 27.36 – 37.34

P37 36.63 – 50.70 37.34 – 51.00
P51 >50.70 >51.00

which is omnidirectional), and of the integral channel, P51. So far, these measurements are

the only source available of particle events detected at the inner heliosphere with sectored data

allowing us to reconstruct the PADs.

Bialk et al. (1991) presented a Monte Carlo simulation for the reaction of the detectors which

compound E6 to a wide energy-range of protons, γ-rays and electrons, taking into account the

geometry, energy resolution and electronics of the detectors. As shown in Figure 4.1a, in a

first approach, simulations showed that the response function obtained for protons were in good

agreement with the nominal geometrical factors. On the other hand, the electron response func-

tion was much wider (see Fig. 4.1b), considerably overlapping the different electron channels

and extending up to ∼5 MeV for E03. Furthermore, it was found that the response for protons

in the electron channels was substantial when exposed to high proton flux levels, as depicted in

Figure 4.1c.

The E6 experiment scanned the space in the ecliptic plane, 90◦ away from the spacecraft Z

axis, using the rotation of the spacecraft to measure the particle angular distributions relative

to the local direction of the magnetic field (i.e., the PADs) of SEPs in interplanetary space.

Measurements of the 360◦ rotation were divided into eight equally spaced sectors, labelled from

0 to 7 as shown in Figure 4.2, for electrons, protons and alpha particles channels. Helios 1

rotation axis was pointing towards the ecliptic North pole and Helios 2 towards the ecliptic

South (e.g., Wibberenz et al., 1989). For further reference, Figure 1c) of Wibberenz et al. (1989)

shows a scheme of the field of view scanned by the E6 instrument. Table 4.3 shows, for each

spacecraft, the coordinates of the sector centre unit vectors ŝ, in the spacecraft-centred spherical

Spacecraft Solar Ecliptic (SSE)1 coordinates (e.g., Fränz and Harper, 2002), where θ is the

colatitude and ϕ is the azimuth. The Z axis corresponds to θ = 0◦ and it is perpendicular to the

ecliptic plane. The azimuth origin is the spacecraft-to-Sun line (see Fig. 4.2).

1This coordinate system uses the Earth mean ecliptic plane as XY-plane, being the X axis the projection over XY-
plane of the spacecraft-Sun line and takes the Z axis perpendicular to them. Fränz and Harper (2002) mention that
this coordinate system points toward the ecliptic South pole. Comparison with magnetic field data provided by the
NASA’s NSSDCA Archive (see below) in both the SSE and the Radial Tangential Normal (RTN) coordinate system
shows that BN=BZ(SSE), thus indicating that ZSSE points towards the ecliptic North. In any case, this discrepancy does
not affect the sector directions, nor the pitch-angle distributions retrieved from data in next sections.
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FIGURE 4.1: Response function for the different channels of E6 experiment on board Helios.
Panel a) shows protons measured in proton channels, b) electrons detected in electron channels
and, as a measure of the cross contamination, c) shows the protons counted in electron channels.

From Bialk et al. (1991).

FIGURE 4.2: Configuration of the sectors defined by the E6 experiment. Each sector is iden-
tified by a number. The azimuth origin for each spacecraft corresponds to the spacecraft-Sun

(star) line.
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4.2 Event Selection

The E2 experiment (Musmann et al., 1975) was a three axes flux-gate magnetometer on

board Helios probes designed by the University of Braunschweig to work over different ranges

of magnetic field strength. Its observations were afterwards combined with particle data from

E6 by the team at the University of Kiel to create a single data set, with proton, alpha-particles

and electron intensities and magnetic field vector data.

E2 data originally presented a very good time resolution, of 8 measurements per second at

the highest resolution mode. On the other hand, E6 time resolution was around 40 s in spite of

the fact that it presented strong irregularities in the time step. The resolution of the instruments

used from each moment depended on the information transmission rate of the probe to the Earth

ground-based stations, that unfortunately was often quite small. Magnetic field data is available

also at the NASA Space Science Data Coordinated Archive (NSSDCA)2.

For the present study, data files of the whole mission were provided by the University of

Kiel (B. Heber, private communication) in daily files containing both particle sectored data and

interplanetary magnetic field strength and direction (in the SSE coordinate system) with the

same time resolution. This time resolution varies from 1 min to 15 min although the precise

time step is not totally uniform, as the exact values can vary from 40 s to 90 s for the 1 min

resolution files. Also data gaps are frequent and they can extend for several days. For the same

time period, the time step and the data gaps can be different for different energy channels of the

instrument.

Due to this fact, we decided to use a regularly spaced time grid of resolution 1 min (or

occasionally 15 min, when 1 min data was unavailable). For that purpose, the data of the E03

electron channel of E6 and the magnetic field data gathered by E2 were linearly-interpolated.

The particle pitch-angle, α, is defined as the angle between the magnetic field vector and the

particle velocity. The cosine of α is then given by the scalar product of the magnetic field vector

and the unit velocity vector of the particle, µ = B̂ · v̂. The average cosine of the particles detected

by each sector can be approximated by the product of the magnetic field unit vector and the

direction of the pointing vector at the centre of each sector (see Table 4.3), i.e., µ = −B̂ · ŝ.

In order to analyse the SEP events, we also used the solar wind speed, density and temper-

ature from the Plasma Detector Experiment, E1 (Schwenn et al., 1975), available at NASA’s

National Space Science Data Center, Space Physics Data Facility.3

4.2 Event Selection

We scanned data provided by the E6 experiment designed by the University of Kiel for the

whole mission period. We selected relativistic electron events observed in the E03 channel, with

2ftp://spdf.gsfc.nasa.gov/pub/data/helios/
3ftp://spdf.sci.gsfc.nasa.gov/pub/data/helios
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4 HELIOS EVENTS

TABLE 4.3: Pointing directions of the sectors of the E6 experiment on board the Helios probes.

Helios 1 Helios 2
Sector ŝ ŝ

ID θ ϕ θ ϕ

0 90◦ 11◦ 90◦ 34◦

1 90◦ 56◦ 90◦ 79◦

2 90◦ 101◦ 90◦ 124◦

3 90◦ 146◦ 90◦ 169◦

4 90◦ 191◦ 90◦ 214◦

5 90◦ 236◦ 90◦ 259◦

6 90◦ 281◦ 90◦ 304◦

7 90◦ 326◦ 90◦ 349◦

nominal energy range 0.3 – 0.8 MeV. We found more than 200 hundred electron events during

the mission period, detected by at least one of the two spacecraft. However, most of them were

discarded for the purposes of our study. The criteria we followed to select the best-observed

events for modelling are:

i) no data gaps during the rising phase of the electron event for the instruments used in the

study, i.e., the E03 electron channel of E6 and the magnetic field data of E2;

ii) electron event peak intensities at least one order of magnitude above the pre-event back-

ground intensities;

iii) IMF as close as possible to an ideal Parker Spiral;

iv) location of the parent solar activity associated with each event documented in the litera-

ture;

vi) no significant cross-contamination by protons during the time interval selected for each

event.

The first criterion was by far the most restrictive owning to the long periods when the cov-

erage of one of the instruments was lost or presented numerous gaps. In particular, we found

several cases showing data gaps just at the peak or during the rising phase of the events, either

in the particle intensities or the magnetic field data. Moreover, many other events were dis-

carded as being not intense enough or happening right after a larger event, in such a way that

the pre-event intensity level masked the onset of the event of interest. We discarded only few

events due to criterion iii), to be sure that magnetic configuration was as close as possible to a

Parker Spiral. We checked shock crossing at the spacecraft since a shock between the sun and

the spacecraft or beyond the spacecraft could affect the transport conditions of electrons and/or

increase the length of the field line. Furthermore, we required that the origin of the SEP events

was documented in the literature: published articles, Solar-Geophysical Data (SGD) reports4

4ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SGD_PDFversion/
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4.2 Event Selection

TABLE 4.4: Observational characteristics of the list of selected events.

Year Date DOY S/C Onset Rise Reso. Distance vsw IMF
[UT] [min] [min] [AU] [km s−1] polarity

1976 Mar 21 81 H1 12:52 18 1 0.36 450 -1
1978 Jan 1 1 H1 22:00 53 1 0.94 434 -1
1978 Dec 11 345 H2 20:00 74 1 0.73 317 -1
1980 Apr 5 96 H1 15:55 28 15 0.85 314 +1
1980 Apr 26 117 H1 13:40 19 1 0.66 389 +1
1980 May 3 124 H1 08:00 20 1 0.58 421 -1
1980 May 12 133 H1 02:51 30 1 0.46 328 -1
1980 May 28 a 149 H1 15:44 5 1 0.31 278 -1
1980 May 28 b 149 H1 17:04 10 1 0.31 278 -1
1980 May 28 c 149 H1 19:38 7 1 0.31 278 -1
1980 May 28 d 149 H1 23:34 7 1 0.31 278 -1
1981 Jan 14 14 H1 21:01 20 1 0.73 309 +1
1981 May 8 128 H1 22:50 86 15 0.69 369 -1
1981 Jun 10 161 H1 06:16 30 1 0.32 245 -1
1982 Jun 2 153 H1 15:44 59 1 0.59 467 -1

and GOES Soft X-ray (SXR) data available online5. Finally, in the last selection step we eval-

uated the cross-contamination of protons in the electron channel E03. We compared the E03

intensities with the proton intensities for channels P4 and P13 and discarded events showing

a combined proton flux from both channels (properly corrected using the cross-contamination

factors provided by B. Heber) higher than the 10% of the E03 intensity.

The final sample of events is composed by 15 events. In Table 4.4 we list their year, date

and DOY, the spacecraft used in the analysis, the onset time and rise time of the event, i.e., the

time from the onset to the E03 intensity peak, the time resolution of the data used in the study,

the helioradius of the spacecraft, the computed average solar wind speed during the six hours

previous to the event, and the modal polarity of the IMF. The polarity of the IMF up to 1 AU

can be defined as

sign(~B) = sign(BR − BT tan Ψ), (4.1)

where BR and BT are the R and T components of the magnetic field vector in the Radial Tan-

gencial Normal (RTN) coordinate system, respectively, and Ψ is the angle between the nominal

Parker spiral magnetic field vector and the radial vector from the Sun, i.e. tan Ψ = rΩ
vsw

, being r

the radial distance to the Sun, Ω the solar rotation rate and vsw the solar wind speed. Note that

we are neglecting here the inclination of the ecliptic at the position of the spacecraft with respect

to the solar equatorial plane, that can introduce an error up to 1% in RTN components.

At first sight, it is remarkable the difference in numbers for the events observed by Helios 1

(14 events) and Helios 2 (only 1 event). The solar maximum period of Solar Cycle 21 started

5ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/sola
r-flares/x-rays/goes/xrs/

81

ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/solar-flares/x-rays/goes/xrs/
ftp://ftp.ngdc.noaa.gov/STP/space-weather/solar-data/solar-features/solar-flares/x-rays/goes/xrs/


4 HELIOS EVENTS

on the second half of 1977, being 1980 one of the years with larger number of SEP events.

Unfortunately, Helios 2 stopped operating in the early March of that year, explaining the larger

number of selected events detected by Helios 1. Also, Helios 2 instruments underwent more

problems reflected in numerous data gaps.

The sample is composed by SEP events observed during streams of solar wind speeds be-

tween 245 km s−1 and 467 km s−1. The whole range of radial distances is well covered, hav-

ing events observed from 0.31 AU to 0.94 AU. We can divide the locations into three different

groups, events observed at radial distances < 0.40 AU (6 events), events observed between 0.40 –

0.70 AU (5 events) and events observed at radial distances > 0.70 AU (4 events). This latter

group allows us to directly compare our results with previous results obtained close to the Earth

orbit (∼1 AU). It is also important to remark that as a result of the different time-resolutions in

the SEP data files, we worked with 1 min resolution data for 13 events, and 15 min for 2 events

corresponding to 1980 April 5 and 1981 May 8 (as indicated in Table 4.4).

The sample includes 11 events with rising times shorter than 35 min, and 4 events with

longer rising times of up to ∼90 min. The different shape of the intensity-time profiles between

these impulsive and gradual groups is also noticeable in the decaying phase, presenting the grad-

ual events a sustained intensity plateau extending for several hours that decreases very slowly,

whereas for impulsive events the decay is faster after the peak. A series of typical impulsive

events, with a fast and short rise phase is shown as an example in Figure 4.3. Figure 4.4 depicts

a gradual event showing the aforementioned plateau.

Table 4.5 lists the location of the parent solar source associated with each event as observed

from Earth in Hα (Kallenrode et al., 1992a,b, Lario et al., 2006, Agueda and Lario, 2016, Gar-

dini et al., 2011, Solar-Geophysical Data reports), the longitudinal distance between the Hα

source and the spacecraft and the connectivity of the source (∆), i.e. the longitudinal distance

between the solar source and the footpoint of the Archimedean magnetic field line connecting

the spacecraft to the Sun, calculated by using the solar wind speed measured in situ. The mag-

netic connectivity is positive when the footpoint is further West than the solar source, and it is

negative if the footpoint is further East.

Most of the selected events are well connected to the solar source, with ∆ < 20◦. Only

three events have larger values of ∆, which correspond to one western event near the limb (1981

Jan 14) and two events associated with central meridian sources located 1◦ East (1981 June 10)

and 5◦ East (1978 Dec 11). Note that these locations of the solar sources are given as seen by

the Helios spacecraft. The fact that most of the events are well connected can be attributed to

the event selection criteria of showing intensity peaks of at least one order of magnitude above

the pre-event background. Hence, our sample is biased to western events, owing to the large-

scale bending of the IMF that favours the magnetic connection of the spacecraft to western solar

locations.
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4 HELIOS EVENTS

FIGURE 4.3: In-situ measurements on 1980 May 29 by Helios 1. Top panel: particle intensities
for electrons (dots, scaled by a factor of 10) from channels E03 (green) and E08 (blue), and
protons (curves) from channels P4 (olive) and P13 (orange), measured by E6. Next panels from
top to bottom: proton solar wind speed, density and temperature; magnetic field strength and
direction (RTN). Red dotted line in the last panel depict the IMF polarity. The vertical dotted

line across all panels indicates the event onset.

Figure 4.5 shows the spatial configuration scheme for each event; given the similar configu-

ration of the four events on 1980 May 28, only one plot is shown (top left in Fig. 4.5). In each

instance, the black curve represents the IMF line connecting the spacecraft with the Sun, the

thick short straight line shows the observed flare position on the Sun surface, the thin straight

line shows the Sun-spacecraft line to allow the comparison with the flare direction, and the

dashed circles represent the orbits of Mercury (0.4 AU), Venus (0.7 AU) and Earth (1.0 AU).

As can be seen in Figure 4.5, 13 out of 15 events in our sample are associated with parent solar

activity occurring at longitudes western from the Sun-spacecraft line.
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4.2 Event Selection

FIGURE 4.4: In-situ measurements on 1978 January 1 by Helios 1. See caption of Figure 4.3
for details.

Table 4.5 also lists the electromagnetic emissions (EMs) associated with each event. It lists

the onset, peak and end of the SXR emission observed by GOES, the flare class, and the timing

and characteristics (frequency and station) of the solar radio emission listed in the SGD reports.

For each event, we identified the SXR emission and the radio emission occurring closer to the

onset time of the event. We took into account the travel time of 950 keV electrons from the Sun

to the spacecraft along the IMF and the time needed for the EMs to reach 1 AU, where GOES

and radio stations are. We found no SXR emission matching precisely the timing for the event

on 1980 Apr 26, so we listed the closest SXR emission found in GOES reports, corresponding to

a 15 min long C3-class flare. For several events, various stations reported radio emission periods

at different frequencies. In these cases we chose the lower radio frequency (always > 29 MHz)

and the radio emission available lasting less than 30 min when possible. When the emission
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FIGURE 4.5: Longitudinal configurations of spacecraft and source active regions for each of
the events in the sample. Events are ordered by increasing distance of the Helios spacecraft
from the Sun. The thick line marks the longitude of the flaring source active region, the black
spiral is the nominal Parker field line connecting the spacecraft to the Sun according to the solar

wind speed measured in situ.
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showed several peaks at the same frequency observed by the same station, we understood that

they belong to the same radio burst, and we listed them together as an extended emission with

several peaks with no duration. The sample includes radio emissions at frequencies larger than

29 MHz and up to 9400 MHz.

The events in our sample were associated mostly with M- and C- class flares. Eight events

were associated with M-class flares, five with C-class flares and only 2 events with X-class

flares. The duration of the SXR emission was less than 60 min for most of the events, except for

the largest 5 flares in the sample (1978 December 11, 1980 April 5, 1980 May 28 c and d, and

1982 June 2) that showed SXR emission lasting up to ∼2 h. The rise time of the SXR emission

is less than 40 min in most cases (13 events), and only two event are associated with flares with

longer rise times. These latter are the 1978 December 11 and 1980 April 5 events. In general,

we observe that flares with shorter rise times have shorter durations.

The start of the radio emission is observed within 10 min of the beginning of the SXR emis-

sion for most of the events (7 events). For 5 events, the radio emission starts between 10 and

30 min before/after the beginning of the SXR emission. And only for 3 events (1978 December

11, 1980 April 26 and 1982 June 2) the beginning of the radio emission is delayed between

30 and 70 min with respect to the beginning of the SXR emission. The peak in SXR emission

appears within 10 min of the radio emission for 10 events, while for 3 events the time of the

peak emission differs from 10 to ∼30 min. One event of the sample (1980 April 5) shows a long

delay of an hour between the peak in radio emission and the peak in SXRs.

For 4 cases, we found complex radio emission consisting on several bursts and showing

various peaks for the same frequency. On 1978 January 1, for example, we identified a complex

radio emission divided into 2 different bursts of 19-min and ∼13 min length at 9400 MHz,

showing 2 different peaks 9 and 22 min after the SXR peak. Moreover, on 1978 December 11

event a complex radio emission was detected at 1420 MHz, consisting on a 11 min precursor

with a peak 9 min after the onset, and a great burst with 2 different peaks 17 min and 52 min

after the initial radio onset. The first 2 peaks fall inside the rising phase of the event while the

last one is located in the decaying phase.

4.3 Modelling

In the absence of large-scale disturbances, the IMF can be described as an average field given

by an Archimedean spiral with a superposed turbulent component. The propagation of charged

particles along the IMF has then two components, adiabatic motion along the smooth field and

pitch-angle scattering by magnetic turbulence. The quantitative treatment of the evolution of

the particles’ phase space density, f (t, z, µ, v), is described by the focused transport equation
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(Roelof, 1969),

∂ f
∂t

+
∂

∂z
µ v f +

∂

∂µ

1 − µ2

2L
v f −

∂

∂µ

(
Dµµ

∂ f
∂µ

)
= q(z, µ, t), (4.2)

where t is the time, z is the distance along the magnetic field line, µ is the particle pitch-angle

cosine, and v is the particle speed. The focusing effect is characterised by the focusing length,

L(z) = −B(z)/(∂B/∂z), in the diverging magnetic field, B, while the pitch-angle diffusion coeffi-

cient, Dµµ, describes stochastic processes. The injection of particles close to the Sun is given by

q(z, µ, t).

Equation 4.2 neglects convection and adiabatic deceleration. This approximation is useful

for high energy particles. Note also that in this equation the particle speed, v, acts only as

a parameter, and it can be removed using an appropriate scaling factor. If instead of f , we

consider the differential intensity, dI/dE = p2 f , and multiply Equation 4.2 by p2/v, we get that

the focused transport equation for the scaled quantity j = Ic/v is valid regardless of the speed

we use to obtain the solution6 (e.g., Heber et al., 2018). Therefore Green’s functions computed

for hypothetical relativistic particles (v = c) can be used to obtain the Green’s functions for

other mono-energetic particles. The Green’s function computed for v = c, J(t, z, µ, c), with the

time and the intensity variables scaled with the quantity v/c provides the Green’s function for

mono-energetic particles with speed v, that is,

J(t, z, µ, v) =
v

c
J
(
v

c
t, z, µ, c

)
. (4.3)

4.3.1 Energy response of the detector

We use the interplanetary transport model by Agueda (2008) to compute the Green’s functions

of interplanetary transport to be used in the study of Helios E03 electron observations. To obtain

the Green’s function in the nominal 0.3 – 0.8 MeV energy range, we consider 20 discrete elec-

tron energies with a constant logarithmic step within the range. We scale the Green’s function

obtained for v = c for each electron energy according to Equation 4.3 and then interpolate the

results in order to obtain the intensities in a 1 min time resolution grid. Then the intensities

are scaled according to the normalised solar spectrum. We assume a power-law dependence

N(E) ∝ E−γ, where γ is the spectral index of the solar source.

As an example, Figure 4.6 shows the differential intensities at 0.31 AU for 20 energies be-

tween 300 keV and 800 keV (coloured curves), obtained by assuming an instantaneous injection

of electrons at two solar radii with spectral index γ = 3.5 and a radial mean free path of 0.14

AU. At each time, the differential intensity for the nominal 300 – 800 keV energy range (black

6http://www.ieap.uni-kiel.de/et/people/heber/summerschoool/GF-scaling.pdf
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4.3 Modelling

FIGURE 4.6: Green’s function of interplanetary transport at 0.31 AU for 0.3 – 0.8 MeV elec-
trons released at the Sun at t = 0 assuming a spectral index of γ = 3.5 and a radial mean
free path of λr = 0.14 AU (black dots). Mono-energetic Green’s functions (coloured curves)
between 300 keV and 800 keV, obtained by scaling the v = c Green’s function. Green’s func-
tion for 0.3 – 0.8 MeV electrons constructed from the mono-energetic Green’s functions (black

curve).

curve) is obtained according to

Jc =

∫ E2

E1
J(E) dE

∆E
, (4.4)

where J(E) are the differential intensities of electrons with kinetic energy E, E1 = 0.3 MeV,

E2 = 0.8 MeV, ∆E = E2 − E1, and Jc are the differential intensities of the channel. For

comparison, Figure 4.6 also shows the differential intensities computed for the same energy

range using a Monte Carlo transport model (i.e., not scaling the v = c Green’s function). The

results (black dots) are identical to the curve constructed based on the v = c Green’s function.

The procedure described so far to construct the Green’s function of the nominal energy chan-

nel based on mono-energetic Green’s functions assumes a flat energy response within the energy

range under consideration. However, Bialk et al. (1991) showed that the electron channel E03

may respond to electrons of energy higher than its nominal energy range of 0.3 – 0.8 MeV and

that the energy response is not flat but similar to a Gaussian, peaking at 950 keV.

A more accurate estimation of the Green’s function of the E03 channel can be obtained by

taking into account that

Cc =

∫
J(E) R(E) dE, (4.5)

where Cc is the count rates of the channel in [counts/s], J(E) is the differential intensity of

electrons with kinetic energy E, and R(E) is the response function in channel E03. Here we

assume that the proton contamination in the electron channels is negligible, as we selected for

the study only events where this effect was small (see Sect. 4.2).
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FIGURE 4.7: Energy response for channel E03 of E6 experiment on board Helios. The his-
togram (grey) shows the energy response computed by Bialk et al. (1991), the black solid curve
shows a 6-parameter Gaussian fit, and dots display the response values for a grid of 20 loga-

rithmically spaced energies.

Figure 4.7 shows the E03 energy response computed by Bialk et al. (1991) together with

a 6-parameter Gaussian fit. It can be seen that the energy range from 0.25 MeV to 3.5 MeV

covers the relevant part of the response. Neglecting energies above 3.5 MeV introduces a small

error since the intensities decrease as a power-law (note that the values of γ under consideration

range from 2.4 to 4.6. See Table 4.6 in Sect. 4.4 for more details) and the values of the response

function are very low (< 0.08). A logarithmic grid of 20 energies within this range (dots) is able

to cast the main characteristics of the profile.

For the same example as above (Fig. 4.6), Figure 4.8 shows the Green’s function (in units

of counts/s) computed by taking into account the energy response of E03 and an energy spectra

with γ = 3.5. For comparison, Figure 4.8 includes the Green’s function for the nominal energy

channel (0.3 – 0.8 MeV) assuming a constant geometric factor of 0.48 cm2 sr (Bialk et al., 1991).

It can be seen that the timing of the two Green’s functions does not differ, i.e. the onset and the

time of the peak of the count rate are the same within the 1-min time resolution. On the other

hand, the peak is smaller by a factor ∼3 when the extended energy response is considered, since

the instrument is mostly sensitive to particles with energies higher than the nominal energy

range, for which there are lower intensities. The effect depends on the spectral index of the

source.

If we assume that the electron mean free path is independent of the energy and that the

effects of adiabatic deceleration are negligible, then the energy spectrum of the particles at the

Sun is not modified by their interplanetary transport. The estimation of γ from in-situ data is,

however, entangled because of two reasons: 1) the large extent of the energy channels, and 2)
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FIGURE 4.8: Mono-energetic Green’s functions from 0.25 MeV to 3.5 MeV (coloured curves)
released at the Sun at t = 0 assuming a spectral index of γ = 3.5, a radial mean free path of
λr = 0.14 AU and taking into account the energy response of E03. The black curve shows the
Green’s function of the channel in units of counts/s assuming the energy response computed by
Bialk et al. (1991). The dotted curve shows the Green’s function of the nominal energy channel

assuming a geometric factor of 0.48 cm2 sr.

the differential intensity spectral index is defined in terms of momentum, dN/dp ∝ E−γ
′

, instead

of energy. Figure 4.9 shows the Green’s functions of the E03 channel at 0.31 AU and 0.84 AU

assuming two values of the solar spectral index, γ = 1.5 (solid curve) and γ = 3.5 (dotted curve),

for λr = 0.05 AU (top) and λr = 0.14 AU (bottom). The grey dots show the curve for γ = 3.5

multiplied by a factor ∼0.5. It can be seen that a steeper spectrum results in lower intensities

at the observer location and a slightly later onset. Thus the value of the spectral index does

mainly affect the magnitude of the Green’s function and therefore it influences the values of the

inferred injection profile. Such a factor in intensity translates into a rather small change in the

values of the solar injection, as shown in previous studies (see Agueda et al., 2014, for example).

Besides, differences for the onset times of the particle count rates are comparable with the data

resolution of 1 min. For simplicity, in this study we assume that the spectral index of the electron

source equals the observational value of the spectral index computed from in-situ data. As a first

approximation, we computed the spectral index using the intensity measurements at the peak of

the four electron channels of E6.

4.3.2 Angular response of the sectors

The E6 experiment on board Helios uses the rotation of the spacecraft to measure the particle

angular distributions relative to the local direction of the magnetic field (i.e., the pitch-angle

distributions, PADs) of SEPs in interplanetary space. Rotation allows a single detector to scan
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FIGURE 4.9: Green’s functions of the E03 channel at 0.31 AU and 0.85 AU assuming two
values of the solar spectral index,γ = 1.5 (solid curve) and γ = 3.5 (dotted curve), for λr =

0.05 AU (top) and λr = 0.14 AU (bottom). The grey dots show the curve for γ = 3.5 normalised
to the peak of the profile for γ = 1.5

different directions as it spins. As explained in Section 4.1.1, the region of space swept out by

E6 during a spin is divided into eight sectors (see Table 4.3). Our aim is to model these sectors

to better understand both the potential and the limits of the observations, as well as to be able to

model the electron events selected in Section 4.2.

We modelled the E6 particle detector on board Helios as a conical aperture of half-width 20◦.

The nominal aperture of the detector was 25◦ but we assumed a smaller value because the de-

tector response function decays linearly due to edge effects (B. Heber, private communication).

We used the SSE coordinate system, being Z perpendicular to the ecliptic plane, aligned

with the Helios spin vector, X the radial direction pointing towards the Sun and Y the tangential

direction to the spacecraft trajectory pointing backwards, these latter two in the ecliptic plane.

The aperture centre of the detector lays perpendicular to the Z axis, at a constant colatitude
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FIGURE 4.10: Angular response of the eight sectors of E6 defined in the SSE coordinate
system for the configuration of Helios 1. Helios 2 would present the same result shifted 23◦.

θ = 90◦, measured from the Z axis towards the ecliptic plane (X − Y). The azimuth angle, ϕ,

is measured anticlockwise from the spacecraft-Sun line, i.e., X direction. The detector azimuth

changes at constant speed as the spacecraft spins, increasing clock angle by 60 rpm or 360◦/s.

We use the Monte Carlo technique to model a set of particle trajectories drawn from an

isotropic particle distribution and record how they would be seen by a rotating detector sweeping

a 45◦-wide clock angle sector. We use the methodology presented by Agueda (2008) and Agueda

et al. (2008).

We record the particle trajectories on a bi-directional matrix R jk of 180x360 elements (1◦

resolution), where the ( j, k) elements give the detection probability per square degree that a

particle with direction (θ, ϕ) is detected when the detector zenith axis sweeps a sector of 45◦.

We normalise the response to unity,
∑

jk R jk = 1. Figure 4.10 shows the response function of the

eight sectors of E6 defined in the SSE coordinate system. Note that it is not a boxcar function,

but it peaks at the midpoint clock-angle zenith direction of each sector. It is clear that the eight

sectors of E6 are able to scan a wide range of directions around the ecliptic plane. On the other

hand, the angular coverage descends ∼20◦ away from the ecliptic, where the coverage at θ = 0◦

is almost null.

The resulting coverage in pitch angle depends on the direction of the local magnetic field.

We can determine the pitch-angle cosine range scanned by each sector by computing the angle

between the incident trajectory of the particles and the direction of the local magnetic field in

SSE.

We define a vector with the direction of the magnetic field unit vector in spherical coordi-

nates, B̂ = (1, θB, ϕB) being θB the colatitude angle and ϕB the azimuth. Then, we compute

the values of the pitch-angle cosines corresponding to the grid of directions where the sec-

tor responses were evaluated, µ jk. By performing an element by element product between the
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FIGURE 4.11: Normalised angular response of the sectors of Helios 1 assuming two magnetic
field configurations: θB = 0◦ (left panel), and θB = 90◦ and ϕB = 22.5◦ (right panel).

FIGURE 4.12: Pitch-angle cosine coverage of the sectors (for Helios 1 configuration): maxi-
mum and minimum pitch-angle cosines detected by each sector as a function of the magnetic
field colatitude (θB = 90◦ means that the magnetic field is on the ecliptic plane). ϕB is the

magnetic field azimuth angle: ϕB = 11◦ in the left panel and ϕB = 22.5◦ in the right panel.

obtained pitch-angle matrix with the angular response matrix for each sector, we obtain the

pitch-angle response of each sector for a given magnetic field configuration, Rs
jk.

Figure 4.11 shows the pitch-angle cosine response function for each sector of Helios 1, as-

suming two different magnetic field configurations: θB = 0◦ (left panel), and θB = 90◦ (right

panel). In the first case, independently of the value of ϕB, the magnetic field is aligned with the

spacecraft spin axis and the response function is the same for all sectors, minimizing the pitch-

angle cosine coverage of the telescope. On the other hand, when θB = 90◦ and ϕB = 22.5◦, the

telescope is able to cover the whole pitch-angle cosine range and we obtain the best possible

mapping of the pitch-angle distributions.

