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Abstract Solar flares are observed at all wavelengths from decameter radio waves
to gamma-rays beyond 1 GeV. This review focuses on recent observations in EUV,
soft and hard X-rays, white light, and radio waves. Space missions such as RHESSI,
Yohkoh, TRACE, SOHO, and more recently Hinode and SDO have enlarged widely
the observational base. They have revealed a number of surprises: Coronal sources
appear before the hard X-ray emission in chromospheric footpoints, major flare accel-
eration sites appear to be independent of coronal mass ejections, electrons, and ions
may be accelerated at different sites, there are at least 3 different magnetic topolo-
gies, and basic characteristics vary from small to large flares. Recent progress also
includes improved insights into the flare energy partition, on the location(s) of energy
release, tests of energy release scenarios and particle acceleration. The interplay of
observations with theory is important to deduce the geometry and to disentangle the
various processes involved. There is increasing evidence supporting magnetic recon-
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nection as the basic cause. While this process has become generally accepted as the
trigger, it is still controversial how it converts a considerable fraction of the energy
into non-thermal particles. Flare-like processes may be responsible for large-scale
restructuring of the magnetic field in the corona as well as for its heating. Large flares
influence interplanetary space and substantially affect the Earth’s ionosphere. Flare
scenarios have slowly converged over the past decades, but every new observation still
reveals major unexpected results, demonstrating that solar flares, after 150 years since
their discovery, remain a complex problem of astrophysics including major unsolved
questions.

Keywords Reconnection · X-ray emission · Flare radio emission · Particle
acceleration · Magnetic energy release
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1 Introduction

1.1 Detection and definition

Since September 1, 1859, when R. C. Carrington and R. Hodgson observed the first
flare in the continuum of white light, these localized, minute-long brightenings on
the Sun have remained an enigma. Local flaring of the Sun has been reported at
all wavelengths accessible from the ground and from space. Thus the word “flare”
is used in solar physics today in a rather ill-defined way, describing a syndrome of
apparently related processes at various wavelengths. The problem is even more acute
in other languages, such as German and French, denoting flares with the equivalent
to “eruption”, which may be confused with coronal mass ejections (CMEs) that often
happen simultaneously at the time of large flares. The general use of the term “flare”
today often alludes to an “impulsive release of magnetic energy by reconnection”.
However, one has to bear in mind that such a definition represents a specific, although
widely accepted, interpretation of observations. It may be used as a guide for novices to
distinguish flares from other plasma physical phenomena in the solar atmosphere also
associated with brightenings, such as the expulsion of magnetic flux or dissipation of
shock waves. Nevertheless, it is better to define the flare phenomenon observationally
as a brightening of any emission across the electromagnetic spectrum occurring at a
time scale of minutes to hours. Most manifestations seem to be secondary responses to
the original energy release process, converting magnetic energy into particle energy,
heat, waves, and motion.

1.2 Brief history of flare observations

A few years after Carrington and Hodgson, the Sun was studied extensively in the
hydrogen Hα line originating in the chromosphere, and the reports of flares became
much more frequent, but also bewilderingly complex. Variations of source size, ejec-
tions of plasma blobs into interplanetary space, and large-scale chromospheric waves
(Moreton 1964) were noted. Meter wave radio emissions, detected serendipitously in
1942 during military radar operations, revealed the presence of non-thermal electrons
in the corona (Hey 1983). During a radio burst, the solar irradiance in radio waves may
increase by several orders of magnitude. At about the same time, S. E. Forbush noticed
ground-level cosmic ray enhancements associated with major solar flares. These dis-
coveries could only mean that the flare phenomena are not confined to thermal plasma,
but include high-energy particles and involve the corona. In the late 1950s it became
possible to observe the Sun in hard X-rays (�10 keV) by balloons and rockets. Peterson
and Winckler (1959) discovered the first hard X-ray emission during a flare in 1958.
Later, the enhancements observed in centimeter1 radio and hard X-ray emissions have
led to the surprising suggestion that the radiating energetic particles may contain a size-

1 The literature often uses the term ‘microwaves’ for frequencies in the range 1–30 GHz, in particular
in connection with gyrosynchrotron emission. In the lower wavelength part, microwaves overlap with the
decimeter wavelength range. We will thus use strictly the decimal wavelength notation in this review to
avoid confusion.

123



 2 Page 4 of 59 Living Rev. Sol. Phys.  (2017) 14:2 

Fig. 1 Still from a movie: Soft
X-rays (red), hard X-rays (blue)
and gamma-rays (purple)
observed by the RHESSI
satellite are overlaid on an
optical Hα image. The movie
starts in white light zooming into
an active region. The color then
changes to the Hα line of
hydrogen, emitted in the
chromosphere. Its brightening
indicates the start of the flare.
Visualization by RHESSI
scientists

able fraction of the initial flare energy release (Neupert 1968). Hard X-rays are caused
by the bremsstrahlung of colliding electrons. The photon distribution in energy exhibits
a non-thermal shape, close to a power-law. Some of the broadband radio emissions
from about 1 GHz to beyond 100 GHz result from the gyration of mildly relativistic
electrons in the magnetic field (termed gyrosynchrotron emission). In 1972 the γ -ray
line emission of heavy nuclei was discovered, excited by MeV protons (Chupp et al.
1973). Finally, thermal millimeter, EUV, and soft X-ray (�10 keV) emissions have
shown that the flare energy heats the plasma of coronal loops to temperatures from
1.5 MK to beyond 30 MK. Within minutes, some active-region loops become brilliant
soft X-ray emitters, outshining the rest of the corona. Such temperatures and the accel-
eration of non-thermal particles (implying low collision rates) suggest that the flare
is originally a coronal phenomenon. As a consequence, the discovery observations in
the white light and later in Hα came to seem like secondary phenomena. However,
this view could be questioned, based on the relatively large energy emitted in white
light (e.g., Emslie et al. 2012). This review will show that present observations get
much closer to the heart of flares, but still miss the primary process. On the other hand,
this review will also demonstrate that flares are not purely coronal. They couple to
the chromosphere in a substantial way and must be understood as processes in which
corona and chromosphere form an interactive system (as exemplified in Fig. 1).

