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Abstract Solar eruptions are the most spectacular events in our solar system
and are associated with many different signatures of energy release including
solar flares, coronal mass ejections, global waves, radio emission and acceler-
ated particles. Here, we apply the Coronal Pulse Identification and Tracking
Algorithm (CorPITA) to the high cadence synoptic data provided by the Solar
Dynamic Observatory (SDO) to identify and track global waves observed by
SDO. 164 of the 362 solar flare events studied (45 %) are found to have associated
global waves with no waves found for the remaining 198 (55 %). A clear linear
relationship was found between the median initial velocity and the acceleration
of the waves, with faster waves exhibiting a stronger deceleration (consistent
with previous results). No clear relationship was found between global waves
and type II radio bursts, electrons or protons detected in-situ near Earth. While
no relationship was found between the wave properties and the associated flare
size (with waves produced by flares from B to X-class), more than a quarter
of the active regions studied were found to produce more than one wave event.
These results suggest that the presence of a global wave in a solar eruption is
most likely determined by the structure and connectivity of the erupting active
region and the surrounding quiet solar corona rather than by the amount of free
energy available within the active region.
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1. Introduction

Global waves in the low solar corona (commonly called “EIT waves”) were first
observed using the Extreme ultraviolet Imaging Telescope (EIT; Delaboudiniére
et al., 1995) onboard the Solar and Heliospheric Observatory (SOHO; Domingo,
Fleck, and Poland, 1995). Initially identified as fast-mode MHD waves, (e.g.,
Dere et al., 1997; Moses et al., 1997; Thompson et al., 1998), this interpretation
was questioned following observations of stationary bright fronts at coronal
hole boundaries and anomalously low measured kinematics (cf. Delannée and
Aulanier, 1999). This led to the development of two distinct families of theories
to describe this phenomenon; that they are alternatively waves (either linear
or non-linear waves) or pseudo-waves (i.e., a brightening resulting from the
restructuring of the coronal magnetic field during the eruption of a coronal
mass ejection). Note that a more detailed overview of the different theories
proposed to explain the “EIT wave” phenomenon may be found in the recent
reviews by Liu and Ofman (2014) and Warmuth (2015). However, the advent
of high-cadence observations with the launch of the Solar Terrestrial Relations
Observatory (STEREOQ; Kaiser et al., 2008) and Solar Dynamics Observatory
(SDO; Pesnell, Thompson, and Chamberlin, 2012) spacecraft has begun to refine
our understanding of this phenomenon. Recent work comparing the predictions
made by each of these theories with observations suggests that they are best
described as large-amplitude waves initially driven by the rapid lateral expansion
of a CME in the low corona, before propagating freely (cf. Long et al., 2017).
Although our understanding of the origin and physical properties of global
waves has progressed since they were first observed, their relationship with other
solar phenomena such as solar flares, CMEs, solar energetic particles (SEPs) and
radio bursts continues to be a source of investigation. Global “EIT waves” have
traditionally been studied using single event case-studies, making it difficult
to draw general conclusions about the nature of their relationship with these
phenomena. Recognising this issue, a catalogue of global “EIT waves” observed
by SOHO/EIT was assembled by Thompson and Myers (2009), with each wave
event identified ‘by-eye’ and classified using a quality rating system. This cata-
logue was subsequently used to investigate the link between global “EIT waves”
and other solar phenomena including type II radio bursts, solar flares and CMEs
(e.g., Biesecker et al., 2002; Warmuth and Mann, 2011). More recent work has
extended this systematic approach to observations from the Extreme UltraViolet
Imager (EUVI; Wuelser et al., 2004) onboard STEREO (Muhr et al., 2014;
Nitta et al., 2014) and SDO/AIA (Nitta et al., 2013). In each of these cases
the global waves were identified using semi-automated techniques; Muhr et al.
(2014) defined the direction into which the wavefront propagated and used a
perturbation profile technique to fit the leading edge of the wavefront while
Nitta et al. (2013, 2014) used 2-d intensity stack plots produced by a series of
arc sectors to visually identify the leading edge of the wavefront. Each approach
requires manual input from the user, potentially making them susceptible to user
bias. In addition, the catalogues created using observations from SOHO/EIT
and STEREO/EUVI may have been subject to the lower temporal resolution of
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both instruments, which could have led to a systematic under-estimation of the
kinematics of the global waves (c¢f. Byrne et al., 2013).

Despite these issues, the catalogues developed by Thompson and Myers (2009)
(in particular), Muhr et al. (2014) and Nitta et al. (2013) have been widely used
to study the relationship between global waves and other solar phenomena such
as type Il radio bursts, solar flares and CMEs. Although initially ambiguous, the
relationship between global waves and CMEs is now well defined, with Biesecker
et al. (2002) showing that every wave has an associated CME, although not every
CME has an associated wave. Type II radio bursts have long been observed in
the solar corona associated with solar eruptions (e.g., Payne-Scott, Yabsley, and
Bolton, 1947; Wild and McCready, 1950) and it was generally accepted that
both type II bursts and Moreton-Ramsey waves (first observed in the 1960’s by
Moreton, 1960; Moreton and Ramsey, 1960) were signatures of the same driving
process (Uchida, 1968). However, the much lower measured speeds and other
discrepancies between Moreton—Ramsey and global “EIT waves” complicated
extending this assumption to “EIT waves”. Instead, Klassen et al. (2000) found
that 90 % of type II bursts identified in 1997 were associated with “EIT waves”.
In contrast, Biesecker et al. (2002) used the wave event list compiled by Thomp-
son and Myers (2009) to show that only 29 % of the waves in the list had an
associated type II radio burst. This percentage was supported by an analysis of
60 global EUV waves observed by STEREO/EUVI and studied by Muhr et al.
(2014), who found that 22 % of the global waves studied had an associated
type II radio burst. However, a study of 138 global waves identified by Nitta
et al. (2013) using SDO/AIA found that 54 % of the waves were associated with
a type II radio burst. The exact nature of the connection between global waves
and type II radio bursts therefore remains anomalous.