Figure 4.12 shows the view boundaries of the sectors for Helios 1, i.e., the minimum and

maximum values of µ that each sector is able to scan, as a function of θB. For each sector, the
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maximum and minimum µ-values are displayed with the same colour. The left panel shows

the case for ϕB = 11◦, for which the magnetic field vector is aligned with the mid-point clock

angle ŝ of sector 0 and we find the maximum overlapping of the sectors due to the symmetric

configuration of the telescope sectors with respect to ϕB. Right panel depicts the case for a

magnetic field vector close to one edge of sector 0 with ϕB = 22.5◦. That, on the contrary,

it is found to result into the most sectored spread configuration of µ coverage. However, also

in Figure 4.12, it is possible to observe how the value of ϕB does not change the pitch-angle

coverage of the telescope but just the values observed by each sector that overlap more or less

depending on the specific alignment of the magnetic field. For both cases then, the total µ

coverage of the telescope is the same and it only depends on the value of θB. These results apply

for Helios 2 as well, as the only difference in Helios 2 sector configuration is the azimuth origin

of sector 0 (see Fig. 4.2).

To sum up, with 8 different sectors over the ecliptic plane, we can generally expect a good

coverage of pitch angles when θB & 90◦ ± 30◦. However the pitch-angle coverage quickly

gets worse when the magnetic field moves away from the ecliptic plane. If the magnetic field

vector is aligned with the spin axis of the spacecraft, all sectors scan the same pitch-angle range,

being the observations worthless for the study of the particle pitch-angle distribution due to the

restricted angular information available (just one point).

4.3.2.1 Sectored Green’s function

Once we know the angular response function of the sectors of the E6 telescope, it is possible to

transform the simulated count rates obtained with the Monte Carlo transport model into mod-

elled sectored count rates which are directly comparable with observations. Simulated pitch-

angle distributions are computed with a fine pitch-angle resolution of only 9◦.

The simulated count rates observed in sector s are given by

Gs(t) =
∑

jk

Rs
jk Cc(µ jk(t), t), (4.6)

where Cc(µ, t) are the pitch-angle distributions given by Equation 4.5, and Gs(t) are the mod-

elled count rates for each sector s as a function of time. In Equation 4.6 the matrix product is

performed element by element and the sum extends over all (θ, ϕ) directions identified by the

indices j,k, where j is the azimuthal angle index from 0 to 360 and k is the colatitude index, from

0 to 180. Note that observations of the local magnetic field vector show changes as a function

of time, varying the grid of pitch-angle cosines, µ jk(t), at each time.
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FIGURE 4.13: Mono-energetic omni-directional intensities expected at 0.53 AU assuming two
different values of the mean free path (λr = 0.25 AU and λr = 1.08 AU). The right panels show
the PADs (normalised to maximum) corresponding to the three snapshots (A, B and C) plus a

bidirectional synthetic PAD (D).

4.3.2.2 Study of synthetic PADs

The focused transport equation (Equation 4.2) predicts that at the onset of an SEP event the

PADs are collimated around pitch angle zero degrees for positive IMF polarity (180◦ for nega-

tive IMF polarity). This is due to the fact that the particles arriving first at the observer location

suffer few pitch-angle scattering. Later on, the PADs monotonically evolve into isotropic PADs.

The isotropisation rate depends on both the value of the radial mean free path and the duration of

the solar release processes. Small values of the mean free path imply higher scattering frequen-

cies and shorter isotropisation rates. While a sustained release of particles at the Sun produces

episodes of sustained anisotropy and thus longer isotropisation rates.

In this section we study how a given synthetic pitch-angle distribution would be observed by

the eight sectors of E6 for different configurations of the local magnetic field vector. Figure 4.13

shows the Green’s functions of particle transport at 0.53 AU for two values of the radial mean

free path, λr = 0.25 AU and λr = 1.08 AU. The four panels on the right show the normalised

PADs for three selected times (A, B and C) of a typical event. The last PAD (D) was included

to study bi-directional PADs.

Figure 4.14 and Figure 4.15 show the normalised synthetic PADs (black curves), the observa-

tions at the centre of each sector (coloured crosses) and the observed normalised intensity at the

average pitch angle of each sector (coloured diamonds), assuming four different configurations
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of the local magnetic field vector given by θB = 0◦, 30◦, 60◦, 90◦. Figure 4.14 shows the PADs

for case A (top) and case B (bottom). Figure 4.14 shows case C (top) and case D (bottom).

First of all, we can clearly notice that for θB = 0◦ and irrespectively of the case, no reliable

information can be extracted from the observations as all the sectors are observing particles

with the same pitch angle value and no distribution can be inferred. On the other hand, we can

point out that the PADs for all cases are well covered when θB = 90◦, even though only for

case B the PAD can be really well reproduced. For the other 3 cases (A, C and D), we found

that the observations at the centre of the sectors would show slightly lower anisotropies than

the actual PADs. If we compare the values of the pitch angle of the centre of the sector with

the mean pitch angle according to the PAD we can see that the assumption of the sector centre

generally underestimates the anisotropy of the actual PAD. On the other hand, the average pitch

angle value results into distributions with higher anisotropy when the pitch-angle range is well

covered.

Moreover, for very anisotropic cases (A and D), only when the magnetic field shows a θB =∼

90◦ we can reliably reconstruct the actual PAD from the observations at the centre. For cases

with moderate anisotropy (B and C), even for lower values of θB it would be possible to extract

useful information.

Our conclusion is that observations should provide a good pitch-angle coverage of the parti-

cle distribution in order to properly infer the PAD of the underlying particle fluxes. In the case

of the Helios spacecraft, this means that the magnetic field should come as close as possible to

the ecliptic plane.

4.3.3 Full inversion of Helios E6 observations

We use an inversion approach (Agueda et al., 2008) to infer the electron injection profile at

the Sun, q(t), from sectored particle observations by Helios. For a given fitting time interval

t ∈ [t1, t2], we compute the Green’s functions of particle transport (assuming a value of the

radial mean free path λr) expected at the observer location for a set of multiple consecutive

instantaneous injection episodes occurring at t′ ∈ [T1,T2], where T2 = t2 − ∆t and T1 = t1 − ∆t,

being ∆t the transit time of the first arriving electrons at the observer location.

The modelled sectored intensities, Ms, are given by

Ms(t; λr) =

∫ T2

T1

Gs(t, t′; λr) q(t′) dt′, (4.7)

where Gs(t, t′; λr) are the sectored Green’s functions. If Jk are the observations once the pre-

event background has been subtracted, it is possible to determine the nt components of the vector

q that minimise the distance between the observations (J) and the modelled intensities (M), i.e.,
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FIGURE 4.14: Intensities observed by the eight E6 sectors for two synthetic PADs (case A and
case B) assuming different values of θB (0◦, 30◦, 60◦, 90◦). Sectors and the pitch angle range
they observe (horizontal bars) are numbered in different colours. It is also indicated the pitch
angle observed by the centre of each sector (crosses) and the average pitch angle measured

within the range of each (diamonds).
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FIGURE 4.15: Same as in Figure 4.14 for case C, and D.
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we minimise

‖ J −M ‖≡‖ J −G·q ‖, (4.8)

under the constraint that qk ≥ 0 ∀l = 1, 2, ..., nt. By using the non-negative least-squares method

of Lawson and Hanson (1974) that assures the convergence to a solution, we get the injection

amplitudes. For a time grid with δt-resolution and no gaps, the number of data points are nt =

(t2 − t1/δt + 2) in each sector, while the number of unknowns in the injection profile are nt. In

general, since 8nt � nt the problem is well-constrained.

For each transport scenario (see next section for a description), we obtain the best possible

release time history. The goodness of the fit is then evaluated by summing the logarithmic

differences between the observations and the modelled data.

4.4 Results

We computed the Green’s functions of interplanetary transport (Agueda et al., 2008, 2012b) as-

suming that the solar source is static at two solar radii and that particles are moving at the speed

of light (v = c) for several interplanetary transport scenarios. These scenarios correspond to dif-

ferent values of the electron radial mean free path, logarithmically spaced between 0.01 AU and

∼0.52 AU. We assumed an anisotropic pitch-angle scattering diffusion coefficient with ε = 0.01

(Agueda and Vainio, 2013). The Green’s functions of interplanetary transport were computed

for the E03 electron channel of Helios/E6 taking into account the energy response of the channel

given by Bialk et al. (1991) and the angular response of the sectors. Further, to characterise the

IMF in the particle transport simulations we used the solar wind speed values listed in Table 4.4

and, as mentioned at the end of Section 4.3.1, the spectral index derived from the peak count

rates to characterise the energy dependence of the solar injection.

We selected a fitting period including the onset, the rising phase of the event and a sufficient

part of the decaying phase. For this sample, the fitting period ranges from an hour to 3 hours

approximately. Table 4.6 lists the fitting parameters and the results for each event in our sample.

Columns 1 and 2 show the year and date of the events, column 3 shows the fitting period length,

column 4 the source spectral index used to compute the energy spectra at the Sun, column 5

and 6 list the inferred values for the maximum injection at the Sun and the type of injection:

short or extended, for durations shorter/longer than 30 min. Columns 7 and 8 list the inferred

value of the electron radial mean free path and the ratio between the parallel mean free path and

the focusing length, L7, of the particles along the Archimedean spiral as a simple estimation of

focused (λ‖/L ≥ 1), weak-focused (0.1 < λ‖/L < 1) and diffusive (λ‖/L ≤ 0.1) propagation as

suggested by Beeck and Wibberenz (1986).

7The focusing length is L(z) = −B(z)/(∂B/∂z), that for the Archimedean spiral IMF is given by the expression
L =

r(r2+R2)3/2

R(r2+2R2) , where r is the radial distance from the observer to the Sun, and R = u/Ω, being vsw the solar wind
speed and Ω the solar rotation rate.
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TABLE 4.6: Fitting parameters for the selected events.

Year Date Fitting period Spectral Max inj. Injection λr λ‖/L[min] index [e (s sr)−1] type [AU]

1976 Mar 21 55 3.4 1.7 × 1028 Short 0.040 0.22
1978 Jan 1 100 2.4 2.2 × 1030 Extended 0.106 0.24
1978 Dec 11 100 3.5 4.6 × 1029 Extended 0.100 0.29
1980 Apr 5 130 4.6 1.9 × 1029 Short 0.060 0.15
1980 Apr 26 60 4.0 6.0 × 1029 Short 0.080 0.28
1980 May 3 150 3.7 7.3 × 1029 Extended 0.080 0.28
1980 May 12 65 3.3 1.7 × 1029 Extended 0.120 0.53
1980 May 28 a 72 4.4 1.3 × 1029 Extended 0.270 1.75
1980 May 28 b 120 4.5 3.9 × 1030 Extended 0.160 1.04
1980 May 28 c 82 3.9 3.1 × 1030 Extended 0.207 1.34
1980 May 28 d 63 4.1 6.2 × 1029 Extended 0.270 1.75
1981 Jan 14 60 2.9 3.0 × 1028 Short 0.090 0.26
1981 May 8 195 3.1 3.0 × 1030 Extended 0.070 0.21
1981 Jun 10 85 3.6 3.4 × 1028 Extended 0.080 0.50
1982 Jun 2 162 2.9 7.7 × 1028 Short 0.020 0.07

The values of the radial mean free path derived in this study range from λr ∼ 0.02 AU to

λr ∼ 0.27 AU. These values are in general small compared to the distance between the Sun and

the spacecraft, suggesting that the transport was not scatter-free for most of the events of the

sample. For ten of the events, the electrons propagated in the weak-focused regime, for four of

them in the focused and only for one of them the transport was clearly diffusive.

Figure 4.16 shows the values of the goodness-of-fit estimator for each mean free path tested

for each event. Different ranges and resolutions of the mean free path have been used depending

on where the minimum value of mean free path appeared in the initial tests.

For most of the events we obtain a clear minimum of the goodness-of-fit estimator, which

allows us to identify the ranges of λr-values providing the best fit. However, there are 5 cases

(1978 December 11, 1980 May 3, 1980 May 12, 1981 June 10, 1982 June 2) showing a plateau

for low values of the radial mean free path.

For all cases we applied the same method: when different values of the radial mean free path

had similar values of the goodness of the fit, we chose the one related to the most simple injection

profile that could explain the observations. This was generally resulting in smaller values of

the radial mean free path for short injection profiles and larger values for extended injections

(see Agueda et al., 2014, for a discussion). In that way, we avoid over-fitting situations where

the model is trying to adjust noise adding extra injections in a short profile or on/off injection

episodes for extended injection profiles.

The chosen value of the mean free path was in general only 1 position shifted from the

minimum value given by the goodness-of-fit estimator except for the event on 1982 June 2
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where we took the smaller mean free path value (0.020 AU instead of 0.035 AU given by the

minimum of the goodness-of-the-fit).

Figure 4.17 shows the results of the fit for the event on 1982 June 2. The first two panels

show the data (dots) and the modelled (solid curve) counts per second in the sectors 0,1,2,3

(top panel) and sectors 4,5,6,7 (middle panel) with different colours. The third panel shows the

cosine of the pitch angle for the eight sectors. Figures 4.18, 4.19 and 4.20 show the fits for the

other events in our sample. We obtain a good fit for most of the events in the list. However, for

short periods of time, few events (e.g. 1978 January 1, 1980 April 26) show clear discrepancies

between the observed and the modelled count rates. For the event on 1978 January 1 (left panel

of Fig. 4.20), the model is unable to reproduce the data hollow observed around ∼22:20 UT

coinciding with a local fluctuation of the magnetic field given by a rotation in latitude θ larger

than 50◦. For the event occurring on 1980 April 26 (see Fig. 4.20), the model underestimates a

double peak appearing in those sectors observing antisunward particles with µ ∼ 1. On the other

hand, the model overestimates the observations for µ ∼ 0.5. For this event, we find a sudden

change in the latitude of the local magnetic field vector of 20◦. For the case of the event on 1980

May 3 (Fig. 4.18), we obtain a very good fit despite the data gap between 08:25 – 09:00 UT. The

gap is not affecting the rising phase nor the peak of the event. Therefore it is possible to infer

a reliable value of the mean free path and of the injection time-profile. In the selection phase,

we discarded two events (1977 November 22 and 1978 April 11) because they presented gaps

during the rising phase of the SEP event either in the sectored data or in the magnetic field data.

Figure 4.21 shows the inferred injection profile at the Sun corresponding to the best fit mean

free path for the event on 1982 June 2. The bars indicate the rate of released particles per

steradian for each 1-min time bin. The profile is shifted 8 min in order to directly compare the

timing of the injection profile with the electromagnetic emissions detected from Earth, shown

as horizontal thick bars on the top of the plot (the peak time of the EM emissions are indicated

by small vertical lines in these bars). For this event, the injection profile is very short and the

main release episode occurs between 15:40 UT and 15:45 UT in coincidence with the peak in

SXR and radio emission, which suggest that the release for this event was associated with the

well-connected M9.9 flare.

Figure 4.22 shows the injection profiles for those events with short (< 30 min) durations. In

these cases, the timing of the maximum release is consistent with the timing of the radio emis-

sion peak. Also, the 1976 March 21 event shows more than one peak in radio emission which is

consistent with several injection episodes. The correspondence between the injection episodes

and the SXR emission varies from event to event. For the event on 1980 April 26, as explained

in Section 4.2, no SXR emission was reported in association with the onset time of the event, but

we show instead the closest SXR emission reported, which clearly appears much earlier than the

inferred electron release. Nevertheless, a short radio emission was found matching the injection

start time and showing a peak that coincides accurately with the maximum injection.
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FIGURE 4.16: Goodness of the fit for every value of λr tested. Most of the events show a clear
minimum around the best fit value. Events in the right column are particular cases (see text for

details).
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The duration of the electron release for these events seems consistent with flare emission.

The associated flares have connection angles < 26◦, which indicates that the open magnetic flux

tubes cover several tens of degrees in longitude on the source surface. Klein et al. (2008) found

that open field lines may connect the parent active region to the footpoint of the nominal Parker

spiral, even when the parent active region is as far as 50◦ away.

Figure 4.23 shows the injection profiles for those events with long (> 30 min) durations.

The event on 1980 May 3 shows a ∼20-min data gap during the decaying phase of the event.

This gap results on an equivalent gap in the injection profile between 08:22 and 08:54 UT and a

higher intensity of the injection right before and after the gap. We performed an analysis filling

the data gap using simple linear interpolation and found no difference for the inferred value of

the best mean free path. However, during the gap the inferred injection was continuous and of

smaller intensities.

Most (10) of the events in our sample show extended release episodes lasting at least an hour.

In these cases, the beginning of the release appears before or at the peak in SXR emission. The

duration of the SXR emission does not seem related to the injection duration as three of the

events (1980 May 3, 1980 May 12 and 1981 May 8) have the shortest SXR emission in the

sample. Furthermore, the injection extends past the duration of the radio emission. Although

the events observed on 1978 January 1 and 1978 December 11 show more than one radio peak

consistent with several injection episodes.

We found no correlation between the source flare class and the duration of the inferred in-

jection profile, being intense flares related to short injection profiles (such as the M9.9 flare on

1982 June 2, with ∼8 min injection duration) as well as weaker flares being related to extended

injection profiles (e.g. the C4.3 flare associated with the event on 1980 May 12, for which we in-

ferred an injection profile lasting more than 45 min). Nevertheless, for the two events associated

with the two strongest flares we obtained extended injection profiles lasting at least 1 hour.

4.5 Discussion

4.5.1 Transport conditions and particle injection

The sample of 15 events selected for this study suggests different electron transport conditions

in the interplanetary medium with best-fit values of the radial mean free path between 0.02 AU

and 0.27 AU. These values are in general small compared with the distance of the spacecraft

to the Sun along the Archimedean spiral, which implies that the propagation is not scatter-

free, and the λ‖/L ratios found indicate that the propagation occurred in the focused and weak-

focused regimes; therefore the focused-diffusion transport equation that we used is the appro-

priate framework to model these electron events. Note that 10 of the events in our sample show
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FIGURE 4.17: Top two panels: observational sectored data (dots) and model predictions
(coloured curves) on 1982 June 2. Bottom panel: electron pitch-angle cosine observed by

each sector using the same colour code.

weak focusing conditions at the observer’s position, 4 a transport regime clearly dominated by

focusing and 1 event (1982 June 2) evolves under diffusive conditions.

Kallenrode et al. (1992b) studied a sample of 6 events (1978 April 11, 1980 April 26, 1980

May 3, 1980 May 12, 1981 June 10 and 1982 June 2), five of them contained in the sample of

the present study. These include all but the 1978 April 11 event, that we discarded because of

a gap in the magnetic field data during the rising phase of the event. Kallenrode et al. (1992b)

determined the electron transport conditions by fitting the averaged intensity and the anisotropy

time profiles with the results of a focused transport model assuming an instantaneous δ-injection

or a Reid-Axford injection at the Sun and the nominal energy range of E03 (0.3 – 0.8 MeV). They

estimated the uncertainty in the local values of λr achieved by their method to be of the order

of 50%. They found small values of the radial mean free path, between 0.02 AU (1982 June

2) and 0.15 AU (1980 April 26) where our results show a range of 0.020 – 0.12 AU (for 1982

June 2 and 1980 May 12, respectively). The values of the radial mean free path obtained by

Kallenrode et al. (1992b) are summarised in Table 4.7 and compared with the values inferred in

this study. It can be seen that the values are consistent within the errors reported by Kallenrode

et al. (1992b). Regarding the properties of the injection profile at the Sun, we find that for two of

the events (1980 April 26 and 1982 June 2), Kallenrode et al. (1992b) could fit the observations
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FIGURE 4.18: Results of the fit for the studied events. See caption at Figure 4.17 for detailed
explanation.
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FIGURE 4.19: Same as in Figure 4.17.
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FIGURE 4.20: Same as in Figure 4.17.

FIGURE 4.21: Release time profile inferred for the event on 1982 June 2. The histogram shows
the inversion result with 1-min time resolution; the solid curve shows the total percentage of
electrons. The profile has been shifted by +8 min to allow the comparison with EM emissions.
Black thick horizontal bars on the top of the panel show the timing of the SXR and radio
emissions. The time of the EM peaks are indicated with vertical lines. The legend shows the
connectivity of the source (∆), the inferred radial mean free path and the radial distance of the

spacecraft.

assuming a δ-injection and the results of the inversion suggest short episodes as well. On the

other hand, two of the events (1980 May 12, 1982 June 10) could not be fitted by a δ-injection

by Kallenrode et al. (1992b). In addition, their fit for the 1980 May 3 event failed reproducing

the slower anisotropy decay suggesting also a longer injection duration. Consistently, for these

three events we inferred extended injection profiles.

Kallenrode (1993b) also studied a sample of 27 proton and electron events observed by the

Helios spacecraft. Five of them are part of our sample (1980 April 26, 1980 May 3 and 1980

May 12, already studied by Kallenrode et al. (1992b), and 1981 January 14 and 1981 May 8).

Kallenrode (1993b) made use of a combination of the first two electron channels of E6 (0.3 –

2 MeV) and tried to fit the averaged intensity and the anisotropy time profiles with the results
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FIGURE 4.22: Same as in Figure 4.21 for those events with short (< 30 min) injection profiles.

TABLE 4.7: Mean free path and injection type inferred by our study, Kallenrode et al. (1992b),
Kallenrode (1993b) and Agueda and Lario (2016). Red values indicate discrepancies with our

result for the radial mean free path.

This study Kallenrode et al. 1992 Kallenrode 1993 Agueda & Lario 2016

Year Date Onset λr Injection λr Injection λr λr Injection
[UT] [AU] Type [AU] Type [AU] [AU] Type

1980 Apr 26 13:40 0.080 Short 0.15 δ 0.15 -
1980 May 3 08:00 0.080 Extended 0.05 δ 0.06 - -
1980 May 12 02:51 0.120 Extended 0.10 Reid Axford 0.15 - -
1981 Jan 14 21:01 0.090 Short - - 0.10 - -
1981 May 8 22:50 0.070 Extended - - 0.20 - -
1981 Jun 10 06:16 0.080 Extended 0.05 Reid Axford - - -
1982 Jun 2 15:44 0.020 Short 0.02 δ - - -
1980 May 28 a 15:44 0.270 Extended - - - 0.26 Short
1980 May 28 b 17:04 0.160 Extended - - - 0.14 Extended
1980 May 28 c 19:38 0.207 Extended - - - 0.18 Extended
1980 May 28 d 23:34 0.270 Extended - - - 0.20 Extended

of an interplanetary transport model as done by Kallenrode et al. (1992b). They mention that

the event on 1980 May 3 suffers from proton contamination in this range of energies, which

is mainly due to the contribution of the second channel of E6, E08, with a higher response

to protons than E03 (see Fig. 4.1); hence, we can neglect proton cross-contamination in the

E03 channel. Furthermore, as there is no energy dependence on the radial mean free path over

this range of energies and we also considered in the energy response a similar range (from

0.25 MeV to 3.5 MeV) it is possible the direct comparison of the mean free path values obtained

by Kallenrode (1993b) and those obtained in this study. Kallenrode (1993b) found, in general,

small values of the radial mean free path, between <0.02 AU and 0.35 AU, except for the event

on 1978 April 28, for which they found λr ≥ 0.5 AU. For 15 of the events of their sample they

found λr < 0.2 AU. The values of the radial mean free path obtained by Kallenrode (1993b) for
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FIGURE 4.23: Same as in Figure 4.21 for those events with extended (> 30 min) injection
profiles.
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the events present in our sample are compatible with the values we inferred, except for the 1981

May 8 event, for which we found a mean free path a factor ∼3 smaller (0.07 AU). The values

are summarised in Table 4.7.

Wibberenz and Cane (2006) studied a sample of impulsive electron events observed by He-

lios associated with short flares and type III bursts. They took into account the energy response

(Bialk et al., 1991) and assumed diffusive transport conditions. These authors determined the

radial mean free path by evaluating the time in the profile from the particle onset to the max-

imum intensity and compared it with the electron flight time between the Sun and the space-

craft. They analysed the event on 1976 March 21, which is included in our sample, and found

λr = 0.046 AU, which agrees with our inferred value (λr = 0.040 AU).

Recent studies have applied inversion techniques to events detected by the Helios mission.

Agueda and Lario (2016) presented a study of the four events observed on 1980 May 28, were

they fitted the observed PADs with an exponential function in order to infer the electron transport

conditions and the injection profile at the Sun by using the transport model by Agueda et al.

(2008), assuming the nominal energy range of E03. The main differences between Agueda and

Lario (2016) and the present study are the use of the energetic response from Bialk et al. (1991)

and the fact that we fit the most direct form of directional data, i.e. the sectored intensities.

For the four events on 1980 May 28, the values of λr inferred in this study and by Agueda and

Lario (2016) (see column 4 and 9 in Table 4.7, respectively) are very similar except for the 4th

event, for which we derived a slightly larger value. The tiny differences found are explained by

the different grid of λr-values tested and due to the difference in the assumed energy spectra.

As we mention in Section 4.3.2.2, when the PADs are derived using the pitch-angle cosine of

the sector centre instead of the mean pitch-angle cosine taking into account the sector response,

the anisotropy of the PADs are generally underestimated, which may partly explain the smaller

value of λr found by Agueda and Lario (2016) for the fourth event in this series.

The injection profiles inferred by Agueda and Lario (2016) are very similar to the ones in-

ferred in the present study (see their Fig. 8). Since they use a secondary product (i.e., PADs

obtained by fitting an exponential function to the sectored intensities) less affected by noise and

where data gaps had been interpolated, their injections show smoother profiles. For the first

three events (a, b and c in their Fig. 8), with a very similar value of the radial mean free path, we

find smaller values of the maximum of the injection per energy unit, where Agueda and Lario

(2016) found values of 5 × 1029 e/(s sr MeV), 1 × 1031 e/(s sr MeV), 6 × 1030 e/(s sr MeV),

respectively. For event d, they found λr = 0.20 AU and a value of the maximum injection of

1 × 1030 e/(s sr MeV). Assuming γ = 2.0, the same spectral index as Agueda and Lario (2016),

we obtain 2 × 1028 e/(s sr MeV), 8 × 1029 e/(s sr MeV), 6 × 1029 e/(s sr MeV), 1 × 1029 e/(s

sr MeV), respectively for the first to the fourth event. The difference between the peak injec-

tion values found by Agueda and Lario (2016) and this study is mainly due to the fact that we

take into account the energetic response of the E03 channel and due to the different approach
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FIGURE 4.24: Radial mean free path vs. maximum electron injection at the Sun. Diamonds:
values inferred in this study; crosses: values from Agueda and Lario (2016).

on fitting the intensities. Agueda and Lario (2016) assumed electrons in the energy range of

0.3 – 0.8 MeV, while we assumed 0.25 – 3.5 MeV. This latter energy range makes the injection

values in units of e/(s sr MeV) to become smaller, since the considered energy range is a factor

6.5 larger than the nominal energy range. Further, Agueda and Lario (2016) fitted an exponen-

tial function to the sectored intensities, which might yield to an overestimation of the intensities

for the electrons propagating along the IMF with pitch angle 0◦; thus, implying higher inferred

injection values.

Figure 4.24 shows the electron radial mean free path versus the maximum electron release at

the Sun, where results are depicted from this study (diamonds) as well as from Agueda and Lario

(2016) (crosses). Agueda and Lario (2016) report that the amount of interplanetary scattering

suffered by the electrons seemed to be related to the amount of electrons released at the Sun

for the four events on 1980 May 28, in such a way that λr decreases with increasing peak

injection. This tendency is also inferred from our study for this subset of events (see the top

four diamonds in Fig. 4.24). However, we find no indication of a general relation between the

maximum injection at the Sun and the value of the radial mean free path when considering the

whole sample, in agreement with the results from Kallenrode et al. (1992b).
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4.5.2 Particle release: duration and plausible processes

Regarding the duration of the injection profile, we classified the events in our sample into short

(when the release of particles lasts less than 30 min) or extended. Previous studies (Agueda et al.,

2012a, Agueda et al., 2013, Agueda et al., 2014, Gómez-Herrero et al., 2015, Pacheco et al.,

2017a) found a similar dichotomy from the study of solar near-relativistic electron events ob-

served by ACE, Wind, STEREO and Ulysses, in different regions of the heliosphere. For exam-

ple, Agueda et al. (2014) studied the duration of the release processes of seven near-relativistic

electron events observed at the near-Earth environment by the ACE and Wind spacecraft. They

found that the electron release was produced either during short (< 30 min) or long (> 2 h) peri-

ods of time, agreeing with the results of our study. Also, Agueda et al. (2012a) and Agueda et al.

(2013) studied four multi-spacecraft electron events observed by ACE and Ulysses, the latter be-

ing located at high latitudes in the heliosphere and at 2 AU. They found extended periods of

particle release, lasting a few hours in 5 of the events, whereas the other 3 events presented long-

duration intermittent sparse injection episodes (when the magnetic footpoint of the spacecraft

laid at the opposite magnetic sector of the flare site, see Agueda et al., 2013 for further details).

Finally, Gómez-Herrero et al. (2015) studied the multi-spacecraft event on 2011 November 3.

They modelled the ∼62 – 105 keV electron event observed by STEREO-A, ACE and STEREO-

B (covering ∼ 300◦ in longitude) and derived an extended injection episode of several hours for

the three spacecraft. The observation of a single CME and the observed anisotropies support the

direct injection of particles at the three locations by an extended source, but a clear observational

evidence of such a wide coronal and/or interplanetary shock was not found.

The fact that 10 out of the 15 events in our list show extended injections points towards

some mechanism allowing a continuous electron acceleration or a slow release of the electrons

into the interplanetary space. In a previous analysis of near-relativistic electron events observed

by the ACE and Wind spacecraft, Agueda et al. (2009) and Agueda et al. (2014) related short

(< 15 min) particle release episodes to flare processes, and they indicated as the most plausible

scenario for extended injection episodes (> 1 hour) the injection of particles from coronal CME-

driven shocks and/or reconnection processes behind the CMEs. In Agueda et al. (2014), they

found that only for those events associated with type III radio bursts reaching the plasma line

near the spacecraft a short flare-related injection episode was inferred, suggesting that magnetic

connectivity plays an important role in space for short injection profiles. This was consistent

with a scenario where electrons released during type III radio bursts not reaching the local

plasma line never reach the observer due to the lack of magnetic connectivity. In addition,

they concluded that the presence of type II radio bursts does not seem to be a discriminator

between short and extended injections. These authors found that extended injections are related

to different EM signatures of long particle acceleration in the corona (long decay SXR emission,

type IV radio bursts, and time-extended microwave emission).
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Other mechanisms to explain the observed extended particle injections are proposed by Klein

et al. (2010). These authors studied in detail the EM emissions of a sample of 15 CME-less

flares. These flares show bright SXR and microwaves bursts which indicate an efficient acceler-

ation of the electrons in the flare. They found that no SEP event was connected to these flares

as accelerated particles remained confined in the low corona, because magnetic field lines kept

closed over the Sun’s surface. The only CME-less flare associated with a weak SEP event near

the Earth environment shows type II radio emission, suggesting that a coronal shock (not related

to a CME) was the source of the accelerated electrons. In addition, Klein et al. (2010) analysed

3 eruptive flares (i.e., associated with CMEs) occurring few hours after the CME-less flares.

