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ABSTRACT

We explore new opportunities for solar physics that could be realized by future missions
providing sustained observations from vantage points away from the Sun-Earth line. These
include observations from the far side of the Sun, at high latitudes including over the solar
poles, or from near-quadrature angles relative to the Earth (e.g., the Sun-Earth L4 and L5
Lagrangian points). Such observations fill known holes in our scientific understanding of the
three-dimensional, time-evolving Sun and heliosphere, and have the potential to open new
frontiers through discoveries enabled by novel viewpoints.
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1 INTRODUCTION

Observations from satellite missions have transformed the field of solar physics. High-resolution
observations with near-continuous temporal coverage have greatly extended our capability for studying
long-term and transient phenomena, and the opening of new regions of the solar spectrum has made detailed
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investigation of the solar atmosphere possible. However, to date most solar space-based missions have been
restricted to an observational vantage in the vicinity of the Sun-Earth line (SEL), either in orbit around the
Earth or from the Sun-Earth L1 Lagrangian point. As a result, observations from these satellites represent
the same geometrical view of the Sun that is accessible from the Earth.

Understanding the interior structure of the Sun and the full development of solar activity would benefit
greatly from fully three-dimensional monitoring of the solar surface, atmosphere and heliosphere. On the
one hand, simultaneous spacecraft observations from multiple vantage points allow studies of the deep
interior structure of the sun via stereoscopic helioseismology; on the other, distributed observations reveal
the complete evolution of activity complexes and enhance space-weather predictions dramatically.

In this paper we will present the rich variety of science that is enabled by multi-vantage observations.
In section 2 we review past and present missions that have ventured away from the SEL. In section 3 we
discuss the science enabled by extra-SEL vantages, including solar dynamo studies, solar atmospheric
global connections, and solar wind evolution and transient interactions. In section 4 we discuss the benefits
of multi-vantage observations for space-weather monitoring, both for the Earth and other planets, and in
section 5 we consider the discovery space opened by new viewpoints. In section 6 we identify the remaining
key gaps in our heliospheric great observatory related to extra-SEL observations, and discuss how these
may be filled through future opportunities–including both planned near-term missions and game-changing
missions for the next decade and beyond. Finally, in section 7 we present our conclusions.

2 EXTRA-SUN-EARTH-LINE OBSERVATIONS TO DATE

The first extra-SEL observations were obtained by the two Helios spacecraft, launched in 1974 (Helios-1)
and 1976 (Helios-2). This mission obtained primarily in-situ measurements of solar wind plasma and
cosmic rays (Gurnett et al., 1975; McDonald et al., 1977; Rosenbauer et al., 1977), Faraday rotation
measurements of light from external sources passing through the corona (e.g., Bird et al., 1985), as well
as remote sensing observations (but no imaging) of interplanetary dust (Leinert et al., 1981) and coronal
mass ejections (CMEs) (Jackson, 1985). The Helios spacecraft stayed close to the ecliptic plane; sample
orbits are shown in Figure 1 (Helios-2 has the current record for proximity to the Sun at 0.29 AU). Other
extra-SEL, near-ecliptic in-situ solar wind measurements have been obtained by planetary missions, such
as MESSENGER (Solomon et al., 2001), Pioneer Venus Orbiter (Colin, 1980), and the STEREO twin
spacecraft (Kaiser et al., 2008), which precede and follow the Earth’s orbit.

The corona and inner heliosphere (defined here at the space within 1 AU of the Sun) have been observed
through extra-SEL, near-ecliptic imaging only since 2006 when the Sun-Earth Connection Coronal and
Heliospheric Investigation (SECCHI) (Howard et al., 2008), comprising an EUV imager (EUVI), two
coronagraphs (COR1-2), and two heliospheric imagers (HI1, HI2), was deployed aboard both STEREO
spacecraft (sample STEREO-A orbit is shown in Figure 1).

Since separating beyond ≈ 20◦ from Earth in early 2008, STEREO began partial imaging of the far-side
EUV corona. In 2011, the STEREO reached opposition and achieved the first “synchronic” observation of
the full 360◦ corona (Figure 2; see also Section 3.2). Although STEREO did not carry any magnetographic
capability, its 360◦ coverage has enabled some degree of validation for flux transport models (Ugarte-Urra
et al., 2015) and helioseismic predictions of far-side flux emergence (Liewer et al., 2017). As of 2018,
STEREO-A continues to image the far-side and provide, with the support of SDO/AIA observations,
instantaneous coverage of more that two-thirds of the corona.
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Figure 1. An overview of interesting vantage points, highlighting previous extra-Sun-Earth-line (extra-
SEL) missions. Sun and Earth are shown as yellow and blue dots, and Lagrange points are shown as red
dots (radial scale deformed for clarity). The SEL is indicated as the black dot-dashed line (intersecting the
L1 Lagrange point and Earth). The quadrature views are shown as blue patches (intersecting the L4 and
L5 Lagrange points); the far-side view as a pink patch (intersecting the L3 Lagrange point); and the polar
views as green patches. Sample STEREO orbit is shown in orange, Helios orbits in red, and Ulysses orbit
in light blue. The Helios orbits are relative to the Earth, i.e., Heliocentric Earth Ecliptic (HEE) coordinates,
the other orbits are in Heliocentric Inertial coordinates (Thompson, 2006).

Prior to STEREO, Earth-directed solar wind properties were generally derived indirectly by modeling and
were validated by in-situ measurements. The sparseness of inner heliospheric measurements considerably
hindered the study of large-scale solar-wind structures, including stream-stream interaction regions–or
corotating interaction regions (CIRs) in their evolved form – and interactions among CMEs or between
CMEs and the ambient solar wind. The continuously varying extra-SEL STEREO viewpoints have opened
up research in many, previously elusive areas: from EUV coronal stereoscopy (Aschwanden, 2011) and
limb observations of the origins of Earth-directed CMEs (e.g., Patsourakos et al., 2016) to CIRs, CMEs
entrained in CIRs (Rouillard et al., 2009), and interacting CMEs (Sheeley et al., 2008; Lugaz et al.,
2017). The primary objective of the STEREO, driving its multi-viewpoint mission design, was to discover
the 3D structure of CMEs. The power of this approach to recover CME sizes, directions, and detailed
kinematics has been demonstrated by many studies (e.g., Thernisien et al., 2009; Bosman et al., 2012;
Sachdeva et al., 2017), to name a few).
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Figure 2. A Carrington map of EUV synchronic observations of the full 360◦ sun, made possible by
far-side imaging provided by the twin STEREO spacecraft. Images were taken in the 284 Å channel on
February 6, 2011 at 18:00 UT while the STEREO spacecraft were in exact opposition.

The only spacecraft to explore the heliosphere outside of the ecliptic plane was Ulysses (1990-2009),
which achieved a high-inclination (80◦) near-polar orbit with a Jupiter swing-by. Ulysses measured the
solar wind plasma, electromagnetic fields, and composition in situ in the distance range between 1.3 and
5.4 AU from the Sun (Bame et al., 1992; Balogh et al., 1992; Gloeckler et al., 1999). Ulysses confirmed
that the global, three-dimensional structure of the solar wind around solar minimum is made up of a fast,
uniform flow in the northern and solar polar regions, and slow-to-medium speed wind streams originating
in a coronal streamer belt that is confined to a relatively narrow range of latitudes on either side of the
heliographic equator (McComas et al., 1998). This band, in which the majority of solar wind variability is
observed to occupy some 43◦ in latitude, also contains the heliospheric current sheet (HCS) that separates
the oppositely directed large-scale magnetic fields originating in the two hemispheres. During its second
polar pass at solar maximum, Ulysses found a much more symmetric heliosphere with no systematic
dependence on latitude (McComas et al., 2003). The wind itself was generally slower and much more
variable than at solar minimum at all latitudes. During its third and final polar pass, Ulysses found that
the very strong solar minimum of 2008 did not lead to slower winds, but to a less dense wind (around
20%) and lower momentum flux, while continuing to exhibit a generally dipolar structure (Issautier et al.,
2008). Unfortunately Ulysses did not carry any remote sensing instruments, so the details of solar polar
flows and magnetic fields, and the weakening of the magnetic field over the last solar cycles, remain largely
mysterious to this day.