The energy release during a solar eruption (either as a flare or through ac-
celeration of a CME) can also result in solar energetic particles (SEPs) being
accelerated into the heliosphere. SEPs are known to fall into two general cate-
gories, impulsive (typically associated with particle acceleration in a small area
such as a solar flare) and gradual (associated with particle acceleration over a
broad area, such as from a CME) as described by Reames (1993). Release of
gradual SEPs tends to occur close to the Sun, where the CME shocks as it
propagates outwards into the heliosphere (e.g., Kahler, 1994). This process can
also occur in the low corona, with the lateral expansion of the CME shock front
accelerating SEPs (e.g., Rouillard et al., 2012) as it propagates through the low
corona. The result of this impulsive lateral expansion is best observed as a global
EUV wave (c¢f.. Long et al., 2017). Despite this, there is no clear relationship
between global EUV waves and SEP events, with most previous work tending
to focus on individual case study events (e.g., Kozarev et al., 2011; Prise et al.,
2014). The measured SEP detection time is then typically used to infer the time
and location that the particles were released on the Sun, which can be compared
to the tracked evolution of the global wave in the low corona (e.g., Rouillard
et al., 2012; Prise et al., 2014). This approach was also used by Miteva et al.
(2014) to study 179 SEP events between 1997 and 2006, finding that protons
detected in-situ were related to the global EUV waves, but that there was no
correlation between the waves and electrons.

SOLA: main.tex; 8 November 2017; 1:32; p. 3



D.M. Long et al.

Quality (%
40 yéO) 80

Time &)UT&
06:20:48 06:41:27 07:00:48 07:18:48 0 20

1000

500

Solar-Y (arcsec)
o

-500F

-1000|

1 1 1 1 1 b 1 1 1 1 1

-1000 -500 O 500 1000 -1000 -500 0 500 1000
Solar-X (arcsec) Solar-X (arcsec)

Figure 1. Panel a; Temporal evolution of the global wave associated with the solar eruption
on 2011 June 7 derived using the CorPITA code with colour showing time since 06:20:48 UT.
Panel b; The quality rating (c¢f. Long et al., 2014) associated with each arc sector.

Here we describe the application of an automated algorithm to observations
from SDO/AIA to identify and characterise global EUV waves and relate them to
other solar phenomena such as flares, CMEs, SEP events and type II radio bursts.
The various data-sets and how the measurements were made are described in
Section 2, with the results of the statistical analysis described in Section 3. The
results are then discussed and some conclusions drawn in Section 4. Note that
the complete table used for the analysis described here is also included in the
Appendix.

2. Observations and Data Analysis

The list of global EUV waves identified by Nitta et al. (2013) was used as a
starting point for this investigation to maximise the number of global wave
events and associated phenomena that could be studied in detail. In each case,
the location of the flare associated with each eruption was used as the source of
the global wave, with the start time of the flare used as the reference point for
analysing the EUV, radio and in-situ data.

2.1. Global Wave Characterisation and Analysis

The events listed in the wave list of Nitta et al. (2013) were processed using the
Coronal Pulse Identification and Tracking Algorithm (CorPITA; Long et al.,
2014). CorPITA is an automated code designed to identify, track and analyse
global EUV waves using science quality data from the SDO/ATA 211 A passband.
Although global waves have previously been characterised using each of the
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eight extreme ultraviolet (EUV) passbands observed by SDO (Liu et al., 2011),
previous work has shown that they are best observed using either the 193 A or
211 A passbands (Long et al., 2014). The 211 A passband was used here as it
observes slightly hotter plasma than the 193 A passband and as a result does
not have as much emission from the background corona, making the global wave
easier to identify and characterise.

