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ABSTRACT

Context. “EIT waves” are freely-propagating global pulses in the low corona which are strongly associated with the initial evolution
of coronal mass ejections (CMEs). They are thought to be large—amplitude, fast-mode magnetohydrodynamic waves initially driven
by the rapid expansion of a CME in the low corona.

Aims. An “EIT wave” was observed on 6 July 2012 to impact an adjacent trans—equatorial loop system which then exhibited a
decaying oscillation as it returned to rest. Observations of the loop oscillations were used to estimate the magnetic field strength of the
loop system by studying the decaying oscillation of the loop, measuring the propagation of ubiquitous transverse waves in the loop
and extrapolating the magnetic field from observed magnetograms.

Methods. Observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory (SDO/AIA) and the
Coronal Multi-channel Polarimeter (CoMP) were used to study the event. An Empirical Mode Decomposition analysis was used to
characterise the oscillation of the loop system in CoMP Doppler velocity and line width and in AIA intensity.

Results. The loop system was shown to oscillate in the 2nd harmonic mode rather than at the fundamental frequency, with the
seismological analysis returning an estimated magnetic field strength of ~ 5.5 + 1.5 G. This compares to the magnetic field strength
estimates of *1-9 G and =3-9 G found using the measurements of transverse wave propagation and magnetic field extrapolation

respectively.
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1. Introduction

First observed by the Solar and Heliospheric Observatory
(SOHO; Domingo et al. 1995), many theories have been pro-
posed to interpret globally—propagating coronal disturbances
(commonly called “EIT waves”). Taking their name from the
Extreme ultraviolet Imaging Telescope (EIT; Delaboudiniere et
al. 1995) onboard SOHO, they are typically observed as radially
expanding bright features associated with the onset of a coronal
mass ejection (CME) that can traverse the solar disk in under
an hour (e.g., Moses et al. 1997; Dere et al. 1997; Thompson
et al. 1998). After almost 20 years of detailed investigation and
debate, a consensus is finally being reached with regard to the
physics underpinning their evolution, thanks to the improved
temporal and spatial resolution of the Solar and Terrestrial
Relations Observatory (STEREQ;, Kaiser et al. 2008) and more
recently the Solar Dynamics Observatory (SDO; Pesnell et al.
2012).

The multitude of theories proposed to explain this phe-
nomenon is mainly the result of conflicting observations (cf.
Long et al. 2017). Initially interpreted as the coronal counterpart
of the chromospheric Moreton—Ramsey wave (Moreton 1960;
Moreton & Ramsey 1960), “EIT waves” were treated as fast—
mode magneto—acoustic (MHD) waves following the example
of Uchida (1968). However, issues with this interpretation were
raised by observations of stationary brightenings at the edges
of coronal holes (c¢f. Delannée & Aulanier 1999). These obser-

vations led to the suggestion that “EIT waves” were not true
“waves” but instead were a brightening produced by the restruc-
turing of the magnetic field during the eruption of a CME. It
was proposed that this brightening was alternatively produced
by Joule heating at the interface between the magnetic field of
the erupting CME and the surrounding coronal magnetic field
(Delannée 2000; Delannée et al. 2008), continuous reconnec-
tion of small-scale magnetic loops driven by the erupting CME
(Attrill et al. 2007) or the stretching of magnetic field lines over-
lying an erupting flux rope (Chen et al. 2002, 2005). This last
scenario was also supported by the relatively low observed speed
of the disturbances (with an average speed of 200400 km s~
measured by Thompson & Myers 2009, using observations from
SOHOJEIT).

However, these hypotheses have been undermined both by
observations of reflection and refraction at coronal hole and ac-
tive region boundaries (e.g., Thompson et al. 2000; Long et al.
2008; Veronig et al. 2008; Gopalswamy et al. 2009; Shen et al.
2013; Kienreich et al. 2013) as well as the higher speeds mea-
sured using STEREO (100-630 km s~'; Muhr et al. 2014) and
SDO (Vipean =~ 644 km s~'; Nitta et al. 2013). Although ini-
tially analysed using the linearised fast-mode wave equations,
observations of pulse dispersion and deceleration (Warmuth et
al. 2004a,b; Long et al. 2011a,b) have led to their interpre-
tation as large—amplitude simple waves (e.g., Vr$nak & Luli¢
2000a,b; Warmuth 2007; Vr$nak & Cliver 2008) initially driven
by the rapid expansion of the erupting CME in the low corona



D. M. Long et al.: Measuring the magnetic field of a trans-equatorial loop system using coronal seismology

(Patsourakos et al. 2010) before propagating freely. Note that
a number of different reviews by Gallagher & Long (2011),
Zhukov (2011), Patsourakos & Vourlidas (2012), Liu & Ofman
(2014) and more recently Warmuth (2015) discuss the different
interpretations and the observations both supporting and contra-
dicting them in detail.