3 SCIENCE ENABLED BY EXTRA-SUN-EARTH-LINE OBSERVATIONS

The scientific benefit of extra-SEL observations has been demonstrated to some extent by the missions
described in Section 2, but, in many cases, these observations merely whet our appetite for more
comprehensive and sustained measurements. We now describe the science enabled by extra-SEL
observations, and identify areas where new observations are most desired.
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3.1 Solar dynamo: interior to surface

While both the STEREO and Ulysses missions led to many scientific breakthroughs, there is no doubt
that the lack of Doppler magnetographs on these extra-SEL spacecraft was a missed scientific opportunity.
In addition to providing critical information about the surface magnetic field distribution and Doppler flow
fields, these observations are the key inputs to helioseismic inversions. The power of helioseismology
for probing the interior of the Sun has been proven by observations from views along the Sun-Earth line
(Christensen-Dalsgaard, 2002; Basu and Antia, 2008), using both ground-based (e.g., Elsworth et al.,
1994; Harvey et al., 1996) and space-based (e.g. Gabriel et al., 1997; Kosovichev et al., 1997) observing
platforms.

In particular, global helioseismology, which studies the Sun’s resonant modes manifesting as solar
surface oscillations, revealed the Sun’s internal structure and rotation as never before. The “tachocline”,
a boundary layer between the rigidly-rotating core and differentially-rotating convective envelope was
deduced, and the variation of this differential rotation with latitude and depth probed (Thompson et al.,
2003; Christensen-Dalsgaard and Thompson, 2007).

By observing wave packets rather than resonant modes, local helioseismology provides another tool
for imaging the time-varying structure and flows for local areas of the Sun (Gizon et al., 2010). For
example, ring-diagram analysis measures distortions of the power spectrum of acoustic wave fields due
to flows (Hill, 1988; Schou and Bogart, 1998). Time-distance analysis (Duvall et al., 1993; Kosovichev,
1996) determines sub-surface structure and flows by examining correlations between different points on
the surface: note that both ends of a ray path must be resolved, so that single-vantage observations are
necessarily limited to shallow waves and thus near-surface structures. Finally, holography infers sub-surface
inhomogeneities from perturbations of the acoustic wave field, and has been used to examine structure
below sunspots as well as the emergence of active regions on the far side of the Sun (Lindsey and Braun,
1997; Chang et al., 1997). In contrast with global helioseismology, local helioseismology has the power to
study how the solar structure and dynamics vary with longitude, and to distinguish differences between the
northern and southern hemispheres.

In addition to helioseismology, observations of surface Doppler velocities and correlation tracking of
magnetic features have been used to study meridional circulation, torsional oscillations, and supergranule
patterns (Howe, 2009; Rieutord and Rincon, 2010). These, along with observations of magnetic flux
emergence over solar-cycle time scales provide inputs to surface-flux-transport and dynamo models
(Mackay and Yeates, 2012).

Despite the strides made over the past two decades, important open questions about solar interior structure
and flows remain. Helioseismology and photospheric measurements have provided a tantalizing glimpse of
multi-cell flow patterns, with variation in both radius and latitude; however, different methods have given
different results (Hanasoge et al., 2015). In particular, because of the geometric limitations of the SEL
vantage, there is uncertainty about the polar structure and flows, and about the strength and distribution of
polar magnetic fields.

These represent critical observational constraints on solar dynamo models. They are particularly
significant to the popular Babcock-Leighton/flux transport dynamo paradigm, as the cyclic reversals
of polar fields in those models is sensitive to the structure of the high-latitude meridional flow, and to the
magnetic flux budget associated with the transport and evolution of magnetic fields over the solar cycle
(Charbonneau, 2010; Hathaway, 2015). They also are relevant to understanding the fundamental physics
of convection and its role in the dynamo. For example, observations from multiple vantages may reveal
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important differences in the structure and transport between polar and equatorial convective modes that
determine global mean flow properties (Miesch, 2005) (see also discussion in Section 5 regarding polar
complexities ripe for discovery).

Extra-SEL observations complement existing SEL observations in multiple ways (Table 1). Multiple
views increase surface coverage and help with disentangling different modes, improving signal-to-noise
for both global and local helioseismic methods. They enable time-distance analysis of longer ray paths,
probing deeper below the solar surface to resolve large-scale convection, giant cells, and possibly even the
tachocline itself. Moving away from the SEL provides longitudinal coverage, yielding a more complete
view of surface flow patterns and a comprehensive view of magnetic flux emergence and evolution. Finally,
observing from higher latitudes gives a direct view of polar fields and flows, and breaks north-south
symmetries. To make progress on the open questions on the solar dynamo, extra-SEL observations
are needed to resolve solar surface-to-interior flows and magnetic fields as a function of longitude,
latitude, and depth, and over the solar cycle. The polar vantage is particularly helpful because of
the critical information on polar fields and flows that it provides.

Open Science
Question

What are the solar surface/interior flow and magnetic field patterns vs. longitude, latitude and depth, and how
do they constrain dynamo models?

Measurements
Needed 1) Full-disk Doppler vector magnetographs (photosphere)

Benefits from
extra-SEL

vantage
(assumes

existence of
complementary

SEL
observations)

Polar Quadrature Far-side

Helioseismic inversions able to probe deeper yes (1) yes (1) yes (1)

Comprehensive view of flux emergence and evolution yes (1) yes (1) yes (1)

Polar fields and flows directly observed; North-South
symmetry broken

yes (1) no no

Table 1. Solar interior and dynamo studies enabled by extra-SEL observations.

3.2 Solar atmosphere: global connections

In addition to providing an upper boundary on the solar interior, Doppler magnetographs of the
photosphere provide the lower boundary on the heliosphere. Global models, ranging from potential-field-
source-surface extrapolations (e.g., Wang and Sheeley, 1990; Arge et al., 2003) to magnetohydrodynamic
simulations (e.g., Tóth et al., 2005; Riley et al., 2012) use photospheric observations to simulate the
magnetic fields of the solar corona and heliosphere.

The single SEL vantage is a significant limitation, however. Foreshortening affects both the poles and
the East/West limbs. Magnetic fields on the far-side of the Sun are not seen at all, until they rotate into
view. As a result, global magnetic boundary conditions on models cannot represent any single time, and
indeed incorporate measurements taken over multiple days or even weeks. Standard synoptic maps are
made up of an average in which each longitude is weighted towards observations taken when that longitude
is at disk center (Hoeksema and Scherrer, 1986). Alternatively, “synchronic” methods weight the entire
map towards a single time, making use of flux-transport models and data assimilation (Worden and
Harvey, 2000; Schrijver and DeRosa, 2003; Arge et al., 2010; Hickmann et al., 2015). Multiple views
clearly are of great benefit to providing a synchronic view, as was shown in Figure 2 using EUV STEREO
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observations. They are also important for obtaining a complete picture of magnetic flux emergence: this is
critical for CME studies, since most occur in the 24 to 48 hours after new flux emerges. The addition of
magnetograph measurements from a quadrature (L5) viewpoint is expected to significantly improve global
magnetic simulations (Mackay et al., 2016), as well as to improve modeling of the heliosphere (Pevtsov
et al., 2016).

Flux-transport models operating over solar-cycle time scales have also been used to model the evolution
of polar magnetic fields. It is difficult to validate such models, however. Although the approximately seven-
degree inclination of the Sun’s rotational axis with respect to the ecliptic plane means that observations
from the Earth catch a glimpse of each solar pole once per year, they are still viewed from a very large
angle, making accurate measurements of the polar photospheric magnetic fields extremely difficult (Petrie
and Low, 2005). Tsuneta et al. (2008) used high-resolution spectropolarimetric observations from the
Solar Optical Telescope on board Hinode to resolve magnetic structures at the poles during a time of
maximum polar inclination relative to the Earth, finding concentrated patches of strong field. A comparison
of the average magnetic flux implied by these high-resolution measurements to photospheric magnetic
synoptic maps implies that the polar fields may be significantly underestimated, which could also explain
inconsistencies with measurements of the open magnetic flux in the heliosphere (Linker et al., 2017).