1.3 The phases of flares

The timing of the different emissions of the same flare is presented schematically in
Fig. 2. In the preflare phase the coronal plasma in the flare region slowly heats up
and is visible in soft X-rays and EUV. It must be added, however, that non-thermal
emissions sometimes occur and are observed at locations different from later phases.
Large numbers of energetic electrons (up to 1038) and, in some events, ions as well
(with similar total energy) are accelerated in the impulsive phase, when most of the
energy is released. The appearance of hard X-ray footpoint sources at chromospheric
altitude is a characteristic of this phase (Hoyng et al. 1981). Some high-energy particles
are trapped and produce intensive emissions in the radio band. The thermal soft X-ray

123



Living Rev. Sol. Phys.  (2017) 14:2 Page 5 of 59  2 

Fig. 2 A schematic profile of
the flare intensity at several
wavelengths. The various phases
indicated at the top vary greatly
in duration. In a large event, the
preflare phase typically lasts a
few minutes, the impulsive
phase 3–10 min, the flash phase
5–20 min, and the decay one to
several hours. Image reproduced
with permission from Benz
(2002), copyright by Kluwer

and Hα emissions finally reach their maxima after the impulsive phase, when energy
is more gently released, manifest in decimetric pulsations, and further distributed.
The rapid increase in Hα intensity and line width has been termed the flash phase. It
coincides largely with the impulsive phase, although Hα may peak later. In the decay
phase, the coronal plasma returns nearly to its original state, except in the high corona
(>1.2 R�, where R� is the photospheric radius), where magnetic reconfiguration,
plasma ejections and shock waves continue to accelerate particles, causing meter wave
radio bursts and interplanetary particle events. Figure 2 illustrates the various phases.

1.4 The big picture

The flare observations may be ordered in a scenario or a sequence of processes in
which the flare energy is released in the corona by reconnecting magnetic fields. The
process heats the plasma in the reconnection region to temperatures of tens of millions
of degrees Kelvin (MK), but also efficiently accelerates electrons to super-thermal
energies peaking below some 20 keV and extending sometimes to several tens of
MeV. Reconnection is not unique to flares and must take place also in the lower solar
atmosphere and in the interior of the Sun. The impulsiveness of flares indicates a
slow build up of magnetic energy followed by a “dam breaking” event. In plasmas
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Fig. 3 Still from a movie: The flare SOL2002-04-21 observed in the Fexii line at 195 Å (sensitive to
1.5 MK plasma) by the TRACE satellite. Note the different phases, starting with irregular brightening in the
impulsive phase. The luminosity peaks when a sheet-like structures appears above the initial brightening.
The diffuse emission at this time is attributed to the presence of the Fexxiv (192 Å) line within the TRACE
passband, emitted by a plasma of 20 MK. The flare proceeds into a long decay phase with post-flare loops
growing in height (credit: TRACE Project, NASA)

this can occur with low magnetic diffusion (collisional) prior to the energy release
but then a sudden and drastic increase in diffusion rate during the flare. Diffusion
may suddenly increase in contracting current sheets when their thickness becomes
thinner than the particles’ gyroradius and the particles become decoupled from the
magnetic field (Lin 2011). Alternatively, high-frequency (collisionless) wave turbu-
lence may suddenly increase resistivity, expediting the magnetic diffusion (new works
by Shimizu et al. 2009), redistributing the current and rearranging the magnetic field
(Fuentes-Fernández et al. 2012). Energy storage and impulsive release generally imply
small collision rates, i.e., low density. Not surprisingly, impulsive flare reconnection
is generally assumed to take place in the corona (Fig. 3).

The energy then propagates from the corona into the dense chromosphere along a
magnetic loop by thermal conduction or free-streaming non-thermal particles, depend-
ing on the flare and the flare phase. The chromospheric material is heated to tens of
million degrees and expands into the corona. The upward motion fills up existing
coronal loops, but the motion may continue in an expansion of these loops. In some
cases, the flare may be only a minor part of a much larger destabilization of the corona,
when the magnetic confinement of a considerable part of the corona is broken up. It
expands and is expelled by magnetic forces in a coronal mass ejection (CME, Fig. 4).
The shock front associated with this motion is also a site of particle acceleration,
particularly of high-energy solar cosmic rays observed near Earth or even at ground
level. Note that a CME is not simply the explosive result of a flare, but has its own
magnetic driver. A CME is a different plasma physical process and may even lead to
the conditions for reconnection, causing a flare.

We cannot close this subsection without reminding the reader that the “big picture”
is a scenario, not an established theory. The continuing fascination of solar flares
originates in the suspicion that this scenario may be good for future surprises because
essential parts of our understanding are still lacking.
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Fig. 4 Still from a movie: Zooming into the active region that hosted the major flare SOL2002-04-21. The
movie starts in white light observed by the SOHO/MDI instrument, adds the coronal images observed by
the SOHO/LASCO coronagraph, then changes to extreme ultraviolet observed by SOHO/EIT and later by
the TRACE satellite, and later the RHESSI observations of the flare in soft X-rays (red) and hard X-rays
(blue). The focus then goes to the associated coronal mass ejection observed by the coronagraph. The movie
ends in a storm of streaks produced by energetic flare particles (mostly protons), hitting the detectors on
the Solar and Heliospheric Observatory (SOHO) in space. Visualization by RHESSI scientists

1.5 Organization of review

In this review, recent observations by new instrumentation are summarized in view
of the basic processes involved in the release of magnetic energy resulting in particle
acceleration. The material is ordered along the big questions in flare physics:

– Section 2: Flare signatures in the photosphere, chromosphere, and corona (Cou-
pling atmospheric layers).

– Section 3: Where is the flare energy released? (Flare geometry).
– Section 4: Into what forms is the energy released? (Energy budget).
– Section 5: Which emissions are direct signatures of energy release? (Signatures).
– Section 6: How are particles accelerated? (Acceleration processes).