More recently, the higher temporal and spatial resolution
provided by the Atmospheric Imaging Assembly (AIA; Lemen
et al. 2012) has revolutionised our understanding of “EIT
waves”. These improved observations are providing clear evi-
dence that the freely propagating “EIT waves” behave as waves,
in principle allowing their observed characteristics to be used
as diagnostics of the physical properties of the coronal regions
through which they propagate (an approach called “coronal seis-
mology”, e.g., Roberts et al. 1984; Ballai 2007) and estimate
properties such as magnetic field strength (cf. Warmuth & Mann
2005; West et al. 2011; Kwon et al. 2013; Long et al. 2013). A
similar approach may also be applied on a more local scale, us-
ing the forced oscillations of coronal loops initially driven by the
impact of an “EIT wave” to determine properties such as their
magnetic field strength or the energy of the wave-pulse (e.g.,
Ballai 2007; Ballai et al. 2008, 2011; Yang et al. 2013).

While the global nature of “EIT waves” greatly increases the
chances of them interacting with coronal loops, these observa-
tions are dependent on a sufficiently high temporal and spatial
resolution to be able to identify the oscillating loop. Despite its
global field-of-view, SOHO/EIT did not have a sufficiently high
temporal or spatial resolution to identify oscillating loops. This
changed with the launch of the Transition Region And Coronal
Explorer (TRACE; Handy et al. 1999), whose observations were
used to show that the oscillation of a coronal loop may be used
to estimate its magnetic field strength (e.g., Aschwanden et al.
1999; Nakariakov & Ofman 2001; Aschwanden & Schrijver
2011; Guo et al. 2015). Subsequent work extended the method
to observations of oscillation in Doppler motion made by the
Extreme ultraviolet Imaging Spectrometer (EIS; Culhane et al.
2007) onboard the Hinode spacecraft (e.g., Van Doorsselaere et
al. 2008a).

In this paper, we estimate the magnetic field of a trans—
equatorial loop system using multiple independent techniques.
The first approach uses the oscillation of the loop system result-
ing from the impact of the global EUV wave-pulse, the second
uses direct observations of the magnetic field made by the by
the groundbased Coronal Multichannel Polarimeter (CoMP) in-
strument (Tomczyk et al. 2008), while the third estimates the
field strength using two independent magnetic field extrapola-
tions from the photosphere. This paper builds on work previ-
ously presented at the International Astronomical Union (IAU)
Symposium on “Solar and Stellar Flares and Their Effects on
Planets” (described by Long et al. 2016), and represent a signifi-
cant advance on the previously published proceedings paper. The
observations are presented in Section 2, with the properties of the
pulse and its interaction with the surrounding corona examined
in Sections 3 and 4 respectively. This interaction is then used
to derive the magnetic field strength associated with a nearby
transequatorial loop system in Section 5. Finally, some conclu-
sions about the implication of these observations are drawn in
Section 6.

2. Observations & Data Analysis

The solar eruption studied here originated from NOAA active
region AR 11514 on 6 July 2012 and was associated with a
CME and a GOES X1.1 class flare which began at 23:01 UT.
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Fig. 1. Intensity image from SDO 193 A (panel a) and Doppler
velocity from CoMP (panel b). The dashed lines above the limb
(at a height 1.09R) in both panels are used to make Figure 3.
The arc sector in the top right of panel a shows the region used to
get the density of the quiet Sun in Section 5.1. Note that the in-
tensity image in panel a has been enhanced using the Multi—scale
Gaussian Normalisation technique of Morgan & Druckmiiller
(2014). The evolution of the 193 A channel is shown in the left
panel of the movie available online.

The event was well observed by multiple instruments includ-
ing SDO/AIA and CoMP (see Figure 1), providing an oppor-
tunity to study the eruption in detail. As with the event of
25 February 2014 previously studied by Long et al. (2015), the
global EUV wave observed here did not propagate isotropically,
(see Figure 2). Instead, due to the presence of the adjacent ac-
tive regions AR 11515 to the East and ARs 11513, 11516 and
11517 to the North, the “EIT wave” propagated mainly towards
the south polar coronal hole along the limb as seen by SDO/AIA
(this is shown in the movie attached to Figure 1).

Designed to study the coronal magnetic field, CoMP pro-
vides Stokes-I measurements in the Fe xm 10747 A and 10798 A
emission lines with a field of view of 2.8 R, and an image size of
620 x 620 pixels. This gives an image sample size of ~4.25 arc-
sec pixel™! at ~30 s cadence (cf. Tian et al. 2013). Although
the seeing was not good enough for this event to estimate the
full Stokes parameters (S. Tomczyk, private communication),
the Stokes-I measurements can be fitted using a least—squares
Gaussian fit to estimate the line intensity, width and central
wavelength for each pixel. This allows the plasma parameters
to be studied, giving an estimate of the temporal variations in
Doppler motion and line width in the low corona.