In general, there remain substantial uncertainties about the photospheric magnetic boundary (Riley et al.,
2014). This affects not just global models but also magnetic models of particular coronal structures (e.g.,
active regions, prominences...) that are also sensitive to uncertainty in the magnetic boundaries (De Rosa
et al., 2009). In addition to center-to-limb foreshortening issues, vector magnetic measurements from a
single viewpoint possess intrinsic ambiguities (Semel and Skumanich, 1998). These hamper our ability to
determine the three-dimensional coronal magnetic field, and hence to investigate the roles of stored magnetic
energy, magnetic helicity, and topology in solar eruptions. Coronal plasma and polarimetric measurements
can be used to address such limitations by providing independent measurements for validation and/or
optimization of coronal magnetic models (Savcheva et al., 2013; Malanushenko et al., 2014; Gibson
et al., 2016). However, the optically-thin corona is under-resolved by a single line of sight; multiple
vantages enable more comprehensive tomographic and/or stereoscopic methods (Kramar et al., 2006,
2013, 2014; Aschwanden et al., 2015).

Modeling coronal structures observed at the limb is also fundamentally limited by the fact that
observations of the underlying on-disk magnetic boundary cannot be co-temporal, whereas observations
from the pole or quadrature enable simultaneous study of limb and disk. This is particularly valuable
for analyzing source regions of the solar wind using multiwavelength spectroscopy: both limb and disk
observations are used to quantify the properties at the corona, and then the science is maximized via
complementary in-situ solar-wind observations (including composition measurements). These include
both solar wind transient structures and the ambient solar wind from coronal holes. Since EUV and UV
spectrographs can only measure line-of-sight velocities, previous observations of the solar wind outflow in
polar coronal holes with the SUMER spectrograph on SOHO (Hassler et al., 1999, Figure 3) have been
limited at the poles. A polar mission could achieve direct measurements–both on-disk and in-situ–that
explore fast solar wind sources and related structures, such as polar plumes associated with polar coronal
holes (Deforest et al., 1997; Hassler et al., 1997), free from the effects of the foreshortening that has been
inherent in observations to date (McIntosh et al., 2006).

Not only are there open questions about the global heliosphere and the localized coronal magnetic
structures that are solar-wind source regions, but there are also questions about the nature of interactions
between such local and global magnetic fields. One of the most tantalizing findings of multi-viewpoint
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Figure 3. Line-of-sight velocity structures observed by the SUMER instrument on SOHO show correlation
of outflow velocity with chromospheric network structure within coronal holes both at mid-latitudes
(bottom) and at high latitudes (top) (Hassler et al., 1999) As can be seen in the figure, observations of
the detailed structure of solar wind outflow at the poles is made difficult by foreshortening, and would be
significantly improved by out-of-the-ecliptic observations.

imaging is the evidence for long-range interactions between eruptive events occurring over the span of days
across a full solar hemisphere (Schrijver and Title, 2011; Titov et al., 2012, 2017). While the subject of
“sympathetic” flaring and remote triggering of flares or eruptions has been discussed for decades in the
literature, it can not be unambiguously resolved without synoptic 360◦ coverage of the corona. Similarly,
large-scale waves associated with eruptions often have global properties that require longitudinal coverage
(e.g., Thompson and Myers, 2009; Olmedo et al., 2012).

Extra-SEL observations thus complement existing SEL observations in multiple ways (Table 2). They
improve coverage of the boundary of the heliosphere and of the birth-to-death evolution of solar structures,
including global interactions. More viewpoints also help vector magnetic field disambiguation and model
optimization/validation, as well as stereoscopic/tomographic reconstructions of 3D coronal magnetic
fields, thus yielding key information about magnetic energy, helicity, and topology. Finally, simultaneous
observations of structures at the limb and of the boundary beneath them allows comprehensive studies
of the coronal structures that are the source of the solar wind. To make progress on the open questions
on the global connections of the solar atmosphere, extra-SEL observations are needed for better
coverage and disambiguation of the vector magnetic boundary and for multi-vantage observations
of optically-thin structures. The polar vantage is particularly important to resolve uncertainty in

This is a provisional file, not the final typeset article 8



Gibson et al. New Views on the Sun

the magnetic boundary condition and solar-wind source regions at high latitudes, with implications
for the open magnetic flux in the heliosphere.

Open Science
Question

What is the structure of the global coronal/heliospheric magnetic field? What are the source regions of the solar
wind? How is magnetic energy stored/released in eruption, and what is role of helicity/topology? How do local
and global solar magnetic fields interact?

Measurements
Needed

(1) Full-disk Doppler vector magnetographs (photosphere)
(2) Chromospheric spectropolarimeters
(3) Full-Sun multiwavelength coronal imagers
(4) Multiwavelength coronal spectrometers
(5) Polarimetric coronagraphs
(6) White-light/multiwavelength coronagraphs
(7) Heliographic imagers (HIs) with polarizers
(8) In-situ solar wind measurements

Benefits from
extra-SEL

vantage
(assumes

existence of
complementary

SEL
observations)

Polar Quadrature Far-side

Better coverage of global magnetic boundary; *Better
constraints on contribution of polar fields to heliospheric

open flux

yes* (1; 8) yes (1) yes (1)

Magnetic vector boundary 180◦ disambiguation yes (1 - 2) yes (1 - 2) no

More cotemporal lines of sight to reconstruct 3D coronal
structures

yes (3 - 6) yes (3 - 6) no

Boundary/limb view of structures observed
simultaneously; solar-wind source regions connected to

in-situ measurements; global interactions
comprehensively observed

yes (1 - 6) yes (1 - 6) no

Table 2. Solar atmosphere/global connections studies enabled by extra-SEL observations.

3.3 Solar wind and transients: evolution and interactions

As discussed in Section 2, STEREO revolutionized heliospheric physics by providing consistent, spatially
resolved imaging of the inner heliosphere with coverage from the Sun to 1 AU. When viewing from the
extra-SEL, the STEREO heliospheric imagers can observe CIRs and CMEs en route to Earth without
interruption (Figure 4), enabling studies of their evolution and interactions, and naturally feeding an
increasingly sophisticated space-weather research field (see further discussion in Section 4.

While the STEREO mission demonstrates that we can indeed image the solar wind and its major
components, it has left us with many unanswered questions. With regards to CMEs, heliospheric imaging
analyses provide some indications of CME rotational evolution en route to Earth (e.g., Isavnin et al.,
2014) and multiple cases of CME-CME interactions (Lugaz et al., 2017, and references therein), but it
is hard to establish the reliability and general applicability of these results due to the long integration
times and low spatial resolution of the current imagers on STEREO. Projection effects, long lines of sight
through overlapping structures, and potentially complex internal morphology complicate the interpretation.
Evolutionary effects such as ambient plasma pileup can also modify the brightness distribution around the
transient, and skew triangulation or 3D reconstruction results. This is particularly relevant to longitudinal
deflections (Wang et al., 2004; Isavnin et al., 2014), as their study relies almost exclusively on imaging
analysis. Extra-SEL/SEL coronagraph and heliospheric imagers are needed with better sensitivity, and with
polarization capabilities to localize plasma in 3D (DeForest et al., 2016). For maximum scientific return
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Figure 4. Snapshot of an Earth-directed CME from the STEREO-Behind imagers while crossing the L5
point (02/13/2010 3:29 UT). The figure is a composite of the fields of view (FOVs) of all SECCHI imagers.
The CME is in the HI1-B FOV at this time. The Earth is bright and saturates a few columns in the HI2-B
FOV. The faint broad front of a preceding CME can be discerned in HI2-B.

these need to be coupled with the complementary SEL/extra-SEL in-situ measurements during CME-CME
(or equally, CME-CIR) interactions.

Existing observations of the corona and inner heliosphere have also provided us with tantalizing clues
that the laminar flow of the slow solar wind, revealed by the familiar streamer structure in coronagraph
images, breaks into a more turbulent flow beyond 15-20 Rs (DeForest et al., 2014). This is the height
range where the wind may become super-Alfvenic, according to most models (e.g., Katsikas et al., 2010).
This is also the height, however, where current observations transition from a coronagraph to a heliospheric
imager with lower spatial resolution and longer integration times. It is, therefore, unclear whether the
change in the solar wind appearance is due to instrumental limitations or reflects a true change in the nature
of the solar wind. In-situ measurements of the interplanetary magnetic field (IMF) in the corona, soon to be
provided by the Parker Solar Probe (Fox et al., 2016) (Section 6.1, will go a long way towards answering
this issue. This will be done, however, over relatively limited spatial and temporal ranges.