The literature reviewing flare observations spans more than a century. Substantial
summaries of flares observations related to the RHESSI X-ray mission may be found
in Emslie et al. (2011), a short general review in Aschwanden (2002). Reviews in
more specialized fields have been published by Bastian et al. (1998), Nindos et al.
(2008), and Pick and Vilmer (2008) on radio emissions, Fletcher and Warren (2003)
on ultraviolet emissions, Ryan et al. (2000), Schwenn (2006), and Miroshnichenko
and Perez-Peraza (2008) on flare effects and energetic flare particles in interplanetary
space. Somov (1992), Shibata and Magara (2011), and Priest and Forbes (2000) have
reviewed theory. Hudson (2011) focussed on global properties, and Benz and Güdel
(2010) on solar flares in the context of stars and stellar objects. Older reviews, such
as Sturrock (1980) and Švestka (1976) are still worth reading. The Astrophysics Data
System (2015) lists more than 21,700 articles on the keyword “solar flare”. Any review,
including this one, can only focus on a small fraction of the accumulated information.
Comments and suggestions are welcome.
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Fig. 5 Still from a movie: Left white-light image of a sunspot taken with SOT on board the Hinode
satellite. The resolution is 2′′. Visualization by Hinode scientists. Right vector magnetogram showing in
red the direction of the magnetic field and its strength (length of the bar). The movie shows the evolution in
the photospheric fields that has led to an X-class flare in the lower part of the active region. Movie courtesy
of NAOJ/NINS

2 Energy release in a coupled solar atmosphere

2.1 Flares and photospheric field configuration

Flares can occur everywhere on the Sun, in active regions, sunspots and penumbrae, on
the boundaries of the magnetic network of the quiet Sun, and even in the network inte-
rior (Krucker et al. 1997b; Benz and Krucker 1998; Berghmans et al. 1998). Regular
(large) flares, however, have preferred locations. They occur in active regions show-
ing a complex geometry of the 3D magnetic field as revealed in photospheric vector
magnetograms (Régnier and Canfield 2006, see Fig. 5). Major flares occur in active
regions that exhibit a δ configuration, defined as showing umbrae with mixed magnetic
polarity. Flares of the largest size (X-class) are associated with arcades of loops span-
ning a line of zero line-of-sight magnetic field on the surface. Hagyard et al. (1990)
have shown that the magnetic field in flaring locations is strongly sheared (Fig. 6).
Magnetic shear alone, however, is not a sufficient condition. An additional require-
ment for large flares is the emergence of new magnetic flux from below (Choudhary
et al. 1998). Vector magnetograms often show narrow channels of strong horizontal
field components near the neutral line at the site of large flares (Zirin and Wang 1993).
Such fields may already be sheared when emerging and are still moving when they
appear in the photosphere (Georgoulis and LaBonte 2006).

Large-scale shear in the magnetic field can also build up through the slow motion of
foot points stretching the length of a loop. This evolution can progress through stable
field configurations. Large-scale sheared fields in active regions store huge amounts
of free magnetic energy. The emerging flux may then provide the trigger mechanism
for impulsive energy release. The energy is unleashed above the photosphere, either
in the chromosphere or corona (Moore et al. 2001). The build-up of the unstable
configuration for large flares is often well observable in photospheric magnetic fields.
Wang et al. (2004) find an increase of the photospheric magnetic field strength during
the flare, consistent with the scenario of magnetic flux emerging into the corona. In
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Fig. 6 Map of the line-of-sight magnetic field strength measured in a photospheric line by the MSFC
magnetograph. Solid curves denote positive field, dashed curves the negative field, and the dotted curve the
neutral line. Circles indicate where the transverse field deviates between 70◦ and 80◦ from the potential
field (perpendicular to the neutral line), and filled squares indicate deviations >80◦. A large flare (X3 class)
occurred several hours later at the location of the largest shear. Image reproduced with permission from
Hagyard et al. (1990), copyright by AAS

all of the 15 X-class flares studied by Sudol and Harvey (2005) there was an abrupt,
significant, and persistent change in the photospheric magnetic field. A frequent flare
site is the separatrix between different magnetic loop systems (Démoulin et al. 1997)
forming a current sheet, or in a cusp-shaped coronal structure (Longcope 2005). There
is also evidence for flares being related to helical magnetic fields (Low 1996; Pevtsov
et al. 1996).

Photospheric observations clearly support the scenario that flare energy originates
from free magnetic energy in excess of the potential value (defined by the photospheric
boundary) or, equivalently, from electric currents in the corona. For a rapid release, the
currents must be concentrated into small regions (e.g., Priest and Forbes 2000). Such
currents may be inferred observationally in regions with a tangential discontinuity of
the magnetic field direction in the system of rising loops near the base of the corona
(Solanki et al. 2003; Musset et al. 2015).

The flare energy resides in the magnetic field that originated in the interior and is
convected to the surface. Not much can be observed of the flare processes until the
energy appears in the form of accelerated particles and extremely hot plasma. In the
next section we switch from the origin and build-up to the first observable signature
after the primary energy release.
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Fig. 7 X-ray spectrum of a flare observed by the RHESSI satellite. The soft part is fitted with a thermal
component (green) having a temperature of 16.7 MK, and the high-energy part with a power law having
two breaks at 12 keV (possibly due to the acceleration process if real) and at 50 keV, of which the origin is
unknown. Image courtesy of Paolo Grigis, for details see Grigis and Benz (2004)

2.2 Geometry of hard X-ray emissions

An electron that hits another particle in a Coulomb collision emits bremsstrahlung.
In fully ionized plasma, this is the physical process also known as free-free radiation
of thermal electrons, produced by free electrons scattering off ions without being
captured. The change in direction and momentum may cause a particle with some
keV energy or greater to emit X-ray photons. Bremsstrahlung (X-ray emissions) of
thermal and non-thermal electron populations are shown in Fig. 7.

The cross-section of a single electron for producing an X-ray photon of a certain
energy can be described by the quantum-mechanical Bethe-Heitler formalism. The
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instantaneous emissivity of an electron propagating in a plasma is known as the “thin
target approximation”. It does not account for the resulting particle energy change to
be considered in further collisions. If the target is deep enough, the incident particle
slows down to thermal speed. The total radiation is therefore the integral in time
over all emissions starting at the entry into the target until the particle energy is
thermalized. If other deceleration processes than Coulomb collisions can be excluded,
this is the “collisionally thick target” situation (Brown 1971). The thick-target X-ray
spectrum of an electron beam is flatter (usually called harder) than that produced
in any thin target it may traverse before, as it includes emission of the decelerating
electrons. In an ideal situation including a power-law distribution of electron energies,
the power-law index of thin target emission is smaller by 2 than the thick target
spectrum.