3. Pulse properties

As the EIT wave was observed to propagate along the solar limb
from the erupting active region towards the south pole, it was not
possible to use the Coronal Pulse Identification and Tracking
Algorithm (CorPITA; Long et al. 2014) to study the propagation
of the pulse. Instead, following Long et al. (2015), a polar depro-
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Fig. 2. Running difference images from the 193 A passband of the eruption (panel a) and the evolution of the wave (panel c). The
temporal evolution of the wave is shown in the right panel of the movie available online (showing the west half of the solar disk
only). Panel b shows a base—difference deprojected annulus image showing the eruption at 23:15:06 UT, with the vertical axis giving
the height from Sun-centre and the horizontal axis giving the position angle clockwise from solar north (indicated by the dashed
white line in panel a). Panel d shows a base—difference image of the temporal variation at a height of 1.09 Ry, (indicated by the white
dashed line in panel b). The dashed white line in panel d shows the fit to the leading edge of the propagating pulse.

jection was used to determine the variation in pulse kinematics
across a height range from 1.01-1.12 Ry, (as shown in Figure 2).
This height range was chosen because above ~1.12 R, the pulse
becomes very faint in the SDO/AIA images while the CoMP ob-
servations become noisy and prone to missing data, making di-
rect comparisons between the instruments difficult.

The leading edge of the wave—pulse was manually identi-
fied and fitted using a quadratic model at each height across
the entire range, as shown for height 1.09 R, in Figure 2, with
the process repeated 10 times in each case to minimise uncer-
tainty. The pulse was found to have a velocity ranging from
607-1583 km s~!, with a mean velocity of ~1106+314 km s~!
and an acceleration ranging from —376 — =19 m s~2, with a
mean acceleration of * —207 + 107 m s~2. These estimates are
much higher than the average “EIT wave” speed measured by
Nitta et al. (2013), indicating that the pulse measured here was
quite fast. The pulse also exhibited clear deceleration, evidence
of broadening and was associated with a Type II radio burst
(cf. Long et al. 2017), suggesting that it was a large amplitude
wave pulse.

For such a fast and intense pulse it is possible to follow
the approach of Long et al. (2015) and estimate its initial en-
ergy using the Sedov-Taylor approximation (Taylor 1950a,b;
Sedov 1959). Although this assumes a spherically symmetric
blast wave emanating from a point source (which is not strictly
valid here), Grechnev et al. (2008, 2011) and Long et al. (2015)
found that the approach is suitable for analysing the onset stage

of pulses being initially driven over a very short time period be-
fore propagating freely, as with the event studied here. Long et
al. (2015) have also shown that the Sedov—Taylor relation pro-
vides an excellent estimate of the initial energy of the eruption
assuming a blast wave propagating through a medium of variable
density. Using this approach, the initial energy of the pulse was
estimated to be ~8.6x103! ergs, comparable to the previous es-
timate made by Long et al. (2015). While this is consistent with
the observations of high initial velocity and strong pulse decel-
eration, it is most likely an overestimate of the true energy of the
wave-pulse. As noted by Long et al. (2015), the Sedov-Taylor
relation assumes a spherical blast wave emanating from a source
point, which is not the case here and does not include the effect
of the coronal magnetic field. As a result, this estimate should
be considered as a first order approximation of the energy of the
pulse.

Although the pulse can be clearly identified in the AIA 193 A
intensity observations (e.g., Figure 2), it was not as apparent in
the CoMP intensity observations. This is clear from panel a of
Figure 3, where the effects of the pulse can be seen in Doppler
velocity, but not the pulse itself. As a result, the CoMP observa-
tions were used to study the effects of the pulse on the surround-
ing corona, with the AIA 193 A observations used to estimate
the pulse kinematics.
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Fig. 3. Temporal variation in CoMP Doppler velocity (panel a) and line width (panel c¢) and AIA 193 A percentage base difference
(PBD) intensity (panel e) at a height of 1.09 Ry (shown by the dashed line in panels a & b of Figure 1). Panels b, d & f show
the temporal variation in Doppler velocity, line width and AIA PBD intensity along the dashed line indicated in panels a, ¢ & e.
The oscillatory behaviour of the loop system is very clear in the Doppler motion (panels a & b), indicating motion to-and-from the
observer, while the impact of the pulse and subsequent evacuation of plasma into the CME is apparent in the line width (panels ¢ &
d) and plane-of-sky AIA observations respectively (panels e & f), as described in the text. The solid blue line in panel b indicates a
fit to the data using the damped cosine model described in Equation 1.

4. Interaction with trans—equatorial loop system

Although the Sedov—Taylor approximation assumes an isotropic
expansion of the wave—pulse being studied, this is not the case
here due to the trans—equatorial loop system to the north of the
erupting active region. This is shown in Figure 2 and the associ-
ated movie moviel.mov. While this feature restricts the propaga-
tion of the wave—pulse, the effects of the impact force a signifi-
cant displacement of the trans—equatorial loop system from rest.
This results in a large amplitude decaying oscillation in CoMP
Doppler observations as the loop returns to its pre-impact posi-
tion, as shown in detail in Figure 3 at a specific location of the
observed loop structure. As a result, it is possible to estimate the
magnetic field of the loop system using a coronal seismology ap-
proach (e.g., Roberts et al. 1984; Van Doorsselaere et al. 2008a;
Long et al. 2013).