Extra-SEL heliospheric observations complement existing SEL observations in multiple ways (Table
3). Both polar and quadrature viewpoints allow imaging of Earth-intersecting transient structures, and
also permit in-situ measurements of structures imaged from the SEL. In so doing they shed light on the
nature of solar-wind/transient interactions, and enable important monitoring of space weather (see Section
4). Capturing the large scale structure of the Alfvenic surface and its interplay with the outflowing solar
plasma in a synoptic manner particularly benefits from the polar viewpoint. This viewpoint, unavailable
even to the Solar Orbiter mission which will only reach 34◦ above the ecliptic (Müller et al., 2013)
(Section 6.1), comprehensively reveals both the radial and longitudinal evolution of the solar wind and
transient structures propagating through it (Figure 5). It is particularly good for capturing the formation
and evolution of CIRs and shocks in a continuous fashion and for investigating the magnetic connectivity
across large swaths of space. To make progress on the open questions on CME/CIR propagation,
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their interactions and the role and nature of the ambient solar wind, we need spatially resolved
coverage of the inner heliosphere–both in-situ and (critically) imaging–at temporal scales matching
the evolutionary timescales of these phenomena (tens of minutes to hours), and from multiple
vantage points. The polar vantage is particularly beneficial because of the wide coverage and unique
perspective it provides.

4 SPACE-WEATHER SIGNIFICANCE OF EXTRA-SUN-EARTH-LINE
OBSERVATIONS

In addition to all that may be gained scientifically from extra-SEL observations, there are clear benefits to
such measurements for space-weather prediction and monitoring.

First of all, global coverage enables analysis of active longitudes (de Toma et al., 2000), which have
been connected to particularly strong and sustained space-weather activity (Castenmiller et al., 1986;
Bai, 1987; McIntosh et al., 2015). Similarly, longitudinal coverage is important for monitoring the
development and evolution of long-lived low-latitude coronal holes, which can be the source of repeating
high-speed solar wind streams that drive periodic geomagnetic, upper atmosphere, and radiation belt
responses (Gibson et al., 2009). The benefits extend to irradiance measurements, which are limited near
the solar limbs. Monitoring irradiance variations from a quadrature viewpoint would improve the short-term
(7+ days) forecast accuracy of thermospheric and ionospheric density (Vourlidas, 2015), important for

Figure 5. Snapshot of the heliosphere, on 2/14/2018 00:00 UT, from an ENLIL model run at the
Community Coordinated Modeling Center. The normalized density is shown. Left panel: Polar view
showing one CME and two CIRs. Earth is magnetically connected to the incoming CME. The interaction
of the CME and a CIR is evident in this view. Right panel: Meridional cut at the location of Earth. It
approximates the view from a heliospheric imager in Earth quadrature.
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Open Science
Question How do transients evolve and interact with the ambient solar wind as they move through the heliosphere?

Measurements
Needed

(6) White-light/multiwavelength coronagraphs
(7) Heliographic imagers (HIs) with polarizers
(8) In-situ solar wind measurements

Benefits from
extra-SEL

vantage
(assumes

existence of
complementary

SEL
observations)

Polar Quadrature Far-side

More lines of sight to reconstruct 3D solar-wind
structures

yes (6; 7) yes (6 - 7) no

Complementary in-situ probing and remote imaging of
solar wind/transient evolution

yes (7 - 8) yes (7 -8) no

Longitudinal structure of Alfven surface and of CMEs,
CIRs, and shocks revealed

yes (6 - 7) no no

Table 3. Solar-wind/heliospheric transient studies enabled by extra-SEL observations

satellite collision avoidance analyses and military applications. The current 7+ day forecasts lie outside the
acceptable range of many users, especially around the maximum of solar activity (Vourlidas, 2017). The
additional benefits of irradiance measurements from a polar viewing spacecraft would be less significant,
since most irradiance variation occurs at active region latitudes, which are still close to the limb of a polar
viewer. (However, see Section 5 for discussion of discovery irradiance science from the polar vantage).

Beyond this, limb observations from the poles or quadrature provide a variety of information to improve
space-weather forecasts. Before the eruption, these views enhance predictive capability for impending
SEL-directed CMEs. For example, the presence of a tear-drop morphology in coronal cavities seen at
the limb has been shown to indicate near-term eruption (Forland et al., 2013). Once the eruption occurs,
these views improve forecasts of CME geo-effectiveness. The so-called “stealth” CMEs (Robbrecht et al.,
2009) have no obvious coronal sources when viewed from the SEL, but such Earth-directed CMEs would
be readily detected from a coronagraph at a polar or quadrature vantage. These extra-SEL viewpoints also
more accurately measure CME speed and mass (and hence, kinetic energy). For example, the accuracy
of the CME time of arrival at Earth has improved to 6-7 hours from 24 hours in the pre-STEREO era
(Colaninno et al., 2013). There are early indications that the momentum flux of the Earth-directed part of
a CME front, measured from a extra-SEL coronagraph, can be extrapolated to 1 AU and used to predict
Dst variations (Savani et al., 2013).

Of utmost importance, extra-SEL configurations seem to be our best option for quantifying the magnetic
field entrained in the CME. We note that from the poles, the line-of-sight field is Bz, the North-South
component known to greatly impact geoeffectiveness. Line-of-sight Bz could potentially be obtained, even
mapped, via Faraday rotation measured from beacon signals sent from spacecraft distributed in and away
from the ecliptic (e.g., Jensen et al., 2013). Or, as recent analysis of a simulated CME has demonstrated,
coronal IR spectropolarimetry has the potential to observe line-of-sight magnetic field strength at the core
of an erupting CME (Figure 6 (Fan, 2018).

In addition to improved forecast capability, extra-SEL measurements are the best means for monitoring
evolution of Earth-intersecting CMEs (and CIRs) via heliospheric imaging, as discussed in Section 3.3.
The STEREO HIs demonstrated that it is possible to spatially resolve and track CMEs to 1 AU (Davis
et al., 2009; DeForest et al., 2013), but they did so at the expense of long exposure and low spatial
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Figure 6. The North-South component of a simulated, erupting CME (Fan, 2018) as viewed from the solar
North pole. a) Simulation ground truth Bz in equatorial plane. b) Bz inverted from ratio of forward-modeled
(Gibson et al., 2016) Stokes circular polarization V and intensity I. c) Bz values with signal-to-noise ratio
> 3, based on a 1.5 meter telescope,12” spatial resolution, and 5 minute integration. This is essentially the
same as Fan (2018) Figure 12c, except without the background scatter included in that paper appropriate
to ground-based telescopes. d) Same except for 20 cm telescope and 60” resolution. e) Same except for 10
cm telescope and 124” resolution. Note that the sign and strength of the pre-eruptive core field is captured
for all.

resolution. Future measurements with improved sensitivity and polarization capability could resolve the
inner structure of CMEs, measure the standoff distance between CMEs and their shocks, investigate in
detail the interaction between CMEs and establish whether CMEs distort, rotate, and/or change propagation
direction.

For many of these measurements, the optimal viewpoint lies outside the ecliptic plane (see Table 4.
Imaging of the inner heliosphere from a polar viewing spacecraft along the solar rotation axis should
provide direct evidence of the Parker spiral structure of the heliosphere, allow the precise mapping of CIRs
and CMEs relative to them, and should enable study of the angular momentum coupling between the Sun
and CMEs. Moreover, as Figure 5 shows, full 360◦ longitudinal coverage from a polar viewing spacecraft
provides space-weather monitoring for all the planets and spacecraft in the inner heliosphere, not just the
Earth-Moon system and L1. This benefit will become more and more important as human exploration
expands out into the heliosphere. In particular, future human exploration to Mars and beyond will require
heliosphere-wide space weather monitoring, forecasting, and early-warning outside of the SEL. A polar
viewing spacecraft would be able to provide this capability.