The emission of hard X-rays with a non-thermal energy distribution was first located
by Hoyng et al. (1981) at footpoints of coronal loops. Based on stereoscopic observa-
tions, Kane (1983) reported that 95% of the �150 keV X-ray emission in impulsive
flares originates at altitudes �2500 km, that is at the level of the chromosphere. Brown
et al. (1983) concluded that this upper limit in altitude satisfies the collisional thick-
target model in which precipitating electrons lose their energy in the dense, cold target.
The emission presumably originates from flare-accelerated electrons precipitating into
the chromosphere. They follow the field line until they reach a density high enough
for collisions and emit bremsstrahlung while scattering and slowing down. Footpoint
sources are also occasionally found on Hα flare ribbons some 30,000 km apart, tracing
the base of a magnetic arcade (Masuda et al. 2001). The connecting loops are observed
in thermal soft X-ray emission, indicating that the density has greatly increased. Den-
sities of more than 1011 cm−3 are frequently reported (e.g., Švestka 1976; Tsuneta
et al. 1997) and agree with the concept of “chromospheric evaporation”. Evaporation
is actually a misnomer and refers to the expansion and possible explosion of chro-
mospheric material heated by precipitating particles. Up-streaming plasma filling up
a coronal loop has been observed in blue shifted lines (Antonucci et al. 1982; Mariska
et al. 1993).

Flare footpoints are usually observed to move, indicating propagation of the energy
release site (Krucker et al. 2003). Reconnection in a cusp above the flare ribbons
predicts that footpoints move apart. Contrary to expectation, parallel motion along
the flare arcade has also been reported by Grigis and Benz (2005a) and Bogachev
et al. (2005) (see movie in Fig. 8). Stochastic jumps in the time evolution are frequent
(Fletcher et al. 2004; Krucker et al. 2005a). These hard X-ray observations suggests
that most of the flare energy at a given site is released in an initial burst. The footpoints
move apart perpendicular to the flare ribbon. It is well observed in Hα, but appears
to be the result of a more gentle energy release in a later flare phase (Švestka 1976;
Martin 1989).

Hard X-rays have been noted to correlate in time with Hα kernels (Vorpahl 1972;
Wülser and Marti 1989), indicating that the flare energy reaches the dense part of the
chromosphere within less than 10 s. Hard X-ray footpoints coincide spatially with Hα

kernels (Radziszewski et al. 2007, see Fig. 9).
Hard X-ray footpoints and soft X-ray flare loops are consistent with the standard

flare scenario of energy release in the corona, energy transport to the chromosphere and
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Fig. 8 Still from a movie: Hard X-ray footpoints (with error bars) observed with the RHESSI satellite
during the flare SOL2002-11-09. Simultaneous footpoints are connected by a line colored sequentially with
time. The footpoint information is overlaid on a SOHO/EIT image at 195 Å, indicating enhanced density in
the corona. The movie shows two simultaneous footpoints connected by a vertical half-circle. The flux at
each footpoint is indicated by the size of the purple circle at logarithmic scale (see Grigis and Benz 2005a).
Movie courtesy of Paolo Grigis

Fig. 9 Still from a movie: Left
RHESSI flare observations of
soft X-rays (red 8–12 keV) and
hard X-rays (blue 20–50 keV)
overlaid on an Hα background.
Note the high-energy footpoints
moving on the Hα flare ribbons,
which moves apart in the very
late phase. Visualization by
RHESSI scientists

chromospheric evaporation, but where is the energy released? First hints came from a
third hard X-ray source above the soft X-ray loop (Masuda et al. 1994). The coronal
X-ray emission contains a thermal part, dominating at low energies, and a weak non-
thermal part above about 8–10 keV. The non-thermal spectrum of the coronal source is
usually soft (Mariska and McTiernan 1999; Petrosian et al. 2002), consistent with the

123



Living Rev. Sol. Phys.  (2017) 14:2 Page 13 of 59  2 

Fig. 10 Reconstructed
(CLEAN) image of
SOL2006-07-13T14 in hard
X-rays observed by the RHESSI
satellite. The curved line
indicates the limb of the
photosphere. The displayed
energy range 12–50 keV is
dominated by the low energies,
where the coronal source (right)
prevails. Two footpoints (left)
are clearly visible on the disk.
Image courtesy of Marina
Battaglia, for details see
Battaglia and Benz (2008)

idea of a thin target (Datlowe and Lin 1973). Thus, the accelerated electrons lose only
a small fraction of their energy and continue to propagate towards the chromosphere.
In the chromosphere they meet a thick target, yielding a harder spectrum (Brown 1971;
Hudson 1972). An example showing two footpoints and a coronal source is shown
in Fig. 10. In exceptional cases, only the fastest electrons reach the chromosphere
(Veronig and Brown 2004). The coronal source often appears before the main flare
hard X-ray increase, but is well correlated in time and spectrum with the footpoints
(Emslie et al. 2003). These observations suggest strong coupling between corona and
chromosphere during flares.

The altitude of coronal hard X-ray sources, some 6000–25,000 km, is compatible
with observed time delays of hard X-ray peaks emitted at the footpoints (Aschwan-
den et al. 1995). Low energy photons are emitted later compared to higher energy
photons. Delay-time observations scale with the observed lengths of the soft X-ray
loop (Aschwanden et al. 1996), consistent with the interpretation of longer propaga-
tion times of lower energy electrons. If only time-of-flight effects are assumed, the
propagation path would put the acceleration above the loop-top hard X-ray source.
The assumption of simultaneous injection puts strong constraints on the timescales
involved on the acceleration process (Brown et al. 1998).