These eruptive flares showed SEP events. Klein et al. (2010) point out that an easy conclusion

that could be drawn from their analysis is that CMEs are needed to open magnetic field lines in

order for the electrons to escape into the interplanetary space. However, Klein et al. (2010) found

that this is not the scenario for the three eruptive events in their study. They state that even if the

CME had opened the coronal magnetic field to allow particles access to the flux tubes along the

interplanetary space, the observed SEP events associated with type III bursts were detected too

early, during the impulsive phase of the flares, and thus CMEs did not have still enough time to

open the coronal magnetic field around the particle source. Therefore, to explain the origin of

these SEPs, they suggest the scenario where both CMEs and type III bursts are triggered from

the surroundings of active regions with open magnetic field lines which connect the site with the

interplanetary medium.

Dresing et al. (2018) also found that a long-lasting electron injection profile was needed

to explain the widespread event on 2013 December 26. They point out that the shock front

propagating into the interplanetary medium could play a role explaining that extended injection.

They suggest two possible explanations, (i) the extended shock is accelerating the observed

electrons when propagating into the interplanetary medium, or (ii) a leakage process coming

from a magnetic trap where particles are gradually released giving the same result as a long

injection. They point out that the shock will hardly explain the high-energy particles observed,

so they propose possible scenarios where particles are early accelerated in the corona into the

interplanetary medium and, while some of the electrons are directly injected into open field

lines, a fraction of them are trapped by a closed magnetic field region that only allows a slow

electron leakage towards the flux tube connecting the trap with the observer. This trap could

be suddenly opened by solar activity in the corona, releasing abruptly the trapped particles it

contains.

Therefore, the influence of magnetic structures and the importance of the flare sites being

connected to open magnetic field lines has been proved to be a relevant factor for the release

timing and duration of the electrons towards the interplanetary medium (Klein et al., 2010).

Then, alternatively to coronal CME-driven shocks, it is reasonable to suggest that extended

electron injections can be due to scenarios where the flare site is not well connected to open
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FIGURE 4.25: Radial mean free path vs. radial distance to the Sun. Red diamonds: values
inferred in this study; blue crosses: values from Agueda and Lario (2016); purple circle: Wib-
berenz and Cane (2006); olive green triangles: values from Kallenrode (1993b); light blue

asterisks: values from Kallenrode et al. (1992b).

magnetic field structures in the corona. So even if there is a partial escape of the injected

particles coinciding in time with the radio emissions, a bulk of electrons is kept magnetically

trapped until they reach open field lines and are gradually leaked into the flux tube connecting

with the observer.

4.5.3 Intensity profiles and mean free path variation with the heliocentric radial
distance

Finally, we analyse the variation of λr with the radial distance to the observer location. Fig-

ure 4.25 shows this variation for the events in this study (red diamonds), and those obtained

by Kallenrode et al. (1992b) (light-blue asterisks), Kallenrode (1993b) (olive green triangles),

Wibberenz and Cane (2006) (purple circle) and Agueda and Lario (2016) (blue crosses) for the

events in the present list. We find no evidence of a radial dependence of the radial mean free

path, which agrees with the conclusions of Kallenrode et al. (1992b). We expect that observers

at small heliocentric distances to the Sun will observe events showing any value of the mean free

path, at least between 0.03 and 0.27 AU (as seen in Fig. 4.25), when analysing their transport

conditions. For this reason, it will be important to have the field-of-view data from missions like

Parker Solar Probe and Solar Orbiter available in order to be able to disentangle the PADs.
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FIGURE 4.26: Events on 1976 Mar 21 (left) and 1980 May 28 c (right) modelled electron
intensities at different radial distances. The upper panel shows the injection profile at the Sun.
The lower panel shows the omni-directional modelled electron event at the Helios location

(solid curve) and at 0.94 AU (dashed curve).

Kallenrode (1993b) found a weak dependence of λr with the heliocentric radial distance

below 0.5 AU for protons. We do not find such a trend in our sample of electron events (see

Fig. 4.25). On the other hand, Kallenrode (1993b) suggests that such radial dependence could

stem from a bias in the selection of the events, that hinders from choosing events with a diffusive

profile near 1 AU. We have further inspected this point.

Figure 4.26 shows, for the event on 1976 March 21 (left) and the third event on 1980 May 28

c at ∼19:30 (right), the inferred electron release profiles at the Sun (top panels) and the electron

profiles (lower panels) obtained by convolving the injection profiles with the Green’s functions

of particle transport for the best fit value of λr at the Helios location (solid curves) and at a radial

distance of 0.94 AU (dashed curves). The profiles show that these two events, clearly observable

in the inner heliosphere, appear barely above the background when observed close to 1 AU,

especially in the case of the event on 1976 March 21, due to the diffusive transport conditions

in the interplanetary medium characterised by the same λr for all helioradii. Therefore, the

selection bias may be twofold: (i) some SEP events, especially those evolving under strong

diffusive transport conditions, may not be observed at 1 AU because the intensities they show

at these distances may remain below the background level and (ii) some SEP events may be

instead observed at 1 AU but exhibiting, even under focused transport conditions, low intensity

levels that render their modelling difficult given the low statistics of the measurements. Hence,

small to middle size (in terms of their peak intensity) SEP events, like those in our sample that

are detected at radial distances close to the Sun, might be undetected at larger distances.
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4.6 Conclusions

The full inversion approach presented in this study represents a step forward with respect to

previous analysis of Helios observations, as for the first time both energy and angular responses

have been taken into account in order to develop a more accurate approach to fit the directional

distributions of electrons observed in-situ.

We scanned the full Helios mission looking for the best-observed electron events to model

and we found a sample of 15 events fulfilling the selection criteria. Then, we modelled the

angular and the energetic response of the E6 instrument on board Helios and computed a sample

of Green’s Functions for the different transport scenarios, given by different values of the mean

free path, taking into account several parameters as the solar wind speed, the energy spectrum

and the radial distance between the Sun and the spacecraft. For each event in our sample,

we inferred the injection profile and the value of the radial mean free path that best fitted the

observations.

The results suggest values of the radial mean free path between 0.02 AU and 0.27 AU. When

we compared the computed parallel mean free paths to the focusing lengths they agree, in gen-

eral, with weak-focused transport (0.1 < λ‖/L < 1 for 10 cases). Four events (the 4 consecutive

events on 1980 May 28) show higher values of the radial mean free path (0.16 – 0.27 AU), and

suggest focused transport (λ‖/L ≥ 1). Only one event (1982 June 2) presents diffusive transport

results (λ‖/L ≤ 0.1) with λr = 0.020 AU.

We compared the obtained values of the radial mean free path and maximum injection with

those reported by previous studies (Kallenrode et al., 1992b, Kallenrode, 1993b, Agueda and

Lario, 2016) and found that our results were compatible with them for all cases except for the

result on 1981 May 8 (Kallenrode, 1993b), which differs a factor ∼3 with our inferred mean free

path. We also compare the duration of the events studied by Kallenrode et al. (1992b) finding

that 2 of them could be fitted by using short episodes of δ-injections and other 3, for which their

fit failed adjusting the slow anisotropy decay, we inferred extended injection profiles.

Regarding the injection profiles, we found two separated groups depending on the duration

of the injection. We found 5 short injection profiles (lasting less than 30 min) and 10 extended

injection profiles (lasting more than 30 min). The value of the maximum injection takes values

from 1.7 × 1028 [e (s sr)−1] to 3.1 × 1030 [e (s sr)−1]. The peak and duration of the inferred

electron release histories match, in general, with radio and soft X-ray emissions extracted from

the literature. We suggest that extended injection profiles can be explained by either coronal

CME-driven shocks or complex magnetic structures trapping the electrons and allowing a slow

release over a long time period, as discussed by Klein et al. (2010) and Dresing et al. (2018).

We found no dependence between the radial mean free path and the radial distance between

the Sun and the observer. We compared the modelled profiles at small radial distances with those

modelled profiles close to 1 AU and concluded that diffusive events associated to relatively small
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injection profiles may not be observable at 1 AU. According to this and together with the fact

that in our sample we find events observed close to the Sun with a rather wide range of values

for λr, we might expect that SEP events to be observed by Parker Solar Probe and especially

by Solar Orbiter, that will travel to similar heliocentric radial distances to those of the Helios

orbit, show a large variety of transport conditions. Hence sectored data as it will be provided

by the EPD instrument of Solar Orbiter (Rodríguez-Pacheco et al., 2018) may be important to

both infer the transport effects at play in SEP events and particle release histories. Also, in order

to improve our understanding of the electron interplanetary transport conditions and the release

processes at the Sun, it will be crucial to have multi-spacecraft observations from several radial

distances. This will allow us to study differences in the transport conditions over the heliosphere

and characterise the angular extent of their solar sources.

118



Chapter 5

Applications to Solar Orbiter

5.1 Solar Orbiter and its Energetic Particle Detector in brief

Solar Orbiter (Müller et al., 2013) is a coming heliospheric scientific mission developed by ESA

in collaboration with NASA and it is planned to be launched in 2020 from Cape Canaveral.

The mission aims at studying how the Sun creates and controls the heliosphere from several

points of view, using remote sensing instruments as well as in-situ experiments that will allow

a deep study on the solar phenomena that shape the heliosphere and control its properties. The

main objectives of the mission are to disentangle what triggers the different solar wind and

coronal magnetic field, how do solar transients drive heliospheric variability, how and where

SEPs are accelerated, the functioning of solar dynamo and the connection between the Sun and

the heliosphere.

Solar Orbiter is a three-axis stabilised spacecraft that will orbit the Sun with a very eccentric

trajectory with a minimum perihelion of 0.28 AU. This orbit close to the Sun together with the

fact of carrying the most complete set of high-resolution instruments up to date (see Table 5.1)

will allow Solar Orbiter to study the interface region in the corona where the solar wind is

originated and the sites where SEPs are accelerated both by flares and coronal and interplanetary

shocks.

The mission will make use of gravitational assistance manoeuvres to achieve a high-inclination

orbit that will allow the study of the Sun polar regions. For this purpose, the inclination will raise

up to <25◦ during the nominal phase of the mission, and up to 33.4◦ during the extended phase,

depending on the launch baseline date1.

Furthermore, Solar Orbiter will allow multi-spacecraft studies together with Parker Solar

Probe, STEREO-A and the spacecraft orbiting the near-Earth space, as well as future missions

to the fifth Lagrangian point of the Earth-Sun system. These studies will be specially interesting

1These latitude values are of the orbit planned for launch in February 2020, according to the SolO CREeMA-
SOL-ESC-RP-05500, Issue 4 revision 1 - 2017-06-01 document from ESA.
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TABLE 5.1: Instruments on board Solar Orbiter spacecraft.

Type Instrument Acronym

In-Situ Energetic Particle Detector EPD
Magnetometer MAG
Radio and Plasma Wave analyser RPW
Solar Wind Analyser SWA

Remote-Sensing Extreme Ultraviolet Imager EUI
Multi Element Telescope for Imaging and Spectroscopy (corona-
graph)

METIS

Polarimetric and Helioseismic Imager PHI
Solar Orbiter Heliospheric Imager SoloHI
Spectral Imaging of the Coronal Environment SPICE
Spectrometer/Telescope for Imaging X-rays STIX

since, for the first time, the scientific community will have access to high cadence data from

remote and in-situ instruments on board several spacecraft observing the Sun from different he-

liolongitudes, latitudes and radial distances (within 0.28 – 1.02 AU for the planned orbit for the

launch date in February 2020). These data will be extremely helpful to test the current models,

develop new tools and improve space weather forecasts (e.g., Rouillard et al., 2019). Particu-

larly, related to the understanding of solar energetic particle events, in addition to disentangle

where SEPs are accelerated, Solar Orbiter instruments will allow us to adress what are the seed

particle populations and how SEPs are transported after being released from their sources.

The Energetic Particle Detector (EPD) suit on board Solar Orbiter (SolO) consists on four

different in-situ particle instruments (Rodríguez-Pacheco et al., 2018, Gómez-Herrero et al.,

2017), measuring energetic ions, protons and electrons within an energy range from few keV to

450 MeV, in overlaping intervals (see Fig. 2 in Gómez-Herrero et al., 2017). These are

i) SupraThermal Electrons and Protons (STEP),

ii) Sprathermal Ion Spectrograph (SIS),

iii) Electron Proton Telescope (EPT) and

iv) High Energy Telescope (HET).

We will focus our description on two of them, EPT and HET, which are based on similar in-

struments previously launched on board STEREO (the SEPT instrument) and Mars Science

Laboratory (Radiation Assessment Detector - RAD), respectively (Gómez-Herrero et al., 2017).

SolO/EPD/EPT consists on two twin double ended telescopes providing four fields of view

with a full conical aperture of 30◦ and a nominal geometric factor of 0.01 cm2sr. It is designed

to measure protons with energies from 20 keV to 7 MeV and electrons from 20 keV to 400 keV

with up to 1 measurement per second. SolO/HET, analogously to EPT, is formed by two twin

double-ended sensor heads, each sharing the electronic box with EPT sensor, providing four
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TABLE 5.2: Pointing directions of the fields of view of the EPT and HET instruments on board
Solar Orbiter.

EPT/HET

Fields of view ŝ

ϕ [◦] θ [◦]

HET-EPT1-forward (Sun) -35.00 90.00
HET-EPT1-backward (Anti-Sun) 145.00 90.00
HET-EPT2-forward (South) 57.55 145.62
HET-EPT2-backward (North) 237.55 34.38

fields of view with a conical full aperture of 42.9◦ and a nominal geometric factor of 0.27 cm2sr.

HET will measure protons in the range from 10 MeV to 100 MeV, ions between 20 MeV/nuc

to 450 MeV/nuc and electrons from 300 keV to 15 MeV. As well as for EPT, the maximum

cadence of HET measurements is 1 s.

Table 5.2 summarises the coordinates of the four fields-of-view centre unit vectors ŝ of the

EPT and HET instruments, in the spacecraft-centred spherical Spacecraft Solar Ecliptic (SSE)

coordinates, where θ is the colatitude and ϕ is the azimuth. The Z axis corresponds to θ = 0◦

and it is perpendicular to the ecliptic plane. The azimuth origin is the spacecraft-to-Sun line.

Note that EPT and HET share the same pointing vectors but differ on the aperture angle.

EPT and HET will measure electron events in an energy range that includes the modelled

electron channels in Chapter 4 and Chapter 5, and HET will provide proton measurements for

similar energies as those provided by the SEPEM RDSv2. Based on the solar energetic electron

events modelled in the previous chapter, we studied how the peak intensity of these events vary

within a heliocentric radial distance range similar to the distances that Solar Orbiter will cover

as well as how EPT would observe the PADs of a few events in our sample. We present these

studies in the next sections and finally, we used planned orbit missions for Solar Orbiter to show

the impact of the updates to SOLPENCO2 produced in Chapter 2 in the results of the SEPEM

statistical SEP fluence model for interplanetary missions.

5.2 Radial dependence of peak intensities and anisotropies

5.2.1 Introduction

Because of the interest of space agencies in correctly assessing SEP radiation environment in

the inner heliosphere, there has been an extensive effort to understand the variation of the peak

intensities of solar energetic proton events as a function of the heliocentric radial distance. A

thorough summary of the early efforts is provided in the introduction of Lario et al. (2006). The

observational study by Lario et al. (2006) shows that the radial dependence of protons may vary

event to event and with the energy of the protons. Several studies have been devoted since then
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to characterise this event to event variations: from models that consider the variations resulting

from the contribution of the interplanetary shock as a particle accelerator (e.g., Aran et al., 2005,

Ruzmaikin et al., 2005, Aran et al., 2006, Aran, 2007, Vainio et al., 2007, Aran et al., 2011b,

Verkhoglyadova et al., 2012, Rodríguez-Gasén et al., 2014, Crosby et al., 2015, Aran et al.,

2017a), to modelling studies that focus on the role of non-nominal solar winds (e.g., Kozarev

et al., 2010, Dayeh et al., 2010) and on the role of different transport conditions describing the

pitch-angle scattering (e.g., Lario et al., 2007, He et al., 2017).

Although >100 keV electrons, especially those trapped in the magnetosphere, may cause

among other effects, damage to solar cells (Feynman and Gabriel, 2000), they are not usually

considered a prime SEP radiation risk. However, solar energetic relativistic electrons are a

perfect precursor signal for large SEP events. Posner (2007) showed that, for species coming

from the same solar source, electron intensity and increase can be used to forecast the upcoming

proton intensity within a time frame of one hour. The capability of electron measurements to

forecast proton intensities for shorter heliocentric radial distances is more limited in time than

at 1 AU. Nevertheless, in addition to the scientific interest per se, the study of the electron peak

intensities that could be reach at distances close to the Sun is relevant from a practical point of

view, for example, to estimate saturation and dead-time effects on particle detectors on board

missions like BepiColombo, Parker Solar Probe or Solar Orbiter.

In this section, we recover the results obtained for the sample of the electron events modelled

in Chapter 4 and study the variation of the peak intensity and anisotropy along an interplanetary

magnetic field line by placing several virtual observers at different heliocentric radial distances.

For obtaining the intensity and anisotropy time profiles for these virtual observers, we used the

injection history, obtained from the modelling of the events, to convolute it with the Green’s

functions computed for the different radial distances extending from 0.31 AU to 0.94 AU.

5.2.2 Results

Due to data gaps in Helios observations, we found that injection profiles showed higher in-

jections around a data gap than expected for a well-behaved injection function. These events

showed a shift in the peak time that prevented us to consider the peak intensity reliable for the

study. For that reason, we performed a 4-points smooth process on the injection profile for

four events (b, c and d events on 1980 May 28, and event on 1981 June 10), in order to min-

imise the effects over the intensity profiles of convolving overestimated injections. This method

worked partially for three of the events, but for the remainder event (event d on 1980 May 28)

the smoothness was good enough to use it in the study of the peak intensities and the anisotropy

values at the peak. As a result, we selected nine events from the full sample of fifteen, show-

ing smooth enough injection profiles resulting in intensity-time profiles with no artefacts, once

convoluted for the different Green’s functions.
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5.2 Radial dependence of peak intensities and anisotropies

FIGURE 5.1: Event on 1976 Mar 21 modelled electron intensities at different radial distances,
from 0.31 AU to 0.94 AU. The upper panel shows the inferred injection profile at the Sun
and it is indicated the value of the mean free path. Middle panel shows in different colours, the
anisotropy profiles corresponding to five different radial distances (0.31 AU, 0.46 AU, 0.58 AU,
0.73 AU and 0.94 AU). The lower panel shows the omni-directional modelled electron event at
the above mentioned locations with the same colour code. Coloured diamonds depict the peak
intensity for each mentioned location and grey diamonds correspond to the peak intensities at

the remaining locations.

Figures 5.1, 5.2 and 5.3 show the synthetic profiles obtained for the nine events selected. The

upper panels show the injection profile, where there is also indicated the inferred radial mean

free path; middle panels show the anisotropy profile coloured according to the five selected

radial distances (in AU units), with the anisotropy at the peak indicated by a coloured diamond.

The bottom panels show the intensities at the same five radial distances, with coloured diamonds

indicating the peak intensities for the depicted radial distances and grey diamonds for the peak

intensities of the omitted distances. For event on 1980 May 28 d at ∼23:30 UT, we also show

in the upper panel the resulting curve of the smoothness performed on the injection profile.

By looking at these figures we realise that impulsive injections with close to diffusive particle

transport conditions yield to later occurrences of both peak and onset intensity times for the

profiles observed at the larger distances (see Fig. 5.1 and the bottom right panel of Fig. 5.3).

Note also that since electrons travel fast to the observer’s position, a resolution of 15 minutes

in data prevents the solving of the shape of intensity and anisotropy profiles, especially at the

shorter radial distances, as shown for the 1980 April 5 event (top left panel of Fig. 5.2).
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FIGURE 5.2: Same as in Figure 5.1 for events on 1980 April 5, 1980 April 26, 1980 May 3
and 1980 May 12.

Next, in order to quantify the variation of the peak intensity with the radial distance of the

observer, we assumed a power-law functionality, f (r) = b · r−α. Hence for the nine events

shown in Figures 5.1, 5.2 and 5.3 we performed a linear regression fit of the logarithms of both

quantities. For this we used the thirteen virtual modelled observers. We also used the same

dependence to study the variation of the anisotropy at the time of the peak intensity. Figure 5.4

shows the obtained peak intensities (left panel) and anisotropy-at-peak (right panel) for each

radial distance (empty triangles) and the results of the fittings (solid lines) with different colours

for each event; it also shows in the left hand side of each fit, the resulting slope, the index

α, and in the right hand side the date of the event. A summary of the results is presented in
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5.2 Radial dependence of peak intensities and anisotropies

FIGURE 5.3: Same as in Figure 5.1 for events on 1980 May 28 a, 1980 May 28 d, 1981 January
14 and 1980 June 2.

Table 5.3, which lists, from left to right, the number associated to each event, the year and date

of the event, the radial mean-free path previously inferred and the parameters obtained from

the linear fittings, i.e., α indices, their associated errors and the correlation coefficients, for the

peak intensities and for the anisotropies-at-peak. The values of the fitting parameters for the

anisotropy-at-peak for event on 1980 April 5 are shown in red as we consider them not reliable,

since the associated error is larger than the value of α and the correlation coefficient is very

small (∼0.008). Note also that the linear correlation found for the peak intensities is the worst

amongst the events in the sample, due to the coarse temporal resolution of the data.
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TABLE 5.3: Radial dependence parameters for the peak intensity and the anisotropy at the peak
for the nine events in the sample.

Num Year Date λr Peak intensity Anisotropy-at-peak

[AU] α δα r α δα r

1 1976 Mar 21 0.04 2.93 0.01 0.99992 0.69 0.03 0.990
2 1980 Apr 5 0.06 2.64 0.03 0.997 0.0 0.2 0.008
3 1980 Apr 26 0.09 3.17 0.03 0.9990 1.0 0.1 0.94
4 1980 May 3 0.08 2.69 0.07 0.9996 0.64 0.06 0.95
5 1980 May 12 0.12 2.16 0.05 0.9990 0.31 0.03 0.96
6 1980 May 28 a 0.27 2.50 0.02 0.9991 0.13 0.02 0.91
7 1980 May 28 d 0.27 2.08 0.03 0.99990 0.16 0.01 0.96
8 1981 Jan 14 0.09 3.47 0.03 0.9990 0.9 0.1 0.92
9 1982 Jun 2 0.02 3.01 0.01 0.999998 0.70 0.02 0.994

FIGURE 5.4: Fittings of the peak intensities (left panel) and the anisotropy at peak for the
different radial distances of each event. The number of each event is shown at the right of each

fit and the exponential index (α) at the left.

The values of the radial indices obtained, α, range from 2.08±0.03 to 3.47±0.03 in the case of

peak intensities and from 0.13±0.06 to 1.0±0.1 for the anisotropy-at-peak, excluding the value

corresponding to the event on 1980 April 5. With the exception of this event, we obtained good

linear correlations for the peak intensity fits and fair correlations for the anisotropy-at-peak radial

dependences. Therefore, we conclude that a power-law function may describe the behaviour of

the peak intensity dependences and may also describe the anisotropy-at-peak dependence within

the range of distances modelled, provided that the time resolution of the data is enough, i.e.,

.1 min.

Finally, we applied the radial dependences obtained in order to extrapolate the value of the
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TABLE 5.4: Results for the extrapolation of the previous obtained trends for the minimum
perihelion distance of Parker Solar Probe and Solar Orbiter for each event. Red values denote

non-reliable results due to a large error.

Parker Solar Probe min perihelion Solar Orbiter min. perihelion

Num Year Date IPeak δIPeak IPeak δIPeak
[s sr cm2 MeV]−1 [s sr cm2 MeV]−1 [s sr cm2 MeV]−1 [s sr cm2 MeV]−1

1 1976 Mar 21 7 × 103 1 × 104 2 × 101 4 × 101

2 1980 Apr 5 2.56 × 105 0.06 × 105 1.61 × 103 0.03 × 103

3 1980 Apr 26 2.52 × 105 0.3 × 105 5.9 × 102 0.6 × 102

4 1980 May 3 2.1 × 104 0.6 × 104 1.2 × 102 0.3 × 102

5 1980 May 12 2.44 × 104 0.1 × 104 3.9 × 102 0.2 × 102

6 1980 May 28 a 3.5 × 104 0.3 × 104 3.0 × 102 0.2 × 102

7 1980 May 28 d 4.7 × 104 0.08 × 104 8.7 × 102 0.1 × 102

8 1981 Jan 14 2 × 104 7 × 104 3 × 101 9 × 101

9 1982 Jun 2 2 × 104 1 × 104 9 × 101 5 × 101

peak intensity at the minimum perihelion radial distance for the Parker Solar Probe (0.041 AU)

and the Solar Orbiter (0.28 AU) missions. For the nine events in the sample, we show in Ta-

ble 5.4 from left to right, the number of the event, the year and date of the event, the peak

intensity and its associated errors derived both for Parker Solar Probe and for Solar Orbiter. As

in the previous table, red values denote events with intensity results equal to their associated

errors. Note, that the uncertainties shown here are merely due to error propagation from the

linear regression fits to the logarithm values of the peak intensities and distances. And hence,

the small uncertainties obtained for the logarithm values translate to large linear errors, in some

cases. Also, we considered all peak intensity values had no error associated. We obtain reliable

results for all cases except the event on 1976 March 21 and 1981 January 14, for which δIPeak is

bigger than the peak value, because of to the large error in the b parameter (b = 1 ± 1, for both

cases).

On the other hand, for most of the events in the sample, the power law function was able

to explain the anisotropy dependences for a wide range of distances in the inner heliosphere

(0.3 – 1.0 AU). However, if values extrapolated towards smaller radial distances, some of the

anisotropies would exceed the physical range (i.e., > 3). Thus, for the case of the anisotropy-

at-peak fits, we can not apply the obtained parameters to perform an analogous extrapolation

towards small radii such as done for the peak intensities.

5.2.3 Discussion

Theoretical models permit us to estimate the radial dependence of the peak intensity for im-

pulsive (short-duration) solar injections, by assuming different particle transport conditions

(Vainio et al., 2007). For diffusive transport conditions, the diffusion-advection model pro-

posed by Parker (1965) can be applied. Vainio et al. (2007) obtained the analytical solutions of
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the diffusion equation, finding that the spatial scaling law for the event maximum intensity is

Imax(r) ∝ r−3. On the other hand, when applying the focused transport model of Roelof (1969),

assuming that the mean free path of the particles is comparable to the heliocentric radial distance

of the observer, it is not possible to find any analytical solution. Vainio et al. (2007) modelled

the electron event on 2000 May 1 observed by the ACE spacecraft, using the focused transport

model by (Agueda et al., 2008). They obtained a radial mean free path of 0.6 AU. Making use

of the model results at other radial distances they inferred radial indices ranging from −2.60

for 45 – 62 keV electrons to −2.35 for 175 – 312 keV electrons. These values are similar to the

radial indices we derive for the events in our sample with the larger mean free paths (i.e., 1980

May 28 a,d and 1980 May 12).

Lario et al. (2013) studied in detail five 71 – 112 keV electron multi-spacecraft events ob-

served in the inner heliosphere by MESSENGER/EPS (Andrews et al., 2007) and by either

STEREO-A/SEPT or STEREO-B/SEPT (Müller-Mellin et al., 2008), at ∼1 AU. They found

that two events showed radial dependences steeper than r−3, i.e., with values of α of 5.29 and

4.44. Lario et al. (2013) invoked the presence of complex magnetic structures (i.e., ICMEs)

between MESSENGER and STEREO to explain extreme steep variation found. The other three

events showed a dependence weaker than r−3, with values of α of 1.39, 1.55 and 0.81. The

authors remarked the limitations of MESSENGER/EPS on detecting electrons arriving from the

Sunward hemisphere, which can prevent the observation of the real peak intensity and, as a

result, provide a smoother scaling. In comparison, our study provides a narrower range for α

(between ∼2.08 –∼3.47), with most of the values below the upper limit for the diffusive model

(r−3), and only three events (1980 April 26, 1981 January 14, 1982 June 2) presenting values

of α above this limit, corresponding to events for which we derived mid-range to small radial

mean free path values (0.09 AU, 0.09 AU and 0.02 AU, respectively). On the other hand, we

found also several examples of equally small values of the mean free path but with lower values

of the α index. Hence, we can not claim that only the mean free path (as a measure of the degree

of diffusiveness of the event) is playing a role shaping the peak intensity decay along the radial

distance in our modelled events. Instead, we know that both interplanetary transport and the

injection profile shape the event peak intensities at different radial distances.

We explore the possible correlation between α values and the mean free path values and

we found not specially significant correlation (r ∼0.6), meaning that the injection profile might

have an important contribution. We noticed that events with very short injection profiles tend

to yield steeper α values. For the three events, mentioned above, showing the larger values

of α, we inferred a short-duration injection profile. Motivated by this, we further investigated

the correlation between the radial indices and the duration of the particle injection. Figure 5.5

shows the scatter plot of the α indices as a function of the total injection duration of the events

(orange open diamonds). The event on 1980 May 3 has a duration more than 50 minutes larger

than the rest of the events in the sample. Hence we have not taken this event in the study of this

128



5.2 Radial dependence of peak intensities and anisotropies

FIGURE 5.5: Alpha parameter value vs. injection duration. Orange: diamonds values and
regression line taking the total injection duration of each profile. Olive green: triangles values
and regression line computing the injection duration only regarding injections being at least
10% of the maximum injection. The values for the slope and the correlation coefficients are

also shown with their correspondent colours.

correlation2. The solid orange line shown in Figure 5.5 corresponds to the linear regression fit

performed. We found a weak correlation as determined by the values of the regression coeffi-

cient (r ∼0.75). However, taking into account that several events in the sample show a main large

injection episode and long injection tales with very little intensity that appear to play no role in

the shape of the intensity profiles, specially at large radial distances, we computed the duration

of the particle injection by including only those injections with injection-intensities within the

10% of the maximum injection, and checked for a possible correlation the radial index with the

duration of these most intense injection episodes (indicated in Fig. 5.5 by olive green symbols

and fitting parameters). Now, the correlation between both variables is much higher (r ∼0.94).

Hence, we can claim that injection duration plays an important role in the peak intensity decay

with the radial distance. Our results and conclusion are in agreement with similar particle trans-

port simulations performed by Lario et al. (2007) for short-duration injections of 4 – 13 MeV

and 26 – 37 MeV protons within 0.3 – 1.6 AU.

2This outlier duration of the injection of the event on 1980 May 3 could be due to the long data gap shown in the
observational profile, that prevented our model to match a sustained injection during that period, which will allow a
good fitting at the observed distance but does not allow us to perform a reliable extrapolation of this injection profile
to other distances as the lacking part could be important at longer radii.
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5.3 Directional distributions. Comparison Helios/E6 vs. SolO/EPD/EPT

5.3.1 Angular response of SolO/EPD/EPT

We selected three SEP events of the fifteen modelled events seen by Helios (in Chapter 5) in

order to study how SolO/EPD/EPT would observe the PADs of these events if it were at the

same position as the Helios spacecraft.