Finally, as described in Section 3.2, extra-SEL line observations of the photospheric and chromospheric
magnetic field improves the boundary condition used in models of both localized source regions and
the global solar wind through which transients propagate. Multi-viewpoint measurements of coronal
properties can be used to further constrain and drive operational models, which can then be validated
with in-situ measurements at the Earth. Paired with extra-SEL coronagraph/heliospheric imaging and
tracking of the CME core, extra-SEL magnetic observations and data-constrained models could
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lead to a comprehensive system for forecasting CME impact (e.g., Savani et al., 2015, 2017). The
quadrature vantage provides improved irradiance measurements enabling better modeling of the
thermosphere/ionosphere. The polar vantage provides benefits to both Earth and planetary space-
weather prediction and monitoring.

Open Science
Question

How can we improve prediction of space weather on time scales of days, weeks, months, or longer? How can
we improve forecasts of space-weather impacts at the Earth and throughout the solar system?

Measurements
Needed

(1) Full-disk Doppler vector magnetographs (photosphere)
(2) Chromospheric spectropolarimeters
(3) Full-Sun multiwavelength coronal imagers
(4) Multiwavelength coronal spectrometers
(5) Polarimetric coronagraphs
(6) White-light/multiwavelength coronagraphs
(7) Heliographic imagers (HIs) with polarizers
(8) In-situ solar wind measurements
(9) Faraday rotation (e.g., beacon signals between spacecraft and Earth)
(10) Irradiance monitors

Benefits from
extra-SEL

vantage
(assumes

existence of
complementary

SEL
observations)

Polar Quadrature Far-side

Longitudinal coverage enabling monitoring of
developing coronal holes, active longitudes, etc. that

drive “seasons” of space weather

yes (1; 3;
6)

yes (1; 3; 6) yes (1; 3; 6)

Improved modeling and monitoring of Earth-intersecting
transients

yes (1 - 9) yes (1 - 9) no

Improved modeling and monitoring of
planet-intersecting transients

yes (1 - 9) sometimes
(1 - 9)

sometimes
(1 - 9)

Line-of-sight measurements of southward-directed
magnetic field

yes (5; 9) no no

Improved irradiance measurements no yes (3; 10) no

Table 4. Space-weather prediction and modeling enabled by extra-SEL observations

5 DISCOVERY SPACE

Opportunities for discoveries by extra-SEL spacecraft abound. Previous experience shows that these include
unique ways to find and observe celestial objects such as comets and asteroids: Ulysses, for example,
crossed through the tail of one of the comets that was imaged–and detected in-situ–by STEREO (Fulle
et al., 2007; Neugebauer et al., 2007). Extra-SEL viewpoints also can extend the observations of variable
stars and improve the rate of discovery of exoplanets (Wraight et al., 2011).

The polar view in particular offers unprecedented opportunities for discovery. Stellar activity cycles
are monitored and related to the Sun’s activity cycle through measurements, for example the Ca K line
integrated over the solar disk as viewed from the Sun-Earth line (Wilson, 1978; Baliunas et al., 1995;
Egeland et al., 2017). How might these solar measurements change if obtained from the poles? What are
the implications for solar twins, which may be observed from a variety of angles relative to their rotation
axes? In general, observing from the poles could enable an unprecedented characterization of solar spectral
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irradiance, with as-yet-to-be-determined impact on our understanding of the Sun as a star, as well as on our
understanding of stellar activity in general (Shapiro et al., 2014, 2016).

Beyond this–we have never observed the solar poles with imagers. What will we see? The semi-annual
view of high latitudes arising from the tilt of the Earth’s orbit provides us with some sense of what we
might expect in polar flow patterns, as does SEL observations of high-latitude large-scale magnetic features
structures (Figure 7A-B). However, based on recent images from planetary missions, such as Juno and
Cassini (Figure 7C-D), direct observations of the poles is likely to reveal far more complex and beautiful
structure than anything we have been able to piece together to date.

6 FUTURE MISSIONS AND GAP ANALYSIS

We have shown that extra-SEL observations have potential for transformative progress in a range of science
areas. Tables 1 - 4 describe the measurements needed from the various extra-SEL vantages that would
lead to such progress. We now discuss plans for future missions, and consider how the gaps in our current
observational capability may be filled.

6.1 Near-term extra-SEL missions: Solar Orbiter and Parker Solar Probe

The upcoming Solar Orbiter (SO) mission, which will orbit the sun between 0.28–0.7 AU and reach
a maximum inclination of ≈ 30 − 34◦ out of the ecliptic by the end of its extended mission in 2029-
2030, will provide the first detailed mapping of the sun’s polar magnetic fields (Müller et al., 2013). In
addition, Parker Solar Probe (PSP) will explore the outer corona and inner heliosphere with very rapid
solar encounters, as close as 9.86 solar radii from the center of the Sun (Fox et al., 2016). Figure 8 shows
sample orbits for both spacecraft.

PSP is scheduled for launch in July-August of 2018 while SO will be launched no earlier than February
2020. PSP will probe the corona from “within” it, starting at a perihelion of 35.7 solar radii in November
2018 (already twice as close to the Sun as Helios ever went) and reaching its minimum perihelion in late
2024. SO, on the other hand, will climb out of the ecliptic to a maximum of ≈ 30 − 34◦ latitude during
its extended mission in 2029-30, and will observe the latitudinal structure of the solar wind and energetic
particles within 0.28 - 0.8 AU and measure the polar magnetic fields for the first time.

Although we expect PSP and SO to lead to groundbreaking advances in several of the open science
questions discussed above, the two missions will not fully address the open questions listed above for
several reasons. PSP and SO are designed to meet specific science objectives–pertaining to the acceleration,
heating, and structure of the solar wind–via encounter mission designs. This means that the instruments
operate for limited amounts of time per orbit (10 days for PSP, 30 days for the SO remote sensing payload).
Other complications include restricted data volumes due to the limited number of downlinks and onboard
storage, data latency on the order of months, and angular configurations between the two spacecraft and
Earth that are continuously changing.

These operational constraints reduce the length of polar magnetic field observations by SO, for example,
to only a few days per orbit (up to ten days per orbit by the end of the extended mission).. The shortness
of this time period will limit helioseismology studies (Löptien et al., 2015). The data volumes and short
observing periods also do not allow for synoptic observations or consistent 360◦ coverage of the solar
atmosphere from the SO imagers. PSP imaging is restricted to a wide field heliospheric imager providing
context for the in-situ payload but has no disk imaging (for thermal reasons).

Frontiers 15



Gibson et al. New Views on the Sun

Figure 7. (a) Ring-diagram analysis of near-surface flow anomalies indicate spiral flow patterns at the
poles (Bogart et al., 2015). (b) Observations of large-scale, high-latitude magnetic features spanning
multiple decades (McIntosh et al., 1976; McIntosh, 2003) similarly demonstrate spiral structure at the
poles (Webb et al., 2018) (red=negative coronal hole, blue=positive coronal hole, grey = negative polarity
quiet Sun, light blue = positive polarity quiet Sun, dark green=filaments). (c) A view centered on Saturn’s
north pole. North is up and rotated 33◦ to the left. The image was taken with the Cassini spacecraft
wide-angle camera on June 14, 2013 using a spectral filter sensitive to wavelengths of near-infrared light
centered at 752 nanometers. (Source: NASA JPL) (d) Multiple images combined show Jupiter’s south
pole, as seen by NASA’s Juno spacecraft from an altitude of 32,000 miles. The oval features are cyclones.
(Credit: NASA/JPL - Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles).

It is undeniable that both missions will provide unique data and views of the coronal and heliospheric
environment, and enhance the sophistication of multi-viewpoint analysis, far beyond STEREO. However,
they are necessarily limited to the science achievable by the instruments they have on board, and in their
ability to obtain the sustained measurements needed for longer-time-frame studies and space-weather
monitoring (see Table 4). We now consider how next-generation extra-SEL mission concepts might address
the remaining gaps between the observational capabilities of our existing and planned missions, and the
outstanding science questions raised in this paper.
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Figure 8. Interesting viewpoints shown as in Figure 1, with Parker Solar Probe (PSP; red) and Solar
Orbiter (SO; green) orbits overlaid. The dashed orange line represents a sample “diamond” orbit with four
spacecraft (grey cubes) 90◦ apart, reaching as high as 75◦ heliolatitude (Vourlidas, 2017). The colored
patches on the 1AU sphere are the same as in Figure 1

6.2 Missions for the Future

Several white papers describing extra-SEL mission concepts were submitted during the last Solar and
Space Physics Decadal Survey activies, and were also summarized in the 2014 Heliophysics Roadmap.
Variations of those concepts were submitted for the Next Generation Solar Physics Mission call for ideas.
The majority of these white papers are not in the published literature, but a subset, with emphasis on
helioseismology science, is discussed by (Sekii et al., 2015). Here, we present some representative concepts
for mission architectures that emphasize sustained measurements, and so fill most, if not all, of the gaps
indicated by Table 5 (depending on instrument payload).