The difference in the spectrum of coronal source and footpoints can be taken as a
test for the geometry. Measurements by Petrosian et al. (2002) show that the power-
law indices differ by about 1 on the average, contrary to expectations. A possible
interpretation for a value less than 2 may be a mixture of thick and thin target emissions,
overlapping in the observed resolution element. On the other hand, an analysis based
on RHESSI data demonstrates the existence of index differences larger than 2 in 3
out of 9 events (Battaglia and Benz 2007). This discrepancy requires a more complete
physical scenario than ballistic particle motion and will be discussed in the following
section.
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Fig. 11 Spectra of the three sources shown in Fig. 10 as observed by RHESSI at peak time. Left and middle
spectra of footpoints. A power-law was fitted in energy between the dotted lines. Right spectrum of the
coronal source. A power-law and a thermal population was fit between the dashed lines. Image reproduced
with permission from Battaglia and Benz (2006), copyright by ESO

2.3 Return current

It is unlikely that the fluxes of high-energy electrons and ions precipitating to the
chromosphere balance out. Thus a beam current results. In a conducting plasma, a
beam current cannot induce appreciable magnetic fields within appropriate time, and
in static state the electric charge cannot separate along the field line. A return current
builds up to conserve charge and current neutrality (Spicer and Sudan 1984; van den
Oord 1990; Benz 2002). The current is most likely driven by a dominant electron
flux in the precipitating particles. Thus the return current direction is downward in
the loop. It can be composed mostly of thermal electrons moving freely upward along
field lines.

As the return current consists of slower, if not thermal, particles, collisions play a
much bigger role than for the beam particles [see Eq. (8)]. Collisions cause electric
resistance. Ohm’s law then requires an electric field in downward direction, slowing
down the beam electrons. If the return current exceeds the thermal ion velocity, instabil-
ities enhance the resistivity beyond that by Coulomb collisions (Benz 2002, Sect. 6.1).
The return current and its associated electric field are inevitable consequences of the
standard flare model.

Some observational features have been interpreted as the effect of a downward
pointing electric field slowing down the beam electrons. Figure 11 displays spectra
of the two footpoints observed in hard X-rays. They do not show a trace of thermal
emission in the RHESSI range of energies. Their non-thermal power-law indices are
identically 2.7 ± 0.1. The power-law of the coronal non-thermal emission (Fig. 11,
right) is 5.6 ± 0.1. The difference larger than 2 can be interpreted as an effect of
the return current’s electric field flattening the spectra of the footpoints. The return
current may also leave an observational signature in the shape of the non-thermal
X-ray spectrum in the form of a kink (Zharkova et al. 1995).

Return currents may solve what has been referred to as the flare particle number
problem: as the number of precipitating electrons inferred from hard X-rays is very
large, the coronal acceleration region would soon be evacuated if not replenished. If
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only electrons escape from the acceleration region, the return current keeps the electron
density constant. If also ions escape, the acceleration region is evacuated. This may
be avoided by a pressure driven flow of neutral plasma. None of the observational
signatures, however, for both neutral flow and return current are fully established, and
their existence still needs corroboration.

2.4 Neupert effect

Neupert (1968) noted that in the rise phase of the soft X-rays their flux corresponds
to the time integral of the centimeter radio flux since the start of the flare. As the
centimeter flare emission is emitted by relativistic electrons, it is not surprising that the
same correlation was later also found between the soft X-ray flux and the cumulative
time integral of the hard X-ray flux, i.e.,

FSXR(t) ∝
∫ t

t0
FHXR(t ′) dt ′ , (1)

or, equivalently, d

dt
FSXR(t) ∝ FHXR(t) . (2)

This empirical relationship is called the “Neupert effect”. An example is presented
in Fig. 12. Already Neupert (1968) suggested that there may be a direct causal relation
between the energetic electrons and the thermal plasma: the soft X-rays originate from a
plasma heated chiefly by the accumulated energy deposited through flare accelerated
electrons. It must be remarked here that Eq. (1) is an approximation and disagrees
occasionally with observations, for example when cooling (by conduction or radiation)
is significant.

2.5 Standard flare scenario

The assumption of a strict causal relation between soft X-ray emission and hard X-ray
signatures of energetic electrons has led to a simple scenario. It postulates that flare
energy release consists of accelerating particles. The acceleration process is not part of
the scenario. Energetic particles then precipitate to the chromosphere, where they heat
the plasma to the high temperatures observed in soft X-rays. The hot plasma expands
along the loop into the corona, a process termed “evaporation”. This simple scenario
can explain several phenomena observed in flares:

– Correlation of soft X-ray flux with cumulative hard X-ray flux (Neupert effect)
– Hard X-rays (>25 keV) often originate from sources at the footpoints of the loop

emitting soft X-rays.
– The coronal hard X-ray source, where reconnection releases energy, is occasionally

observed to be above the soft X-ray loop, into which energy was release before
and which is still emitting soft X-rays (Masuda et al. 1994).

– The energy in accelerated electrons tends to be larger than the thermal energy
contained in the soft X-ray source (see discussion in Sect. 4).
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Fig. 12 The time derivative (middle) of the soft X-ray flux (top, observation by the GOES satellite)
correlates in 80% of the flares with the hard X-ray flux (bottom, observation of HXRBS on the SMM
satellite). This is an example of what is called the Neupert effect. Image reproduced with permission from
Dennis and Zarro (1993), copyright by Springer

– The hard X-ray spectrum of non-thermal electrons in the coronal source is con-
siderably softer than in the footpoints, suggesting that the latter is a thick target.
In thick targets an electron loses all its kinetic energy, and its bremsstrahlung
emission is the result of all collisions until the particle comes to full stop.

– The emission measure of the soft X-ray source greatly increases during the impul-
sive phase, indicating that chromospheric material is evaporating during this
period. Evaporation has been observed directly, first in blue-shifted lines of hot
material, later also in soft X-ray images (see following section).

Henceforth we refer to this scenario as the standard scenario (Fig. 13). It should
be noted that it is not a quantitative theory, but a an attempt to order some, but not all
observations. The cusp on top suggests that the magnetic reconnection may open up
the coronal loop, which happens only for some large flares.