Percentage base difference images are used to identify the wave pulse, with
the pre-event image defined as the image 2 minutes prior to the start time of
the flare. A series of 360 arc sectors, each of 10° wide and offset by 1°, centered
on the flare location are then used to define a series of intensity profiles. The
wave pulse is identified using these intensity profiles and fitted using a Gaussian
function which allows the position (i.e., the centroid of the Gaussian), peak
intensity and full-width at half-maximum to be recorded in each arc sector for
each time step. The CorPITA code then identifies the pulse in each arc sector
by finding the largest section of contiguous data-points exhibiting increasing
distance away from the source point. This section of data-points is then fitted
using a quadratic function which provides an estimate of the initial pulse velocity
and acceleration. The temporal variation in pulse distance from the source point
for the 2011 June 7 event is shown in Figure la. Although this technique ensures
a consistent approach to estimating the initial pulse velocity and acceleration of
the pulse, the accuracy can be affected by sudden jumps in pulse position (e.g.,
due to the algorithm becoming confused by bright points or small-scale loop
oscillations). The accuracy of the measurement in each arc sector is therefore
quantified in each case using a quality rating system, with the pulse scored
according to the number of images used to identify it, the fitted initial velocity
and acceleration and the uncertainty in identifying the pulse (c¢f. Long et al.,
2014). Figure 1b shows the estimated quality rating for each of the arc sectors
studied for the 2011 June 7 event. A wave is then identified by CorPITA if more
than 10 adjacent arc sectors detect a moving pulse with a quality rating greater
than 60%. The measured parameters of the wave identified by CorPITA are
then stored for future use (as listed in Table 1). In addition to the location of
the source, start time of the wave and fitted kinematics, CorPITA also records
the number of arcs in the largest segment in which CorPITA has identified a
wave (Num. arcs) and the central arc of this segment in degrees clockwise from
solar north (Central arc angle). Note that Central arc angle uses the central angle
of the segment to indicate the mean direction of the identified wave pulse, and
does not necessarily correspond to the highest rated arc within that segment.

Although a more detailed description of the CorPITA technique may be
found in the paper by Long et al. (2014), it should be noted that the code
has since been updated to address issues found during an initial attempt at the
work described here. Data is now downloaded in 20 minute chunks to speed
up processing rather than an initial 10 minute chunk followed by single image
downloading as before. This increase in time over which to search for a wave
provides a better opportunity to identify the wave pulse, particularly for gradual
flare events where the starting time of the wave and starting time of the flare
may not be well correlated. The code has been rewritten for stability and to
ensure a more rigorous analysis, while the colour table has also been updated to
make it more accessible and easier to understand (as shown in Figure 1).
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Figure 2. Proton flux (top row) and resulting velocity dispersion plots (bottom row) for a
wave with an associated SEP event (2010 August 14; left column) and without an associated
SEP event (2011 January 27; right column). SEP onset is detected automatically in each
case (see main text), with the onset time in each energy band used to construct the velocity
dispersion plot and estimate the time of particle acceleration on the Sun.

2.2. Solar Energetic Particle Analysis

The SEP events associated with each global wave event were identified using
measurements from the 3D EESA/PESA (Lin et al., 1995) instrument onboard
the Wind spacecraft. The data for electrons of energies between 1.3 keV and
~27 keV and protons of energies between ~195 keV and x4.4 MeV were exam-
ined for 24 hours around (8 hours before and 16 hours after) the start time of
the associated solar flare. In each case, the data were obtained from the NASA
CDAW website!.

The presence of an SEP event in each energy band was determined by first
smoothing the flux data using a Savitsky-Golay filter to reduce the effect of
small-scale variations. The flux was then examined to find the point at which it
began to increase rapidly, with data prior to this point defined as the background.
The onset times were then calculated using a Poisson cumulative sum (CUSUM)
method (c¢f. Huttunen-Heikinmaa, Valtonen, and Laitinen, 2005). The CUSUM
method is widely used in industry to identify changes in running processes, with

Thttp://cdaweb.sci.gsfc.nasa.gov/index.html/
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a Poisson-CUSUM approach used if the data has a Poisson distribution. This
approach works by cumulating the difference between an observed count Y; and
a reference value,

— Hd — Ha (1)
In(pa) = In(pa)’

where p, is the mean of the background flux and pg is i, plus twice the standard
deviation of the background flux. If this cumulation exceeds a threshold value h
(chosen to minimise the effect of small point-to-point fluctuations while retaining
sensitivity to large-scale particle events), then an out of control signal is given.
In this case, a particle event was identified by looking for 300 out of control
signals in a row. The onset time of particle detection at the spacecraft was then
defined by the time of the first out of control signal.

Once an onset time was determined for each energy level, a velocity dispersion
analysis was used to determine the release time of the particles from the Sun
(e.g. Reames, 2009). This was also used to confirm the presence of an SEP event,
with an event defined to have occurred if the velocity dispersion analysis gave
a realistic physical release time from the Sun, i.e., the release time was before
the onset time. An example of two events with realistic and unrealistic release
times is shown in Figure 2. In the realistic case, the onset time at each energy
can be identified by the sudden increase in particle flux, which corresponds to
a valid estimate of release time and travel distance using the velocity dispersion
plot. However, no such increase may be discerned in the unrealistic case, leading
to the physically impossible estimates of release time and travel distance in
the resulting velocity dispersion plot. A commonly used technique, it should
be noted that velocity dispersion analysis assumes both that particles at all
energies are released at the same time and that particle scattering is energy
independent. However, energy dependent particle scattering can greatly affect
particle arrival times, meaning that propagation through the heliosphere is not
a simple trajectory along the Parker Spiral. Therefore, to ensure consistency,
each event was initially processed using this approach with the resulting plots
examined ‘by-eye’ for confirmation.