6.2.1 Quadrature mission

The idea of a mission to the Lagrange L5 point has been explored in several concepts in recent years
(Webb et al.; Gopalswamy et al., 2011; Vourlidas, 2015; Lavraud et al., 2016). It has obvious advantages
for space-weather research and forecasting, such as more accurate speed measurements for Earth-directed
CMEs and increased coverage of solar irradiance and the photospheric magnetic boundary for operational
models. It also addresses many of the open science questions that particularly benefit from sustained
measurements, such as probing the solar interior more deeply, and observing the evolution of structures
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Measurements needed Vantages
(1) Full-disk Doppler vector magnetographs (photosphere)
(2) Chromospheric spectropolarimeters
(3) Full-Sun multiwavelength coronal imagers
(4) Multiwavelength coronal spectrometers
(5) Polarimetric coronagraphs
(6) White-light/multiwavelength coronagraphs
(7) Heliographic imagers (HIs) with polarizers
(8) In-situ solar wind measurements
(9) Faraday rotation (e.g., beacon signals between spacecraft and Earth)
(10) Irradiance monitors

Polar (P), Quadrature (Q),
Far-side (F)

Benefits from extra-SEL vantage
(assumes existence of

complementary SEL observations)

Measurements and
vantages (see above) STEREO SO PSP

Helioseismic inversions probe
deeper 1 P/Q/F no limited no

Better coverage of global magnetic
boundary; Comprehensive view of

flux emergence and evolution
1 P/Q/F no limited no

Polar fields and flows directly
observed; Magnetic vector
boundary disambiguated

1 - 2 P; 1 - 2 P/Q no yes (1) no

Input to coronal 3D modeling 3 - 6 P/Q yes (3; 6) yes (3; 4; 6) no

More lines of sight to reconstruct
3D solar wind structures 6 - 7 P/Q yes (6 -

7’) yes (6 - 7’)
limited
(7’)

Simultaneous boundary/limb views
of CMEs and precursors; global

interactions comprehensively
observed

1 - 6 P/Q yes (3; 6) limited
(1; 3; 4; 6)

no

Solar-wind source regions
connected to heliospheric imaging

and in-situ measurements
1 - 8 P/Q yes (3; 6;

7’)
yes (1; 3; 4;

6; 7’; 8)
yes (7’; 8)

Longitudinal structure of the
Alfven surface and of CMEs, CIRs,

and shocks revealed
6; 7 P no no no

Improved monitoring and
modeling of Earth-intersecting
(planet-intersecting) transients.

1 - 9
P/Q

(P/Q/F)

limited (3;
6; 7’)

limited (1; 3;
4; 6; 7’; 8)

limited
(7’; 8)

Longitudinal coverage enabling
monitoring “seasons” of space

weather
1; 3; 6
P/Q/F

limited
(3)

limited (1; 3;
6) no

Improved irradiance measurements
enabling better measurements of

the thermosphere/ionosphere
3; 10 Q

limited
(3) no no

Line-of-sight measurement of
southward-directed magnetic field 5; 9 P no no no

Table 5. Gap Analysis

over time, as well as 3D modeling of CMEs and their source regions. Such analyses depend upon the
existence of complementary SEL observations.

From the mission design perspective, injection towards the L5 (and L4) points is relatively straightforward
but requires significant ∆V and hence a large rocket. There is considerable trade space: orbit around L5 vs.
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stationed at L5, drift vs. direct injection, and travel time vs. mission length, to name a few. Indeed, it is also
possible to put something at 90 − 120◦ off the SEL utilizing a launch into a geo-transfer orbit and electric
propulsion.

An L5 concept was studied for the Solar and Space Physics Decadal Survey, and estimated to cost above
600M(FY 14) for a standard spacecraft with multiple instruments. An operational space-weather mission
to L5 could be cheaper if it had a reduced payload–at minimum, a coronagraph and a magnetograph–as
was the case studied by Trichas et al. (2015). As of the writing of this paper, the European Space Agency
(ESA) is in Phase-A development for an operational L5 mission.

An innovative approach based on a fractionated spacecraft concept was also proposed by (Liewer, 2014).
Instead of a monolithic spacecraft carrying a multitude of instruments, the authors proposed the launch of a
set of cubesats or minisats each carrying a single telescope along with a minisat carrying a standard antenna
to relay communications from the constellation to Earth. The advantages include 1) lower launch costs
through extensive use of hosted payload opportunities, 2) measurement persistence, since failed cubesats
or telescopes could be replaced with another launch, and 3) redundancy, since a single spacecraft failure
would not take down the whole constellation. The disadvantages include 1) the necessarily reduced size
of instrument payloads, leading to restrictions on aperture size and other performance metrics, 2) data
acquisition limitations – since cubesats have less powerful radios and smaller antennas, and 3) the low
Technology Readiness Levels (TRLs) for intra-spacecraft communications and of interplanetary cubesats.

In summary, a mission to L5 or similar quadrature viewpoint seems to be the obvious next step after
STEREO. The benefits of this vantage for an operational space-weather mission are particularly strong.
The benefits for basic research are also high; however, as we will now discuss, a polar vantage achieves
these same benefits, and more.

6.2.2 Solar Polar Imager (Single and constellation)

Imaging of the solar poles has been a long-held desire of the solar community ever since the cancellation
of the imaging sister payload to Ulysses. Mission concepts have been proposed for the ESA large mission
competition (e.g., POLARIS Appourchaux et al., 2009, 2014), and the Chinese space program (SPORT
Xiong and Liu, Y, 2014). The primary scientific objective of these missions is the unique opportunities
they provide for measuring the evolving polar magnetic field and for investigating sub-surface flows
beneath the poles via helioseismology. As Table 5 demonstrates, further unique science is achieved from
a polar vantage pertaining to the longitudinal structure of the coronal streamer belt, Alfven surface, and
transient/solar wind interactions. Moreover, the space-weather and basic-research open questions pertaining
to 3D modeling of CMEs and their source regions and solar wind interactions are also achieved from a
polar vantage. Finally, the polar vantage provides the most opportunities for discovery as discussed in
Section 5.

Achieving high inclinations has traditionally been the stumbling block for the realization of such polar
missions. A Jupiter gravity assist, as was done for the Ulysses mission, remains the most practical method
for going over the poles. However, this approach also implies that aphelion occurs near Jupiter, resulting
in a very long orbit with only a small fraction of time spent close to the Sun. The SPORT approach adds
Venus-Jupiter gravity assists to reduce the perihelion to about 0.7 AU and shorten the orbit somewhat.
However, time above the poles (defined here as above 60◦) remains a small portion of the overall orbit. The
window of science operations can be extended for orbits within 0.8 AU but the Venus gravity alone limits
the inclination maximum to about 34◦, with chemical propulsion. For this reason, many solar-polar mission
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concepts use solar sails (150m x 150m) to achieve high inclinations, presenting challenges associated with
the large size and low TRL of solar-sail technology.

Given the high scientific value and significant opportunity for discovery of a solar polar imaging mission,
new mission concepts continue to be developed (Hassler et al., 2018b,a). In particular, advances in new
spacecraft technology and instrument miniaturization are enabling new mission concepts to achieve the
core science objectives of a polar imaging mission. For example, a new version of a solar polar mission
(Solar Polar Explorer (SOLPEX)) has been developed (Newmark, 2018) using a combination of a Jupiter
gravity assist and solar electric propulsion (e.g., NASA Evolutionary Xenon Thruster (NEXT) thrusters)
to achieve a high inclination (> 75◦) orbit with an eventual ≈ 1 year period (final orbit is 0.5 x 1.5 AU).
SOLPEX would contain a suite of remote sensing (Doppler magnetograph, EUV imager, coronagraph, and
heliospheric imager) and in-situ instruments, and could complete three passes over each of the solar poles
within a nine year mission lifetime, with each pass lasting > 38 days above 60◦.