For this purpose, we modelled EPD/EPT on board Solar Orbiter, following an analogous

technique as presented in Section 4.3.2. In this case, unlike Helios, we needed to model Solar

Orbiter as an spin-stabilised spacecraft taking into account the specifications explained in Sec-

tion 5.1 regarding the pointing vectors and apertures of the four fields of view and the geometric

factor of the instrument. Hence, we obtained a bi-directional matrix R jk of 180x360 elements

with 1◦ resolution, being ( j, k) the indices of θ and ϕ angles where the normalised detection

probability for each direction is recorded. Figure 5.6 shows the response function of the four

fields of view of EPT defined in the SSE coordinate system, where the origin of the colatitude,

θ = 0◦, corresponds to the Z axis perpendicular to the ecliptic plane (pointing northward), and

the origin for the azimuth, ϕ = 0◦ to the spacecraft-to-Sun line. Unlike Helios/E6, for EPT it is

obvious that the instrument has only a partial coverage of particles coming over the ecliptic plane

with only a very homogeneous detection range around ϕ = 145◦ and ϕ = 325◦ in this plane,

corresponding to the Anti-sunward and Sunward directions along the nominal IMF (at 1 AU).

On the other hand, the comparison with Figure 4.10 shows that, unlike E6, EPT covers a range

of angles far from the ecliptic plane, at around θ ∼ 34.38◦ (over the ecliptic) and θ ∼ 145.62◦

(below the ecliptic), which may be interesting to measure particles at non-ideal configurations

of the IMF, as for example, during the passing of CIRs or ICMEs.

FIGURE 5.6: Angular response of the four fields of view of EPT defined in the SSE coordinate
system of Solar Orbiter.
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FIGURE 5.7: Normalised angular response of the fields of view of EPT assuming two magnetic
field configurations: θB = 0◦(left panel), and θB = 90◦ and ϕB = 140◦ (right panel). The fields
of view are indicated by different colours: Sun (olive green), Anti-Sun (orange), South (blue)

and North (magenta).

Next, we performed the same analysis as previously done for Helios/E6 regarding the pitch-

angle cosine response and coverage as a function of the direction of the magnetic field, for

SolO/EPD/EPT. For this purpose, we proceeded to determine the pitch-angle cosine range scanned

by each field of view analogously as in Section 4.3.2. We defined the directions of the IMF as

B̂ = (1, θB, ϕB) where θB is the colatitude angle and ϕB is the azimuth, in spherical coordinates.

Then, we computed the values of the pitch-angle cosines corresponding to the grid of directions

where the fields-of-view responses were evaluated, µ jk, and obtained the pitch-angle response

of each field of view for a given magnetic field configuration, Rs
jk.

Figure 5.7 shows the pitch-angle cosine response function for each field of view of EPT,

assuming two different magnetic field configurations: θB = 0◦ (left panel), and (θB = 90◦,ϕB =

140◦) (right panel). In the first case, the magnetic field is aligned with the spacecraft Z axis

and the response function does not depend on the value of ϕB. Contrary to Helios/E6, for this

configuration, SolO/EPD/EPT has a larger coverage of pitch angles. On the second case where

the magnetic field is in the ecliptic plane, θB = 90◦ and ϕB = 140◦, EPT is also covering, in

addition to similar pitch-angle cosine range centred at µ = 0 as for θB = 0◦, the Sun and Anti-

Sun directions (µ = ±1). In this latter case, the coverage is worse in comparison to what we

found for Helios/E6, which showed full pitch-angle coverage.

Figure 5.8 shows the pitch-angle coverage as a function of the magnetic field colatitude

for the four fields of view of EPT. The range of µ-values scanned by each field of view lies

within lines of the same colour. Each panel shows the coverage for a different magnetic field

configuration, from top to bottom and from left to right: ϕB = 30◦; ϕB = 90◦; ϕB = 140◦

and ϕB = 270◦. On the other hand, in an homologous layout, Figure 5.9 shows the pitch-angle

coverage as a function of the magnetic field azimuth for the four fields of view of EPT. Each
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FIGURE 5.8: Pitch-angle coverage of EPT fields: maximum and minimum pitch-angle cosines
detected by each field of view as a function of the magnetic field colatitude (θB = 90◦ means
that the magnetic field is on the ecliptic plane) and for fixed values of the magnetic field azimuth

angle, ϕB: 30◦ (top left), 90◦ (top right), 140◦ (bottom left) and 270◦ (bottom right).

panel shows the coverage for different values of the magnetic field colatitude, from top to bottom

and from left to right: θB = 0◦; θB = 45◦; θB = 90◦ and θB = 135◦.

We note that the pitch-angle coverage is strongly dependent on the magnetic field config-

uration. The multiple configurations of µ-coverage drawn by the four fields of view can be

described as follows: i) Only one µ-region covering a wide range of pitch angles, for instance,

in the case of θB = 45◦ and ϕB = 55◦, we found a µ-region defined by µ ∈ (−0.43, 0.43) (see top

right panel of Fig. 5.9) and for θB = 105◦ and ϕB = 270◦ we found µ ∈ (−0.77, 0.77) (see top

right panel of Fig. 5.8). ii) Two µ-regions, where intermediate pitch-angle values are detected

by two of the fields of view, as found, e.g., for θB = 140◦ and ϕB = 140◦ we can see that the Sun

and North field of views detect µ ∈ (0.45, 0.85) and the South and Anti-Sun, µ ∈ (−0.45,−0.85)

(bottom left panel of Fig. 5.8). iii) A three µ-regions configuration, at around µ = 1, µ = 0

and µ = −1, is also found for several cases, like θB = 45◦ and ϕB = 240◦ (top right panel of

Fig. 5.9). iv) And, four µ-regions, where the four fields of view scan different pitch-angles, like

for θB = 135◦ and ϕB = 90◦ (bottom right panel of Fig. 5.9), finding the coverage of the fields of

view equally spread. This latter configuration seems to be given only in very specific scenarios,

during transitions between the other three, as an intermediate situation when the magnetic field

is not aligned with any of the telescopes.
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FIGURE 5.9: Same as Figure5.8 but as a function of the magnetic field azimuth (ϕB = 0◦ means
that IMF is pointing along the spacecraft-Sun line), and for fixed values of the magnetic field

colatitude, θB: 0◦ (top left), 45◦ (top right), 90◦ (bottom left) and 135◦ (bottom right).

It is clear from these figures that, by construction, each pair of telescopes on the same axis

scan pitch-angle cosine regions of opposite sign, in those instances where they do not coincide.

We decided to continue studying how PADs would be observed by EPT by different configura-

tions of the IMF, and leave for future work to determine the magnetic field directions yielding

the larger coverage of µ. However, from Figures 5.8 and 5.9, we can see that the largest µ cov-

erage is attained when the IMF points along the spacecraft-Sun line, θB = 90◦ and ϕB = 0◦

(bottom left panel of Fig. 5.9).

5.3.2 Synthetic PADs observed by SolO/EPD/EPT

In this section, following the method developed in Chapter 4 (see Sect. 4.3.2.2), we study how a

synthetic PAD would be observed by the four fields of view of EPT for different configurations

of the local magnetic field vector. As explained in the previous chapter, we use the normalised

PADs for three selected times (A, B and C; see Fig. 4.13) of the Green’s functions of particle

transport at 0.53 AU for two values of the radial mean free path, λr = 0.25 AU and λr = 1.08 AU,

and a fourth case (D) to study the behaviour of the detector in front of bi-directional PADs.

Figure 5.10 and Figure 5.11 show the normalised synthetic PADs (black curves), the observa-

tions at the centre of each sector (coloured crosses) and the observed normalised intensity at the

average pitch angle of each sector (coloured diamonds), assuming four different configurations
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FIGURE 5.10: Intensities observed by the four EPT fields of view for two synthetic PADs (case
A and case B, see Fig. 4.13) assuming different values of θB 0◦, 30◦, 60◦, 90◦). Fields of view
and the pitch angle range they observe (horizontal bars) are labelled in different colours (Su:
Sun; AS: Anti-Sun; No: North; So: South). It is also indicated the pitch angle observed by the
centre of each sector (crosses) and the average pitch angle measured within the range of each

(diamonds).
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FIGURE 5.11: Same as in Figure 5.10 for case C, and D (see Fig. 4.13).
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of the local magnetic field vector given by θB = 0◦, 30◦, 60◦, 90◦. Figure 5.10 shows the PADs

for case A (top) and case B (bottom). Figure 5.11 shows case C (top) and case D (bottom).

At a first glance, we can notice clear differences with the results we obtained for Helios/E6

(see Figs. 4.14 and 4.15). Firstly, we see that we are able to obtain PAD information for θB = 0◦

for every case, even better than for configurations of EPT with θB = 30◦ as we can recover

a better reconstruction of the given PAD in the A, C and D cases; only for case B, where we

have an smooth decay from 1 to -1, we would be able to reliably reconstruct the distribution

for θB = 30◦. In case A, we obtain similar results as those yielded by Helios/E6 for θB =

60◦, slightly better for θB = 30◦ and for θB = 90◦, EPT better observes the PAD for µ ∼

1, but it loses information about the decrease of the PAD. For case B, we can claim that all

tested θB configurations, the distribution would be satisfactorily recovered, and in comparison

to Helios/E6 performance, the configuration of EPT permits a better reconstruction of the PAD

both for θB = 0◦ and θB = 30◦. In case C, EPT performs better than E6 for θB = 0◦ and θB = 90◦,

where a closer value of the peak of the distribution is recovered. For θB = 60◦ slightly worse

results are found but for θB = 30◦, Helios/E6 performs better. Finally, case D for EPT model

gives, in general, slightly better results to those obtained for E6, being specially noticeable for

θB = 0◦ where we recover part of the distribution, and for θB = 90◦, where the maximum of the

distribution recovered is closer to the synthetic one.

We find that values of the pitch angle measured by the centre of the telescopes are very

close to the actual values of the PADs, even if for some particular cases we can find a tiny

underestimation of the anisotropy (case C). Further, the obtained values of the PADs as seen by

SolO/EPD/EPT appear to be closer to the actual ones that those given by Helios/E6, with the

only exception of the case C for θB = 30◦ and θB = 60◦, where EPT loses all the range around

µ = 0, and therefore, the peak of the distribution.

Hence, our conclusion is that SolO/EPD/EPT observations will provide a good coverage of

the PADs in a majority of cases; thus, allowing the extraction of the PADs from its observa-

tions, despite that for several specific scenarios with high anisotropic PADs and magnetic field

directions close to θB ∼ 30◦ there is a clear risk of underestimating the anisotropy.

5.3.3 Modelling events as seen by SolO/EPD/EPT

We aim at studying the how SolO/EPD/EPT will measure PADs throughout the duration of

actual SEP events. For this purpose, as mentioned at the beginning of Section 5.3, we selected

three events seen by the Helios spacecraft that we modelled in the previous chapter, in order to

simulate the PADs that SolO/EPD/EPT would have observed during those events at the position

of the Helios spacecraft. Since pitch-angle information depends on the direction of the local

magnetic field, we used the magnetic field observed by Helios/E2 to compute the pitch angles

seen by Solar Orbiter.
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Figure 5.12 shows the modelling results for the events on 1976 March 21 (left plot), 1980

May 28b (middle plot) and 1981 June 10 (right plot). For each case, the first panel shows the

synthetic directional intensities seen by each field of view of SolO EPT (coloured curves) and

the omnidirectional (black curve) intensities. The second panel shows the centre pitch-angle

cosine (coloured dots) and range (yellow shadows) of the four fields of view. The third panel

depicts the reconstructed synthetic intensity evolution for every pitch angle as modelled for EPT.

Finally, the fourth and fifth panels show the magnetic field direction, colatitude and azimuth, in

the RTN coordinate system measured by Helios/E2. Vertical lines across the panels mark for

each event the times used for the study of the PAD found at the end of this section. Vertical

blank spaces crossing the second and third panels are due to either magnetic field data gaps or to

time steps longer than one minute in the original data which prevented to compute with higher

frequency. Conversely, blank spaces that do not cross entirely both panels, and that often extend

horizontally for periods longer than one minute, correspond to both µ-values (second panel)

and pitch-angles (third panel) not observed by EPT. We can see that for these three cases, EPT

has an overall good pitch-angle coverage during most of the duration of the events, even with

different magnetic field configurations and sudden changes in the IMF direction, as seen in the

event on 1976 March 21, where Bθ scans a wide range of values with several sharp changes. We

qualify that the coverage is overall good for these events because the pitch-angle coverage for

the peak intensity is good for the first two events, and for the last one, the pitch-angles observed

permit to describe well the PADs (see discussion below). In addition, it is also interesting to

notice that the four fields of view always allow us to recover at least two different pitch angle

observations, and more commonly three or even four, when all of them are observing a different

pitch angle. At the onset of the events, however, EPT would have missed the particles travelling

more aligned with the IMF (i.e., |µ| 1) for the 1976 March 21 and 1980 May 28 b events.

Figure 5.13 shows the comparison between the previous results obtained for Helios/E6 in

Chapter 4 and those obtained when modelling SolO/EPD/EPT for the same subset of events,

given on 1976 March 21, 1980 May 28b and 1981 June 10. For each event and from top to

bottom, the first panel shows the electron release at the Sun, showing (when needed) a smooth

profile (black curve). Note that in these plots injections are not shifted +8 min (as those shown in

Chapter 4), as there is no comparison with EM emissions at 1 AU. Second and third panels show,

as modelled for Helios/E6, the intensity-time profiles, for sectored (coloured curves) and omni-

directional (black curve) intensities, and the intensity distribution (colour coded) as a function of

the evolution of the pitch angle. Fourth and fifth panels show, as modelled for SolO/EPD/EPT,

the directional intensity-time profiles for the four fields of view and omnidirectional (coloured

and black curves as labelled) intensities, and the intensity intensity distribution (colour coded)

as a function of the evolution of the pitch angle. Vertical lines across panels from second to

fifth mark, for each event, the times used for the PAD study below. The sixth panel shows the

computed anisotropy as given by the transport model (black curve), and as modelled using the
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angular response of SolO/EPD/EPT (red curve) and Helios/E6 (green curve). Finally, the sev-

enth panel shows the magnetic field cartesian components of the magnetic field as measured by

Helios/E2 in the SSE coordinate system.

From Figure 5.13, we can see that, with the method applied, we obtain for EPT similar

intensity-time profiles as the profiles modelled for Helios/E6; the peak intensities attained for

EPT show values comparable with those obtained for Helios/E6. Also, the pitch-angle coverage

derived for EPT is good enough to trace properly the event and for the first event, the coverage is

better than for Helios at the beginning of the decay phase, between 13:25 and 13:35 UT, where

both detectors would observe around µ = 0 but EPT shows a wider range even covering µ = ±1

at some point. On the other hand, Helios/E6 shows better coverage most of the time, but EPT in

fact is covering enough portion of the intensity distribution, in terms of different pitch-angles,

to accurately describe the evolution of the event profile. Furthermore, regarding the anisotropy

of the particle intensity distribution, both modelled instruments yield similar evolutions for the

selected events, allowing us to claim that EPT observations will give reliable anisotropy data.

Finally, we want to remark that these events where specially chosen during the study presented

in Chapter 4 because they show good coverage for Helios/E6 instrument. This means that it is

probable that many other events discarded from the E6 observations for not being good enough

for the previous study, could have been used if observed by EPT, specially those where θB shows

values far from the ecliptic plane, where Helios could no observe.

Finally, for each event, we started the analysis of the observed PADs by looking at the PADs

obtained at the four times marked in Figures 5.12 and 5.13. Figure 5.14 shows the resulting

PADs for the three events at the following times: close to the onset, that is, at the time when

the half of the peak intensity is reached (indicated as ‘Onset’), at the time of the peak inten-

sity (‘Peak’), at the early decay phase (‘Decay’) and late in decay phase (‘End’). Normalised

intensities are shown for Helios/E6 sectors (coloured crosses), SolO/EPD/EPT field of views

(coloured diamonds) with the µ-range covered by each field of view (horizontal lines) and the

PAD derived directly from the model (black dotted line). On top of each panel the maximum

intensity observed by each detector is indicated, as used for the normalisation. For the inspected

times, we can see that the four fields of view of EPT permit us to closely recover the modelled

PAD (black curve), even for the more anisotropic distributions observed at the ‘Onset’ and at

the ‘Peak’ times. The differences in the PADs observed by E6 and EPT at the peak intensity

were due to the fact that Helios could not observe particles coming from 20◦ away of the ecliptic

plane, so observed times (and intensities) of the peak intensity were different. When there was

no time difference between peak intensity observations (as in event on 1980 May 28b), both

PAD results were closer. Then, from the three events studied in this section we conclude that

the four fields of view of EPT allow us to describe the observed PADs. In order to draw further

conclusions on the reconstruction of PADs from EPT ‘observations’ we plan to extend the study

to the other events in the sample and to other times in the intensity profiles.
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5 APPLICATIONS TO SOLAR ORBITER

5.4 Solar Orbiter total mission fluence estimation

5.4.1 Introduction to the SEPEM interplanetary model

At the end of Chapter 2 we showed, for individual SEP events, that the method we developed

to include the downstream fluence variation with the heliocentric radial distance introduces an

event-to-event variation of the power-law dependences of the total fluence of the events with the

radial distance (see also App. D). In this section, we made use of the SEPEM statistical SEP

model for interplanetary missions to show the effect of the updates performed to the predictions

of the SEPEM/SOLPENCO2 tool in the SOL2UP project, including the new treatment of the

downstream fluence variation. During ESA’s SOL2UP project, the SEP event categories were

extended from six to ten and four new reference cases were modelled with SOLPENCO2. The

modelling of these events was not part of this thesis work, but we mention here that the new

cases modelled (see Type2c, Type3b and Type4a, in App. B), which include the largest events in

the SREL list, provided new power-law radial dependences to the SEPEM statistical model both

for the fluence and the peak intensities. However, as mentioned above, the method developed

for the downstream fluence introduces more variability to the radial dependences on top of the

variations provided by the ten reference cases. Hence, any changes observed in the results on

the radial dependence of the SEPEM statistical model for interplanetary missions after applying

the updates of SOL2UP are due to a combination of introducing more reference events and the

new method for the downstream fluence contribution, being the latter more significant for the

lower energies than for the high energies because of the larger values of the DTFRs for the lower

proton energies found in Chapter 2. This effect can be appreciated in the radial dependences of

the SEP events shown in Section 2.4.3 and in Appendix D.

The SEPEM statistical SEP model for interplanetary missions is available at the SEPEM

application server3 under the ‘Away from 1 AU modelling’ menu, in the ‘Creat models’ call. The

model options are fully documented in (Crosby et al., 2015) and Jiggens et al. (2012) for the

probability distribution functions options. Further information can be found in the SEPEM help

pages at the right menu of the SEPEM server. For the simulations performed in this section

we selected a cut-off power-law to describe the fluence probability distribution function and the

Lévy distribution for both the waiting times and events duration (see Sect. 1.5). In the modelling

performed in this section, we used two different mission orbits planned for Solar Orbiter: the

orbit for the launch planned in October 2018 (CReMA 3.0 orbit from the Science Operations

Centre of the mission, private communication R. Gómez-Herrero) and for the launch planned

for February 2020 (CReMA 4.0 document referred in Sect. 5.1). From these mission orbit

files, we used the daily heliocentric radial position of Solar Orbiter (date, time and distance

in AU) as input to the SEPEM model. The relevant outputs provided by this SEPEM tool for

the analysis presented in the next sections are the cumulative fluences for each of the SEPEM

3http://www.sepem.eu/
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reference proton energy channels and for the whole mission durations at a 90% confidence

level, and the cumulative fluence values over the different solar cycle phases encompassed by

the mission orbits. The probability curves are generated for three different heliocentric radial

distance scaling approaches:

i) 1 AU: no radial distance dependence is used, instead fluence computed at 1 AU for the

events in the input event list are used;

ii) ECSS: the radial dependence recommended by the European Cooperations for Space

Standardisation ECSS-E-ST-10-04C April 2008 Document is used, which means that

there is no scaling applied for distances larger than 1 AU and a r−2 scaling law is used

for distances < 1 AU. Therefore the fluences of all events in the list are scaled with the

same radial dependence, and events observed closer to the Sun will substantially rise their

fluence contribution to the mission total fluence in comparison to if they were observed

at 1 AU;

iii) SEPEM: the radial dependences derived from SOLPENCO2 are used, whose new version

includes the results of the study performed in Chapter 2. This scaling method entails an

intermediate scaling, rising the fluence observed by the spacecraft at distances < 1 AU

but with an overall weaker dependence than r−2.

In the next sections, we present the comparison of the application of the SEPEM model

results prior and after the updated radial dependences and the comparison of the results for the

two mission orbits specified above.

5.4.2 Comparison of SEPEM model versions

For the simulations of this section we used the orbit planned for launch in October 2018 that

encompassed three different solar cycle periods, two solar minima and one solar maximum, over

more than nine years, finishing in 2028. This orbit was planned to have a large second aphelion

over 1.4 AU, in order to conduct gravitational assistance manoeuvres using Mars gravitational

attraction achieving a high-eccentricity orbit. On the other hand, the closest perihelion to the

Sun was 0.28 AU. The simulations were performed using two different versions of the SEPEM

RDSv2 due to the continuous update performed by ESA to the application server. The simulation

with the radial dependences prior to the update done in this thesis and in the SOL2UP project

uses the SEPEM RDSv2.0 with ten reference energy channels, covering the proton range from

5 – 200 MeV. In addition, the event list expands from January 1988 to December 2006 (both

included), and for the 147 events in the list the fluence was calculated without subtracting the

pre-event intensity levels. In contrast, the second simulation performed uses and extended ver-

sion of the RDSv2.0, with eleven reference energy channels covering the proton energy range

from 5 – 298 MeV. Also event list used as input to the statistical model, the SREL list (Ta-

ble A.4), contains 172 events occurred between January 1998 and March 2013. For the events
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in this list, a background subtraction was performed as described by Jiggens et al. (2018a). This

data set without the background intensities is hereafter named, SEPEM RDSv2.24.

Figure 5.15 shows the cumulative fluence for the reference energy channel, 7.23 – 10.46 MeV,

over the whole mission period for the 90% confidence level computed for the aforementioned

mission orbit. In the top row are shown the results from the modelling using the old SEPEM/-

SOLPENCO2 radial scaling laws prior to SOL2UP. In the bottom row the results for the updated

radial dependences are displayed. Mission time is divided into the different solar cycle phases

encompassed separated by black vertical lines: first solar minimum between the launch time and

the beginning of 2020 (first blue column), solar maximum going from 2020 to the end of 2027

(red column) and a second solar minimum from 2027 to the end of the mission (second blue

column). Furthermore, at each shows the heliocentric radial distance of the Solar Orbiter orbit

(black curve), as indicated on the right vertical axis. Finally, the time-length for each period is

depicted in years at the top inside part of each panel.

The comparison of the top with the bottom rows of Figure 5.15 for the 1 AU case (left col-

umn) and the ECSS case (right column) that has one fixed scaling law, allowed us to evaluate the

effect of the different dataset used in the simulations. We can see that the fluence obtained for

the RDSv2.2 data set (bottom row) is slightly smaller than the older version RDSv2.0 used (top

row). Assuming that the events added in the event list (period 2010 – 2013) would not change

significantly the cumulative fluence predicted by the model, we conclude that the smaller values

obtained in the new version are due to the effect of the background subtraction (see also the dis-

cussion in Jiggens et al., 2018a), and to a lesser extend due to the further division of compound

SEP events into individual enhancements in the SREL (Pacheco et al., 2017b). On the other

hand, we noticed that for the SEPEM scaling method, the old version (top middle panel) yielded

cumulative fluence values slightly smaller than for the 1 AU case (top left panel); however, for

the updated radial distance scaling (SOL2UP version) the cumulative fluence values (bottom

middle panel) are larger than the corresponding 1 AU value (bottom left panel). In addition,

for the updated version, the cumulative fluence values found for the SEPEM scaling method

are larger than for the previous version, meaning that the updated scaling SEPEM method pro-

vides a larger increase of the predicted fluences (with respect to 1 AU values) than the previous

version. For the two simulations performed, the ECSS method predicts the larger values for

the cumulative fluence. Hence, for this energy channel and with a 90% confidence level, we

could conclude that with the SOL2UP updates, the SEPEM method for radial distance scaling

of the SEP fluences predicts an overall radial dependence softer than the inverse squared law

recommended by ECSS.

4Note that we applied another method for the background subtraction in order to compute the fluences, but the
input values provided by us to the statistical model are the fluence values normalised to the values obtained at 1 AU,
and hence we provided only the scaling factors to other radial distances; thus allowing the use of other methodologies
for the treatment of data.
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5 APPLICATIONS TO SOLAR ORBITER

Next we analysed the energy spectra of the cumulative fluence for the same confidence level

(90%). For this, we extracted the corresponding values from the output files of the SEPEM

tool, and fitted the energy spectra with a Weibull function, which is described by an exponential

cut-off power law characterised as follows (Xapsos et al., 2000):

dΦ

dE
= Φ0 k α Eα−1exp

(
−k Eα) , (5.1)

where differential fluences, dΦ
dE , are expressed in cm−2 MeV−1 as a function of the energy, E, in

MeV; the constants Φ0, k and α are given by a non linear regression fit, where Φ0 is indicating

the event magnitude, expressed in cm−2, and k and α give a measure of the spectrum hardness.

The non-linear fittings are performed via a Levenberg-Marquardt least-squares fit method.

Figure 5.16 presents the cumulative proton fluence spectra results for the 90% confidence

level for the ten energy channels of SEPEM RDSv2.0, computed using the non-updated version

of the SEPEM server tool. Each panel displays the resulting energy spectra for each solar cy-

cle period considered during the computed mission time: first solar minimum (top-left), solar

maximum (top-right), second solar minimum (bottom-left) and the total mission length (bottom-

right). For each period the fluence results for the three different radial distance scalings consid-

ered are shown: 1 AU (blue dots), ECSS (green dots) and SEPEM (orange dots). Furthermore,

the resulting fittings to the energy spectra with the Weibull function (Eq. 5.1) are represented by

solid lines following the same colour code. Figure 5.17 shows the same information but for the

simulation performed with the SEPEM RDSv2.2 and the new updates done by SOL2UP project.

In this case, the fitting of the energy spectra was performed for the ten first energy channels. We

discarded the highest energy channel of SEPEM RDSv2.2 both for the sake of comparison with

the previous RDSv2.0 and because this energy channel showed for some events intensity values

below the background levels.

Table 5.5 shows the parameters of the fittings performed to the energy spectra of the to-

tal mission duration for the two simulations performed, prior (‘Previous SEPEM model’, see

Fig. 5.16), and after the implementation of the SOL2UP updates (‘Updated SEPEM model’, see

Fig. 5.17). For each radial dependence or scaling used, i.e., 1 AU, SEPEM method and ECSS,

the results for the three fitted parameters (Φ0, k and α) and the correlation coefficient (R2) are

listed. We can clearly see that as qualitatively shown in Figures 5.16 and 5.17, the performed

fittings are accurate and give a very good result for the correlation coefficient.

We want to remark that the peculiar behaviour for the lower energies of the SEPEM radial

scaling method, which provides fluences below those predicted by the 1 AU case in the simula-

tion performed prior to the SOL2UP updates (see Fig. 5.16) is no longer found in the simulation

including the SOL2UP radial dependence updates. The greater variation of radial dependences

provided now by the SEPEM/SOLPENCO2 model, which are at the low-energies a result of the

analysis performed in this thesis of the downstream fluence variation with the heliolongitude and
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5.4 Solar Orbiter total mission fluence estimation

radial distance, yields predicted cumulative values within the 1 AU and ECSS radial distance

approaches. Hence, by using the SEPEM method, the requirements for radiation protection for

interplanetary missions could be softened. However, prior to this, the results that we find here

should be validated with actual data covering the whole energy spectrum. Solar Orbiter itself

will provide us with this opportunity.

FIGURE 5.16: Mission cumulative fluence spectra for the Solar Orbiter planed orbit for Octo-
ber 2018 modelled with the non-updated version of SEPEM RDS 2.0. Each panel, from left to
right and from up to bottom, shows the cumulative fluence spectra for different time periods:
first solar minimum, first solar maximum, second solar minimum and the full mission length.

5.4.3 Mission orbit comparison

After using SEPEM server tools to compute cumulated fluence and the fluence energy spectra

for the Solar Orbiter mission orbit planned for launch in October 2018, we applied the model

to the current approved mission orbit planned for launch in February 2020. In contrast to the

October 2018 orbit, the current orbit will manage to achieve similar orbital characteristics with-

out needing Mars assistance, reason why Solar Orbiter will never go beyond the Earth’s orbit

distance. The shortest perihelion will also be at 0.28 AU. We provided the February 2020 orbit

information as input to the SEPEM server tool Away from 1 AU and retrieved the cumulative

fluence energy spectra for different confidence levels and periods. In this case we used only the

version of the SEPEM statistical model for interplanetary missions updated with the SEPEM

RDSv2.2 and the radial distance dependences from SOL2UP.
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5 APPLICATIONS TO SOLAR ORBITER

FIGURE 5.17: Same as in Figure 5.16 for the Solar Orbiter planed orbit for October 2018
modelled with the updated version of SEPEM, which provides fluences for 11 energy channels

up to 289.2 MeV.

TABLE 5.5: Results of the spectra fittings for modelled cumulative fluences of ten energy
channels of SEPEM for the orbit launch in October 2018 for the two simulations performed.

Solar Orbiter cumulated fluence for launch in October 2018 orbit

Radial Previous SEPEM model

dependence Φ0 [cm−2 sr−1] k [MeV−α] α R2

1 AU 2 × 1011 1.4 0.39 0.998
SEPEM 8 × 1010 0.7 0.49 0.998

ECSS (r−2) 8 × 1011 1.4 0.39 0.9990

Updated SEPEM model

Φ0 [cm−2 sr−1] k [MeV−α] α R2

1 AU 2 × 1011 1.3 0.41 0.998
SEPEM 3 × 1011 1.4 0.39 0.998

ECSS (r−2) 5 × 1011 1.3 0.41 0.9990

Figure 5.18 shows the 90%-confidence cumulative fluence for the reference energy channel

computed over the whole mission length, for the February 2020 orbit. Each panel follows the

same structure as in Figure 5.15, but in this case the mission encompasses only two solar cycle

phases: one solar maximum and one solar minimum. Among the three different radial distance

scaling outputs, the lower fluences were attained by the 1 AU case and the highest by the ECSS
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5.4 Solar Orbiter total mission fluence estimation

case. The SEPEM method showed intermediate values for the cumulative fluence. If we com-

pare these results with the updated SEPEM version results for the orbit in October 2018 shown

in Figure 5.15, we can see that the cumulative fluence for the solar cycle maximum periods are

very similar for all radial scalings, even though the February 2020 orbit goes through a slightly

shorter maximum period.

On the other hand, Figure 5.19 shows the 90%-confidence cumulative proton fluence spectra

results, for the eleven energy channels of SEPEM RDSv2.2, following the same structure as in

Figure 5.16, but for the February 2020 mission orbit. The energy spectra derived are shown for

the solar maximum (left panel) and solar minimum (central panel) and for the full mission length

(right panel). We find that the cumulative fluence values obtained for each radial scaling method

both for the solar maximum phase and total mission length are similar to the corresponding

values obtained for the October 2018 orbit. The values of the parameters of the fitting to the

energy spectra for the February 2020 mission orbit are listed in Table 5.6. The comparison

of the parameters obtained from the fitting of both orbits shows very similar values, which

indicates that short stays in large radial distances as was planned for the October 2018 orbit,

have little effect in the overall computed fluence. In addition, the comparison of the results for

the worst case fluence spectra (not shown here) yielded also very similar values. This means

that for missions with both similar total mission lengths and solar maximum phase durations,

the probability of occurrence of the worst case event is very similar.