2.3. Identification and Characterisation of Type II Radio Bursts

The type II radio bursts associated with each global wave event were identified
using the daily lists of radio bursts collated by the Space Weather Predic-
tion Centre located at the National Oceanic and Atmospheric Administration
(NOAA/SWPC). A window 90 minutes either side of the start time of the global
wave was used to look for associated events in the NOAA/SWPC list. This choice
of time window was motivated by the fact that type II radio bursts can be seen up
to 15 minutes before or after the first instance of an EUV wave observation (Park
et al., 2013; Warmuth, 2010; Miteva et al., 2014); the larger time window used
here was chosen to account for any anomalous events. For each candidate radio
burst associated with a global wave, the SWPC list provides an associated start
time, end time, observatory used to make the observation, frequency range of the
burst and estimated drift speed. It should be noted that the drift speeds used in

SOLA: main.tex; 8 November 2017; 1:32; p. 7



D.M. Long et al.

this analysis are the values provided by NOAA/SWPC, which are obtained using
the standard approach of converting drift rate to speed via a density model of
the solar corona (Mann and Classen, 1995; Miteva and Mann, 2007). However, it
should be remembered that the absolute values of these bursts are known to be
subject to large uncertainty given the often arbitrary nature of the models and
the differences between individual observatories (Magdalenié¢ et al., 2008, 2012).
This estimation also assumes a radially propagating shock driver, whereas it
has been shown that shocks can often propagate non-radially (Mancuso and
Raymond, 2004; Magdalenié et al., 2012). Nonetheless, given the goal of trying
to find a statistical correlation between radio burst properties and various other
phenomena, we believe that the uncertainties associated with using the quoted
type II burst speeds should be acknowledged but are not of major concern.

3. Results

Due to limitations inherent to the approach taken by CorPITA, it was not
possible to analyse all of the events identified by Nitta et al. (2013) as they
originated either too close to or beyond the solar limb. CorPITA requires a
source point from which to track the pulse and so it cannot study events that do
not originate on disk. As a result, of the 410 wave events identified by Nitta et al.
(2013), only 362 could be analysed using CorPITA. 164 events were classified as
having global waves by CorPITA, with no waves found for the remaining 198
events. The output from CorPITA for all events studied is listed in Table 1.

3.1. Wave kinematics

The global waves identified here exhibited a wide variety in their kinematics,
both from arc-to-arc within each event and from event-to-event. For a given
event, CorPITA is designed to examine each arc sector separately, allowing the
directional variation in pulse position to be identified and studied. Although
this provides a more accurate estimate of how the wave evolves, it makes event-
to-event comparison difficult as it raises the question of which velocity and
acceleration values should be used. For every event studied here, the initial
velocity and acceleration were calculated for each arc by first identifying the
largest section of contiguous data-points exhibiting increasing distance away
from the source point and fitting these points using a quadratic function (as
illustrated in Figure 3 of Long et al., 2014). The median of the initial velocity and
acceleration values across all arc sectors with a sufficiently high quality rating
were then chosen as being most representative of the kinematics of that event.
Panels a and b of Figure 3 show the median initial velocity and acceleration
respectively of all events studied plotted with respect to the peak GOES X-ray
flux of the associated flare in each case. It is clear that there is a broad spread in
both the median initial velocity and acceleration of the waves studied, with the
maximum median initial velocity peaking at ~950 km s~! and the maximum
median acceleration peaking at ~ —750 m s~ 2.

To determine whether the median initial velocity and acceleration of the waves
was most appropriate for comparing events, the maximum initial velocity and
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Figure 3. Relationship between the GOES X-ray flux of the associated flare and the median
initial velocity (panel a), median acceleration (panel b), maximum initial velocity (panel c)
and absolute maximum acceleration (panel d) of the wave measured by CorPITA. Bottom
two panels show the relationship between the median velocity and acceleration of the wave
(panel e) and maximum velocity and acceleration of the wave (panel f).

acceleration of the wave events were also examined. These were taken as the
maximum of the initial velocity and acceleration values derived across all arc
sectors with a sufficiently high quality rating for a given event. Panels ¢ and
d of Figure 3 show the maximum initial velocity and acceleration respectively
of all events studied plotted with respect to the peak GOES X-ray flux of the
associated flare in each case, similar to panels a and b of Figure 3. Although the
maximum initial velocity and acceleration are clustered around ~2000 km s~!
and ~ —2000 m s~2 respectively, there is a much larger spread in both as
apparent from panels ¢ and d of Figure 3.

Finally, the initial velocity and acceleration were plotted against each other for
both the median and maximum values to try and identify any trends comparable
to those previously found by Warmuth (2010), Warmuth and Mann (2011) and
Mubhr et al. (2014). Panel e of Figure 3 shows the median initial velocity plotted
against median acceleration for each event studied. It is possible to identify a
clear trend in this case, with faster (slower) waves exhibiting a stronger (weaker)
negative acceleration. This is consistent with the results of both Warmuth and
Mann (2011) and Muhr et al. (2014) who plotted the initial velocity against
acceleration as well as with Warmuth (2010) who plotted the average velocity
against acceleration. The approach was repeated for the maximum initial velocity
and acceleration (shown in Figure 3f), but consistent with panels ¢ and d, the
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plot shows a much broader spread. Although a slightly decreasing trend can
be discerned, with faster (slower) waves again exhibiting a stronger (weaker)
negative acceleration, this trend is much weaker than that apparent for the
median initial velocity and acceleration data shown in panel e. This suggests
that the maximum initial velocity and acceleration are poor indicators of the
overall wave kinematics and the median initial velocity and acceleration should
be used when trying to characterise a given wave event using a single kinematic
value.