A wide range of instrumentation could reveal new information from a polar view (Table 5). The
fractionated approach might lend itself well to a polar strategy, with minisats carrying smaller instruments
(e.g., magnetograph, EUV imager, and/or compact coronagraph) that would provide continuous 360◦

coverage. Larger missions could carry other, more state-of-the-art instrumentation to fill in the other science
gaps that we have identified. Such an approach would allow the participation of multiple international
space agencies, so that over time, a truly global perspective on the Sun and heliosphere would be achieved.

A final consideration: a single spacecraft in polar orbit would still spend a finite time over the poles. Truly
sustained polar observations could be achieved by the deployment of a constellation of spacecraft. For
example, four spacecraft spaced 90◦ apart in diamond formation (Figure 8 and Vourlidas (2017)) would
provide continuous, complete 360◦ coverage of the solar atmosphere, from the photosphere to the corona
and beyond (depending on the payload). Such a concept would also reduce the need for coverage in the
ecliptic plane.

7 CONCLUSIONS

Extra-SEL vantages present unique opportunities for answering the outstanding science questions of
heliophysics, for improving space-weather monitoring and prediction, and for revealing new discoveries
about our Sun and solar system. All three of the vantages considered in this paper–polar, quadrature,
and far-side–are of interest. It should be noted, however, that Tables 1 - 5 considered these vantages
independently, while a mission such as STEREO obtains both quadrature and and far-side vantages, and
similarly, a mission in a high-latitude orbit may view the far side or quadrature as it crosses the ecliptic.
Moreover, in Tables 1 - 5 we assumed only the availability of complementary SEL observations; clearly, if
both quadrature and far-side measurements were available, many of the two-view benefits ascribed only to
the quadrature-SEL or polar-SEL combinations would be realized.

Bearing this in mind, it is nevertheless a worthwhile exercise to consider the science enabled by the three
vantages independently as we have done, and in particular to focus on the benefits of sustained observations
from these vantages. The far-side and quadrature vantages have the advantage of being relatively easy
to access, and the use of a Doppler magnetograph from both would enable global magnetic coverage
and deeper helioseismic inversions. The quadrature vantage would also provide a second line of sight on
structures visible along the SEL, enabling 3D reconstructions. A sustained view would allow constant
monitoring of transients directed along the SEL, providing substantial space-weather operational benefit.
The polar vantage is the most compelling overall, as it would achieve essentially the same capabilities as
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from quadrature, and also reveal the poorly observed poles as never before. For this reason, it is essential
that investment in and demonstration of the technologies needed for polar missions are prioritized over the
next few years. In this way, the groundwork may be laid so that by the next decadal survey, community
proposals for solar polar missions will not only be scientifically justified, but technologically robust.

CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS

MJT, SEG, LAR, MV, AT, and SWM contributed to the initial conception and design of the paper. SEG
wrote the main draft and coordinated inputs; AV, DMH, LAR, MJT, MV, and JN contributed text and
figures. All of the authors read and critically revised the paper, approved the final version, and agreed to be
accountable for all aspects of the work.

FUNDING

NCAR is supported by the National Science Foundation. A.V. is supported by NNX16AH70G under the
STEREO MO&DA and NRL grant N00173-16-1-G029.

ACKNOWLEDGMENTS

We thank Yuhong Fan for providing the simulation data cube used in Fig. 6, and Mark Miesch for many
helpful discussions. We also thank Ricky Egeland for internal HAO review of the manuscript.

REFERENCES

Appourchaux, T., Auchère, F., and Antonucci, E. e. (2014), in M. MacDonald, ed., Advances in Solar
Sailing, volume 259 (Springer: Berlin, Heidelberg), volume 259

Appourchaux, T., Liewer, P., Watt, M., Alexander, D., Andretta, V., Auchère, F., et al. (2009),
POLAR investigation of the Sun - POLARIS, Experimental Astronomy, 23, 1079–1117, doi:10.1007/
s10686-008-9107-8

Arge, C. N., Harvey, K. L., Hudson, H. S., and Kahler, S. W. (2003), Narrow coronal holes in Yohkoh soft
X-ray images and the slow solar wind, in M. Velli, R. Bruno, F. Malara, and B. Bucci, eds., Solar Wind
Ten, volume 679 of American Institute of Physics Conference Series, volume 679 of American Institute
of Physics Conference Series, 202–205, doi:10.1063/1.1618577

Arge, C. N., Henney, C. J., Koller, J., Compeau, C. R., Young, S., MacKenzie, D., et al. (2010), Air
Force Data Assimilative Photospheric Flux Transport (ADAPT) Model, Twelfth International Solar
Wind Conference, 1216, 343–346, doi:10.1063/1.3395870

Aschwanden, M. J. (2011), Solar Stereoscopy and Tomography, Living Reviews in Solar Physics, 8, 5,
doi:10.12942/lrsp-2011-5

Aschwanden, M. J., Schrijver, C. J., and Malanushenko, A. (2015), Blind Stereoscopy of the Coronal
Magnetic Field, Solar Phys., 290, 2765–2789, doi:10.1007/s11207-015-0791-z

Bai, T. (1987), Distribution of flares on the sun - Superactive regions and active zones of 1980-1985,
Astrophys. J., 314, 795–807, doi:10.1086/165105

Frontiers 21



Gibson et al. New Views on the Sun

Baliunas, S. L., Donahue, R. A., Soon, W. H., Horne, J. H., Frazer, J., Woodard-Eklund, L., et al. (1995),
Chromospheric variations in main-sequence stars, Astrophys. J., 438, 269–287, doi:10.1086/175072

Balogh, A., Beek, T. J., Forsyth, R. J., Hedgecock, P. C., Marquedant, R. J., Smith, E. J., et al. (1992), The
magnetic field investigation on the ulysses mission instrumentation and preliminary scientific results,
A&AS, 92, 221

Bame, S., McComas, D., Barraclough, B., Phillips, J., Sofaly, K., Chavez, J., et al. (1992), The ulysses
solar-wind plasma experiment, Astron. Astrophys. Supp. Series, 92, 237

Basu, S. and Antia, H. M. (2008), Helioseismology and solar abundances, Physics Reports, 457, 217–283,
doi:10.1016/j.physrep.2007.12.002

Bird, M. K., Volland, H., Howard, R. A., Koomen, M. J., Michels, D. J., Sheeley, N. R., Jr., et al.
(1985), White-light and radio sounding observations of coronal transients, Solar Phys., 98, 341–368,
doi:10.1007/BF00152465

Bogart, R. S., Baldner, C. S., and Basu, S. (2015), Evolution of Near-surface Flows Inferred from
High-resolution Ring-diagram Analysis, Astrophys. J., 807, 125, doi:10.1088/0004-637X/807/2/125
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Performance and Early Results from the GOLF Instrument Flown on the SOHO Mission, Solar Phys.,
175, 207–226, doi:10.1023/A:1004911408285

Gibson, S., Kucera, T., White, S., Dove, J., Fan, Y., Forland, B., et al. (2016), Forward: A toolset for
multiwavelength coronal magnetometry, Front. Astron. Space Sci., 3

Gibson, S. E., Kozyra, J. U., de Toma, G., Emery, B. A., Onsager, T., and Thompson, B. J. (2009), If the
sun is so quiet, why is the earth still ringing? a comparison of two solar minimum intervals, J. Geophys.
Res., 114, A09105, doi:10.1029/2009JA014342

Gizon, L., Birch, A. C., and Spruit, H. C. (2010), Local Helioseismology: Three-Dimensional Imaging of
the Solar Interior, Ann. Rev. Astron. Astrophys., 48, 289–338, doi:10.1146/annurev-astro-082708-101722

Gloeckler, G., Geiss, J., Balsiger, H., Bedini, P., Cain, J. C., Fisher, J., et al. (1999), The solar wind ion
composition spectrometer, Astron. Astrophys. Supp. Series, 92, 267