TABLE 5.6: Energy spectra fitting parameters for the February 2020 orbit.

Solar Orbiter cumulated fluence for the February 2020 orbit

Radial Updated SEPEM model

dependence Φ0 [cm−2 sr−1] k [MeV−α] α R2

1 AU 2 × 1011 1.3 0.4 0.998
SEPEM 3 × 1011 1.4 0.39 0.998

ECSS (r−2) 5 × 1011 1.3 0.41 0.9990
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Chapter 6

Summary and future perspectives

6.1 Summary

Space weather is nowadays one of the main hazards for space missions and it is becoming an

increasingly important field of study as manned missions flying out of the Earth’s magnetosphere

becomes a reality. Space weather effects over electronic devices have been proven to be an actual

problem for space based observatories and probes travelling through the heliosphere. They are

also the most restrictive factor to engage in interplanetary manned missions, as the high radiation

doses typically found out of the protection of the Earth’s magnetic field can easily cause severe

health conditions.

The aim of this thesis was to improve the SEP prediction and modelling tools that will al-

low us to better comprehend the SEP radiation environment in the inner heliosphere. Through

this work, we presented several improvements in pre-existing SEP events modelling tools. We

performed a novel observational study of the contribution of the downstream fluence to the to-

tal fluence of large solar energetic proton events (Pacheco et al., 2017b), which improves the

predictions of the heliocentric radial distance variation of the event fluence of the SEPEM/-

SOLPENCO2 tool (Crosby et al., 2015, Aran et al., 2017a), and as a result it also improves the

fluence estimates of the ESA’s SEPEM statistical SEP model for interplanetary missions. We

adapted SEPinversion (Agueda et al., 2012b) to study STEREO events (Pacheco et al., 2017a),

as well as we developed a new methodology to take into account the energy and angular response

of detectors on board Helios (Pacheco et al., 2019a) and the future Solar Orbiter. We obtained

the angular response for the SolO/EPD/EPT telescope and performed, for the first time, a study

on how EPT will observe the SEP pitch-angle distributions during actual SEP events (Pacheco

et al., 2019b).
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6 CONCLUSIONS

6.1.1 Analysis of the downstream fluence of gradual SEP events

• We analysed the post-shock fluence of gradual SEP events observed at the near-Earth

space and those observed by STEREO mission during the period from 1988 to 2013 as

well as the events detected by the Helios mission from 1975 to 1985, at heliocentric

radial distances between 0.3 AU and 0.85 AU. For the 1 AU observations in the period

from 2010-2013, we determined the solar source of the particles, that is, the parent solar

eruptive phenomena (i.e., CME and flares) and the associated interplanetary shock passing

by the spacecraft position, and hence, we updated the SEPEM radial dependent reference

event list (SREL).

• We computed the downstream contribution to the total fluence for each of the selected

events in the SREL list, the compiled STEREO event list and in the Helios event list. We

determined the upstream (pre-shock), downstream (post-shock) and total fluences of the

selected events, and created a software to automatically perform the necessary tasks, for

the events in the SREL list.

• Afterwards, we performed a multi-spacecraft study of SEP events to determine whether

there exists a variation of the downstream fluence of these SEP events with the helio-

longitude of their parent solar source. From the eight pairs of events simultaneously

detected by near-Earth spacecraft and by one of the STEREO spacecraft, we found that

the downstream-to-total fluence ratios (DTFRs) do vary with the heliolongitude. Eastern

events show higher DTFRs ratios than their western counterparts. Also, we found that the

DTFRs decrease with the energy of the protons.

• The extension of the study to 168 events observed at 1 AU permitted us to quantify the

variation of the DTFRs with the heliolongitude, by fitting polynomials to the moving

mean values of these ratios. Moreover, the number of events observed by the Helios

spacecraft at heliocentric radial distances between 0.3 AU and 0.85 AU that were suitable

for the downstream fluence analysis is small, preventing any quantification of the DTFRs

variation. However, the same trend is found as for the 1 AU data: eastern events tend

to show higher DTFRs ratios than western events. On the other hand, we find that the

mean DTFRs are roughly constant with the heliocentric radial distance (within errors).

Consequently, we used the fits obtained from the better statistics gathered from 1 AU

observations to determine the evolution of the downstream-to-total fluence ratios with the

heliolongitude.

• Furthermore, since SOLPENCO2 provides predictions for spacecraft located at different

radial distances but along the same IMF line, we could translate the variation in heliolon-

gitude (provided by the curvature of the IMF line) of these spacecraft to a radial variation

of the DFTRs. Therefore, we used the polynomial fits derived from 1 AU to characterise
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6.1 Summary

the variation of the DTFRs for the virtual observers located at other radial distances. We

assumed that the polynomial fits derived represent the "Average Variation" with heliolon-

gitude, and applied the same tendency for all events in SREL, starting from the observed

DTFR value at the observed heliolongitude.

• Finally, after the implementation of the DTFRs to the calculation of the total fluences of

the events in SREL into the SEPEM/SOLPENCO2 tool, the resulting radial dependences

of the total fluences vary from event to event thanks to the contribution of the downstream

fluence modelled in this work. We have shown that strong positive radial dependences

of the total fluence provided previously by SOLPENCO2 for eastern events are now soft-

ened. The same is true for the largest events in SREL.

6.1.2 Electron events observed over a narrow range of heliolongitudes

• We studied the characteristics of two impulsive near-relativistic events observed by the

STEREO mission on 2014 August 1 with few hours of delay when both spacecraft pre-

sented a longitudinal separation of only 34◦. We adapted the SEPinversion software to

use SEPT data directly and we modelled the observations in order to explain the signif-

icant differences in the intensities measured by both spacecraft. STEREO B was better

magnetically connected to the solar source of the particles but it observed lower electron

intensities while STEREO A had a worse connection but it measured a factor ∼5 higher

peak intensity (Klassen et al., 2016). We also compared the type III radio burst observed

by the two spacecraft with the electron intensity onsets at the spacecraft and found that

even though STEREO B was better connected and the type III bursts were detected at

the same time by both spacecraft, STEREO A measured an earlier onset for the electron

event. Furthermore, we found clear differences on the evolution of the PADs and the fact

that STEREO A was inside a slow solar wind stream but STEREO B was in a fast solar

wind stream.

• For each event, we inferred the electron injection-time profile at the Sun and the elec-

tron mean-free path that best fitted the data. The timing of the inferred injection profiles

matched with the type III radio emission observed at the Sun. We found values of the

mean free path for STEREO A of λr = 0.31 AU for Event I and λr = 0.37 AU for Event

II, and STEREO B of λr = 0.10 AU for Event I and λr = 0.06 AU for Event II. These

differences in the transport conditions of electrons as well as the difference in the injec-

tion profiles are enough to explain the onset delay as well as anisotropy and peak intensity

differences between both observations. We conclude that interplanetary transport condi-

tions can differ significantly changes even for very close heliolongitudes and specially for

different solar wind streams.
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6.1.3 Electron events observed by Helios in the inner (< 1 AU) heliosphere.

• We developed a full inversion method to study relativistic electron events observed by the

Helios mission. For that purpose we modelled of the angular response of the E6 sectors

and the energetic response of the E03 channel of the instrument. The method consisted

on an inversion procedure of the original Helios electron data taking into account both

responses, angular and energetic, to disentangle the release-time history at the Sun and

the transport conditions of the particles along the IMF, characterised by the mean electron

free path.

• We examined Helios data for the whole mission period and gathered a list of fifteen im-

pulsive electron events which fulfilled the selection criteria. We scanned the literature to

determine the events’ solar sources and the associated EM emissions. We computed the

Green’s functions for the interplanetary transport of relativistic electrons, which do not

suffer from adiabatic deceleration, taking into account the different transport scenarios

and applied them to the energy response of E03 channel to build the Green’s function

of the channel for each specific case. This full inversion method allowed us to infer the

release-time history and the mean free path for each event. We obtained the electron in-

jection profile and the mean free path that best fitted the observations for each event on

the list, with values of λ‖ between 0.02 AU and 0.27 AU. These values suggest a pre-

dominance (ten cases out of fifteen) of weak-focused transport (0.1 < λ‖/L < 1) for the

studied events. Four events presented focused transport(λ‖/L ≥ 1) while only one showed

values of the mean free path in the diffusive transport regime (λ‖/L ≤ 0.1). These results

were in agreement with those found in the literature (Kallenrode et al., 1992b, Kallenrode,

1993b, Agueda and Lario, 2016). With respect to the inferred injection profiles, we found

two groups regarding the injection duration: for ten events the injection lasted more than

30 min and for five events it was shorter than that. The recovered injections matched with

the duration of the EM observations for each event.

• We looked for an explanation for the long-lasting injection profiles and found that either

coronal CME-driven shocks and magnetic structures in the corona trapping electrons and

allowing a gradual leakage of particle could justify the observations (Klein et al., 2010,

Dresing et al., 2018). We found no dependence of the radial mean free path with the

helioradial distance of the observer. We found that strongly diffusive events observed

by Helios at small radial distances would not be observable at 1 AU. These results point

towards the necessity of having pitch-angle distribution data from multi-spacecraft obser-

vations at different radial distances to study in further detail the radial and longitudinal

dependences of the particle transport.
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6.1.4 Applications to Solar Orbiter

6.1.4.1 Radial dependences

• We studied the radial dependences of the electron peak intensities and anisotropies in the

inner heliosphere, in the range from 0.31 AU to 0.94 AU, for nine of the fifteen events

observed by Helios and modelled in the previous chapter. We used the inferred injection-

time profiles and convoluted them with the Green’s functions for each helioradial distance.

We computed the peak intensities and the anisotropy at the peak for each distance and

used the power law function f (r) = b · r−α to fit these values along the radial distance.

We recovered fits with correlation coefficients close to 1 and small error values for the

α parameter for all of the peak intensities and most of the fitted anisotropies, except for

the event on 1980 April 5 which was studied with a resolution of only 15 min instead of

1 min. Hence, we claim that radial decay of electron peak intensities can be explained by

a power law.

• We compared the obtained values of α with the corresponding mean free path of the

events and found no correlation. Then we contrasted the α values with the duration of the

most intense injection (all those values showing at least 10% intensity of the maximum

injection) finding a significant correlation between both parameters. We also concluded

that the duration of the injection was a key factor in order to explain the radial dependence

of the peak intensity of the events. For most of the events in the sample, the power law

function was able to explain the anisotropy dependences for a wide range of distances

in the inner heliosphere (0.3 – 1.0 AU). However, if values extrapolated towards smaller

radial distances, some of the anisotropies would exceed the physical range (i.e., > 3).

Thus, a power-law cannot be used to extrapolate the values of the anisotropy at the peak

intensity time for small radial distances such as the Solar Orbiter and Parker Solar Probe

perihelia.

6.1.4.2 EPD PAD modelling

• We modelled the angular response of the EPT instrument that will fly on board Solar

Orbiter and studied the pitch-angle coverage of the instrument during different synthetic

observational scenarios regarding the local IMF.

• We applied the obtained response to three of the modelled events shown in Chapter 4

to get the measurements of the pitch-angle distributions that Solar Orbiter would have

observed. We found that, in general, Solar Orbiter will will be able to provide comparable

pitch-angle coverage to Helios for those events for which particles arrive through an IMF

close to the ecliptic plane. For events occurring during periods when the IMF is out of

that plane, Solar Orbiter is expected to provide significant better coverage.
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6.1.4.3 Solar Orbiter total mission fluence estimation

• We used the SEPEM server tool Away from 1 AU to compute the expected fluence that

Solar Orbiter will receive during its mission. For that purpose, we provided with the

details of the planned orbit with launch date in October 2018 to compute the cumulated

fluence for the whole mission. The tool returns the results of the cumulative fluence at

different confidence levels for three different heliocentric radial distance scalings: 1 AU,

ECSS and SEPEM method that includes the predictions from the SOLPENCO2 tool.

• We ran the computation for the version of SEPEM prior to the implementation of SOL2UP

project results (explained in Chap. 2), and the updated version with the new radial depen-

dences for the SEPEM method. We compared the results between them and found slightly

higher cumulative fluence for the updated SEPEM method, but lower fluences for 1 AU

and ECSS dependences. On the other hand, when analysing the energy spectra, we found

that the results for the model before the update showed values for the SEPEM method

below those produced by the 1 AU case for the lower energies. On contrary, the up-

dated model presented consistent spectra for all energies, being the values of the SEPEM

method between the fluences determined at 1 AU and ECSS dependence. We concluded

that the standard inverse square-law assumption (ECSS model) overestimates the cumu-

lative fluence and hence, the use of SEPEM method to compute the shielding needed for

space missions will imply a reduction in the costs. However, a validation of these results

should be performed to establish firm conclusions.

• We also provided SEPEM server tool with the current planned orbit with launch on 2020

February for Solar Orbiter. We compared the previous examined orbit results of 90%

confident cumulative fluences and worst case scenario fluences with the results obtained

for this orbit. We found almost equal results for the cumulative fluences and worst case

scenario of both orbits as well as equivalent energy spectra, taking into account that the

new orbit will only span over one maximum and one minimum period with a total of

10.56 years, instead of two minimums and one maximum as the orbit planned for launch

on 2018 October with a total extent of 9.46 years.

6.2 Future perspectives

There are still many open issues in the field of SEP events we hope to address in a near future.

Among these, we consider several interesting improvements we could already work on:

• To model the angular response of other Solar Orbiter particle instruments: HET, STEP and

SIS. This would allow us to provide an analogue comparison of the pitch-angle coverage
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of these instruments as already performed for EPT. We would then be ready for analysing

the scientific data as soon as it is available.

• To model the angular response of the Parker Solar Probe particle instruments and compare

the pitch-angle coverages of them with previous modelled instruments, in order to aid the

analysis and interpretation of the scientific data.

• To extend the list of events observed by STEREO and Helios and model them with the

developed inversion software, in order to gather an extensive list of results for the injection

profiles and mean free paths.

• To implement a filtering algorithm, as a wavelet-based trend filtering, to de-noise the

PADs and study the effect of noise on the modelling, comparing previous results of mod-

elled events, specially injection profiles, with those obtained from the filtered data.

• To apply the transport model developed by Agueda (2008) to construct a grid of Green’s

functions of interplanetary transport of electrons for different radial distances and solar

wind conditions that allow us to study the events observed by Solar Orbiter and Parker

Solar Probe.

• To model the energy response of the particle instruments on board STEREO, Solar Or-

biter, Parker Solar Probe and any other mission for which we could obtain data able to be

used in the inversion software developed.

• To use the SEPEM tool Away from 1 AU to study the cumulative fluence and worst case

scenario fluence for other interplanetary missions like for Helios, which we are currently

working on, and current missions such as BepiColombo. Solar Orbiter will also provide

us with a good opportunity to validate the model results.

• To apply the radial dependences modelled for SEPEM to new statistical models and com-

pare the different results obtained.

• To enlarge the SEPEM RDS event list used to study the radial dependences with older

events (1975 – 1988) and new ones up to now (2013 – 2019).

On the other hand, there are several possible studies that have not been possible so far, either

because they demand longer time periods or because of the fact that the data needed to proceed

with it is still unavailable, such as:

• To carry out more multi-spacecraft studies, using data from Parker Solar Probe, Solar

Orbiter, STEREO and other available missions to study the radial and longitudinal depen-

dences of the SEP transport characteristics.

• To improve the angular response modelling of the instruments using a new anisotropic

approach for the incoming particle population.

• To improve the MHD model currently used on SEPEM server to describe interplanetary

shocks.

• To develop a new 3-D transport model of SEPs taking into account other transport pro-

cesses such as perpendicular diffusion.
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Appendix A

SOL2UP event tables

A.1 Tables for events between 2010-2013

In this section we show the list of multi-spacecraft events observed by near Earth spacecraft

(Table A.1), by STEREO-A (Table A.2) and by STEREO-B (Table A.3).

In each of these tables the following information is listed. The first column gives the event

number starting from August 2010. When a event can be split into different SEP events (also

called SEP enhancements), the individual events are differentiated with letters (a, b, c....). The

second and third columns give the date and time of each SEP event enhancement. Next, the

fourth, fifth and sixth columns give the latitude, longitude of the associated flare (as seen by the

corresponding spacecraft) and the X-ray start date and time, respectively. The seventh column

shows the time of the shock passage by the ACE spacecraft; in the cases where a shock was not

identified this column has been left empty. The eight column shows the solar wind type (‘fast’

or ‘slow’), or the solar wind speed for the STEREO spacecraft. The ninth column indicates if

the event has been included in the analysis of the downstream fluence (see next section), and

finally the tenth column gives the X-ray flare class. As mentioned in Chapter 2, we established

the association of the SEP events with their solar eruptive source. We further checked these

associations against the already published studies (Lario et al., 2013, Richardson et al., 2014,

Rouillard et al., 2012, Baker et al., 2013, Gómez-Herrero et al., 2015). Authors in SOL2UP: D.

Pacheco, A. Aran, N. Agueda.
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5 APPENDIX A: SOL2UP EVENT TABLES

TABLE A.1: SREL list for events between 2010 – 2013.

Near-Earth observations - SEPEM data

Event Start time End time Lat. Lon. Flare time Shock time Solar wind Downst. Flare
[UT] [UT] (N+/S-) (W+/E-) [UT] [UT] type analysis class

1-a 14/08/2010 10:20 15/08/2010 11:50 12 56 14/08/2010 09:38 slow N C4.4
2-a 18/08/2010 06:00 19/08/2010 11:55 18 88 18/08/2010 04:45 slow N C4.5
3-a 07/03/2011 20:10 13/03/2011 18:00 30 48 07/03/2011 19:43 10/03/2011 05:45 slow Y M3.7
4-a 21/03/2011 02:30 23/03/2011 12:00 16 130 21/03/2011 02:15 slow N B3.5
5-a 05/06/2011 16:00 07/06/2011 06:15 -16 145 04/06/2011 21:45 07/06/2011 09:14 slow N B2.7
5-b 07/06/2011 06:15 14/06/2011 06:15 -22 53 07/06/2011 06:15 10/06/2011 08:11 slow Y M2.5
5-c 14/06/2011 06:15 19/06/2011 19:00 19 -76 14/06/2011 04:45 17/06/2011 02:05 fast Y Z0.0
6-a 04/08/2011 04:34 08/08/2011 16:00 16 38 04/08/2011 03:40 05/08/2011 18:40 slow Y M9.3
7-a 09/08/2011 07:59 11/08/2011 14:00 14 69 09/08/2011 07:47 fast N X6.9
8-a 06/09/2011 23:15 10/09/2011 14:00 14 18 06/09/2011 22:12 09/09/2011 11:48 slow Y X2.1
9-a 22/09/2011 10:32 25/09/2011 11:12 9 -89 22/09/2011 10:29 25/09/2011 10:46 slow N X1.4
9-b 25/09/2011 11:12 01/10/2011 18:00 10 -56 24/09/2011 12:33 26/09/2011 11:44 slow N M7.1
10-a 22/10/2011 10:30 26/10/2011 16:00 27 87 22/10/2011 10:00 24/10/2011 17:49 slow Y M1.3
11-a 03/11/2011 22:25 06/11/2011 16:00 3 -152 03/11/2011 22:16 slow N M4.7
12-a 26/11/2011 07:30 30/11/2011 15:00 11 47 26/11/2011 06:09 28/11/2011 21:00 slow Y C1.2
13-a 19/01/2012 14:39 23/01/2012 04:00 32 -27 19/01/2012 13:43 22/01/2012 05:33 slow Y M3.2
13-b 23/01/2012 04:00 27/01/2012 18:00 33 21 23/01/2012 03:38 24/01/2012 14:40 slow Y M8.7
13-c 27/01/2012 18:00 04/02/2012 00:00 33 85 27/01/2012 17:37 30/01/2012 15:43 slow Y X1.7
14-a 24/02/2012 19:00 29/02/2012 00:00 10 -88 24/02/2012 00:45 26/02/2012 21:07 slow Y B4.5
15-a 05/03/2012 03:00 06/03/2012 23:30 19 -58 05/03/2012 02:30 07/03/2012 03:28 slow N X1.1
15-b 06/03/2012 23:30 13/03/2012 16:30 18 -31 07/03/2012 00:02 08/03/2012 10:53 slow Y X5.4
15-c 13/03/2012 16:30 18/03/2012 03:00 17 66 13/03/2012 17:12 15/03/2012 12:42 fast Y M7.9
16-a 17/05/2012 02:05 21/05/2012 17:00 7 88 17/05/2012 01:25 20/05/2012 01:20 slow Y M5.1
17-a 26/05/2012 21:00 30/05/2012 20:00 16 122 26/05/2012 20:46 slow N B3.6
18-a 14/06/2012 14:19 18/06/2012 10:00 -19 -6 14/06/2012 12:51 16/06/2012 19:34 slow Y M1.9
19-a 06/07/2012 23:35 08/07/2012 16:59 -13 59 06/07/2012 23:01 slow N X1.1
19-b 08/07/2012 16:59 11/07/2012 14:00 -14 86 08/07/2012 16:23 slow N M6.9
20-a 12/07/2012 17:05 16/07/2012 15:00 -13 3 12/07/2012 15:36 14/07/2012 17:39 slow Y X1.4
21-a 17/07/2012 13:59 19/07/2012 04:30 -15 88 17/07/2012 12:02 slow N M1.7
21-b 19/07/2012 04:30 23/07/2012 02:30 -13 88 19/07/2012 04:16 20/07/2012 04:00 slow Y M7.7
21-c 23/07/2012 02:30 26/07/2012 18:00 2 125 23/07/2012 02:35 slow N
22-a 01/09/2012 00:00 06/09/2012 16:00 -19 -42 31/08/2012 19:59 03/09/2012 11:21 slow Y C8.4
23-a 28/09/2012 00:20 02/10/2012 08:00 9 32 27/09/2012 23:35 30/09/2012 22:18 slow Y C3.7
24-a 14/12/2012 12:20 17/12/2012 18:00 16/12/2012 16:50 slow N
25-a 15/03/2013 18:45 18/03/2013 19:59 9 -6 15/03/2013 05:46 17/03/2013 05:21 slow Y M1.1
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1.1 Tables for events between 2010-2013

TABLE A.2: Table for events observed by STEREO A between 2010 and 2013.

STEREO A

Event Start time End time Lat. Long. Flare time Shock time vsw Downst. Flare
[UT] [UT] (N+/S-) (W+/E-) ([UT] [UT] [km s−1] analysis class

1-a 14/08/2010 10:14 17/08/2010 11:50 14 -24 14/08/2010 09:38 370 N C4.4
2-a 18/08/2010 05:50 20/08/2010 23:35 21 8 18/08/2010 04:45 20/08/2010 16:12 333 Y C4.5
3-a 07/03/2011 20:10 12/03/2011 07:20 23 -40 07/03/2011 19:43 09/03/2011 06:47 470 Y M3.7
4-a 21/03/2011 03:00 24/03/2011 16:30 7 42 21/03/2011 02:15 22/03/2011 18:20 424 Y B3.5
5-a 04/06/2011 22:09 14/06/2011 06:09 -24 51 04/06/2011 21:45 05/06/2011 18:58 637 Y
5-b 04/06/2011 22:09 14/06/2011 06:09 -30 -42 07/06/2011 06:15 555 N M2.5
5-c 14/06/2011 06:09 18/06/2011 15:09 13 -172 14/06/2011 04:45 394 N
6-a 04/08/2011 04:34 09/08/2011 11:30 19 -63 04/08/2011 03:40 06/08/2011 12:42 403 Y M9.3
7-a 09/08/2011 07:59 12/08/2011 20:19 18 -32 09/08/2011 07:47 11/08/2011 05:37 423 Y X6.9
8-a 06/09/2011 23:15 10/09/2011 13:34 23 -85 06/09/2011 22:12 332 N X2.1
9-a 21/09/2011 22:05 22/09/2011 10:32 29 11 21/09/2011 22:32 405 N C2.1
9-b 22/09/2011 10:32 25/09/2011 06:00 19 167 22/09/2011 10:29 24/09/2011 08:03 353 Y X1.4
10-a 22/10/2011 16:20 25/10/2011 18:45 39 -18 22/10/2011 10:00 25/10/2011 04:50 330 Y M1.3
11-a 03/11/2011 22:25 09/11/2011 00:00 14 103 03/11/2011 22:16 342 N M4.7
12-a 26/11/2011 07:30 30/11/2011 00:20 20 -59 26/11/2011 06:09 28/11/2011 14:50 453 Y C1.2
13-a 19/01/2012 15:00 23/01/2012 04:00 31 -135 19/01/2012 13:43 353 N M3.2
13-b 23/01/2012 04:00 27/01/2012 18:00 31 -87 23/01/2012 03:38 508 N M8.7
13-c 27/01/2012 18:00 09/02/2012 07:59 30 -23 27/01/2012 17:37 29/01/2012 13:03 356 Y X1.7
14-a 24/02/2012 19:00 27/02/2012 21:24 2 163 24/02/2012 00:45 419 N B4.5
15-a 05/03/2012 03:00 06/03/2012 23:30 9 -167 05/03/2012 02:30 398 N X1.1
15-b 06/03/2012 23:30 13/03/2012 16:30 8 -140 07/03/2012 00:02 402 N X5.4
15-b 06/03/2012 23:30 13/03/2012 16:30 5 -106 09/03/2012 03:22 402 N M6.3
15-c 13/03/2012 16:30 17/03/2012 02:24 6 -44 13/03/2012 17:12 15/03/2012 22:32 401 N M7.9
16-a 17/05/2012 02:05 22/05/2012 15:15 -3 -27 17/05/2012 01:25 18/05/2012 12:42 618 Y M5.1
17-a 26/05/2012 21:00 02/06/2012 00:00 4 2 26/05/2012 20:45 28/05/2012 02:48 337 Y B3.6
18-a 14/06/2012 14:19 19/06/2012 04:00 -24 -124 14/06/2012 12:51 518 N M1.9
19-a 06/07/2012 23:35 08/07/2012 16:59 -13 -61 06/07/2012 23:01 417 N X1.1
19-b 08/07/2012 16:59 10/07/2012 22:05 -14 -34 08/07/2012 16:23 10/07/2012 18:54 507 N M6.9
20-a 12/07/2012 17:05 15/07/2012 20:39 -12 -117 12/07/2012 15:36 424 N X1.4
21-a 18/07/2012 05:30 20/07/2012 04:30 20 57 18/07/2012 06:04 386 N C3.1
21-b 20/07/2012 04:30 23/07/2012 02:05 -10 -33 19/07/2012 04:16 20/07/2012 22:43 481 N M7.7
21-c 23/07/2012 02:05 04/08/2012 07:59 5 4 23/07/2012 01:59 23/07/2012 20:55 445 Y
22-a 31/08/2012 20:30 08/09/2012 07:39 -9 -166 31/08/2012 19:59 398 N C8.4
23-a 27/09/2012 10:30 05/10/2012 00:00 -12 21 27/09/2012 09:54 29/09/2012 18:35 364 N
24-a 14/12/2012 12:20 16/12/2012 03:45 17/12/2012 16:57 336 N
25-a 15/03/2013 07:30 18/03/2013 04:00 -4 -138 15/03/2013 05:46 376 N M1.1
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5 APPENDIX A: SOL2UP EVENT TABLES

TABLE A.3: Events observed by STEREO B between 2010 and 2013.

STEREO B

Event Start time End time Lat. Long. Flare time Shock time vsw Downst. Flare
[UT] [UT] (N+/S-) (W+/E-) [UT] [UT] [km s−1] analysis class

1-a 14/08/2010 10:14 17/08/2010 11:50 20 128 14/08/2010 09:38 312 N C4.4
2-a 18/08/2010 05:50 20/08/2010 23:35 26 160 18/08/2010 04:45 439 N C4.5
3-a 07/03/2011 20:10 12/03/2011 07:20 22 143 07/03/2011 19:43 382 N M3.7
4-a 21/03/2011 03:00 24/03/2011 16:30 10 -135 21/03/2011 02:15 476 N B3.5
5-a 04/06/2011 22:09 14/06/2011 06:09 -9 -122 04/06/2011 21:45 455 N
5-b 04/06/2011 22:09 14/06/2011 06:09 -15 146 07/06/2011 06:15 455 N M2.5
5-c 14/06/2011 06:09 18/06/2011 15:09 27 17 14/06/2011 04:45 457 N
6-a 04/08/2011 04:34 09/08/2011 11:30 27 131 04/08/2011 03:40 344 N M9.3
7-a 09/08/2011 07:59 12/08/2011 20:19 25 162 09/08/2011 07:47 572 N X6.9
8-a 06/09/2011 23:15 10/09/2011 13:34 23 113 06/09/2011 22:12 443 N X2.1
9-a 22/09/2011 10:32 24/09/2011 12:45 16 7 22/09/2011 10:29 24/09/2011 03:58 475 N X1.4
9-b 24/09/2011 12:45 03/10/2011 00:00 16 41 24/09/2011 12:33 488 N M7.1
10-a 22/10/2011 16:20 25/10/2011 18:45 29 -172 22/10/2011 10:00 415 N M1.3
11-a 03/11/2011 22:25 09/11/2011 00:00 3 -50 03/11/2011 22:16 06/11/2011 05:10 384 N M4.7
12-a 26/11/2011 07:30 30/11/2011 00:20 6 153 26/11/2011 06:09 335 N C1.2
13-a 19/01/2012 15:00 23/01/2012 04:00 20 86 19/01/2012 13:43 406 N M3.2
13-b 23/01/2012 04:00 27/01/2012 18:00 21 134 23/01/2012 03:38 381 N M8.7
13-c 27/01/2012 18:00 09/02/2012 07:59 21 -161 27/01/2012 17:37 399 N X1.7
14-a 24/02/2012 19:00 27/02/2012 21:24 -2 29 24/02/2012 00:45 352 N B4.5
15-a 05/03/2012 03:00 06/03/2012 23:30 8 60 05/03/2012 02:30 392 N X1.1
15-b 06/03/2012 23:30 13/03/2012 16:30 7 87 07/03/2012 00:02 414 Y X5.4
15-b 06/03/2012 23:30 13/03/2012 16:30 4 121 09/03/2012 03:22 414 N M6.3
15-c 13/03/2012 16:30 17/03/2012 02:24 7 -176 13/03/2012 17:12 387 N M7.9
16-a 17/05/2012 02:05 22/05/2012 15:15 9 -154 17/05/2012 01:25 398 N M5.1
17-a 27/05/2012 04:41 01/06/2012 00:00 7 58 27/05/2012 04:41 656 N C3.1
18-a 14/06/2012 14:19 19/06/2012 04:00 -11 110 14/06/2012 12:51 495 N M1.9
19-a 06/07/2012 23:35 08/07/2012 16:59 -2 174 06/07/2012 23:01 433 N X1.1
19-b 08/07/2012 16:59 10/07/2012 22:05 -3 -159 08/07/2012 16:23 373 N M6.9
20-a 12/07/2012 17:05 15/07/2012 20:39 -2 118 12/07/2012 15:36 495 N X1.4
21-a 18/07/2012 05:30 20/07/2012 04:30 30 -67 18/07/2012 06:04 441 N C3.1
21-b 20/07/2012 04:30 23/07/2012 02:05 -1 -157 19/07/2012 04:16 374 N M7.7
21-c 23/07/2012 02:05 04/08/2012 07:59 14 -120 23/07/2012 01:59 23/07/2012 21:20 335 N
22-a 31/08/2012 20:30 08/09/2012 07:39 -8 74 31/08/2012 19:59 03/09/2012 07:11 331 Y C8.4
23-a 27/09/2012 10:30 05/10/2012 00:00 17 150 27/09/2012 23:35 441 N C3.7
24-a 14/12/2012 12:20 16/12/2012 03:45 18/12/2012 20:05 387 N
25-a 15/03/2013 07:30 18/03/2013 04:00 -3 134 15/03/2013 05:46 302 N M1.1
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1.2 Event tables for the full range

A.2 Event tables for the full range

Here we show the full lists of events contained in the SREL catalogue (Table A.4), and the lists

used for deriving the radial dependences from Helios 1 (Table A.5) and Helios 2 (Table A.6).