2.6 Evaporation of chromospheric material

When energetic electrons (and possibly ions) precipitate from the coronal accelera-
tion site and lose their energy in the dense underlying chromosphere via Coulomb
collisions, the plasma responds dynamically. Note that the same may result also from
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Fig. 13 A schematic drawing of the standard flare scenario assuming energy release at high altitudes

heat conduction, when thermal particles transport the energy released in the corona.
The temperature in the chromosphere increases and the resulting pressure exceeds the
ambient chromospheric pressure. If the overpressure builds up sufficiently fast, the
heated plasma expands explosively along the magnetic field in both directions. The
expansion of this plasma into the corona was first reported by Doschek et al. (1980)
and Feldman et al. (1980). It was thoroughly studied in blue-shifted lines of Caxix
by Antonucci et al. (1982), who found plasma at a temperature of 20 MK, moving
with 300 to 400 km s−1 and filling up the loop (Fig. 14). More recent observations
using Hinode/EUV suggest a temperature-dependent upflow velocity of ≈8–18T km
s−1 in the temperature range of T = 2–16 × 106 K (Milligan and Dennis 2009).
Chromospheric evaporation was reviewed by Milligan (2015).

The evaporated hot plasma appears to be the source of most of the soft X-ray
emission (Neupert 1968; Silva et al. 1997). Thus, the soft X-ray emitting plasma accu-
mulates a significant fraction of the energy in the precipitating non-thermal electrons.
Consequentially, the soft X-ray emission is proportional to the integrated preceding
hard X-ray flux. As already noted by Neupert (1968), this may explain the effect
named after him. Note that the scenario assumes that the observed soft X-ray plasma
is not heated by the primary flare energy release, but is a secondary product when flare
energy is transported to the chromosphere. This is an important point to remember in
theories assuming that the coronal plasma is heated by flares.

The evaporation scenario predicts a linear relation between instantaneous energy
deposition rate by the electron beam and time derivative of the cumulative energy in
the thermal plasma, thus a linear relation between hard X-ray flux and derivative of the
soft X-ray flux (Fig. 12). This is not always the case (Dennis and Zarro 1993). There
are several reasons for this: (i) the spectral index of the hard X-rays changes with time
in most flares (Sect. 5.2), (ii) the flare energy may be preferentially transported by
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Fig. 14 Averaged density profile along a loop versus distance measured from the top. The density is inferred
from the location of the hard X-ray emission in the flare loop that is very dense so that the footpoints moved
up into the corona in the course of time (given in the inset). Note the increase in density between the first
profile (dashed) and last profile (dotted). The solid curve represents a time in between. It indicates that
the loop fills up from the bottom to the top (i.e., from high density to low density). Image reproduced with
permission from Liu et al. (2006), copyright by AAS

heat conduction (particularly in the pre-flare phase), and (iii) ions may contribute to
the energy deposition. Some flares, however, fit extremely well and a time lag in the
flare thermal energy of only 3 s relative to the energy input as observed in hard X-rays
has been reported by Liu et al. (2006).

Evaporation is the result of coupling between corona and chromosphere. Such
coupling is expected from the fact that the transition region separating the two layers
in the solar atmosphere is relatively small compared to the mean free path length in the
corona. The chromosphere is only a few collisions away from the corona for thermal
particles in the tail of a plasma at flare temperatures. There must be a constant heat flow
through the transition region. In the impulsive phase of a flare, non-thermal particles
may well dominate the energy transfer.

The expansion of the heated chromospheric plasma is driven by pressure gradients.
Thus, the phenomenon is no phase transition nor the escape of the fastest particles, but is
an MHD process and occasionally like an explosion. Wülser et al. (1994) and Milligan
and Dennis (2009) report downflowing material in Hα at the location of the flare loop
footpoints, suggesting a motion opposite to evaporation in the low chromosphere.
The upflowing hot plasma and the downflowing chromospheric plasma appear to
have equal momenta, as required by the conservation of momentum in a ballistic
explosion. Evaporation due to a flare may thus be understood as a sudden heating in
the chromosphere, followed by an expansion that may initially be supersonic.

Brosius and Phillips (2004) presented evidence for a much more gentle kind of
evaporation during the preflare phase of a flare. The maximum velocity in Caxix was
found to be only 65 km s−1. Such gentle evaporation below the coronal sound speed
is interpreted as driven by a non-thermal electron flux below 3 × 1010 erg cm−2 s−1

(Milligan et al. 2006). Zarro and Lemen (1988) found signatures of gentle evaporation
in the post flare phase, and Singh et al. (2005) reported signatures of evaporation also in
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a non-flaring state of a loop, suggesting thermal conduction of a hot coronal loop as the
driver. These observations confirm that the evaporative response of the chromosphere
depends sensitively on the flux of incident electrons. Fisher and Hawley (1990) have
studied evaporation due to thermal energy input into the corona. Evaporation resulting
from non-thermal particle precipitation has been simulated by several groups (Sterling
et al. 1993; Hori et al. 1998; Reeves et al. 2007). In general, the results of these
simulations agree with observed flare emissions quite well, indicating that the standard
scenario of solar flares is energetically consistent with observations.

2.7 Deviations from standard flare scenario

A variant of the standard scenario has been proposed for flares without footpoints
(Veronig et al. 2002; Veronig and Brown 2004). The flare loop has been found so
dense that accelerated electrons have collisions already in the corona and lose a large
fraction of their energy to the flare loop (Fig. 15). A preceding flare at the same location
may have produced the high density of the loop (Strong et al. 1984; Bone et al. 2007).

There are other indications, that the standard scenario is not sufficient. In about
half of the hard X-ray events, the Neupert behavior is violated in terms of relative
timing between soft and hard X-ray emissions (Dennis and Zarro 1993; McTiernan
et al. 1999; Veronig et al. 2002). This is particularly obvious in flares with soft X-rays
preceding the hard X-ray emission. Such preheating is well known and cannot be
explained by lacking hard X-ray sensitivity (e.g., Benz et al. 1983; Jiang et al. 2006).
Soft X-ray brightenings at footpoints with durations less than a minute have been
reported by McTiernan et al. (1993) and Hudson et al. (1994), indicating impulsive
heating to some 10 MK or more. However, it has been noted by several authors that
the plasma in the coronal source at the top is generally hotter than at the footpoints of
the loop.