Gopalswamy, N., Davila, J. M., St. Cyr, O. C., Sittler, E. C., Auchère, F., Duvall, T. L., et al. (2011),
Earth-Affecting Solar Causes Observatory (EASCO): A potential International Living with a Star
Mission from Sun-Earth L5, Journal of Atmospheric and Solar-Terrestrial Physics, 73, 658–663,
doi:10.1016/j.jastp.2011.01.013

Gurnett, D. A., Anderson, R. R., and Odem, D. L. (1975), The University of Iowa Helios solar wind plasma
wave experiment /E 5a/, Raumfahrtforschung, 19, 245–247

Hanasoge, S., Miesch, M. S., Roth, M., Schou, J., Schüssler, M., and Thompson, M. J. (2015), Solar
Dynamics, Rotation, Convection and Overshoot, Space Science Reviews, 196, 79–99, doi:10.1007/
s11214-015-0144-0

Frontiers 23



Gibson et al. New Views on the Sun

Harvey, J. W., Hill, F., Hubbard, R. P., Kennedy, J. R., Leibacher, J. W., Pintar, J. A., et al. (1996), The
Global Oscillation Network Group (GONG) Project, Science, 272, 1284–1286, doi:10.1126/science.272.
5266.1284

Hassler, D., Newmark, J., Velli, M., and Murphy, N. (2018a), in Proceedings of Solar Wind 15 Conference,
Brussels, Belgium, 18-22 June 2018

Hassler, D., Velli, M., Murphy, N., and Newmark, J. (2018b), in TESS Conference (21-24 May 2018)
Hassler, D. M., Dammasch, I. E., Lemaire, P., Brekke, P., Curdt, W., Mason, H. E., et al. (1999), Solar

Wind Outflow and the Chromospheric Magnetic Network, Science, 283, 810, doi:10.1126/science.283.
5403.810

Hassler, D. M., Wilhelm, K., Lemaire, P., and Schühle, U. (1997), Observations of Polar Plumes with the
SUMER Instrument on SOHO, Solar Phys., 175, 375–391, doi:10.1023/A:1004959324214

Hathaway, D. H. (2015), The Solar Cycle, Living Reviews in Solar Physics, 12, 4, doi:10.1007/lrsp-2015-4
Hickmann, K. S., Godinez, H. C., Henney, C. J., and Arge, C. N. (2015), Data Assimilation in the ADAPT

Photospheric Flux Transport Model, Solar Phys., 290, 1105–1118, doi:10.1007/s11207-015-0666-3
Hill, F. (1988), Rings and trumpets - Three-dimensional power spectra of solar oscillations, Astrophys. J.,

333, 996–1013, doi:10.1086/166807
Hoeksema, J. T. and Scherrer, P. H. (1986), An atlas of photospheric magnetic field observations and

computed coronal magnetic fields: 1976-1985, Solar Phys., 105, 205–211, doi:10.1007/BF00156388
Howard, R. A., Moses, J. D., Vourlidas, A., Newmark, J. S., Socker, D. G., P., P. S., et al. (2008), Sun earth

connection coronal and heliospheric investigation (secchi), Space Science Reviews, 136, 67
Howe, R. (2009), Solar Interior Rotation and its Variation, Living Reviews in Solar Physics, 6, 1, doi:10.

12942/lrsp-2009-1
Isavnin, A., Vourlidas, A., and Kilpua, E. K. J. (2014), Three-Dimensional Evolution of Flux-Rope CMEs

and Its Relation to the Local Orientation of the Heliospheric Current Sheet, Solar Phys., 289, 2141–2156,
doi:10.1007/s11207-013-0468-4

Issautier, K., Le Chat, G., N., M.-V., Moncuquet, M., Hoang, S., MacDowall, R. J., et al. (2008),
Electron properties of high-speed solar wind from polar coronal holes obtained by ulysses thermal noise
spectroscopy: Not so dense, not so hot, Geophys. Res. Lett., L19101, doi:0.1029/2008GL034912

Jackson, B. V. (1985), Imaging of coronal mass ejections by the HELIOS spacecraft, Solar Phys., 100,
563–574, doi:10.1007/BF00158445

Jensen, E. A., Bisi, M. M., Breen, A. R., Heiles, C., Minter, T., and Vilas, F. (2013), Measurements of
Faraday Rotation Through the Solar Corona During the 2009 Solar Minimum with the MESSENGER
Spacecraft, Solar Phys., 285, 83–95, doi:10.1007/s11207-012-0213-4

Kaiser, M. L., Kucera, T. A., Davila, J. M., St. Cyr, O. C., Guhathakurta, M., and Christian, E. (2008), The
STEREO Mission: An Introduction, Space Science Reviews, 136, 5–16, doi:10.1007/s11214-007-9277-0

Katsikas, V., Exarhos, G., and Moussas, X. (2010), Study of the solar Slow Sonic, Alfvén and Fast
Magnetosonic transition surfaces, Advances in Space Research, 46, 382–390, doi:10.1016/j.asr.2010.05.
003

Kosovichev, A. G. (1996), Tomographic Imaging of the Sun’s Interior, Astrophys. J. Lett., 461, L55,
doi:10.1086/309989

Kosovichev, A. G., Schou, J., Scherrer, P. H., Bogart, R. S., Bush, R. I., Hoeksema, J. T., et al. (1997),
Structure and Rotation of the Solar Interior: Initial Results from the MDI Medium-L Program, Solar
Phys., 170, 43–61, doi:10.1023/A:1004949311268

This is a provisional file, not the final typeset article 24



Gibson et al. New Views on the Sun
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Helioseismology, Space Science Reviews, 196, 285–302, doi:10.1007/s11214-015-0142-2

Semel, M. and Skumanich, A. (1998), An ambiguity-free determination of J Z in solar active regions,
Astron. Astrophys., 331, 383–391

Shapiro, A. I., Solanki, S. K., Krivova, N. A., Schmutz, W. K., Ball, W. T., Knaack, R., et al. (2014),
Variability of Sun-like stars: reproducing observed photometric trends, Astron. Astrophys., 569, A38,
doi:10.1051/0004-6361/201323086

Shapiro, A. I., Solanki, S. K., Krivova, N. A., Yeo, K. L., and Schmutz, W. K. (2016), Are solar brightness
variations faculae- or spot-dominated?, Astron. Astrophys., 589, A46, doi:10.1051/0004-6361/201527527

Sheeley, N. R., Jr., Herbst, A. D., Palatchi, C. A., Wang, Y.-M., Howard, R. A., Moses, J. D., et al.
(2008), SECCHI Observations of the Sun’s Garden-Hose Density Spiral, Astrophys. J. Lett., 674, L109,
doi:10.1086/529020

Solomon, S. C., McNutt, R. L., Jr., Gold, R. E., Santo, A. G., and MESSENGER Team (2001), The
MESSENGER Mission to Mercury, in M. Robinbson and G. J. Taylor, eds., Workshop on Mercury:
Space Environment, Surface, and Interior, volume 1097, volume 1097, 94

Thernisien, A., Vourlidas, A., and Howard, R. A. (2009), Forward Modeling of Coronal Mass Ejections
Using STEREO/SECCHI Data, Solar Phys., 256, 111–130, doi:10.1007/s11207-009-9346-5

Thompson, B. J. and Myers, D. C. (2009), A Catalog of Coronal “EIT Wave” Transients, Astrophys. J.
Supp., 183, 225–243, doi:10.1088/0067-0049/183/2/225

Thompson, M. J., Christensen-Dalsgaard, J., Miesch, M. S., and Toomre, J. (2003), The Internal Rotation
of the Sun, Ann. Rev. Astron. Astrophys., 41, 599–643, doi:10.1146/annurev.astro.41.011802.094848

Thompson, W. T. (2006), Coordinate systems for solar image data, Astron. Astrophys., 449, 791–803,
doi:10.1051/0004-6361:20054262

Titov, V. S., Mikic, Z., Török, T., Linker, J. A., and Panasenco, O. (2012), 2010 August 1-2 Sympathetic
Eruptions. I. Magnetic Topology of the Source-surface Background Field, Astrophys. J., 759, 70,
doi:10.1088/0004-637X/759/1/70

Frontiers 27



Gibson et al. New Views on the Sun
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