In Table A.4 first column indicate the event number and each SEP event inside the event. The

times comprising the whole the duration of the event including all the SEP events is depicted

for each event, before detailing the SEP events. Then, SEP events comprising the event are

indicated by a letter following the event number (a, b, c....). Second and third columns indicate

the date and time of the start and end of each event and SEP event. Fourth and fifth give the

parent flare latitude and longitude; when there is no associated source identified, it is signalled

using "9999" value. Columns sixth and seventh show the flare date and time as observed in

X-ray, the shock arrival date and time to the ACE spacecraft location. If there is no flare or

shock identified related with the event, it is signalled using "99/99/9999 99:99" value. Column

eight indicates if the event has been included in the analysis of the downstream fluence. Last

two columns show the event type (see App. B, NC: ’not classified’) and the solar wind type

(‘fast’ or ‘slow’; ND: ’not determined’). Authors in SEPEM: B. Sanahuja, A. Aran, N. Crosby,

T. Falkenberg, G. Michalareas. Authors in SOL2UP: D. Pacheco, A. Aran, N. Agueda.

TABLE A.4: Complete SOL2UP Radial dependent Event List (SREL).

Start time End time Lat. Long. Flare time Shock time Downst. Event SolarEvent [UT] [UT] (N+/S-) (W+/E-) [UT] [UT] analysis type wind type

1988
Event 001 02/01/1988 23:00 06/01/1988 13:50

1-a 02/01/1988 23:00 06/01/1988 13:50 -34 18 02/01/1988 21:11 04/01/1988 20:12 Y 3b slow
Event 002 25/08/1988 13:55 31/08/1988 11:00

2-a 24/08/1988 01:00 26/08/1988 10:58 24 -88 23/08/1988 17:57 25/08/1988 09:32 N 2c ND
2-b 26/08/1988 10:58 29/08/1988 15:54 -20 -66 26/08/1988 10:58 99/99/9999 99:99 N 1b ND
2-c 29/08/1988 15:44 01/09/1988 18:00 -21 -54 29/08/1988 15:44 31/08/1988 16:16 N 2c ND

Event 003 08/11/1988 15:45 10/11/1988 11:40
3-a 08/11/1988 12:40 12/11/1988 19:00 16 7 08/11/1988 12:28 11/11/1988 07:53 Y 3b slow

Event 004 14/12/1988 15:30 19/12/1988 20:10
4-a 14/12/1988 12:00 16/12/1988 08:41 30 -60 14/12/1988 13:37 99/99/9999 99:99 N 1b fast
4-b 16/12/1988 08:41 20/12/1988 15:30 26 -37 16/12/1988 08:41 18/12/1988 18:24 Y 3b fast

1989
Event 005 04/01/1989 21:20 06/01/1989 03:20

5-a 04/01/1989 19:30 06/01/1989 20:00 -20 60 04/01/1989 17:53 06/01/1989 23:54 N 2a slow
Event 006 08/03/1989 03:30 21/03/1989 12:15

6-a 07/03/1989 08:00 10/03/1989 22:30 35 -69 06/03/1989 13:50 08/03/1989 18:00 Y 2c slow
6-b 10/03/1989 22:30 17/03/1989 17:43 31 -22 10/03/1989 19:00 13/03/1989 01:00 Y 4b fast
6-c 17/03/1989 17:43 21/03/1989 16:00 33 60 17/03/1989 17:44 19/03/1989 04:23 Y 4b fast

Event 007 23/03/1989 20:15 24/03/1989 21:30
7-a 23/03/1989 20:15 28/03/1989 00:00 18 28 23/03/1989 19:39 26/03/1989 12:00 Y 3b slow

Event 008 10/04/1989 21:15 18/04/1989 01:45
8-a 10/04/1989 06:00 18/04/1989 20:00 35 -29 09/04/1989 00:44 11/04/1989 14:35 Y 2b slow

Event 009 02/05/1989 16:50 08/05/1989 21:15
9-a 03/05/1989 03:26 09/05/1989 18:00 27 -30 03/05/1989 03:26 05/05/1989 00:10 Y 2b ND

Event 010 22/05/1989 18:30 29/05/1989 10:00
10-a 20/05/1989 09:57 28/05/1989 12:08 20 -16 22/05/1989 00:24 23/05/1989 13:46 Y 3b ND
10-b 28/05/1989 12:08 30/05/1989 22:00 -19 75 28/05/1989 12:09 99/99/9999 99:99 N 1b ND

Event 011 30/06/1989 20:35 02/07/1989 05:55
11-a 30/06/1989 20:35 02/07/1989 05:55 26 60 29/06/1989 21:17 01/07/1989 15:46 N NC ND

Table continues on the next page
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5 APPENDIX A: SOL2UP EVENT TABLES

Start time End time Lat. Long. Flare time Shock time Downst. Event SolarEvent [UT] [UT] (N+/S-) (W+/E-) [UT] [UT] analysis type wind type

Event 012 25/07/1989 09:05 26/07/1989 17:45
12-a 25/07/1989 09:05 26/07/1989 19:45 25 84 25/07/1989 08:39 99/99/9999 99:99 N 1b slow

Event 013 12/08/1989 15:45 06/09/1989 03:15
13-a 12/08/1989 15:45 16/08/1989 01:08 -16 37 12/08/1989 14:27 14/08/1989 06:13 Y 4a slow
13-b 16/08/1989 01:08 01/09/1989 08:10 18 84 16/08/1989 01:08 17/08/1989 15:41 Y 4b fast
13-c 01/09/1989 08:10 06/09/1989 20:00 -20 -61 01/09/1989 08:10 04/09/1989 00:27 Y 2c slow

Event 014 12/09/1989 13:30 16/09/1989 01:30
14-a 12/09/1989 13:30 16/09/1989 01:30 -18 79 12/09/1989 04:59 15/09/1989 00:47 Y 2a slow

Event 015 29/09/1989 11:55 10/10/1989 05:20
15-a 29/09/1989 11:55 10/10/1989 05:20 -26 105 29/09/1989 11:33 02/10/1989 03:39 Y 4b slow

Event 016 19/10/1989 13:10 09/11/1989 16:50
16-a 19/10/1989 13:10 22/10/1989 17:05 -27 -10 19/10/1989 12:55 20/10/1989 16:50 Y 4a fast
16-b 22/10/1989 17:05 24/10/1989 18:20 -27 32 22/10/1989 17:55 24/10/1989 02:15 N 4a fast
16-c 24/10/1989 18:20 29/10/1989 04:50 -29 57 24/10/1989 18:31 26/10/1989 14:27 Y 4b fast
16-d 29/10/1989 04:50 01/11/1989 16:30 9999 90 29/10/1989 04:51 99/99/9999 99:99 N 1a fast
16-e 01/11/1989 16:30 06/11/1989 13:40 17 -51 01/11/1989 15:14 02/11/1989 20:14 N 2c ND
16-f 06/11/1989 13:40 09/11/1989 16:50 20 -19 06/11/1989 13:43 09/11/1989 00:54 N 2b ND

Event 017 15/11/1989 07:25 17/11/1989 16:05
17-a 15/11/1989 07:10 18/11/1989 10:30 11 26 15/11/1989 06:38 17/11/1989 09:25 Y 3b slow

Event 018 27/11/1989 06:25 05/12/1989 09:05
18-a 26/11/1989 17:00 30/11/1989 11:45 30 -5 25/11/1989 22:55 27/11/1989 21:39 Y 2b slow
18-b 30/11/1989 11:45 05/12/1989 09:05 24 52 30/11/1989 12:29 01/12/1989 17:49 Y 4b fast

1990
Event 019 19/03/1990 06:30 22/03/1990 01:40

19-a 19/03/1990 05:00 22/03/1990 12:00 31 43 19/03/1990 04:38 20/03/1990 22:43 Y 4b slow
Event 020 28/03/1990 17:00 30/03/1990 12:10

20-a 28/03/1990 14:30 31/03/1990 06:00 -4 37 28/03/1990 07:51 30/03/1990 07:20 Y 2a ND
Event 021 07/04/1990 06:45 12/04/1990 08:15

21-a 07/04/1990 06:45 10/04/1990 13:38 32 -62 07/04/1990 15:11 09/04/1990 08:43 Y 2c ND
21-b 10/04/1990 13:38 13/04/1990 14:00 22 -72 10/04/1990 13:38 12/04/1990 03:26 Y 2c ND

Event 022 16/04/1990 06:05 23/04/1990 07:15
22-a 16/04/1990 00:00 24/04/1990 00:00 32 -57 15/04/1990 03:02 17/04/1990 07:19 Y 2c ND

Event 023 28/04/1990 05:30 29/04/1990 16:40
23-a 28/04/1990 05:30 29/04/1990 16:40 2 19 27/04/1990 08:50 99/99/9999 99:99 NC ND

Event 024 10/05/1990 21:05 12/05/1990 11:55
24-a 10/05/1990 21:05 12/05/1990 11:55 9999 -90 10/05/1990 19:48 99/99/9999 99:99 NC ND

Event 025 17/05/1990 21:30 31/05/1990 16:35
25-a 15/05/1990 13:00 21/05/1990 22:19 42 -38 15/05/1990 12:46 18/05/1990 07:43 Y 2b ND
25-b 21/05/1990 22:19 24/05/1990 21:00 35 36 21/05/1990 22:19 23/05/1990 08:00 Y 4b ND
25-c 24/05/1990 21:00 26/05/1990 20:45 33 78 24/05/1990 20:46 26/05/1990 20:37 N 3a ND
25-d 26/05/1990 20:45 28/05/1990 04:28 9999 90 26/05/1990 20:45 99/99/9999 99:99 N 1b ND
25-e 28/05/1990 04:28 01/06/1990 15:00 18 -39 28/05/1990 04:28 30/05/1990 09:04 Y 3b ND

Event 026 12/06/1990 02:45 14/06/1990 12:15
26-a 12/06/1990 05:41 15/06/1990 07:30 10 33 12/06/1990 05:41 14/06/1990 03:10 Y 2a ND

Event 027 13/07/1990 18:00 15/07/1990 01:05
27-a 13/07/1990 16:00 15/07/1990 14:15 19 108 13/07/1990 09:59 15/07/1990 02:00 Y 2a ND

Event 028 26/07/1990 04:20 30/07/1990 01:35
28-a 26/07/1990 00:00 30/07/1990 16:30 -15 -55 25/07/1990 22:23 28/07/1990 03:31 Y 3b slow

Event 029 31/07/1990 15:25 06/08/1990 12:05
29-a 31/07/1990 00:00 07/08/1990 11:30 20 -45 30/07/1990 06:33 01/08/1990 07:41 Y 2b ND

Event 030 12/08/1990 23:30 16/08/1990 08:55
30-a 11/08/1990 17:00 18/08/1990 00:00 20 -72 10/08/1990 18:09 13/08/1990 10:27 Y 2c ND

1991
Event 031 27/01/1991 14:45 02/02/1991 19:30

31-a 31/01/1991 02:30 03/02/1991 15:30 -17 33 31/01/1991 02:30 01/02/1991 18:42 Y 4b fast
Event 032 08/02/1991 09:55 09/02/1991 17:05

32-a 08/02/1991 09:55 09/02/1991 17:05 -13 80 08/02/1991 02:44 99/99/9999 99:99 N 1b slow
Event 033 25/02/1991 10:40 27/02/1991 01:55

33-a 25/02/1991 08:40 28/02/1991 17:00 -16 80 25/02/1991 08:19 27/02/1991 08:27 Y 2a ND
Event 034 12/03/1991 18:50 15/03/1991 02:00

34-a 12/03/1991 18:50 15/03/1991 02:00 -7 -59 12/03/1991 12:28 99/99/9999 99:99 N NC slow
Event 035 16/03/1991 15:15 17/03/1991 19:05

35-a 16/03/1991 15:15 19/03/1991 19:05 -14 -5 16/03/1991 10:52 19/03/1991 14:00 N 2b slow
Event 036 23/03/1991 06:40 31/03/1991 14:30

36-a 23/03/1991 02:40 31/03/1991 16:30 -26 -28 22/03/1991 22:43 24/03/1991 03:41 Y 4a slow
Event 037 02/04/1991 06:45 10/04/1991 01:15

37-a 02/04/1991 23:27 11/04/1991 01:00 14 0 02/04/1991 23:27 04/04/1991 11:22 Y 2b fast
Event 038 22/04/1991 12:00 24/04/1991 15:00

38-a 22/04/1991 12:00 24/04/1991 15:00 9999 9999 99/99/9999 99:99 99/99/9999 99:99 N NC ND
Event 039 10/05/1991 15:05 15/05/1991 10:50

39-a 10/05/1991 15:05 13/05/1991 01:45 9999 9999 99/99/9999 99:99 13/05/1991 08:57 N NC slow
39-b 13/05/1991 01:45 15/05/1991 12:50 -9 90 13/05/1991 01:03 99/99/9999 99:99 N 1a ND
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1.2 Event tables for the full range

Start time End time Lat. Long. Flare time Shock time Downst. Event SolarEvent [UT] [UT] (N+/S-) (W+/E-) [UT] [UT] analysis type wind type

Event 040 18/05/1991 12:00 29/05/1991 12:00
40-a 18/05/1991 12:00 19/05/1991 13:44 32 85 18/05/1991 05:06 99/99/9999 99:99 N 1b slow
40-b 19/05/1991 13:44 22/05/1991 00:39 -11 -17 19/05/1991 13:44 22/05/1991 00:18 N 2b slow
40-c 22/05/1991 00:39 25/05/1991 14:05 -29 3 22/05/1991 00:39 24/05/1991 02:30 N 2a fast
40-d 25/05/1991 14:05 29/05/1991 12:00 22 -35 25/05/1991 14:05 99/99/9999 99:99 N 1b fast

Event 041 30/05/1991 04:00 20/06/1991 14:00
41-a 30/05/1991 04:00 01/06/1991 15:09 5 -38 29/05/1991 22:14 31/05/1991 10:39 N 2b fast
41-b 01/06/1991 15:09 06/06/1991 00:54 25 -90 01/06/1991 15:09 04/06/1991 15:36 N 2c fast
41-c 06/06/1991 00:54 09/06/1991 01:37 33 -44 06/06/1991 00:54 07/06/1991 22:28 N 4b fast
41-d 09/06/1991 01:37 11/06/1991 02:05 34 -4 09/06/1991 01:37 10/06/1991 17:16 N 4b fast
41-e 11/06/1991 02:05 15/06/1991 06:33 31 17 11/06/1991 02:05 12/06/1991 10:12 Y 4b fast
41-f 15/06/1991 06:33 20/06/1991 14:00 33 69 15/06/1991 06:33 17/06/1991 10:19 Y 4b fast

Event 042 29/06/1991 21:25 13/07/1991 05:40
42-a 28/06/1991 20:00 30/06/1991 04:43 28 -85 28/06/1991 06:26 30/06/1991 01:16 N 2c slow
42-b 30/06/1991 04:43 07/07/1991 01:20 -6 19 30/06/1991 02:43 02/07/1991 08:11 Y 3b ND
42-c 07/07/1991 01:20 10/07/1991 12:28 26 -3 07/07/1991 01:20 08/07/1991 16:36 Y 4b slow
42-d 10/07/1991 12:28 14/07/1991 00:30 -22 -34 10/07/1991 12:28 12/07/1991 09:24 Y 2b fast

Event 043 25/08/1991 21:10 30/08/1991 22:30
43-a 25/08/1991 10:00 01/09/1991 12:00 24 -77 25/08/1991 00:31 27/08/1991 15:15 Y 2c slow

Event 044 06/09/1991 15:25 07/09/1991 21:45
44-a 06/09/1991 08:00 08/09/1991 18:00 19 37 05/09/1991 21:21 99/99/9999 99:99 N 1b ND

Event 045 30/09/1991 09:40 03/10/1991 15:40
45-a 30/09/1991 07:40 04/10/1991 00:30 -21 -32 29/09/1991 15:33 01/10/1991 17:40 Y 2b slow

Event 046 28/10/1991 05:50 29/10/1991 06:00
46-a 28/10/1991 05:50 29/10/1991 13:30 -13 -15 27/10/1991 05:48 28/10/1991 10:54 N 2b ND

Event 047 30/10/1991 07:30 31/10/1991 20:05
47-a 30/10/1991 06:23 01/11/1991 18:00 -8 25 30/10/1991 06:11 31/10/1991 17:12 Y 3b fast

Event 048 21/12/1991 21:40 23/12/1991 06:50
48-a 21/12/1991 14:00 24/12/1991 22:00 9999 90 21/12/1991 11:45 23/12/1991 18:02 Y 2a ND

Event 049 29/12/1991 05:40 30/12/1991 08:30
49-a 29/12/1991 02:00 31/12/1991 01:00 -16 47 28/12/1991 21:08 99/99/9999 99 N 1b ND

1992
Event 050 06/02/1992 22:45 10/02/1992 00:30

50-a 06/02/1992 16:30 11/02/1992 00:00 -13 10 06/02/1992 10:48 08/02/1992 14:28 Y 2a slow
Event 051 27/02/1992 11:40 28/02/1992 15:05

51-a 27/02/1992 10:40 02/03/1992 00:00 6 2 27/02/1992 09:22 29/02/1992 09:20 Y 2a ND
Event 052 16/03/1992 04:30 17/03/1992 14:10

52-a 15/03/1992 05:00 18/03/1992 12:00 -14 -29 15/03/1992 01:21 17/03/1992 09:51 N 3b slow
Event 053 09/05/1992 06:15 13/05/1992 20:15

53-a 08/05/1992 17:30 14/05/1992 16:00 -26 -8 08/05/1992 15:37 09/05/1992 19:57 Y 4b fast
Event 054 25/06/1992 20:30 01/07/1992 23:25

54-a 25/06/1992 20:30 02/07/1992 17:00 9 67 25/06/1992 19:47 27/06/1992 20:35 Y 3a fast
Event 055 05/08/1992 20:35 08/08/1992 09:05

55-a 04/08/1992 12:00 09/08/1992 17:00 -9 -68 03/08/1992 07:06 06/08/1992 11:45 Y 2c slow
Event 056 30/10/1992 18:45 08/11/1992 05:15

56-a 30/10/1992 18:45 02/11/1992 02:31 -22 61 30/10/1992 18:16 01/11/1992 21:47 N 4b ND
56-b 02/11/1992 02:31 10/11/1992 00:00 -23 90 02/11/1992 02:31 03/11/1992 08:00 Y 4b ND

1993
Event 057 04/03/1993 13:20 05/03/1993 22:30

57-a 04/03/1993 12:35 06/03/1993 17:00 -14 56 04/03/1993 12:17 99/99/9999 99:99 N 1b slow
Event 058 06/03/1993 23:05 09/03/1993 20:10

58-a 06/03/1993 21:05 10/03/1993 20:10 -4 -29 06/03/1993 20:14 09/03/1993 21:00 Y 2b slow
Event 059 12/03/1993 18:50 14/03/1993 15:05

59-a 12/03/1993 18:00 16/03/1993 12:00 0 51 12/03/1993 17:03 15/03/1993 05:26 Y 3a fast
1994

Event 060 20/02/1994 02:20 22/02/1994 21:20
60-a 20/02/1994 01:50 24/02/1994 00:00 9 2 20/02/1994 01:38 21/02/1994 09:01 Y 4b fast

Event 061 19/10/1994 22:35 21/10/1994 12:05
61-a 19/10/1994 21:39 23/10/1994 00:00 12 24 19/10/1994 21:27 22/10/1994 08:49 Y 3b slow

1995
Event 062 20/10/1995 07:35 22/10/1995 04:15

62-a 20/10/1995 06:35 23/10/1995 10:00 -9 55 20/10/1995 05:54 22/10/1995 21:05 Y 3a slow
1997

Event 063 04/11/1997 06:50 10/11/1997 19:40
63-a 04/11/1997 06:10 06/11/1997 11:49 -14 33 04/11/1997 05:52 06/11/1997 22:02 N 3a ND
63-b 06/11/1997 11:49 12/11/1997 12:00 -18 63 06/11/1997 11:49 09/11/1997 09:52 Y 4b ND

1998
Event 064 20/04/1998 12:55 26/04/1998 15:05

64-a 20/04/1998 10:19 27/04/1998 00:00 -44 90 20/04/1998 10:07 23/04/1998 17:28 Y 4b slow
Event 065 29/04/1998 23:15 01/05/1998 06:20

65-a 29/04/1998 22:00 02/05/1998 10:30 -18 -20 29/04/1998 16:37 01/05/1998 21:22 Y 2b slow
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5 APPENDIX A: SOL2UP EVENT TABLES

Start time End time Lat. Long. Flare time Shock time Downst. Event SolarEvent [UT] [UT] (N+/S-) (W+/E-) [UT] [UT] analysis type wind type

Event 066 02/05/1998 13:55 04/05/1998 23:05
66-a 02/05/1998 13:55 05/05/1998 23:30 -15 15 02/05/1998 13:31 04/05/1998 02:15 Y 3b fast

Event 067 06/05/1998 08:25 08/05/1998 00:20
67-a 06/05/1998 08:25 08/05/1998 16:00 -11 65 06/05/1998 07:58 08/05/1998 09:52 Y 3a fast

Event 068 09/05/1998 06:50 11/05/1998 04:10
68-a 09/05/1998 03:16 12/05/1998 00:00 -15 86 09/05/1998 03:04 99/99/9999 99:99 N 1b slow

Event 069 17/06/1998 16:00 18/06/1998 23:55
69-a 16/06/1998 20:00 19/06/1998 18:00 -17 103 16/06/1998 18:03 99/99/9999 99:99 N 1b slow

Event 070 22/08/1998 17:25 31/08/1998 20:00
70-a 24/08/1998 22:02 01/09/1998 10:00 35 -9 24/08/1998 21:50 26/08/1998 06:15 Y 4b slow

Event 071 24/09/1998 17:25 25/09/1998 21:15
71-a 23/09/1998 13:45 26/09/1998 10:00 18 -9 23/09/1998 06:40 24/09/1998 23:13 Y 3b slow

Event 072 30/09/1998 14:25 04/10/1998 04:20
72-a 30/09/1998 13:16 04/10/1998 19:15 23 81 30/09/1998 13:04 02/10/1998 06:53 Y 4b fast

Event 073 19/10/1998 04:10 20/10/1998 04:30
73-a 18/10/1998 23:00 20/10/1998 21:00 9999 120 99/99/9999 99:99 99/99/9999 99:99 N NC slow

Event 074 06/11/1998 03:45 08/11/1998 18:30
74-a 05/11/1998 20:00 09/11/1998 18:00 26 18 05/11/1998 19:00 08/11/1998 04:21 Y 2a slow

Event 075 14/11/1998 06:30 17/11/1998 15:55
75-a 14/11/1998 06:30 18/11/1998 18:00 28 120 14/11/1998 05:15 99/99/9999 99:99 N 1a slow

1999
Event 076 21/01/1999 00:30 26/01/1999 02:40

76-a 20/01/1999 20:00 27/01/1999 13:00 27 -90 20/01/1999 19:06 22/01/1999 19:45 Y 3b fast
Event 077 24/04/1999 16:15 26/04/1999 12:35

77-a 24/04/1999 14:00 27/04/1999 12:00 9999 120 24/04/1999 13:00 27/04/1999 06:00 Y 3a slow
Event 078 04/05/1999 14:45 08/05/1999 12:00

78-a 03/05/1999 21:00 09/05/1999 17:00 15 -32 03/05/1999 05:36 05/05/1999 14:57 Y 2b slow
Event 079 27/05/1999 12:15 28/05/1999 14:40

79-a 27/05/1999 11:18 29/05/1999 04:00 9999 90 27/05/1999 11:06 99/99/9999 99:99 N 1b slow
Event 080 01/06/1999 22:10 07/06/1999 15:05

80-a 01/06/1999 20:10 04/06/1999 09:11 9999 90 01/06/1999 16:27 02/06/1999 21:57 Y 3a slow
80-b 04/06/1999 08:00 08/06/1999 18:00 17 69 04/06/1999 06:52 99/99/9999 99:99 N 1a slow

2000
Event 081 18/02/2000 08:45 19/02/2000 11:55

81-a 17/02/2000 20:29 18/02/2000 09:21 -29 -7 17/02/2000 20:17 99/99/9999 99:99 N 1b slow
81-b 18/02/2000 09:21 22/02/2000 00:00 -16 78 18/02/2000 09:21 20/02/2000 20:45 Y 3a slow

Event 082 04/04/2000 17:40 06/04/2000 23:45
82-a 04/04/2000 15:44 08/04/2000 00:00 16 66 04/04/2000 15:12 06/04/2000 16:00 Y 2a slow

Event 083 16/05/2000 08:05 17/05/2000 08:20
83-a 15/05/2000 18:00 19/05/2000 12:00 -24 67 15/05/2000 15:46 17/05/2000 21:39 Y 2a fast

Event 084 07/06/2000 04:00 12/06/2000 21:10
84-a 06/06/2000 20:00 10/06/2000 16:52 21 -18 06/06/2000 14:58 08/06/2000 08:41 Y 2b fast
84-b 10/06/2000 16:52 13/06/2000 19:00 22 38 10/06/2000 16:40 99/99/9999 99:99 N 1b fast

Event 085 25/06/2000 16:40 26/06/2000 20:50
85-a 25/06/2000 11:00 27/06/2000 12:00 14 56 25/06/2000 07:17 99/99/99999 99:99 N 1b slow

Event 086 13/07/2000 00:30 23/07/2000 19:20
86-a 11/07/2000 03:00 14/07/2000 10:03 18 -49 10/07/2000 21:05 13/07/2000 09:18 Y 2c fast
86-b 14/07/2000 10:03 22/07/2000 11:35 22 7 14/07/2000 10:03 15/07/2000 14:15 Y 4a fast
86-c 22/07/2000 11:35 24/07/2000 16:00 14 56 22/07/2000 11:17 99/99/99999 99:99 N 1b fast

Event 087 28/07/2000 02:55 30/07/2000 09:05
87-a 28/07/2000 02:00 01/08/2000 01:00 9999 120 27/07/2000 19:30 31/07/2000 18:16 Y 2a ND

Event 088 13/08/2000 00:45 15/08/2000 03:30
88-a 12/08/2000 18:00 16/08/2000 18:00 13 46 12/08/2000 13:48 14/08/2000 21:36 Y 2a fast

Event 089 12/09/2000 14:50 18/09/2000 01:25
89-a 12/09/2000 11:43 18/09/2000 12:00 -17 9 12/09/2000 11:31 15/09/2000 03:59 Y 4b fast

Event 090 16/10/2000 08:55 18/10/2000 21:40
90-a 16/10/2000 06:52 19/10/2000 23:00 4 90 16/10/2000 06:40 99/99/9999 99:99 N 1b fast

Event 091 25/10/2000 15:15 27/10/2000 19:10
91-a 25/10/2000 13:00 29/10/2000 00:00 10 66 25/10/2000 08:45 28/10/2000 09:08 Y 2a slow

Event 092 31/10/2000 06:20 02/11/2000 12:50
92-a 31/10/2000 06:20 02/11/2000 12:50 18 -7 31/10/2000 02:51 99/99/9999 99:99 N NC slow

Event 093 08/11/2000 23:45 15/11/2000 17:00
93-a 08/11/2000 22:54 18/11/2000 00:00 10 77 08/11/2000 22:42 10/11/2000 06:04 Y 4a fast

Event 094 24/11/2000 07:00 04/12/2000 11:40
94-a 24/11/2000 05:07 05/12/2000 18:00 22 3 24/11/2000 04:55 26/11/2000 11:24 Y 4b slow

2001
Event 095 22/01/2001 01:15 25/01/2001 00:10

95-a 21/01/2001 20:00 25/01/2001 00:10 -7 -46 20/01/2001 21:06 23/01/2001 10:06 Y 2c slow
Event 096 28/01/2001 19:30 31/01/2001 14:25

96-a 28/01/2001 15:52 01/02/2001 04:00 -4 59 28/01/2001 15:40 31/01/2001 07:22 Y 3a slow
Event 097 26/03/2001 18:45 27/03/2001 23:50

97-a 25/03/2001 21:00 28/03/2001 08:00 16 -25 25/03/2001 16:25 27/03/2001 17:15 Y 2b slow
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1.2 Event tables for the full range

Start time End time Lat. Long. Flare time Shock time Downst. Event SolarEvent [UT] [UT] (N+/S-) (W+/E-) [UT] [UT] analysis type wind type

Event 098 29/03/2001 13:50 01/04/2001 10:25
98-a 29/03/2001 10:09 01/04/2001 10:25 20 19 29/03/2001 09:57 31/03/2001 01:14 Y 3b slow

Event 099 02/04/2001 11:20 21/04/2001 23:25
99-a 02/04/2001 11:20 09/04/2001 16:20 17 78 02/04/2001 21:32 04/04/2001 14:22 Y 4b fast
99-b 09/04/2001 16:20 12/04/2001 09:40 -23 9 10/04/2001 05:26 11/04/2001 15:28 Y 4b fast
99-c 12/04/2001 09:40 15/04/2001 13:20 -19 43 12/04/2001 09:39 14/04/2001 01:45 Y 3a fast
99-d 15/04/2001 13:20 18/04/2001 02:45 -20 85 15/04/2001 13:19 18/04/2001 00:05 N 4b ND
99-e 18/04/2001 02:45 22/04/2001 23:30 9999 120 18/04/2001 02:14 21/04/2011 15:08 Y 3a slow

Event 100 27/04/2001 04:55 28/04/2001 20:15
100-a 26/04/2001 22:00 29/04/2001 16:00 20 5 26/04/2001 12:12 28/04/2001 04:31 Y 2a slow

Event 101 07/05/2001 15:00 09/05/2001 19:10
101-a 07/05/2001 13:00 09/05/2001 23:15 25 35 07/05/2001 11:36 99/99/99 99:99 N 1b slow

Event 102 20/05/2001 08:45 21/05/2001 14:25
102-a 20/05/2001 06:15 23/05/2001 12:00 999 90 20/05/2001 06:03 99/99/9999 99:99 N 1b slow

Event 103 15/06/2001 16:05 18/06/2001 04:00
103-a 15/06/2001 16:05 19/06/2001 03:00 9999 100 15/06/2001 15:30 18/06/2001 01:54 Y 3a slow