Previous work by Warmuth and Mann (2011) used the wave catalogue of
Thompson and Myers (2009) to suggest that there were three kinematic classes
of global EUV waves. Class 1 referred to initially fast waves with a strong de-
celeration, class 2 waves had moderate and nearly constant speeds while class 3
referred to slow waves with an erratic kinematic profile. The results shown in
Figure 3e are generally consistent with the results of Warmuth and Mann (2011),
but it is not possible to distinguish three independent kinematic classes of global
waves in this case. This may be due to the larger number of events used (164
here compared to 61 for Warmuth and Mann, 2011) or alternatively the higher
cadence of SDO/AIA compared to SOHO/EIT and STEREO/EUVI in Warmuth
and Mann (2011). However, when the data in Figure 3e were fitted using a linear
relation, an intercept of 180 km s~! was found, consistent with the cutoff value
of ~170 km s~! used by Warmuth and Mann (2011) to define the difference be-
tween linear waves and those features possibly due to magnetic reconfiguration.
However, this value was slightly lower than the intercept found by Muhr et al.
(2014) using STEREO/EUVI observations. The consistency between the results
presented here and by Warmuth (2010), Warmuth and Mann (2011) and Muhr
et al. (2014) indicates that these features are large amplitude events as outlined
by Long et al. (2017).

Although the catalogue of Nitta et al. (2013) was used as a starting point for
this work, it is worth noting that the analysis of the pulse kinematics described
here and shown in Figure 3 do not match the results presented in Nitta et al.
(2013). This is most likely due to the different approaches used to identify the
wave pulse and measure its kinematics. Whereas Nitta et al. (2013) tracked
the leading edge of the wavefront in a 2-dimensional time-distance plot, here
a 1-dimensional intensity profile of the wavefront was fitted using a Gaussian,
with the centroid of the Gaussian taken as the position of the wavefront at
each point in time. This approach removes the effect of pulse broadening on
the identified pulse position (see, e.g. Long et al., 2014, for a more detailed
discussion). In addition, both the velocity and acceleration of the pulse were
simultaneoulsy measured here for each pulse using a single quadratic fit to the
temporal variation in pulse position. This is in contrast to Nitta et al. (2013),
who used both linear and quadratic fits independently applied to the temporal
variation in pulse position to estimate the velocity and deceleration of the pulse
respectively.

3.2. Relationship with solar flares and active regions

When global “EIT waves” were first observed there was a lot of discussion
regarding their origin, with the debate focusing on whether they were initially
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Figure 4. Panel a; The location of every flare with an associated wave identified by CorPITA
with colour indicating flare class. Panel b; The relationship between the start time of the flare
as defined by GOES and the time of the first wavefront observed by CorPITA. Panel ¢; The
number of global waves associated with each flare class. Panel d; The relationship between
active regions and global waves.

driven by the associated flare or coronal mass ejection (e.g., Cliver et al., 2005;
Vrsnak et al., 2006). Since then, a general consensus has been reached that they
are initially driven by the rapid lateral expansion of the erupting CME in the
low corona; a conclusion strongly supported by the SDO observations reported
by Patsourakos, Vourlidas, and Stenborg (2010). A detailed discussion of the
predictions made by the different theories and how recent observations support
this conclusion may be found in the recent paper by Long et al. (2017).

As shown in panel a of Figure 4, all of the events studied here originated in
the activity belts, consistent with previous observations (e.g., Muhr et al., 2014).
However, 14 of the events studied had no associated flare. The vast majority of
the waves also tended to start after the start time of the associated flare, as
indicated by panel b of Figure 4, although 10 events studied did start before
the flare. While most of the waves identified were first observed by CorPITA
within 10 minutes of the start of the flare, some were not observed until up to
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Figure 5. Panel a; The relationship between the start time of the CME as defined by the linear
fit to the temporal variation in CME position obtained from the LASCO CDAW catalogue
and the start time of the wave detected by CorPITA. Panel b; The relationship between the
median initial wave velocity measured by CorPITA and the linear starting velocity of the CME
measured by CDAW.

30 minutes after the flare (as defined by the NOAA GOES catalogue). Panel c
of Figure 4 indicates a broad spread in the size of the flares associated with each
wave studied. Although the vast majority of waves were associated with M- and
C-class flares, more than 10 waves were associated with both B- and X-class
flares respectively.

These results suggest that the flare plays little-to-no role in the initiation or
even existence of a wave, indicating that some other criteria must be fulfilled
before a solar eruption produces a wave. While the relationship with CMEs is
examined more closely in Section 3.3, panel d of Figure 4 suggests that the
active region from which the wave originates may be important. Over 25 % of
active regions produced more than one wave during their time on-disk, with two
active regions producing 6 waves each. This suggests that the magnetic structure
of the active region or its relationship with the surrounding quiet solar corona
may determine the ability of the active region to produce a wave during a solar
eruption.

3.3. Relationship with CMEs

A comparison was also made between the identified waves and their associated
coronal mass ejections as identified by the LASCO CDAW catalogue?. Global
waves have historically been strongly associated with CMEs, with Biesecker et al.
(2002) in particular suggesting that every wave has an associated CME while not
every CME has an associated wave. However, a direct comparison between the
on-disk global wave and the erupting CME is complicated by the fact that CMEs

2https://cdaw.gsfc.nasa.gov/CME list/
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are best seen when in the plane of the sky (so when associated with eruptions
close to the limb) whereas global waves are best observed and tracked on-disk.