The temporal variation in CoMP Doppler velocity and line
width and AIA percentage base difference (PBD) intensity at a
height of 1.09 Ry and for all polar angles are shown in the left
panels (a,c,e) of Figure 3. The pulse is clearest in the Doppler
velocity and AIA PBD measurements (panels a & e), although
there is a slight suggestion of variation in the line width mea-
surements (panel c). The wave—pulse is first seen in the Doppler
velocity observations at #23:04 UT, with a slightly blue—shifted
edge moving northwards away from the erupting active region
(located at ~110° clockwise from solar north). It can also be
seen to move towards the south pole at roughly the same time,
again observed as an initially slightly blue—shifted edge. A co-
temporal faint bright feature can also be identified in the PBD
measurements in panel e moving both north and south away
from the source active region. Although there is some indica-
tion of a slight change in the line width shown in panel c at this
time, there is no clear signature of a propagating front.
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Fig. 4. Temporal variation in Doppler velocity at heights of 1.11, 1.12, 1.13 & 1.14 R, for all polar angles (left column) along with
its temporal profile measured at angles of 94°, 86°, 85° & 88° clockwise from solar north (right column). The solid blue lines in the
right column indicate a fit to the data using the damped cosine model described in Equation 1.

Following the initial front, there is clear evidence of material
being ejected with the erupting CME. This is apparent from the
red—shifted outflow from the erupting active region apparent in
the sector from 100-120° starting at ~23:07 UT and continuing
for the rest of the time period shown. This corresponds to a drop
in the PBD intensity (panel e of Figure 3), indicating a drop in
density and/or temperature as material is evacuated by the CME.
This drop in intensity is also clear in panel f, which shows the
temporal variation in PBD intensity at ~95° clockwise from so-
lar north (as for panels b and d, shown by the dashed line in
panel e).

While the propagation of the pulse to the south of the erupt-
ing active region is relatively uninhibited, the propagation to
the north is modified by a trans—equatorial loop system located
between ~85-100° clockwise from solar north (as shown in
Figure 1). The variation in Doppler velocity with time in panel a
of Figure 3 shows that this loop system is relatively stable un-
til the impact of the blue—shifted wave—pulse at ~23:05 UT.
A more strongly blue—shifted feature is then observed between
~23:07 UT and ~23:17 UT along the profile in panel b, which is
also characterised by a very strong co-temporal increase in line
width (seen in panel d). This suggests turbulent behaviour (cf.
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original signal (cf. Figure 3b, d & f) with the upper panels giving the derived components.

Harra et al. 2009), and is consistent with the initial impact of the
wave—pulse on the loop system followed by the outward motion
of the associated erupting filament.

The effects of the impact of the wave—pulse on the the
trans—equatorial loop system may then be seen in panel a from
~23:17 UT onwards as it exhibits a series of alternating red— and
blue—shifted features. This can be attributed to the loop system
being displaced from its rest position by the impact of the wave—
pulse and subsequently returning to rest via a decaying oscilla-
tion. This behaviour is shown most clearly in panel b of Figure 3,
which corresponds to the temporal Doppler velocity profile at an
angle of 95° clockwise from solar north (indicated by the dashed
line in panel a). It should also be noted that as the Doppler ve-
locity in panel b begins to exhibit this strong oscillation, the line
width drops dramatically to near the pre-event level, suggesting
a near-uniform oscillation of the loop system.

This oscillatory behaviour in the Doppler velocity is consis-
tent along the loop as shown in Figure 4, which shows the varia-
tion in Doppler velocity at a set of sampled locations (height and
polar angle) along the rest of the loop system. It is clear from the
temporal evolution of the Doppler velocities shown in the left

panels of Figure 4 that the signal weakens above ~1.14 R, with
clear data drop-outs apparent at ~95-110°. While the amplitude
of the oscillation can be seen to drop with increasing height, the
period and damping time are comparable in all cases, suggest-
ing that the values quoted in Figure 3 are representative of the
oscillation along the loop. These observations suggest that the
wave-pulse impacts the leg of the loop system in the low corona
(thus leading to the larger amplitude of the oscillation at lower
heights). The consistent damping time also suggests that while
the loop system is perturbed by the pulse impact, it stays rela-
tively stable and is not opened by this impact. The mass of the
loop system and hence the oscillation and associated damping
coefficient therefore remain constant throughout the oscillation.