An alternative to the standard scenario is that the soft X-ray emitting plasma is not
heated exclusively by high-energy electrons (e.g., Acton et al. 1992; Dennis and Zarro
1993). A likely amendment to the standard scenario is that some coronal particles get
so little energy during flare energy release that they have frequent enough collisions to
approximately retain their Maxwellian velocity distribution. Thus their energization
corresponds to heating. In a preflare, the heat of the coronal source may reach the
chromosphere by thermal conduction. Depending on the rate of the energy release,
particles may gain sufficient energy that collisions become infrequent [Eq. (8)]. These
particles then are accelerated further, get a non-thermal velocity distribution, and may
eventually leave the energy release region in the flare phase.

The standard scenario requires a dense beam of electrons to propagate from the
acceleration region to the footpoints. There are observations that cast doubts on this
beaming: (i) The required beam density is very high and may be unstable (Krucker et al.
2011). (ii) The hard X-ray emission of the beam is isotropic, contrary to expectations
(Dickson and Kontar 2013). (iii) The hard X-ray source is observed at very low height,
lower than expected for the energy deposition of a beam (Martínez Oliveros et al. 2012).
To avoid the problems with the beam model, Fletcher and Hudson (2008) proposed
a different scenario, where the energy released through reconnection is transported

123



 2 Page 20 of 59 Living Rev. Sol. Phys.  (2017) 14:2 

Fig. 15 RHESSI observations at 6–12 keV (colors) and 25–50 keV (contours) of a coronal flare. The high-
energy photons have a non-thermal origin and originate near the loop-top without pronounced footpoints.
Image reproduced with permission from Veronig and Brown (2004), copyright by AAS
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by Alfvén waves, which accelerate electrons near the chromospheric footpoints. The
simple fact that alternative scenarios are still seriously discussed may remind the gentle
reader to mistrust any scenario.

3 Flare geometry

3.1 Geometry of the coronal magnetic field

While there is nearly unanimous agreement that sheared or anti-parallel magnetic fields
provide the flare energy released in an impulsive reconnection, the geometry of these
magnetic fields in the corona at large scale is not clear. The prevalent view is depicted
in Figs. 13 and 16 (left), as well as illustrated by a coronagraph image in Fig. 16
(right). The scenario has evolved over the past four decades and is generally credited
to Carmichael (1964), Sturrock (1966), Hirayama (1974), and Kopp and Pneuman
(1976). So it also named CSHKP scenario after these scientists. It is basically a two-
dimensional geometry and an oversimplification in most cases. Its major assumption
is a magnetic loop that is pinched at its legs. The loop may be extremely large or
moving outward, so that its legs consist of oppositely directed (anti-parallel) fields.
As a result of reconnection, the top of the loop is ejected as a plasmoid. The best
evidence for this geometry are vertical cusp-shaped structures seen in soft X-rays
after the flare (Tsuneta et al. 1997; Shibata 1999; Sui et al. 2006). The cusp grows
with time, and higher loops have a higher temperature (Hori et al. 1997), as predicted by
continuous reconnection. The observational evidence also includes horizontal inflows
of cold material from the side and two sources of hot plasma that move away from
the X-point upward and downward. The observations of the former has been reported
for a single event by Yokoyama et al. (2001) and Chen et al. (2004). Hot sources
being ejected are more frequently observed in soft X-ray (Shibata et al. 1995). They
have been noticed to be associated with drifting pulsating structures in decimetric
radio emission (Khan et al. 2002) indicating the presence of non-thermal electrons.
The reported association with hard X-rays and centimeter radio emission (caused by
the synchrotron emission of mildly relativistic electrons) suggests that the plasmoids
also include highly energetic particles (Hudson et al. 2001). There is also occasional
evidence for the downward reconnection outflow in addition to the observed upward
motion of the soft X-ray source (McKenzie and Hudson 1999; Sui et al. 2004). Finally,
the existence of two ribbons marking the footpoints of an arcade of loops in Hα,
EUV, and X-ray emissions (Fig. 8) is long-standing evidence for the one-loop model,
stretched into a third dimension. It should be noted that these elements specific to the
CSHKP scenario are rarely observed, and this kind of flare may occur less frequently
than expected from its popularity.

In another also widely proposed geometry, two non-parallel loops meet and recon-
nect. There are several possibilities or the cause of such interaction. Merging magnetic
dipoles (Sweet 1958), collision of an newly emerging loop with a pre-existing loop,
proposed by Heyvaerts et al. (1977), or the breakthrough of the emerging loop through
the corona (Antiochos 1998). In such a scenario the geometry is closed, i.e., no mag-
netic field line leads from the energy release site to interplanetary space. Ejecta leaving
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Fig. 16 Left a schematic drawing of the one-loop flare model. Right observation of an apparent X-point
behind a coronal mass ejection observed by LASCO/SOHO in white light (copyright by NASA)

the Sun are still possible, but not as necessary ingredient of the model. Thus, the two-
loop model is often proposed for non-eruptive “compact flares”. The model predicts
the existence of 4 footpoints. The number of footpoints in hard X-rays rarely exceeds
two. However, radio observations have been presented that complement the number of
X-ray footpoints, resulting in the frequent detection of three or more footpoints (Kundu
1984; Hanaoka 1996, 1997). Nishio et al. (1997) find that the two loop considerably
differ in size and that the smaller loop usually dominates the X-ray emission. There is
also evidence from recent pre-flare EUV observations for multiple-loop interactions
(Sui et al. 2006).

One-loop flare models of the CSHKP type predict the presence of plasmoids in
interplanetary space, suggesting a detached bubble (i.e., magnetic field lines that close
within the solar wind). Such plasmoids are characterized by the lack of suprathermal
electrons (few times thermal) because their field lines are disconnected from the Sun.
They have indeed been reported (Gosling et al. 1995). More frequently observed are
counter-streaming suprathermal electrons, indicating that the field line is closed, i.e.,
still connected to the Sun on both sides (Crooker et al. 2004). According to these
authors, such features in the electron distribution are frequently observed in magnetic
clouds associated with CMEs. Nevertheless, they are not associated with the great
number of smaller flares.