Event 104 09/08/2001 20:10 11/08/2001 15:50
104-a 09/08/2001 18:10 13/08/2001 00:00 10 10 09/08/2001 10:20 12/08/2001 10:50 N 2a slow

Event 105 16/08/2001 00:55 29/08/2001 23:59
105-a 16/08/2001 00:07 21/08/2001 12:06 -20 140 15/08/2001 23:55 17/08/2001 10:16 Y 3a slow
105-b 21/08/2001 12:06 25/08/2001 16:23 -9 59 21/08/2001 12:06 99/99/9999 99:99 N 1b slow
105-c 25/08/2001 16:23 29/08/2001 23:59 -17 -34 25/08/2001 16:23 27/08/2001 19:19 N 2b slow

Event 106 24/09/2001 12:00 12/10/2001 03:05
106-a 24/09/2001 10:00 01/10/2001 04:41 -16 -23 24/09/2001 09:32 25/09/2001 20:05 Y 4a fast
106-b 01/10/2001 04:41 09/10/2001 10:37 -22 91 01/10/2001 04:41 11/10/2001 07:55 N 4b fast
106-c 09/10/2001 10:37 13/10/2001 14:00 -25 -10 09/10/2001 10:46 11/10/2001 16:20 Y 2b slow

Event 107 19/10/2001 04:55 28/10/2001 16:10
107-a 19/10/2001 01:55 22/10/2001 14:27 15 29 19/10/2001 16:13 21/10/2001 16:12 Y 3b slow
107-b 22/10/2001 14:27 25/10/2001 14:42 -21 -18 22/10/2001 14:27 25/10/2001 08:01 N 3b slow
107-c 25/10/2001 14:42 28/10/2001 16:10 -16 21 25/10/2001 14:42 28/10/2001 02:42 N 2a slow

Event 108 04/11/2001 16:55 12/11/2001 20:05
108-a 04/11/2001 16:55 14/11/2001 12:00 6 18 04/11/2001 16:03 06/11/2001 01:25 Y 4a slow

Event 109 17/11/2001 19:55 30/11/2001 13:00
109-a 17/11/2001 08:00 22/11/2001 20:28 -13 -42 17/11/2001 04:49 19/11/2001 17:35 Y 2b fast
109-b 22/11/2001 20:30 01/12/2001 18:00 -17 24 22/11/2001 20:18 24/11/2001 05:38 Y 4b slow

Event 110 12/12/2001 01:00 13/12/2001 08:00
110-a 11/12/2001 16:00 14/12/2001 20:00 9999 120 11/12/2001 14:50 99/99/9999 99:99 N NC slow

Event 111 26/12/2001 05:55 09/01/2002 07:00
111-a 26/12/2001 04:44 28/12/2001 20:04 8 54 26/12/2001 04:32 29/12/2001 04:47 N 4b slow
111-b 28/12/2001 20:04 09/01/2002 16:00 -26 -90 28/12/2001 20:02 30/12/2001 19:32 Y 2c slow

2002
Event 112 10/01/2002 09:55 18/01/2002 18:35

112-a 09/01/2002 23:00 14/01/2002 05:29 9999 -90 08/01/2002 20:25 10/01/2002 15:44 Y 2c slow
112-b 14/01/2002 05:29 18/01/2002 18:35 9999 90 14/01/2002 05:29 99/99/9999 99:99 N 1b slow

Event 113 16/03/2002 08:05 24/03/2002 18:05
113-a 16/03/2002 01:00 20/03/2002 12:00 -8 3 15/03/2002 22:09 18/03/2002 12:36 N 2a slow
113-b 20/03/2002 12:00 22/03/2002 12:00 -9 46 18/03/2002 02:31 20/03/2002 13:05 N 2a ND
113-c 22/03/2002 12:00 25/03/2002 14:00 -10 90 22/03/2002 10:12 25/03/2002 00:58 Y 2a slow

Event 114 17/04/2002 11:30 28/04/2002 13:35
114-a 17/04/2002 11:30 21/04/2002 00:43 -14 34 17/04/2002 07:46 19/04/2002 08:02 Y 2a ND
114-b 21/04/2002 00:43 29/04/2002 04:00 -14 84 21/04/2002 00:43 23/04/2002 04:15 Y 4b slow

Event 115 22/05/2002 07:50 25/05/2002 00:15
115-a 22/05/2002 07:20 26/05/2002 15:00 -19 56 21/05/2002 21:29 23/05/2002 10:15 Y 4b fast

Event 116 07/07/2002 14:00 09/07/2002 13:55
116-a 07/07/2002 11:27 09/07/2002 21:00 9999 90 07/07/2002 11:15 99/99/9999 99:99 N 1b ND

Event 117 16/07/2002 13:20 30/07/2002 16:30
117-a 16/07/2002 12:30 20/07/2002 18:20 16 1 15/07/2002 19:58 17/07/2002 15:26 Y 4b fast
117-b 20/07/2002 18:20 24/07/2002 04:00 -13 -90 20/07/2002 21:04 22/07/2002 04:51 Y 2c fast
117-c 24/07/2002 04:00 26/07/2002 20:51 -13 -72 23/07/2002 00:18 25/07/2002 12:59 N 2c ND
117-d 26/07/2002 20:51 31/07/2002 12:00 -19 -26 26/07/2002 20:51 29/07/2002 12:40 N 2b ND

Event 118 14/08/2002 03:35 15/08/2002 20:40
118-a 14/08/2002 03:35 16/08/2002 10:00 9 54 14/08/2002 01:47 15/08/2002 18:30 Y 2a fast

Event 119 16/08/2002 22:10 20/08/2002 05:10
119-a 16/08/2002 13:00 18/08/2002 23:30 -6 -17 16/08/2002 11:36 18/08/2002 18:10 N 2b slow
119-b 18/08/2002 23:30 20/08/2002 08:22 -12 19 18/08/2002 21:12 99/99/9999 99:99 N 1b fast
119-c 20/08/2002 08:22 21/08/2002 16:00 -10 38 20/08/2002 08:22 99/99/9999 99:99 N 1b slow

Event 120 22/08/2002 03:10 27/08/2002 23:10
120-a 22/08/2002 02:00 24/08/2002 00:50 -7 62 22/08/2002 01:47 99/99/9999 99:99 N 1b slow
120-b 24/08/2002 00:50 28/08/2002 14:00 -2 80 24/08/2002 00:49 26/08/2002 10:41 Y 3a slow

Event 121 06/09/2002 06:25 09/09/2002 17:35
121-a 06/09/2002 00:00 11/09/2002 12:00 9 -28 05/09/2002 16:18 07/09/2002 16:10 Y 2b slow
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5 APPENDIX A: SOL2UP EVENT TABLES

Start time End time Lat. Long. Flare time Shock time Downst. Event SolarEvent [UT] [UT] (N+/S-) (W+/E-) [UT] [UT] analysis type wind type

Event 122 01/11/2002 18:40 03/11/2002 00:50
122-a 01/11/2002 18:40 03/11/2002 00:50 9999 9999 99/99/9999 99:99 99/99/9999 99:99 N NC ND

Event 123 09/11/2002 17:10 11/11/2002 21:15
123-a 09/11/2002 15:00 13/11/2002 00:00 -12 29 09/11/2002 13:08 11/11/2002 11:52 Y 4b fast

Event 124 25/11/2002 18:35 26/11/2002 19:10
124-a 25/11/2002 06:00 28/11/2002 12:00 17 -34 24/11/2002 20:14 26/11/2002 21:10 Y 2b ND

Event 125 28/05/2003 07:55 01/06/2003 08:35
125-a 28/05/2003 02:00 31/05/2003 02:13 -6 20 28/05/2003 00:17 29/05/2003 18:25 Y 3b fast
125-b 31/05/2003 02:13 01/06/2003 22:01 -7 65 31/05/2003 02:13 99/99/9999 99:99 N 1b fast

Event 126 18/06/2003 09:20 22/06/2003 14:05
126-a 18/06/2003 09:20 23/06/2003 20:00 -8 -61 17/06/2003 22:25 20/06/2003 07:56 Y 2c fast

Event 127 23/10/2003 00:45 24/10/2003 23:05
127-a 22/10/2003 22:00 24/10/2003 14:47 -18 -78 22/10/2003 20:06 24/10/2003 14:47 N 2c
127-b 24/10/2003 14:47 26/10/2003 17:03 -17 -84 23/10/2003 19:50 26/10/2003 07:49 N 2c slow

Event 128 26/10/2003 18:05 09/11/2003 21:05
128-a 26/10/2003 17:15 28/10/2003 09:52 2 38 26/10/2003 17:03 28/10/2003 01:31 N 4b fast
128-b 28/10/2003 09:52 29/10/2003 20:39 -16 -8 28/10/2003 11:00 29/10/2003 05:58 Y 4a fast
128-c 29/10/2003 20:39 02/11/2003 17:04 -15 2 29/10/2003 20:37 30/10/2003 16:19 Y 4a fast
128-d 02/11/2003 17:04 04/11/2003 19:29 -14 56 02/11/2003 17:03 04/11/2003 05:59 Y 4b fast
128-e 04/11/2003 19:29 12/11/2003 00:00 -19 83 04/11/2003 19:29 06/11/2003 21:15 Y 4b fast

Event 129 20/11/2003 07:15 25/11/2003 07:05
129-a 20/11/2003 07:15 26/11/2003 14:00 2 17 20/11/2003 23:53 99/99/9999 99:99 N NC fast

Event 130 02/12/2003 12:50 06/12/2003 06:05
130-a 02/12/2003 12:00 07/12/2003 00:00 -14 90 02/12/2003 10:00 05/12/2003 03:21 Y 2a ND

2004
Event 131 11/04/2004 06:45 12/04/2004 23:05

131-a 11/04/2004 05:00 13/04/2004 21:00 -14 47 11/04/2004 03:54 12/04/2004 17:45 Y 2a slow
Event 132 23/07/2004 15:05 28/07/2004 18:10

132-a 22/07/2004 14:00 25/07/2004 14:19 4 -10 22/07/2004 07:41 24/07/2004 05:45 Y 2b fast
132-b 25/07/2004 14:19 30/07/2004 00:00 4 33 25/07/2004 14:19 26/07/2004 22:30 Y 4b fast

Event 133 31/07/2004 20:55 02/08/2004 14:45
133-a 31/07/2004 20:55 02/08/2004 14:45 9999 95 31/07/2004 05:16 99/99/9999 99:99 N NC fast

Event 134 13/09/2004 19:55 17/09/2004 18:15
134-a 12/09/2004 23:00 18/09/2004 18:00 4 -42 12/09/2004 00:56 13/09/2004 19:40 Y 2b slow

Event 135 19/09/2004 18:05 21/09/2004 15:10
135-a 19/09/2004 17:24 23/09/2004 00:00 3 58 19/09/2004 17:12 22/09/2004 06:00 Y 3a slow

Event 136 01/11/2004 06:10 02/11/2004 20:15
136-a 01/11/2004 06:10 02/11/2004 20:15 9999 90 01/11/2004 05:55 99/99/9999 99:99 N 1a slow

Event 137 07/11/2004 02:50 15/11/2004 02:45
137-a 06/11/2004 20:00 07/11/2004 15:54 10 -6 06/11/2004 02:06 99/99/9999 99:99 N 1b ND
137-b 07/11/2004 15:54 09/11/2004 16:59 9 17 07/11/2004 15:42 09/11/2004 09:10 N 4b fast
137-c 09/11/2004 16:59 10/11/2004 01:59 7 51 09/11/2004 16:59 99/99/9999 99:99 N 1a fast
137-d 10/11/2004 01:59 17/11/2004 12:00 9 49 10/11/2004 01:59 11/11/2004 17:00 Y 4b ND

Event 138 05/12/2004 07:35 06/12/2004 15:45
138-a 03/12/2004 08:00 07/12/2004 18:00 8 2 03/12/2004 00:06 05/12/2004 07:00 Y 2a ND

2005
Event 139 15/01/2005 08:25 23/01/2005 17:35

139-a 15/01/2005 06:42 15/01/2005 22:37 16 -4 15/01/2005 06:30 99/99/9999 99:99 N 1b ND
139-b 15/01/2005 22:37 17/01/2005 09:52 15 5 15/01/2005 22:25 17/01/2005 08:00 N 4b fast
139-c 17/01/2005 09:52 20/01/2005 06:30 15 25 17/01/2005 09:52 18/01/2005 14:00 Y 4b fast
139-d 20/01/2005 06:30 26/01/2005 00:00 14 61 20/01/2005 06:39 21/01/2005 16:45 Y 4b fast

Event 140 06/05/2005 06:55 08/05/2005 20:35
140-a 06/05/2005 06:55 08/05/2005 20:35 9999 9999 99/99/9999 99:99 99/99/9999 99:99 N NC ND

Event 141 13/05/2005 21:00 17/05/2005 12:30
141-a 13/05/2005 18:00 18/05/2005 22:30 12 -11 13/05/2005 16:13 15/05/2005 02:05 Y 4b fast

Event 142 16/06/2005 20:50 18/06/2005 05:55
142-a 16/06/2005 20:50 19/06/2005 00:00 9 85 16/06/2005 20:01 99/99/9999 99:99 N 1b fast

Event 143 13/07/2005 18:10 20/07/2005 01:55
143-a 13/07/2005 16:30 14/07/2005 10:16 11 90 13/07/2005 14:01 99/99/9999 99:99 N 1b fast
143-b 14/07/2005 10:16 17/07/2005 11:29 8 89 14/07/2005 10:16 16/07/2005 01:50 Y 3a slow
143-c 17/07/2005 11:29 21/07/2005 11:00 9999 100 17/07/2005 11:29 99/99/9999 99:99 N 1b slow

Event 144 26/07/2005 23:20 04/08/2005 21:40
144-a 25/07/2005 00:00 30/07/2005 06:17 11 -90 24/07/2005 13:45 27/07/2005 18:48 Y 3b slow
144-b 30/07/2005 06:17 07/08/2005 00:00 12 -60 30/07/2005 06:17 01/08/2005 06:05 N 3b fast

Event 145 22/08/2005 03:35 22/08/2005 03:35
145-a 22/08/2005 00:42 22/08/2005 16:58 -11 54 22/08/2005 00:44 99/99/9999 99:99 N 1b ND
145-b 22/08/2005 16:58 27/08/2005 23:00 12 60 22/08/2005 16:46 24/08/2005 05:45 Y 4b slow

Event 146 07/09/2005 23:25 16/09/2005 22:55
146-a 07/09/2005 20:00 13/09/2005 19:20 -6 -89 07/09/2005 17:17 09/09/2005 13:25 Y 4b ND
146-b 13/09/2005 19:20 16/09/2005 22:55 -9 -10 13/09/2005 19:19 15/09/2005 08:30 Y 4b ND

Table continues on the next page
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1.2 Event tables for the full range

Start time End time Lat. Long. Flare time Shock time Downst. Event SolarEvent [UT] [UT] (N+/S-) (W+/E-) [UT] [UT] analysis type wind type

2006
Event 147 05/12/2006 17:35 16/12/2006 22:50

147-a 05/12/2006 10:00 06/12/2006 18:42 -7 -79 05/12/2006 02:18 99/99/9999 99:99 N 1b slow
147-b 06/12/2006 18:42 13/12/2006 02:15 -7 -68 06/12/2006 18:29 08/12/2006 04:20 Y 4b fast
147-c 13/12/2006 02:15 14/12/2006 21:18 -6 23 13/12/2006 02:14 14/12/2006 13:52 Y 4b fast
147-d 14/12/2006 21:18 16/12/2006 22:50 -6 44 14/12/2006 21:07 99/99/9999 99:99 N 1a fast

2010
Event 148 14/08/2010 10:20 15/08/2010 11:50

148-a 14/08/2010 10:20 15/08/2010 11:50 12 56 14/08/2010 09:38 99/99/9999 99:99 N 1b slow
Event 149 18/08/2010 06:00 19/08/2010 11:55

149-a 18/08/2010 06:00 19/08/2010 11:55 18 88 18/08/2010 04:45 99/99/9999 99:99 N 1b slow
2011

Event 150 07/03/2011 20:10 12/03/2011 07:20
150-a 07/03/2011 20:10 13/03/2011 18:00 30 48 07/03/2011 19:43 10/03/2011 05:45 Y 3a slow

Event 151 21/03/2011 02:30 22/03/2011 16:30
151-a 21/03/2011 02:30 23/03/2011 12:00 16 130 21/03/2011 02:15 99/99/9999 99:99 N 1b slow

Event 152 05/06/2011 16:00 18/06/2011 15:09
152-a 05/06/2011 16:00 07/06/2011 06:15 -16 145 04/06/2011 21:45 07/06/2011 09:14 N 3a slow
152-b 07/06/2011 06:15 14/06/2011 06:15 -22 53 07/06/2011 06:15 10/06/2011 08:11 Y 3a slow
152-c 14/06/2011 06:15 19/06/2011 19:00 19 -76 14/06/2011 04:45 17/06/2011 02:05 Y 2c fast

Event 153 04/08/2011 04:34 08/08/2011 08:30
153-a 04/08/2011 04:34 08/08/2011 16:00 16 38 04/08/2011 03:40 05/08/2011 18:40 Y 3a slow

Event 154 09/08/2011 07:59 10/08/2011 23:19
154-a 09/08/2011 07:59 11/08/2011 14:00 14 69 09/08/2011 07:47 99/99/9999 99:99 N 1b fast

Event 155 06/09/2011 23:15 09/09/2011 11:35
155-a 06/09/2011 23:15 10/09/2011 14:00 14 18 06/09/2011 22:12 09/09/2011 11:48 Y 3b slow

Event 156 22/09/2011 10:32 30/09/2011 06:04
156-a 22/09/2011 10:32 25/09/2011 11:12 9 -89 22/09/2011 10:29 25/09/2011 10:46 N 3b slow
156-b 25/09/2011 11:12 01/10/2011 18:00 10 -56 24/09/2011 12:33 26/09/2011 11:44 N 3b slow

Event 157 22/10/2011 10:30 25/10/2011 18:45
157-a 22/10/2011 10:30 26/10/2011 16:00 27 87 22/10/2011 10:00 24/10/2011 17:49 Y 2a slow

Event 158 03/11/2011 22:25 06/11/2011 16:00
158-a 03/11/2011 22:25 06/11/2011 16:00 3 -152 03/11/2011 22:16 99/99/9999 99:99 N 1b slow

Event 159 26/11/2011 07:30 30/11/2011 00:20
159-a 26/11/2011 07:30 30/11/2011 15:00 11 47 26/11/2011 06:09 28/11/2011 21:00 Y 3a slow

2012
Event 160 19/01/2012 14:39 03/02/2012 03:54

160-a 19/01/2012 14:39 23/01/2012 04:00 32 -27 19/01/2012 13:43 22/01/2012 05:33 Y 2b slow
160-b 23/01/2012 04:00 27/01/2012 18:00 33 21 23/01/2012 03:38 24/01/2012 14:40 Y 4b slow
160-c 27/01/2012 18:00 04/02/2012 00:00 33 85 27/01/2012 17:37 30/01/2012 15:43 Y 4b slow

Event 161 24/02/2012 19:00 27/02/2012 21:24
161-a 24/02/2012 19:00 29/02/2012 00:00 10 -88 24/02/2012 00:45 26/02/2012 21:07 Y 2c slow

Event 162 05/03/2012 03:00 17/03/2012 02:24
162-a 05/03/2012 03:00 06/03/2012 23:30 19 -58 05/03/2012 02:30 07/03/2012 03:28 N 2c slow
162-b 06/03/2012 23:30 13/03/2012 16:30 18 -31 07/03/2012 00:02 08/03/2012 10:53 Y 4a slow
162-c 13/03/2012 16:30 18/03/2012 03:00 17 66 13/03/2012 17:12 15/03/2012 12:42 Y 3a fast

Event 163 17/05/2012 02:05 20/05/2012 15:15
163-a 17/05/2012 02:05 21/05/2012 17:00 7 88 17/05/2012 01:25 20/05/2012 01:20 Y 3a slow

Event 164 26/05/2012 21:00 29/05/2012 04:54
164-a 26/05/2012 21:00 30/05/2012 20:00 16 122 26/05/2012 20:46 99/99/9999 99:99 N 1b slow

Event 165 14/06/2012 14:19 18/06/2012 10:00
165-a 14/06/2012 14:19 18/06/2012 10:00 -19 -6 14/06/2012 12:51 16/06/2012 19:34 Y 2b slow

Event 166 06/07/2012 23:35 10/07/2012 22:05
166-a 06/07/2012 23:35 08/07/2012 16:59 -13 59 06/07/2012 23:01 99/99/9999 99:99 N 1b slow
166-b 08/07/2012 16:59 11/07/2012 14:00 -14 86 08/07/2012 16:23 99/99/9999 99:99 N 1a slow

Event 167 12/07/2012 17:05 16/07/2012 15:00
167-a 12/07/2012 17:05 16/07/2012 15:00 -13 3 12/07/2012 15:36 14/07/2012 17:39 Y 3b slow

Event 168 17/07/2012 13:59 26/07/2012 18:00
168-a 17/07/2012 13:59 19/07/2012 04:30 -15 88 17/07/2012 12:02 99/99/9999 99:99 N 1a slow
168-b 19/07/2012 04:30 23/07/2012 02:30 -13 88 19/07/2012 04:16 20/07/2012 04:00 Y 3a slow
168-c 23/07/2012 02:30 26/07/2012 18:00 2 125 23/07/2012 02:35 99/99/9999 99:99 N 1b slow

Event 169 01/09/2012 01:59 05/09/2012 07:39
169-a 01/09/2012 00:00 06/09/2012 16:00 -19 -42 31/08/2012 19:59 03/09/2012 11:21 Y 2b slow

Event 170 28/09/2012 00:20 01/10/2012 18:00
170-a 28/09/2012 00:20 02/10/2012 08:00 9 32 27/09/2012 23:35 30/09/2012 22:18 Y 3a slow

Event 171 14/12/2012 12:20 17/12/2012 18:00
171-a 14/12/2012 12:20 17/12/2012 18:00 9999 9999 99/99/9999 99:99 16/12/2012 16:50 N NC slow

2013
Event 172 15/03/2013 18:45 18/03/2013 19:59

172-a 15/03/2013 18:45 18/03/2013 19:59 9 -6 15/03/2013 05:46 17/03/2013 05:21 Y 2b slow
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5 APPENDIX A: SOL2UP EVENT TABLES

In Tables A.5 and A.6 are shown the full lists of Helios events gathered by our group. Both

lists have identical structure. First column indicate the event number. Second and third columns

indicate the date and time of the solar flare (X-ray) and flare longitude as seen from Earth.

Fourth and fifth give the particle onset time and end time at the spacecraft. Sixth column shows

the shock time at the spacecraft. In case of more that one shock detected, they are listed vertically

in order; this column is left empty if no shock was detected. Seventh and eighth columns give

the helioradial distance of the spacecraft at the event time and the longitudinal separation to the

solar source. Ninth and tenth columns lists if the events were included in the analysis of the

downstream fluence, and the associated references checked (see table’s footnotes).

TABLE A.5: Helios 1 event list.

Helios 1

Flare time Source Start time End time Shock time S/C radial Relative Downst.Event [UT] long. [UT] [UT] [UT] dist. [AU] source long. analysis Refs.

1975
1 21/08/1975 15:19 W74 21/08/1975 15:19 22/08/1975 15:19 0.63 E96 N 1
2 22/08/1975 01:16 W81 22/08/1975 01:16 23/08/1975 01:16 0.63 E90 N 1

1976
3 21/03/1976 00:00 W33 21/03/1976 00:00 22/03/1976 00:00 0.36 W08 N 2
4 23/03/1976 00:00 E90 23/03/1976 08:00 28/03/1976 00:00 0.34 E124 N 2
5 28/03/1976 19:38 E28 28/03/1976 19:20 31/03/1976 09:59 0.31 E89 N 3
6 30/04/1976 20:48 W46 30/04/1976 20:48 04/05/1976 12:00 0.66 E113 N 4

1977
7 04/04/1977 00:00 E77 04/04/1977 12:59 07/04/1977 08:00 0.37 E81 N 2
8 07/09/1977 22:43 E90 07/09/1977 22:43 11/09/1977 12:00 0.76 W134 N 1
9 12/09/1977 10:14 E42 12/09/1977 10:14 13/09/1977 10:14 0.72 E179 N 3
10 19/09/1977 10:53 W57 19/09/1977 10:53 23/09/1977 12:00 20/09/1977 19:07 0.65 E83 Y 3

20/09/1977 20:37
11 24/09/1977 05:49 W120 24/09/1977 05:49 30/09/1977 00:00 25/09/1977 02:40 0.59 E24 Y 4
12 12/10/1977 01:52 W02 12/10/1977 01:52 13/10/1977 01:52 0.36 W178 N 3
13 07/11/1977 00:00 E64 07/11/1977 00:00 10/11/1977 12:00 07/11/1977 18:14 0.47 E06 N 2
14 22/11/1977 10:06 W40 22/11/1977 10:06 26/11/1977 12:00 24/11/1977 22:27 0.65 W80 Y 3
15 06/12/1977 19:37 W18 06/12/1977 19:37 09/12/1977 14:00 0.8 W53 N 5

1978
16 06/03/1978 12:12 E20 06/03/1978 12:12 12/03/1978 12:00 08/03/1978 08:44 0.84 W36 Y 3
17 08/04/1978 02:39 W11 08/04/1978 02:00 10/04/1978 03:59 09/04/1978 07:18 0.52 W51 Y 3
18 11/04/1978 14:17 W56 11/04/1978 14:17 13/04/1978 02:00 0.47 W91 N 3
19 28/04/1978 13:34 E38 28/04/1978 13:34 06/05/1978 18:00 29/04/1978 03:48 0.31 E71 Y 3

30/04/1978 11:15
02/05/1978 13:30

20 07/05/1978 03:36 W68 07/05/1978 03:36 08/05/1978 03:35 07/05/1978 20:05 0.36 E15 Y 3
21 31/05/1978 10:47 W43 31/05/1978 10:47 03/06/1978 16:00 02/06/1978 08:18 0.65 E88 N 3
22 22/06/1978 17:09 E18 22/06/1978 17:09 27/06/1978 12:00 26/06/1978 11:40 0.85 E154 N 6
23 23/09/1978 10:20 W50 23/09/1978 10:20 01/10/1978 07:19 25/09/1978 02:29 0.76 E71 Y 3
24 01/10/1978 07:19 E57 01/10/1978 07:19 02/10/1978 07:19 0.68 W180 N 1
25 09/10/1978 19:51 W61 09/10/1978 19:51 12/10/1978 03:59 0.58 E68 N 1
26 13/10/1978 12:38 W01 13/10/1978 12:38 15/10/1978 21:59 13/10/1978 13:41 0.53 E132 N 1

13/10/1978 20:41
14/10/1978 13:49

27 05/11/1978 09:18 W36 05/11/1978 09:18 06/11/1978 09:18 0.31 E178 N 7
28 10/11/1978 01:22 E01 10/11/1978 00:59 12/11/1978 15:59 0.33 W116 N 3
29 28/11/1978 05:50 E47 28/11/1978 05:45 29/11/1978 04:15 29/11/1978 03:17 0.54 W16 N 3
30 11/12/1978 19:44 E14 11/12/1978 19:44 17/12/1978 00:00 0.7 W39 N 3
31 14/12/1978 00:05 W78 14/12/1978 00:05 19/12/1978 00:00 0.72 W130 N 8

1979
32 03/04/1979 02:13 W14 03/04/1979 01:15 08/04/1979 00:00 03/04/1979 19:44 0.75 W84 Y 3
33 14/04/1979 14:43 E08 14/04/1979 14:43 15/04/1979 16:42 15/04/1979 04:04 0.62 W57 Y 9
34 22/04/1979 23:25 E10 22/04/1979 23:25 23/04/1979 23:25 0.52 W47 N 10
35 27/04/1979 06:51 E17 27/04/1979 06:51 02/05/1979 00:00 28/04/1979 04:27 0.47 W31 Y 9

Table continues on the next page
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1.2 Event tables for the full range

Helios 1

Flare time Source Start time End time Shock time S/C radial Relative Downst.Event [UT] long. [UT] [UT] [UT] dist. [AU] source long. analysis Refs.