4.1. Empirical Mode Decomposition analysis

While the oscillatory behaviour of the Doppler velocity is very
clear in panel b of Figure 3, there is some indication of a com-
parable (albeit extremely faint) oscillation in the line width and
PBD intensity shown in panels d & f. To determine if an oscil-
lation was present, the temporal evolution of the different sig-
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nals was examined using an Empirical Mode Decomposition
(EMD; Huang et al. 1998; Quek et al. 2003) analysis. This tech-
nique decomposes the original signal into a series of Intrinsic
Mode Functions (IMFs) and a residual, with the associated en-
ergy distribution represented by a Hilbert-Huang spectrum. The
approach involves constructing a low- and a high-envelope from
the series of maxima and minima of the the signal, and then av-
eraging the two envelopes. Under certain constraints, the result-
ing function is called an IMF and captures the fastest oscillating
part in the signal. A new signal is then obtained by subtracting
the IMF from the signal itself. This process is repeated until the
updated signal shows no more oscillation, leaving the residual,
(see, e.g. Stangalini et al. 2014, for more details). Since IMFs
are time-dependent, a convenient way of representing their con-
tribution to the signal at each time is to use an Hilbert transform
as defined by Huang et al. (1998), which can be used to describe
the time-evolution of the (instantaneous) frequency of each IMF.

The EMD analysis was applied to the Doppler velocity, line
width and PBD intensity signals shown in panels b, d & f, re-
spectively, of Figure 3. Note that in the following analysis we
focus on the impact of the wave—pulse on the trans-equatorial
loop system and its resulting oscillation, leaving a more detailed
study of the correlation of the various IMFs between the different
signals for a dedicated future work.

Figure 5 shows the output from the EMD analysis, with the
bottom panel for each column giving the original signal (black)
and residual (red) while the upper panels give the corresponding
IMFs. The left panels show that the Doppler velocity can be de-
composed into three IMFs, with the oscillatory behavior mostly
captured by IMF=3, which reveals an almost constant frequency
of 1.0 mHz up to about t=3000s. While this approach can pro-
vide a more accurate estimate of the frequency of the oscilla-
tion, the composing IMFs are not orthogonal functions, leading
to the crosstalk observed in the second half of the time series for
IMF=2 & 3. The IMF=2 contribution also shows the presence
of a more complex component which is not purely oscillatory
in nature. The residual also shows an oscillatory behavior on a
longer period than the loop oscillation. However, the oscillation
in the residual is not complete and therefore the residual is not
considered to be an IMF. The difference between the oscillatory
Doppler signal and this longer component is best seen using a
Hilbert-Huang Transform (HHT) as shown in Figure 6. The left

panel here shows the HHT spectrum restricted to the residual and
the IMF=3. The spectral contribution of the oscillatory compo-
nent from IMF= 3 is represented by the intense red strip around
1 mHz which stays almost constant in frequency until ¢ ~ 3000 s,
before strongly damping and decreasing to 0.5 mHz, (cf. the left
panel of Figure 5). The residual contribution appears in this plot
as a periodic, low-intensity component in the lower part of the
spectrum at a frequency of 0.2 mHz.

The central panels of Figure 5 show the decomposed IMF
for the line width shown in panel d of Figure 3. Here the high-
frequency IMFs=1 & 2 capture a transient nonlinear pulse in
the time period ~ 600 < ¢ < 1400 s which has a period much
shorter than the loop oscillation and cannot be clearly identified
in the Doppler signal (except for a small-amplitude trace in the
IMF=1 of the left-hand column of Figure 5). The frequency of
the IMF=2 in Figure 5 can be seen to chirp in time from ~1.5
to 3.5 mHz, whereas the evolution of the IMF=1 is less clear.
However for clarity neither IMF is included in Figure 6. These
signals are clearly different to the loop system damped oscilla-
tion (mostly captured in Figure 5 by IMF=3), which again repro-
duces the component of the oscillating loop system in the IMF=3
of the Doppler velocity signal (although at a slightly more vari-
able frequency between ~0.5 and 1 mHz, see the central panel in
Figure 6), and a lower frequency component at about 0.4 mHz.

The IMF decomposition of the AIA signal in the right pan-
els of Figure 5 shows the highest level of complexity, partly due
to the higher cadence of the AIA signal which captures more
time-scales than CoMP. Despite this, both loop-system oscilla-
tion components can be identified with a clear damping signature
(e.g., IMF=4), and the nonlinear signal due to the wave—pulse
itself (e.g., IMF=2). In the HHT shown in the far right panel
of Figure 6, the frequency of the oscillating mode is similar to
the one generated by the IMF=3 of the CoMP line-width signal,
albeit relatively weaker. Similarly, the 0.2 mHz signal is also
found in the PBD intensity from AIA. The effects of the higher
AIA cadence are seen in the highest-frequency IMF=1, which
has the typical signature of noise and/or under-sampling (i.e.,
fluctuations on the highest frequency, whereas all higher IMFs
are resolved signals).

The initial transients apparent in the IMF=1 of the CoMP
line width and in the IMF=2 of the AIA PBD intensity are very
similar in both structure and timing. The transients occur at the
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time the pulse reaches the trans-equatorial loop system, and ap-
pear as an oscillating wave modulated by an envelope rather than
as a damped oscillation. It is intriguing that exactly such a pat-
tern was previously assumed as the internal structure of an “EIT
wave” pulse by Long et al. (2011a) and we are therefore tempted
to identify this transient signal as the pulse itself.