As shown in Figure 5, there is no clear correlation between the start time
of the global wave and the start time of the associated CME predicted by the
linear fit to the temporal variation in CME position obtained from the LASCO
CDAW catalogue (panel a). Similarly, there is no clear correlation between the
median initial wave velocity and the fitted linear velocity of the CME (panel b).
While initially concerning, both of these results are consistent with our current
understanding of global waves and CMEs and their relationship; a point worth
discussing in more detail.

The CDAW catalogue uses LASCO observations to identify and measure
CMEs and, as a consequence of the location of SOHO/LASCO at the L1 La-
grange point, is biased towards CMEs erupting from the solar limb as seen from
Earth. As a result, CMEs associated with global waves observed by SDO/ATA
tend to be observed as halo CMEs, which are difficult to identify and measure.
The velocity and starting time values used here were also taken from the linear
fits to the temporal variation of the CME distance, with the result that any
acceleration or deceleration of the CME was ignored, which may account for the
spread in projected CME start times. Finally, the predicted mechanism by which
the waves are produced by the lateral expansion of the erupting CME in the low
corona suggests that there should be no direct correlation between the velocity
of the wave and the forward velocity of the CME (which is what is typically
measured when studying CMEs). As a result the lack of any correlation shown
in Figure 5 is to be expected.

3.4. Relationship with Type II radio bursts

With the growing consensus on the interpretation of global coronal waves as
large-amplitude waves initially driven by the lateral expansion of a CME in the
low corona, a natural comparison can be made between global waves and type I1
radio bursts. Type II bursts are strongly associated with MHD shock waves (cf.
Nelson and Melrose, 1985) and as a result the relationship between them and
global waves has long been hypothesised and investigated (e.g., Cliver, Webb,
and Howard, 1999; Biesecker et al., 2002; Nitta et al., 2014). However, their
relationship remains inconclusive.

Despite the strong relationship between type II radio bursts and MHD shock
waves and the interpretation of global EUV waves as large-amplitude or shock
waves, a comparable number of wave events were identified with and without
associated radio bursts. 66 wave events had an associated type II burst, with
98 wave events having no associated type II radio signature detected at Earth,
meaning that 40 % of the waves in our sample have an associated type II burst.
This is higher than the 22 % association rate reported by Muhr et al. (2014), but
comparable to the 43 % association rate reported by Biesecker et al. (2002) for
waves with a high quality rating (>50 % using the classification of Thompson
and Myers, 2009). However, this is is much lower than the 100 % associated rate
between type II bursts and EUV waves with an associated H-a Moreton-Ramsey
wave reported by Warmuth et al. (2004) and Warmuth (2010). It should be noted

SOLA: main.tex; 8 November 2017; 1:32; p. 13



D.M. Long et al.

25 T — T 1000 0 - . LN
Panel a 3 X ad
L]
@ 20 ,I:; 800F « ° 1 ‘?—200-:':2’ o. °
c o, 12} L]
o £ o® Ve 1< eoe o
> = °® = e e
% 15 1= 600F o %%, . < °g.
- g . £
N H ¥, . Panelb ] F-400p e A%, panelc
o 10 1> 400 &8 ° Be ) Be
£ o ".'l < Ce % ° Ce
3 T (L X M e _ | M e
5} 1% 200} ¢, ° Xe | = 800 S X o
0% s NF o ° NF o
0 0 —sool_.°
-40 -20 0 20 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
3t Wave T, — Radio T, (mins) Radio burst drift speed (kms™) Radio burst drift speed (kms™)
50 T T T T
Paneld -
40 Events with Type Il
2 Events without Type ||l
[
3 30
k]
£ 20
£
=3
b4

200 400 600 800
Wave V,gqqn, (kms™)

Figure 6. Panel a; The offset time between the start of the global wave and the associated
type II radio burst. The relationship between the median velocity (Panel b) and median
acceleration (Panel c) of the wave as measured by CorPITA and the drift speed of the type II
radio burst. Panel d; Histogram showing the variation in median wave velocity for wave events
with and without type II radio bursts.

that no comparison was made in this paper between global waves observed in
EUV and H-a passbands; given the relative lack of recent synoptic studies of
Moreton-Ramsey waves in H-a data we leave a more detailed analysis of the
relationship between these two phenomena for a dedicated future work.

As shown in Figure 6d, there is no relationship between the median velocity
of the wave and whether or not it had an associated type II burst, with very
fast wave events exhibiting no type II emission while a significant number of
very slow events had associated radio emission. This is most likely related to
the fact that type II radio burst generation is related to conditions in the upper
corona at > 1.2 Rg (Mann et al., 2003), while the global wave propagates lower
down in the corona (at &~ 70-100 Mm, cf. Kienreich, Temmer, and Veronig, 2009;
Patsourakos and Vourlidas, 2009).