36 04/05/1979 17:01 W55 04/05/1979 17:01 05/05/1979 17:01 0.37 W83 N 9
37 24/05/1979 16:55 E95 24/05/1979 16:55 27/05/1979 18:00 0.38 E170 N 11
38 27/05/1979 06:50 W65 28/05/1979 00:00 01/06/1979 00:00 28/05/1979 18:41 0.41 E21 N 7
39 05/06/1979 05:13 E14 05/06/1979 05:13 13/06/1979 00:00 11/06/1979 20:54 0.52 E119 N 1
40 04/07/1979 19:02 E35 04/07/1979 19:02 05/07/1979 19:02 05/07/1979 11:30 0.83 E157 N 8
41 15/11/1979 21:39 W35 15/11/1979 21:39 20/11/1979 00:00 0.33 E133 N 3
42 27/11/1979 06:19 W03 27/11/1979 06:19 30/11/1979 23:00 0.34 W127 N 7
43 12/12/1979 17:13 W79 12/12/1979 17:13 13/12/1979 17:13 13/12/1979 08:53 0.54 W160 N 12
44 13/12/1979 08:18 E16 13/12/1979 08:18 14/12/1979 08:18 13/12/1979 08:53 0.54 W63 N 13
45 19/12/1979 22:15 E36 19/12/1979 22:15 25/12/1979 12:00 23/12/1979 13:02 0.62 W37 Y 3

1980
46 10/01/1980 05:15 E09 10/01/1980 05:15 15/01/1980 22:59 10/01/1980 23:09 0.82 W57 Y 9

13/01/1980 07:29
47 12/01/1980 20:20 W55 12/01/1980 20:20 13/01/1980 20:20 13/01/1980 07:29 0.84 W121 N 5
48 04/04/1980 15:10 W34 04/04/1980 15:10 05/04/1980 15:10 0.85 W120 N 3
49 29/04/1980 12:57 W71 29/04/1980 12:57 01/05/1980 15:59 01/05/1980 06:19 0.61 W151 N 9

01/05/1980 13:46
50 01/05/1980 16:31 E63 01/05/1980 16:31 03/05/1980 15:59 0.58 W15 N 3
51 03/05/1980 12:39 E43 03/05/1980 12:39 07/05/1980 00:00 04/05/1980 18:27 0.56 W33 Y 8
52 11/05/1980 15:00 E16 11/05/1980 15:00 14/05/1980 18:00 0.46 W48 N 9
53 21/05/1980 21:07 W15 21/05/1980 20:44 24/05/1980 10:59 22/05/1980 20:56 0.34 W47 Y 9
54 28/05/1980 15:52 W28 28/05/1980 15:52 30/05/1980 15:00 29/05/1980 11:05 0.31 W23 N 14
55 28/05/1980 17:05 W35 28/05/1980 17:05 29/05/1980 17:05 29/05/1980 11:05 0.31 W30 N 14
56 28/05/1980 19:24 W33 28/05/1980 19:24 29/05/1980 19:24 29/05/1980 11:05 0.31 W28 Y 14
57 28/05/1980 23:42 W39 28/05/1980 23:42 29/05/1980 23:42 29/05/1980 11:05 0.31 W34 N 14
58 02/06/1980 09:00 W93 02/06/1980 09:00 05/06/1980 10:00 03/06/1980 09:13 0.32 W58 Y 3
59 07/06/1980 03:13 W74 07/06/1980 03:13 08/06/1980 07:59 0.37 W15 N 9
60 08/06/1980 10:37 W87 08/06/1980 10:37 09/06/1980 07:00 0.38 W24 N 3
61 21/06/1980 01:14 W88 21/06/1980 01:14 23/06/1980 13:59 22/06/1980 20:34 0.55 E06 Y 3
62 27/06/1980 16:12 W67 27/06/1980 16:12 28/06/1980 16:12 0.63 E33 N 12
63 29/06/1980 10:41 W90 29/06/1980 10:41 30/06/1980 10:41 0.64 E11 N 12
64 05/07/1980 22:35 W28 05/07/1980 22:35 10/07/1980 00:00 07/07/1980 11:26 0.72 E77 N 12
65 17/07/1980 05:38 E06 17/07/1980 05:38 24/07/1980 00:00 21/07/1980 01:20 0.81 E113 Y 12
66 15/10/1980 05:42 E55 15/10/1980 05:42 29/10/1980 00:00 0.83 E145 N 9
67 23/10/1980 10:32 W75 23/10/1980 10:32 24/10/1980 10:32 0.76 E16 N 12
68 25/10/1980 09:37 W60 25/10/1980 09:37 26/10/1980 09:37 0.74 E31 N 12
69 10/11/1980 11:40 W54 10/11/1980 11:40 11/11/1980 17:28 0.57 E47 N 15
70 11/11/1980 17:29 W69 11/11/1980 17:29 14/11/1980 06:19 13/11/1980 01:31 0.54 E33 N 15
71 14/11/1980 06:19 W116 14/11/1980 06:19 21/11/1980 00:00 14/11/1980 10:32 0.52 W10 3

14/11/1980 21:10 Y
18/11/1980 13:48

72 23/11/1980 17:54 W23 23/11/1980 17:54 29/11/1980 02:00 25/11/1980 09:03 0.39 E104 N 3
73 29/11/1980 23:48 E26 29/11/1980 23:48 30/11/1980 23:48 0.33 E177 N 3
74 09/12/1980 07:03 W40 09/12/1980 07:03 10/12/1980 07:03 0.32 E168 N 7

1981
75 14/01/1981 21:05 E02 14/01/1981 21:00 15/01/1981 12:00 0.74 W80 N 9
76 25/01/1981 09:08 E90 25/01/1981 09:08 31/01/1981 00:00 27/01/1981 00:08 0.83 E09 N 3

27/01/1981 17:48
28/01/1981 15:35

77 24/04/1981 14:11 W50 24/04/1981 14:11 25/04/1981 14:11 25/04/1981 11:04 0.81 W151 N 3
78 28/04/1981 22:13 W90 28/04/1981 22:13 29/04/1981 22:13 0.78 E170 N 3
79 30/04/1981 03:07 W90 30/04/1981 03:07 08/05/1981 22:00 02/05/1981 10:47 0.77 E170 N 12

06/05/1981 17:25
80 08/05/1981 22:51 E37 08/05/1981 22:51 10/05/1981 12:29 10/05/1981 03:11 0.68 W61 Y 9
81 10/05/1981 12:07 E90 10/05/1981 12:19 13/05/1981 02:44 11/05/1981 07:08 0.66 W07 Y 3
82 13/05/1981 04:24 E55 13/05/1981 04:24 14/05/1981 06:29 13/05/1981 21:23 0.64 W40 Y 3
83 14/05/1981 08:05 E35 14/05/1981 08:05 16/05/1981 07:59 15/05/1981 16:35 0.63 W59 Y 16
84 16/05/1981 08:58 E14 16/05/1981 08:50 22/05/1981 00:00 17/05/1981 00:00 0.61 W79 Y 3
85 04/06/1981 19:28 W16 04/06/1981 19:28 09/06/1981 22:59 0.36 W69 N 3
86 10/06/1981 06:27 E24 10/06/1981 06:27 10/06/1981 22:00 0.32 E01 N 9
87 17/06/1981 09:50 W47 17/06/1981 09:50 18/06/1981 09:09 0.32 W28 N 9
88 18/06/1981 09:09 W29 18/06/1981 09:09 19/06/1981 09:09 19/06/1981 01:04 0.33 W05 Y 16
89 20/07/1981 13:28 W75 20/07/1981 13:28 22/07/1981 22:00 21/07/1981 23:44 0.71 E15 Y 3
90 24/07/1981 07:53 E55 24/07/1981 07:53 25/07/1981 07:53 24/07/1981 15:33 0.74 E147 N 3
91 07/11/1981 03:54 W39 07/11/1981 03:54 08/11/1981 03:54 0.76 E37 N 12
92 14/11/1981 21:52 W49 14/11/1981 21:52 18/11/1981 21:59 16/11/1981 15:18 0.69 E29 Y 13

Table continues on the next page
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5 APPENDIX A: SOL2UP EVENT TABLES

Helios 1

Flare time Source Start time End time Shock time S/C radial Relative Downst.Event [UT] long. [UT] [UT] [UT] dist. [AU] source long. analysis Refs.

93 19/11/1981 02:29 W100 19/11/1981 02:29 20/11/1981 12:00 20/11/1981 00:54 0.64 W20 Y 13
94 22/11/1981 03:23 W74 22/11/1981 03:23 27/11/1981 12:00 22/11/1981 23:28 0.61 E09 N 9
95 05/12/1981 14:40 W40 05/12/1981 14:40 09/12/1981 06:59 0.43 E62 N 3
96 09/12/1981 19:11 W16 09/12/1981 19:11 14/12/1981 00:00 11/12/1981 21:15 0.38 E98 Y 3

1982
97 04/01/1982 06:10 W88 04/01/1982 06:10 05/01/1982 06:10 0.43 E148 N 12
98 10/01/1982 05:32 E90 10/01/1982 05:32 11/01/1982 05:32 0.51 W22 N 17
99 28/01/1982 07:17 E42 28/01/1982 07:17 30/01/1982 08:00 0.72 W56 N 9

100 30/01/1982 23:58 E19 30/01/1982 23:58 05/02/1982 00:00 04/02/1982 06:22 0.75 W78 N 3
101 08/02/1982 12:49 W88 08/02/1982 12:49 09/02/1982 06:00 0.82 E176 N 15
102 09/02/1982 04:07 W90 09/02/1982 06:00 09/02/1982 22:00 0.82 E174 N 12
103 10/02/1982 01:01 E54 10/02/1982 01:01 15/02/1982 00:00 11/02/1982 11:31 0.83 W43 Y 9
104 02/06/1982 15:54 E81 02/06/1982 15:54 03/06/1982 02:30 0.57 W25 N 9
105 03/06/1982 11:40 E72 03/06/1982 11:40 04/06/1982 13:12 04/06/1982 10:00 0.57 W33 N 3
106 06/06/1982 16:30 E26 06/06/1982 16:30 13/06/1982 00:00 08/06/1982 19:10 0.52 W75 N 6

09/06/1982 10:57
10/06/1982 07:04
12/06/1982 08:46
12/06/1982 12:31
12/06/1982 13:02
12/06/1982 18:29

107 27/06/1982 18:09 W90 27/06/1982 18:09 03/07/1982 00:00 0.31 W118 N 12
108 09/07/1982 07:35 E76 09/07/1982 07:35 11/07/1982 01:00 10/07/1982 13:06 0.38 E111 Y 12
109 12/07/1982 09:05 E36 12/07/1982 09:05 14/07/1982 13:12 13/07/1982 03:09 0.42 E81 Y 12
110 17/07/1982 23:09 W36 17/07/1982 23:09 18/07/1982 23:09 0.5 E21 N 12
111 19/07/1982 00:52 W45 19/07/1982 00:52 20/07/1982 00:52 0.51 E16 N 12
112 22/07/1982 17:34 W86 22/07/1982 17:34 28/07/1982 12:00 23/07/1982 07:59 0.56 W21 Y 3
113 08/08/1982 02:05 W65 08/08/1982 02:05 09/08/1982 19:59 0.74 E12 N 9
114 22/11/1982 18:29 W36 22/11/1982 18:29 23/11/1982 20:29 23/11/1982 12:02 0.76 E25 Y 9
115 26/11/1982 02:36 W87 26/11/1982 02:15 03/12/1982 00:00 26/11/1982 17:53 0.73 W26 Y 3
116 07/12/1982 23:40 W89 07/12/1982 23:40 13/12/1982 00:00 08/12/1982 12:59 0.6 W22 Y 3
117 15/12/1982 01:57 E24 15/12/1982 01:57 17/12/1982 15:59 0.51 E100 N 12
118 17/12/1982 18:45 W20 17/12/1982 18:45 19/12/1982 15:00 19/12/1982 03:59 0.47 E60 Y 12
119 19/12/1982 16:32 W75 19/12/1982 16:32 25/12/1982 00:00 20/12/1982 11:08 0.45 E09 Y 3
120 26/12/1982 09:09 E14 26/12/1982 09:51 29/12/1982 15:59 26/12/1982 20:29 0.37 E118 Y 18

1983
121 05/01/1983 13:21 W90 05/01/1983 13:21 06/01/1983 13:21 0.31 E66 N 12
122 03/02/1983 06:10 W07 03/02/1983 06:10 06/02/1983 00:00 0.62 W125 N 9
123 03/08/1983 15:15 W02 03/08/1983 15:15 04/08/1983 01:59 0.52 E44 N 9
124 04/08/1983 03:41 W24 04/08/1983 03:41 05/08/1983 10:00 0.52 E23 N 12

1985
125 22/01/1985 00:03 W40 22/01/1985 00:03 25/01/1985 21:59 22/01/1985 17:10 0.41 E24 N 9

23/01/1985 12:04
24/01/1985 11:35

121 05/01/1983 13:21 W90 05/01/1983 13:21 06/01/1983 13:21 0.31 E66 N 12
122 03/02/1983 06:10 W07 03/02/1983 06:10 06/02/1983 00:00 0.62 W125 N 9
123 03/08/1983 15:15 W02 03/08/1983 15:15 04/08/1983 01:59 0.52 E44 N 9
124 04/08/1983 03:41 W24 04/08/1983 03:41 05/08/1983 10:00 0.52 E23 N 12

1985
125 22/01/1985 00:03 W40 22/01/1985 00:03 25/01/1985 21:59 22/01/1985 17:10 0.41 E24 N 9

1 Kahler (1982) 2 Gardini et al. (2011) 3 Lario et al. (2006) 4 Cliver et al. (1982) 5 Kallenrode (1993a)
6 NOAA SEP event list: http://umbra.nascom.nasa.gov/SEP/. 7 Heras et al. (1994)
8 Solar Geophysical Data: http://www.ngdc.noaa.gov/stp/space-weather/online-publications/stp_sgd/
9 Kallenrode et al. (1992a) 10 Sanahuja et al. (1983) 11 Sanahuja and Domingo (1987)
12 Cane et al. (1986) 13 Reames et al. (1997) 14 Kallenrode and Wibberenz (1991) 15 Kahler et al. (1984) 16 Sanahuja (1988)
17 Reames et al. (1996) 18 SGD8301.
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1.2 Event tables for the full range

TABLE A.6: Helios 2 event list.

Helios 2

Flare time Source Start time End time Shock time S/C radial Relative Downst.Event [UT] long. [UT] [UT] [UT] dist. [AU] source long. analysis Refs.

1975
1 21/08/1975 15:19 W74 N 1
2 22/08/1975 01:16 W81 N 1

1976
3 21/03/1976 00:00 W33 21/03/1976 00:00 22/03/1976 00:00 0.59 W36 N 2
4 23/03/1976 00:00 E90 23/03/1976 08:00 28/03/1976 00:00 0.57 E89 N 2
5 28/03/1976 19:38 E28 28/03/1976 19:20 31/03/1976 09:59 30/03/1976 04:31 0.49 E34 Y 3

30/03/1976 17:44
6 30/04/1976 20:48 W46 30/04/1976 20:48 04/05/1976 12:00 0.43 E109 N 4

1977
7 04/04/1977 00:00 E77 04/04/1977 12:59 07/04/1977 08:00 0.5 E77 N 2
8 07/09/1977 22:43 E90 07/09/1977 22:43 11/09/1977 12:00 0.81 W107 N 1
9 12/09/1977 10:14 E42 12/09/1977 10:14 13/09/1977 10:00 0.78 W154 N 3
10 19/09/1977 10:53 W57 19/09/1977 10:53 23/09/1977 12:00 0.71 E108 N 3
11 24/09/1977 05:49 W120 24/09/1977 05:49 30/09/1977 00:00 25/09/1977 12:51 0.66 E47 Y 4

26/09/1977 12:06
12 12/10/1977 01:52 W02 12/10/1977 01:52 13/10/1977 01:04 0.43 W171 N 3
13 07/11/1977 00:00 E64 07/11/1977 00:00 11/11/1977 12:00 07/11/1977 18:54 0.39 E27 N 2
14 22/11/1977 10:06 W40 22/11/1977 10:06 26/11/1977 12:00 23/11/1977 16:08 0.59 W49 Y 3

24/11/1977 06:10
15 06/12/1977 19:37 W18 06/12/1977 19:37 09/12/1977 14:00 0.76 W20 N 5

1978
16 06/03/1978 12:12 E20 06/03/1978 12:12 12/03/1978 12:00 07/03/1978 23:54 0.86 W03 Y 3

11/03/1978 13:39
17 08/04/1978 02:39 W11 08/04/1978 02:00 10/04/1978 03:59 09/04/1978 07:16 0.54 W22 Y 3
18 11/04/1978 14:17 W56 11/04/1978 14:17 12/04/1978 16:00 12/04/1978 14:14 0.48 W62 Y 3
19 28/04/1978 13:34 E38 28/04/1978 13:34 06/05/1978 18:00 29/04/1978 02:56 0.29 E97 N 3
20 07/05/1978 03:36 W68 07/05/1978 03:36 08/05/1978 03:03 07/05/1978 22:22 0.33 E48 N 3
21 31/05/1978 10:47 W43 31/05/1978 10:47 03/06/1978 16:00 0.64 E126 N 3
22 22/06/1978 17:09 E18 22/06/1978 17:09 27/06/1978 12:00 0.85 W168 N 6
23 23/09/1978 10:20 W50 23/09/1978 10:20 01/10/1978 07:02 25/09/1978 01:26 0.74 E108 Y 3
24 01/10/1978 07:19 E57 01/10/1978 07:19 02/10/1978 07:02 0.66 W142 N 1
25 09/10/1978 19:51 W61 09/10/1978 19:51 12/10/1978 03:59 0.55 E106 N 1
26 13/10/1978 12:38 W01 13/10/1978 12:38 15/10/1978 21:59 0.49 E172 N 1
27 05/11/1978 09:18 W36 05/11/1978 09:18 06/11/1978 09:01 0.3 W123 N 7
28 10/11/1978 01:22 E01 10/11/1978 00:59 15/11/1978 00:00 0.34 W57 N 3
29 28/11/1978 05:50 E47 28/11/1978 05:45 29/11/1978 04:00 0.58 E31 N 3
30 11/12/1978 19:44 E14 11/12/1978 19:44 14/12/1978 00:00 13/12/1978 02:46 0.74 E05 Y 3

13/12/1978 12:45
31 14/12/1978 00:05 W78 14/12/1978 00:05 19/12/1978 00:00 0.76 W87 N 8

1979
32 03/04/1979 02:13 W14 03/04/1979 01:15 08/04/1979 00:00 04/04/1979 13:30 0.68 W41 Y 3

05/04/1979 15:28
33 14/04/1979 14:43 E08 14/04/1979 14:43 15/04/1979 16:03 0.53 W10 N 9
34 22/04/1979 23:25 E10 22/04/1979 23:25 23/04/1979 23:02 23/04/1979 15:15 0.42 E06 N 10
35 27/04/1979 06:51 E17 27/04/1979 06:51 02/05/1979 00:00 0.37 E29 N 9
36 04/05/1979 17:01 W55 04/05/1979 17:01 05/05/1979 17:00 0.29 W07 N 9
37 24/05/1979 16:55 E95 24/05/1979 16:55 27/05/1979 18:00 0.48 W120 N 11
38 27/05/1979 06:50 W65 28/05/1979 00:00 01/06/1979 00:00 28/05/1979 07:57 0.5 E86 N 7

28/05/1979 10:28
30/05/1979 04:41

39 05/06/1979 05:13 E14 05/06/1979 05:13 13/06/1979 00:00 11/06/1979 06:15 0.62 E175 N 1
11/06/1979 19:04

40 04/07/1979 19:02 E35 04/07/1979 19:02 05/07/1979 19:00 0.89 W158 N 8
41 15/11/1979 21:39 W35 15/11/1979 21:39 20/11/1979 00:00 0.33 W109 N 3
42 27/11/1979 06:19 W03 27/11/1979 06:19 30/11/1979 23:00 28/11/1979 15:59 0.48 W36 Y 7
43 12/12/1979 17:13 W79 12/12/1979 17:13 13/12/1979 17:00 13/12/1979 12:23 0.68 W97 N 12
44 13/12/1979 08:18 E16 13/12/1979 08:18 14/12/1979 08:00 13/12/1979 12:23 0.68 W01 N 13
45 19/12/1979 22:15 E36 19/12/1979 22:15 19/12/1979 06:59 0.75 E20 N 3

1980
46 10/01/1980 05:15 E09 10/01/1980 05:15 15/01/1980 22:59 10/01/1980 20:48 0.9 W08 N 9
47 12/01/1980 20:20 W55 12/01/1980 20:20 13/01/1980 20:02 0.92 W72 N 5

1 Kahler (1982) 2 Gardini et al. (2011) 3 Lario et al. (2006) 4 Cliver et al. (1982) 5 Kallenrode (1993a)
6 NOAA SEP event list: http://umbra.nascom.nasa.gov/SEP/. 7 Heras et al. (1994)
8 Solar Geophysical Data: http://www.ngdc.noaa.gov/stp/space-weather/online-publications/stp_sgd/
9 Kallenrode et al. (1992a) 10 Sanahuja et al. (1983) 11 Sanahuja and Domingo (1987) 12 Cane et al. (1986)
13 Reames et al. (1997)

173

http://umbra.nascom.nasa.gov/SEP/
http://www.ngdc.noaa.gov/stp/space-weather/online-publications/stp_sgd/




Appendix B

SOL2UP event types

B.1 Classification of SEP events in SOL2UP

The SEP events in the SREL (Table A.4) are classified into ten categories or event types as

discussed in Aran et al. (2017a). Specifically, 249 out of 263 SEP enhancements were classified

and 14 could not be distributed into any of the categories. Figure B.1 shows the number of

events per each event-type. The event types and the corresponding reference SEP events are the

following:

I Type 1. – Events without observed shock

• Type 1a. Peak Intensity > 10 [cm2 sr s MeV]−1 [E = 8.7 MeV] ⇒ December 14,

2006 SEP event.

• Type 1b. Peak Intensity < 10 [cm2 sr s MeV]−1 [E = 8.7 MeV] ⇒ June 10, 2000

SEP event.

I Type 2 – Gradual, Low-Energy Cases [No SEP enhancement for E > 66 MeV protons

in the upstream region of the events]

• Type 2a. Solar origin between W120 and W00⇒ April 4, 2000 SEP event.

• Type 2b. Solar origin between W00 and E45 (both included)⇒ June 6, 2000 SEP

event.

• Type 2c. Solar origin between E45 and E90⇒March 6, 1989 SEP event.

I Type 3 – Gradual, High-Energy Cases

• Type 3a Peak Intensity < 50 [cm2 sr s MeV]−1 [E = 8.7 MeV] and solar origin at or

westward from W30⇒March 13, 2012 SEP event.

• Type 3b Peak Intensity < 50 [cm2 sr s MeV]−1 [E = 8.7 MeV] and solar origin east-

ward from W30⇒March 29, 2001 SEP event.
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5 APPENDIX B: SOL2UP EVENT TYPES

FIGURE B.1: Number of events per event type

I Type 4 – Large Gradual, High-Energy Cases

• Type 4a-np Peak Intensity > 500 [cm2 sr s MeV]−1 [E = 8.7 MeV] and > 1 [cm2 s sr

MeV]−1 at [E = 79.5 MeV] and intensity profiles do not show a prompt component

⇒ September 24, 2001 SEP event.

• Type 4a-p Peak Intensity > 500 [cm2 sr s MeV]−1 [E = 8.7 MeV] and > 1 [cm2 s

sr MeV]−1 at [E = 79.5 MeV] and intensity profiles show a prompt component ⇒

October 29, 2003 SEP event.

• Type 4b. Peak Intensity ≥ 50 [cm2 sr s MeV]−1 [E = 8.7 MeV] ⇒ December 13,

2006 SEP event.

B.2 Radial dependences

Tables B.1 and B.2 show the radial indices derived from the modelling of the reference events

with SOLPENCO2. These indices correspond to the fitting of a power-law with the heliocen-

tric radial distance of the peak intensities and upstream fluences of the SOLPENCO2 synthetic

proton intensity-time profiles, for each SEPEM reference energy channel.
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2.2 Radial dependences

TABLE B.1: Peak Intensities: radial indices for the ten event Types.

Energy [MeV] 1a 1b 2a 2b 2c 3a 3b 4a-np 4a-p 4b

6.01 −2.34 −1.77 −1.82 0.81 1.10 −2.08 −1.55 −0.94 −1.14 −0.50
8.70 −2.21 −1.72 −1.86 1.06 1.11 −2.04 −1.74 −0.94 −1.52 −0.99
12.58 −2.09 −1.66 −1.77 1.31 1.12 −1.95 −1.71 −0.87 −1.90 −1.36
18.18 −1.99 −1.61 −1.69 1.53 1.27 −1.86 −1.63 −0.78 −2.71 −1.72
26.30 −1.89 −1.57 −1.62 1.74 1.27 −1.76 −1.57 −0.69 −2.44 −1.78
38.03 −1.80 −1.53 −1.56 1.72 1.27 −1.64 −1.51 −0.59 −2.41 −1.67
54.99 −1.72 −1.50 −1.51 1.72 1.26 −1.59 −1.46 −0.50 −2.37 −1.75
79.53 −1.65 −1.48 −1.47 1.72 1.26 −1.61 −1.42 −0.37 −2.31 −1.75
115.01 −1.59 −1.46 −1.43 1.73 1.25 −1.60 −1.38 −0.23 −2.24 −1.67
166.31 −1.51 −1.43 −1.35 1.74 1.25 −1.58 −1.31 −0.14 −2.18 −1.59
244.22 −1.43 −1.40 −1.31 1.73 1.25 −1.55 −1.27 −0.04 −2.10 −1.59

TABLE B.2: Upstream fluences: radial indices for the ten event Types.

Energy [MeV] 1a 1b 2a 2b 2c 3a 3b 4a-np 4a-p 4b

6.01 −1.47 −1.20 −0.29 2.11 1.21 −0.96 0.25 0.31 −0.34 0.58
8.70 −1.39 −1.16 −0.50 2.40 1.26 −0.99 0.02 0.33 −0.41 0.26
12.58 −1.32 −1.12 −0.53 2.70 1.33 −0.98 −0.19 0.44 −0.51 −0.06
18.18 −1.25 −1.09 −0.55 2.96 1.85 −0.98 −0.27 0.56 −0.71 −0.35
26.30 −1.19 −1.06 −0.55 3.21 1.87 −0.98 −0.33 0.69 −0.73 −0.63
38.03 −1.14 −1.04 −0.55 3.22 1.90 −0.99 −0.37 0.82 −0.83 −0.80
54.99 −1.09 −1.02 −0.54 3.24 1.91 −1.00 −0.40 0.95 −0.88 −0.94
79.53 −1.04 −1.00 −0.51 3.26 1.93 −1.00 −0.42 1.18 −0.90 −1.03
115.01 −0.99 −0.97 −0.47 3.28 1.94 −1.00 −0.42 1.21 −0.91 −0.94
166.31 −0.86 −0.89 −0.33 3.33 1.96 −0.98 −0.33 1.33 −0.90 −0.84
244.22 −0.83 −0.89 −0.33 3.34 1.99 −0.88 −0.38 1.47 −0.82 −1.07
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Appendix C

Downstream-to-total fluence ratios

This appendix compiles the plots showing the longitudinal dependences of the DTFRs for the

different energies and radial distances. We can clearly see that the number of measurements

available to compute the dependences is lower towards high energies and also at smaller radial

distances.

In Section C.1 we show the DTFR dependences at 1 AU as a function of the heliolongitude.

Figures shows the resulting mean DTFR values (red open circles) and standard deviations (red

error bars) for 6.01 MeV, 18.18 MeV, 54.99 MeV and 115.01 MeV proton fluences. Figures

show the same structure as explained for Figure 2.16. The black lines correspond to polynomials

fits to the mean DTFR values obtained by adding the 3rd, 4th and 5th polynomial fits and the

grey lines correspond to the addition of 3rd and 8th order polynomial fits.

Section C.1.1 shows the DTFR dependences in the range from 0.6 AU to 0.85 AU and Sec-

tion C.1.1 in the range from 0.3 AU to 0.6 AU, compared to the tendency lines derived at 1 AU,

for the same energies previously detailed. The black thick line corresponds to the polynomial

fit applied to the mean DTFR values, obtained by adding the 3rd, 4th and 5th polynomial fits.

Mauve lines correspond to tendencies derived from the fast solar wind case, violet lines to the

intermediate solar wind speed and purple lines to the slow solar wind case.
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5 APPENDIX C: DTFRS

C.1 Heliolongitude dependences of the DTFRs for 1 AU data

FIGURE C.1: DTFRs (coloured symbols) of the events analysed at 1 AU (labels indicate the
event number) as a function of the heliolongitude. Red open circles and error bars correspond
to the moving mean values and standard deviations. Upper panel: 6.01 MeV. Bottom panel:

18.18 MeV.
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3.1 Heliolongitude dependences of the DTFRs for 1 AU data

FIGURE C.2: DTFRs (coloured symbols) of the events analysed at 1 AU (labels indicate the
event number) as a function of the heliolongitude. Red open circles and error bars correspond
to the moving mean values and standard deviations. Upper panel: 54.99 MeV. Bottom panel:

115.01 MeV.
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5 APPENDIX C: DTFRS

C.1.1 Comparison of 1 AU results with the DTFRs for 0.6 – 0.85 AU Helios data

FIGURE C.3: Heliolongitude dependence of the DTFRs for 0.6 – 0.85 AU. Comparison of
results derived from 1 AU data for the fast solar wind (mauve line), for the intermediate case
(violet line) and for the slow wind (purple line) with those from Helios data (black line). Upper

panel: 6.01 MeV. Bottom panel: 18.18 MeV.
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3.1 Heliolongitude dependences of the DTFRs for 1 AU data

FIGURE C.4: Heliolongitude dependence of the DTFRs for 0.6 – 0.85 AU data. Comparison
of results derived from 1 AU data for the fast solar wind (mauve line), for the intermediate case
(violet line) and for the slow wind (purple line) with those from Helios data (black line). Upper

panel: 54.99 MeV. Bottom panel: 115.01 MeV.
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5 APPENDIX C: DTFRS

C.1.2 Comparison of 1 AU results with the DTFRs for 0.3 – 0.6 AU Helios data

FIGURE C.5: Heliolongitude dependence of the DTFRs for 0.3 – 0.6 AU. Compar-
ison of results derived from 1 AU data for the fast solar wind (mauve line), for the
intermediate case (violet line) and for the slow wind (purple line) with those from

Helios data (black line).Upper panel: 6.01 MeV. Bottom panel: 18.18 MeV.
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3.1 Heliolongitude dependences of the DTFRs for 1 AU data

FIGURE C.6: Heliolongitude dependence of the DTFRs for 0.3 – 0.6 AU data. Com-
parison of results derived from 1 AU data for the fast solar wind (mauve line), for the
intermediate case (violet line) and for the slow wind (purple line) with those from

Helios data (black line). Upper panel: 54.99 MeV. Bottom panel: 115.01 MeV.
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Appendix D

Radial dependence of the fluence for
the largest SEP events in SREL

As examples of the impact of the Downstream-to-Total Fluence Ratios (DTFRs) obtained in

Chapter 2 to the total fluence of the SEP events measured in the near-Earth space, we show

the radial dependences obtained in the SOL2UP project for the largest events in SREL (see

Table A.4). In Chapter 2 we show the results for the Event Type 4a-np, whereas in this appendix

the same results but for events of Type 4a-p are presented. In the left panels of the next figures

we show the variation of the upstream fluence with the radial distance as obtained from the

SOLPENCO2 model, for each reference case. Note that for the events belonging to the same

event type, the UF radial dependences are the same. The assumption made for the DTFRs in the

previous results obtained during the SEPEM project (Aran et al., 2011b), translated into radial

dependences for the T F equal to those of the UF for the same event. In contrast, now, after

the analysis of the downstream fluence of SEP events performed in Chapter 2, different radial

dependences of the T F are obtained for each event, as shown in the right panels of the figures

below.

For each event shown, the comparison between the left and the right panels highlights the

variation of the radial dependences found for the total fluence of the events with respect to the

previous results obtained during the SEPEM project. The format of the figures is the same as in

Figure 2.19, in Chapter 2.

The Type 4a-p category includes the seven largest events in SREL showing a prompt com-

ponent. For the reference case, the DTFRs applied make the T F dependence with the radial

distance steeper than the dependence derived from the modelling with SOLPENCO2 (particu-

larly, for low energies). For the remaining six events the radial dependencies vary as shown in

the following figures:
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5 APPENDIX D: FLUENCE RADIAL DEPENDENCE

FIGURE D.1: Type 4a-p. 2003 October 29 SEP event. Radial dependence of the upstream
fluence (left) and total fluence (right) for three different proton energies, 6.01 MeV (orange),

18.18 MeV (blue) and 79.53 MeV (purple).

FIGURE D.2: 1989 October 19 SEP event. Radial dependence of the upstream fluence (left)
and total fluence (right) for three different proton energies, 6.01 MeV (orange), 18.18 MeV

(blue) and 79.53 MeV (purple).
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Appendix D Radial dependence of the fluence for the largest SEP events in SREL

FIGURE D.3: 1989 October 22 SEP event. Radial dependence of the upstream fluence (left)
and total fluence (right) for three different proton energies, 6.01 MeV (orange), 18.18 MeV

(blue) and 79.53 MeV (purple).

FIGURE D.4: 2000 July 14 SEP event. Radial dependence of the upstream fluence (left) and
total fluence (right) for three different proton energies, 6.01 MeV (orange), 18.18 MeV (blue)

and 79.53 MeV (purple).
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FIGURE D.5: 2000 November 8 SEP event. Radial dependence of the upstream fluence (left)
and total fluence (right) for three different proton energies, 6.01 MeV (orange), 18.18 MeV

(blue) and 79.53 MeV (purple).

FIGURE D.6: 2001 November 4 SEP event. Radial dependence of the upstream fluence (left)
and total fluence (right) for three different proton energies, 6.01 MeV (orange), 18.18 MeV

(blue) and 79.53 MeV (purple).
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FIGURE D.7: 2003 October 28 SEP event. Radial dependence of the upstream fluence (left)
and total fluence (right) for three different proton energies, 6.01 MeV (orange), 18.18 MeV

(blue) and 79.53 MeV (purple).
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