However, if our pulse velocity estimate measured in
Section 3 can also be applied at the front impacting the trans-
equatorial loop system, this signal would indicate a pulse much
broader than that observed. Therefore, we cannot unequivocally
exclude that the observed transient signals are due to other non-
linear interactions between the pulse and loop systems. The case
studied here is not optimal for discriminating between these pos-
sibilities and we leave such an analysis to a future work.

5. Magnetic field strength estimates

The EMD analysis suggests that the oscillation of the loop sys-
tem is consistent with the fast magneto-acoustic kink mode as
modelled by Aschwanden et al. (1999), with the clear Doppler
velocity signal indicating a large-scale motion of the loop system
towards and away from the observer. Figure 5 shows a damped
oscillatory component present in both the line width and PBD
intensity signals that has a period comparable to that observed
in the Doppler velocity signal. However, it is very small and is
most likely due to the apparent brightening and dimming as the
loop system moves towards and away from the observer (cf. Van
Doorsselaere et al. 2008b). This interpretation also means that
it may be possible to use the oscillation of the loop system to
estimate its magnetic field via coronal seismology (Section 5.1).
Although CoMP was originally designed to measure the
coronal magnetic field, the seeing was not good enough for this
event to make measurements of the full Stokes-/, Q, U and V
parameters. Instead, a magnetoseismology technique developed
by Tomczyk et al. (2007) and Morton et al. (2015, 2016) was
used to estimate the magnetic field strength of the loop system
(Section 5.2). This approach does not require any oscillation of
the loop system, allowing an independent verification of the val-
ues derived from the coronal seismology technique. To provide
an additional independent verification, the magnetic field was
also estimated using a pair of magnetic field extrapolations de-
rived from both GONG and HMI magnetograms (Section 5.3).

5.1. Coronal Seismology

The coronal seismology approach most commonly used to esti-
mate the magnetic field within an oscillating coronal loop uses
the damping of the loop as it returns to its original rest posi-
tion to derive the period of oscillation. This is done by fitting
the damped oscillation using an exponentially decreasing cosine
function of the form,

d(t) = xo cos(@ +t,o)exp (—£)+do, (D
P T
where x is the amplitude, P is the period, ¢ is the phase, 7 is the
damping time and dj is the equilibrium position. This model was
applied to the variation in Doppler velocity shown in panel b of
Figure 3, with the resulting fit shown by the blue line and the
fitted values given in the bottom right of the panel. It is clear
that the model fits the observations very well, indicating that the
assumption of a kink mode oscillation is consistent with the ob-
servations. The model was then applied to the Doppler velocity
along the loop system, with Figure 4 showing a representative

sample of profiles with the blue line in each case showing the
model fit to the data. It is clear that the oscillation is exhibited
along the loop system at a range of heights and locations, with
the model providing an excellent fit to the data in each case.

Although the oscillation of the loop system may be inter-
preted as as a kink mode wave as discussed in Section 4.1, it is
not oscillating at the fundamental frequency. Instead, the out of
phase Doppler signal observed between the legs of the loop sys-
tem (apparent between ~90-100° in the Doppler velocity plots
shown in Figures 3 and 4) and the lack of a signal at the top
of the loop system suggest that it is oscillating at the 2nd har-
monic frequency. The oscillation period can therefore be used to
estimate the strength of the magnetic field of the loop using the
equation,

p=L 27rpin(1 + ’ﬂ) )
P Pex
where B is the magnetic field strength, L is the loop length,
P is the period of the oscillation, p;, is the internal density of
the loop system and p,, is the external density of the surround-
ing corona (cf. Roberts et al. 1984; Nakariakov & Ofman 2001;
Aschwanden & Schrijver 2011).

The length of the loop was estimated by fitting an ellipse
to the loop identified by visual inspection in the SDO/AIA ob-
servations. This was done using the 193 A passband, with the
images processed using the Multiscale Gaussian Normalisation
technique of Morgan & Druckmiiller (2014) to highlight the loop
and make it easier to identify. The process was repeated ten
times to reduce uncertainty, with the loop length estimated at
711+8 Mm.

The density of the loop system and the surrounding corona
were estimated using the regularised inversion technique of
Hannah & Kontar (2013) assuming a temperature of ~1.5 MK
(corresponding to the peak emission temperature of the 193 A
passband used to identify the wave—pulse). The spatial extent
of the loop system was estimated using observations from the
STEREO-A spacecraft to be =373 Mm. This was used as the
line-of-sight along which to integrate the emission measure for
both the internal and external densities of the loop system. The
internal density of the loop system at the location used to identify
the oscillation in Doppler velocity was found using the emis-
sion measure at that location, with a mean internal density of
1.1 £ 0.5 x 10% cm™ found across the loop system. In con-
trast, the external density was estimated using the mean density
value for a 10 degree wide region of quiet Sun centered at 45
degrees clockwise from solar north at a comparable height to
the measurement being made. This is indicated by the arc sec-
tor shown in Figure 1, and returned a mean external density of
2.5+ 2.1 x 107 cm™3 across the heights studied here.