For those events which had an associated type II radio burst, the start of the
radio emission was observed after the start of the wave in the vast majority of
cases (see Figure 6a), similar to the relative start times of waves and radio bursts
reported by Miteva et al. (2014) and Warmuth (2010). This delay between the
start time of the global wave and the associated type II burst is likely due to
the time taken for the disturbance to either become super—Alfvénic (as modeled
by Vrsnak and Lulié¢, 2000), or the time taken for the driver to reach regions of
low ambient Alfvén speed in the corona (Mann et al., 2003; Zucca et al., 2014);
in some cases this can take up to 30 minutes after detection of the wave. The
duration of the radio bursts was also observed to be at most 35 minutes, with
most radio bursts lasting less than 20 minutes, consistent with the lifetime of
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the observed waves. However, a number of events had associated radio emission
which was observed to start prior to the first detection of the global wave,
suggesting that the radio emission in those cases may have been due to either
the rapid expansion of the CME rather than the wave, or the CME driving a
shock radially before any lateral expansion produced the wave. In either case,
the difference in start time of up to 30 minutes between the waves and associated
type II radio bursts means that while they may originate from a common MHD
disturbance in the corona, they most likely belong to spatially separated parts
of this disturbance.

There is also no clear relationship between either the median initial velocity
or acceleration of the identified waves and the drift speed of the associated radio
bursts. Panels b and ¢ of Figure 6 show that most of the events identified tended
to have drift velocities of 0-2000 km s~!, with two notable exceptions in both
cases. Some of the events also had quite high drift velocities of ~2000 km s~!
despite estimated median velocities lower than 200 km s~!. Even when account-
ing for the size of the associated flare, there is still no clear relationship between
median initial wave velocity and drift speed of the associated type II burst,
with the flare size in panels b and c of Figure 6 indicated by the colour of the
data-point.

This lack of a clear relationship between the drift velocity of the type II
burst and the median initial velocity of the identified wave is at odds with the
conclusions of Warmuth (2010), who found a linear relationship between these
parameters. Several individual case studies have also reported a kinematical
relationship between type IIs (e.g., Vrénak et al., 2006; Pohjolainen, Hori, and
Sakurai, 2008; Grechnev et al., 2011; Kozarev et al., 2011; Ma et al., 2011).
However, there may be several reasons for the lack of such a relationship that
we find here. Firstly, as mentioned above, while the type II radio burst and
the global wave are most likely different manifestations of the same shock in the
corona, they may belong to separate parts of this shock, i.e., the wave propagates
laterally or parallel to the solar surface, while the type II burst may propagate
(semi-)radially (Grechnev et al., 2011). Second, there is no guarantee that these
speeds will be the same. In fact, the discrepancy between the type II drift speed
and the wave speed means that expansion of the MHD disturbance is most likely
anisotropic, with no relationship between lateral and radial expansion speed.
Thirdly, a major issue with relating these two speeds concerns the reliability
of the type II speed itself. This speed is derived from one of the many density
models used in radio physics, which are often chosen arbitrarily and may not
represent the density environment of the event (Magdalenié¢ et al., 2008). This
analysis also assumes radial radio source propagation, which may not be the
case. Finally, Warmuth (2010) focussed on global EUV waves with associated
H-a Moreton-Ramsey waves. Given the supposed mechanism by which these
phenomena are thought to be related (i.e., the coronal EUV wave has a suf-
ficiently large downward impulse that allows its footprint to be observed as a
Moreton-Ramsey wave, see, e.g. Warmuth, 2010, 2015, for more details), this
indicates that the waves observed by Warmuth (2010) were large-amplitude
shocks. Although a similar mechanism may have produced the global waves
studied here, these waves may not have been sufficiently strong to produce a
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radio signature. This suggests that a more granular study, focussing on strong
EUV waves with associated H-a Moreton-Ramsey waves might provide a higher
correlation between global EUV waves and type II radio emission (comparable
to Warmuth et al., 2004; Warmuth, 2010).

3.5. Relationship with Solar Energetic Particle events

Similar to the predicted relationship with type II radio bursts, as large-amplitude
and sometimes weakly shocked waves, global waves would be expected to accel-
erate solar energetic particles as they propagate across the Sun. However, of
the 164 events with identified global waves, only 21 were found to have any
evidence of an associated proton event, whereas only 14 events were found to
have any evidence of an associated electron event (of which 12 had an associated
proton event). While there are several probable reasons for this discrepancy, it
is most likely due to a lack of connectivity between the field lines along which
the particles could be accelerated and the spacecraft detecting the particles. In a
simplistic interpretation, only events erupting from solar west would be expected
to have any connectivity with the detecting spacecraft due to the Parker Spiral,
a suggestion consistent with the fact that 19 of the 23 events found here were
associated with flares that originated on the western hemisphere.

However, recent studies have shown that even events on the far side of the
Sun can produce particle detections at Earth, with studies by Rouillard et al.
(2012) and Lario et al. (2016) suggesting that the global waves traveled across
the Sun and eventually encountered field lines connected to Earth/L1. It has
also been shown that particles can be detected despite being produced far from
the footpoint of a magnetic field line connected to the spacecraft as a result
of either super-radial spreading of field lines throughout the corona (e.g. Klein
et al., 2008), or very high levels of lateral diffusion in a turbulent solar wind (e.g.
Laitinen et al., 2016). The large spatial extent of global waves and their ability
to accelerate particles far from the erupting active region therefore suggests
that more SEP events should have been identified. However, only 4 events were
found here that were associated with active regions located in the eastern solar
hemisphere.