Equation 2 was then used to estimate the magnetic field
strength for a representative range of five oscillation periods and
corresponding internal and external densities estimated along
the loop. This returned an estimated magnetic field strength of
~ 5.5+ 1.5 G within the loop system. While this is comparable to
previous estimates using coronal seismology (e.g., Nakariakov
& Ofman 2001), suggesting that the approach is valid, it is quite
low. There are most likely several reasons for this discrepancy.
The oscillation observed here is the 2nd harmonic rather than
the fundamental mode as is typically observed (e.g., Nakariakov
& Ofman 2001; Van Doorsselaere et al. 2008a; Aschwanden &
Schrijver 2011; Verwichte et al. 2013). In addition, while every
attempt has been made to minimise the uncertainty associated
with this measurement, the large-scale nature of the loop system
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Fig. 7. The results of the magneto-seismology of propagating transverse waves. The top left panel shows the coronal loop as observed
in 10747 A line centroid wavelength at 18:43 UT, with the measured propagation speeds of the transverse waves shown in the top
right panel. The white contour over the intensity image shows the region in 10798 A that has adequate signal level. The lower left
panel displays the estimates of plasma density from the 10798 A/10747 A ratio and the right hand panel shows the magnetic field

estimate.

and the diffuse nature of the wave-pulse suggest that it is most
likely a minimum uncertainty estimate.

5.2. Direct measurement using CoMP

The magnetic field of the coronal loop can also be estimated
from observations using magnetoseismology of the propagat-
ing transverse waves previously seen to be ubiquitous in CoMP
Doppler velocities (e.g., Tomczyk et al. 2007; Morton et al.
2015, 2016). This offers an independent approach to estimate
the magnetic field strength within the loop system. Following the
approach developed by Tomczyk & Mclntosh (2009); Morton et
al. (2015), a coherence based method was used to track velocity
perturbations in the Doppler velocities obtained from the 3-point
10747 A observations taken between 20:24:14-21:30:14 UT.
This allowed both the direction and speed of the propagation
to be measured as shown in the top right panel of Figure 7.

The density of the loop system was estimated using the line
centroid wavelength intensities from the 5-point 10747 A and
10798 A data taken in the period 18:43:51-19:52:42 UT. This
line pair is density sensitive (e.g., Flower & Pineau des Forets
1973) and allows an estimate of the coronal density to be made
for 12 pairs of 10747 A and 10798 A images (CHIANTI V7.0;
Landi et al. 2012) using the methodology outlined in Morton
et al. (2015, 2016). It was assumed that the variability of the
density estimates between image pairs gives an reasonable esti-

mate of the uncertainty associated with the density, not including
any systematic errors associated with the uncertainties in atomic
physics. The relative uncertainty in density is typically on the
order of 10%, although it reaches 30% in regions away from the
loop of interest. Note that the observed emission from 10798 A
is weaker than that from 10747 A, and the signal to noise ratio
rises at a much greater rate as a function of height in the corona.
The region of high quality signal in 10798 A is delimited by
a white contour on the 10747 A image in the top left panel of
Figure 7 and the estimated plasma density is shown in the bot-
tom left panel of Figure 7.

The phase speed of the observed transverse waves is given
by the kink speed,

B? + B?
ﬂO(pi + pe) ’
where p is the permeability of a vacuum and i and e refer to
loop and ambient plasma values respectively (e.g., Nakariakov &

Verwichte 2005). Assuming that B; = B, and taking the average
density (p), an estimate for the magnetic field is given by,

B=C1<\/,UO_<P>-

The average density is used as it reflects the fact that many os-
cillating structures are likely present within a single CoMP pixel
(typical coronal loop widths ~ 200 — 1000 km, e.g., Brooks et

2 _
Cp =
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Fig. 8. Potential Field Source Surface (PFSS) extrapolations using magnetograms from GONG (left panel) and SDO/HMI (right
panel). The line-of-sight averaged magnetic field along the line used in Figure 3 yields ~3.5 G for the GONG and ~8 G for the
SDO/HMI magnetograms, respectively. Note that the colour bar in each panel indicates the variation in magnetic field strength of

the corresponding loop system.

al. 2013; Morton & McLaughlin 2013). As a result, both inter-
nal and ambient plasma will contribute to the observed emission.
The estimated propagation speed and density may then be used
to estimate the magnetic field, the results of which are displayed
in the bottom right panel of Figure 7. The associated uncertain-
ties are typically ~ 5%, reflecting the low errors associated with
propagation speed determination.

5.3. Magnetic field extrapolation

A final independent estimate was made using the magnetic
field extrapolated from photospheric magnetogram observations,
comparable with previous approaches (e.g., Guo et al. 2015).
In this case, two Potential Field Source Surface (PFSS) extrap-
olations were used to estimate the magnetic field in the solar
corona corresponding to the loop system impacted by the pulse
(see Figure 8). The first extrapolation shown in the left panel of
Figure 8 used a GONG magnetogram as a basis and estimated
the global corona magnetic field using the finite differences
method developed by Téth et al. (2011), also used in a study
concerning the magnetic structure surrounding an AR (Mandrini
et al. 2014). The second extrapolation (right panel of Figure 8)
was obtained from the PFSS package within SolarSoft described
by Schrijver & DeRosa (2003) using a SDO/HMI magnetogram
as a basis.