This lack of identified events may be due to the configuration of the coronal
magnetic field into which the wave is propagating. Although previous work by
Park et al. (2013, 2015) compared wave propagation to a Potential Field Source
Surface extrapolation of the solar corona to compare the time at which the
wave encountered a connected field line with the inferred SEP release times,
this approach is rarely taken. However, the results described here suggest that
a full understanding of the ability of a global wave to accelerate SEPs must
combine the propagation of the wave with a full understanding of the coronal
and heliospheric magnetic field. Although this approach is beyond the scope of
the statistical path taken here, we hope to return to it in a dedicated future
work.
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4. Discussion and Conclusions

In this manuscript, we have applied the Coronal Pulse Identification and Track-
ing Algorithm to the list of global coronal waves assembled by Nitta et al. (2013)
and compared the output with a variety of other solar phenomena. Of the 410
events identified as waves by Nitta et al. (2013), only 362 could be processed
using this approach due to requirements on the location of the source point of
the wave. Of these 362 events processed, 164 were classified as having associated
global waves, with CorPITA finding no waves for the remaining 198 events. This
indicates a significant disconnect between the systematic automated approach to
identifying and characterising global coronal waves and the traditional ‘by-eye’
approach. Although most of these issues can and should be overcome through
advanced image and signal processing and feature tracking, some may be due to
the different definitions used to identify the wave pulse. For example, CorPITA
uses a series of 1-dimensional intensity profiles obtained from percentage-base
difference images to identify and fit the wave using a Gaussian model, whereas
Nitta et al. (2013) used 2-dimensional distance-time stack plots to identify the
leading edge of the pulse.

With the waves identified and tracked, the next step was to examine the
variation in wave kinematics. As CorPITA uses a series of 360 10° arc sectors
to identify and track the waves, each wave can be represented by a range of ve-
locity and acceleration values which may not be representative of the large-scale
motion of the wave. The maximum velocity and acceleration in particular are
poorly representative of the overall wave motion as they can be strongly affected
by anomalous measurements. However, the median velocity and acceleration
provide a much better representation of the large-scale kinematics and should
always be used when wishing to describe a wave using a single kinematic value.
The median velocity and acceleration of the measured waves were also found to
be correlated (consistent with the previous work of Warmuth and Mann, 2011).
Although the spread in values increased with both velocity and acceleration,
faster waves tend to have a stronger deceleration. However, no clear relationship
could be determined for the maximum velocity and acceleration, suggesting that
they are not representative of the overall kinematics of the wave.

There was also no clear relationship between the global waves and the asso-
ciated solar flares. Neither the maximum or median velocities or accelerations
showed any relationship with the class of the associated flare, with C-class flares
associated with the waves that exhibited both the highest and lowest median
velocity. Similarly, there was no clear correlation between the wave parameters
described here and the properties of the associated CMEs as measured by the
LASCO CDAW catalogue. However this is most likely due to instrumental and
measurement effects rather than the lack of any underlying physical relationship
and isunsurprising given the statistical approach taken here. A more thorough
analysis would require measurements of CMEs taken away from the Sun-Earth
line and would measure the lateral expansion velocity rather than the forward
motion of the CME. It was possible to observe CMEs propagating along the
Sun-Earth line using the STEREO spacecraft, with the instruments on both
spacecraft deliberately designed to have overlapping fields-of-view in the low
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corona which could allow the lateral expansion of the CME to be measured.
However, the low temporal cadence of the instruments makes it difficult to
disentangle the wave from the expanding CME, while the gradual progression
of STEREO behind the Sun during the period of this project complicates a
direct comparison between the global wave and the associated CME. Finally, no
correlation was found between the global waves and SEPs, with only 21 of the
events exhibiting any SEP signature. This is most likely because only Wind data
were used in this analysis, but the ability of global waves to accelerate particles
far from their erupting active region suggests that the structure of the coronal
magnetic field into which the wave propagates should be accounted for when
trying to study the acceleration of SEPs by global waves in the solar corona.

The lack of any clear statistical correlation between the different solar phe-
nomena studied here indicates that determining the criteria required to produce
a global wave is not a simple task. Although the majority of waves identified
here were associated with both flares and CMEs, the parameters measured show
no correlation, suggesting that the free energy available within an active region
to produce a flare and accelerate the CME does not determine the presence of
a wave in the subsequent eruption. However, it was found that over 25 % of
active regions produced multiple wave events, with 2 active regions producing 6
wave events each. This suggests that the structure of the erupting active region
and its connectivity with the surrounding quiet solar corona may be much more
important for determining the presence of a global wave in a solar eruption.
Understanding the criteria required to produce a global wave therefore requires
a more detailed examination of an active region producing multiple wave events,
which we hope to continue in a dedicated future work.
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Appendix

Table 1 below outlines the complete list of global wave events identified by Nitta
et al. (2013) and processed by the CorPITA code for this paper. t_flare refers to
the start time of the flare as defined by the GOES classification. t_wave refers to
the time of the first observation of the wave by CorPITA. Num. arcs refers to the
number of arcs in the largest segment in which CorPITA has identified a wave,
with Central arc referring to the central arc of this segment in degrees clockwise
from solar north. Median velocity is given in km s~! and median acceleration is
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given in m s~2. The complete list is also available as a Comma Separated Value
list attached to the online version of this paper.
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