Figure 8 shows that the two magnetograms initially used to
extrapolate the coronal magnetic field are slightly different, as
would be expected given the different sensitivity and resolution
of the two instruments. This discrepancy affects the resulting ex-
trapolated magnetic fields, so that the strength of the magnetic
field along the transequatorial loop system is slightly different
in both cases. The GONG (SDO/HMI) extrapolations suggest a
magnetic field of *5 G (=10 G) in the legs of the loop system,
with the magnetic field in both cases dropping to =1 G at the
loop-top. Along the line of sight used in Figure 3, the extrapo-
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lations return estimates of ~3.5 G and ~8 G for the GONG and
SDO/HMI magnetograms respectively.

6. Conclusion

Here, we have used several independent techniques to estimate
the magnetic field strength within a trans-equatorial loop sys-
tem following the impact of a global EUV wave-pulse. The ini-
tial impact of the wave-pulse drove a kink-mode oscillation of
the loop system, allowing an estimate to be made of the mag-
netic field strength. This was then compared to the magnetic
field strength obtained via magnetoseismology of the ubiqui-
tous transverse waves previously observed by Tomczyk et al.
(2007) and Morton et al. (2015, 2016). Finally, both sets of data-
driven estimates were compared to extrapolated magnetic field
measurements. All estimates were found to be broadly similar,
consistent with previous results. This builds on work previously
presented at the IAU Symposium on “Solar and Stellar Flares
and Their Effects on Planets” (described by Long et al. 2016)
by using multiple independent techniques including direct mea-
surement using CoMP and EMD analysis of the CoMP Doppler
oscillation to determine the magnetic field strength of the loop
system.

While previous observations have shown coronal loop os-
cillations initially driven by the impact of a global EUV wave
(e.g., Ballai et al. 2011; Guo et al. 2015), this event is unique for
several reasons. The trans-equatorial loop system was located
adjacent to the erupting active region, with the result that the
global EUV wave-pulse was only observed to propagate south-
ward away from the active region. The eruption was also ob-
served by the CoMP instrument, making it one of only a handful
of events observed by CoMP (cf, Tian et al. 2013). The oscil-
lation of the loop system was only apparent in the CoMP mea-
surements of Doppler velocity, indicating that the erupting active
region was closer to the observer than the loop system along the
line-of-sight.
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This oscillation of the trans-equatorial loop system in CoMP
Doppler velocity was identified along the loop, and was mea-
sured by fitting an exponentially decaying cosine function. It was
found that while the amplitude of the oscillation decreased with
height, the period and damping time were found to be compa-
rable along the loop. This suggests that the wave-pulse initially
impacted the leg of the loop, which is consistent with the large-
scale nature of the loop system.

Despite the clear oscillation in CoMP Doppler velocity, no
clear oscillation was observed in either the CoMP line width
or the AIA intensity. However, oscillation was observed in
both measurements when processed using an Empirical Mode
Decomposition. This approach allowed an oscillation period and
damping rate to be estimated from the line width and AIA
intensity measurements, both of which are comparable to the
CoMP Doppler velocity measurements, albeit with a slightly
lower value. Although this suggests that the EMD approach may
be beneficial for measuring oscillations in future observations,
it should be noted that some component mixing was observed,
which resulted in an overestimation of the oscillation frequency
when fitted with a single frequency. Despite this, the signal in
AIA intensity identified using the EMD analysis confirmed the
kink mode nature of the oscillation.

The kink mode nature of the observed oscillation allowed
an estimate to be made of the magnetic field strength within the
loop system. The oscillation was measured across the loop at a
range of heights and position angles, giving a mean magnetic
field strength of ~ 5.5 + 1.5 G along the loop. This is compa-
rable to the magnetic field strength of ~1-9 G estimated using
the independent magnetoseismology approach of Morton et al.
(2015, 2016). It is also comparable to the extrapolated magnetic
field obtained from both HMI and GONG magnetograms, sug-
gesting that the approach is valid, albeit within the limitations
previously discussed by Verwichte et al. (2013).

In addition to the oscillation of the loop system previously
described, the EMD analysis may also have allowed information
on the pulse itself to be discerned which is inaccessible without
a time-frequency analysis. Two clear signals were identified in
the CoMP line width and AIA intensity: the oscillation of the
loop system and a nonlinear signal. This nonlinear signal may
correspond to the global EUV wave-pulse itself, in which case it
is observational confirmation of the suggestion previously made
by Long et al. (201 1a) that global “EIT waves” may be treated as
a linear superposition of sinusoidal waves within a Gaussian en-
velope. Alternatively it may be a complex signal resulting from
the interaction of the pulse and the loop system. As this set of ob-
servations is not optimal for discriminating between these pos-
sibilities, we intend to identify and further investigate the signal
in future work.
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