Furthermore, there is a well-known association of nearly every large flare with
type III radio bursts at meter wavelengths, produced by electron beams escaping from
the Sun on open field lines connected to interplanetary space. Benz et al. (2005) report
that 33% of all RHESSI hard X-ray flares larger than C5 in GOES class are associated
with such bursts. This suggests that in a third of all flares at least one of the four ends
of reconnecting field lines is open. As type III bursts represent only a small fraction
of the flare energy, this may not hold for the major flare energy release site, but only
to subsites. We note, furthermore, that type III bursts very often occur also in the
absence of reported X-ray flares (Kane et al. 1974). The energy release by an open
and a closed field line, termed interchange reconnection, has been proposed some
time ago (Heyvaerts et al. 1977; Fisk et al. 1999) and applied more recently to in situ
observations in a CME (Crooker and Webb 2006).

In conclusion, there is good evidence for both the one-loop and two-loop scenarios
for the geometry of the coronal magnetic field in solar flares. There is no reason to
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assume that they exclude each other. The combination of both in the same flare at
different stages, hybrids of a closed loop reconnecting with an erupting loop, and
other scenarios are also conceivable. Thus we do not state a standard geometry for the
preflare coronal magnetic field configuration. The magnetic topologies of one loop,
interchange and two loop are generally classified as dipolar, tripolar, and quadrupolar,
respectively. In addition, 2D and 3D versions can be distinguished (Aschwanden 2002),
and various nullpoint geometries have been proposed (Priest and Forbes 2000).

3.2 Coronal hard X-ray sources

In the standard flare scenario, where the flare energy is released in the corona and
non-thermal particles are accelerated in the corona, coronal X-ray emission showing
a non-thermal photon energy distribution must attract special attention. It is generally
assumed that its emission is near or in the acceleration region. This section thus
concentrates on flare-related X-ray emissions from well above the chromospheric
footpoints.

The ordinary corona has a low density that is not favorable of hard X-ray emission.
However, such radiation was discovered as soon as it became technically feasible.
Frost and Dennis (1971) reported an extremely energetic event from active region
behind the limb. Its origin must have been at an altitude of about 45,000 km above
the photosphere. The presence of non-thermal electrons in coronal sources has been
inferred by the first observers based on the high energy of the detected photons,
exceeding 200 keV and in some cases up to 800 keV (Krucker et al. 2008b). Coronal
hard X-ray observations have been studied essentially event-by-event beyond the limb
(e.g., Hudson 1978; Kane 1983) until it became possible to image hard X-rays thanks
to the RHESSI satellite (Lin et al. 2002). Krucker et al. (2008a) have reviewed the
RHESSI results concerning the coronal X-ray sources of flares.

Occasional emission of bremsstrahlung photons by non-thermal electrons in the
corona may not be surprising, the observed intensity is. It is so high because of a high
density of the background plasma. Estimates of the loop-top density from soft X-rays
and EUV lines are typically around 1010 and can reach up to a few times 1012 cm−3

(Tsuneta et al. 1997; Feldman et al. 1994; Veronig and Brown 2004; Liu et al. 2006;
Battaglia and Benz 2006). The reported temperatures are several ten millions of degree
(Lin et al. 1981), producing a pressure up to 5 × 103erg cm−3. The pressure balance
with the magnetic field would require a field strength up to 350 G. The longevity of
such structures is enigmatic. What is the origin of this thermal loop-top source?

Thermal loop-top sources have first been interpreted in terms of chromospheric
evaporation. Thus one may expect them to follow the Neupert behavior where the
soft X-rays are proportional to the hard X-ray flux integrated over prehistory. It is
then incomprehensible that thermal coronal sources appear before the start of the hard
X-ray emission. In fact, the most prominent feature in the preflare phase (if any) is the
early appearance of a thermal source at the loop-top. The material content (emission
measure) in these sources greatly exceeds the normal value in the active region corona.
Thus it must have evaporated from the chromosphere, although not necessarily from
the same footpoints.
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A characteristic of the thermal source is the temperature distribution with loop
height. The highest looptops usually show Fexxiv emission, suggesting a temperature
of some 20 MK, while at the same time lower-laying loops show emission in the Fexi
and Fexii lines characteristic for temperatures between 1–3 MK (Warren et al. 1999).
The thermal emission must not be confused with the thermal X-ray emission from
giant arches observed in the post-flare phase (Švestka 1984).

Masuda et al. (1994) have reported hard X-ray emission from above the ther-
mal X-ray loop. Historically, this has raised great interest as it seemed to confirm
the scenario of reconnection in a current sheet in a vertical cusp-shaped structure
far above the soft X-ray loops. However, this seems to be rather exceptional. In
more recent studies, the large majority of non-thermal sources are nearly cospatial
with the thermal source (Krucker et al. 2008a). However, the non-thermal source
is often seen a few arcseconds higher, at the location where later the thermal loop
appears (e.g., Tomczak 2001; Krucker et al. 2007). This is consistent with the stan-
dard model where the sites of reconnection and acceleration acceleration are moving
upward.

Stereoscopic observations by two spacecraft (Kane 1983) and recent RHESSI obser-
vations find that the non-thermal emission from the corona and the footpoints correlate
in time. Even the soft-hard-soft behavior (Sect. 5.2) was detected in the coronal source
(Battaglia and Benz 2007). The coronal hard X-ray emission is not always stationary.
Upward motions have been reported with velocities of about 1000 km s−1 following
the direction of a preceding CME (Hudson et al. 2001; Sui et al. 2004; Liu et al.
2008).

The coronal source has been observed to emit hard X-rays even in the pre-flare
phase before footpoints appear. Astonishingly, non-thermal emission at centimeter
wavelengths, suggesting the presence of relativistic electrons, has also been reported
in such sources (Asai et al. 2006).

3.3 Intermediate thin–thick target coronal sources

The observation of coronal sources suggests a model that consists of four basic ele-
ments: a particle accelerator above the top of a magnetic loop (consistently imagined
at the peak of a cusp), a coronal source visible in SXR and HXR, collision-less propa-
gation of particles along the magnetic loop and HXR-footpoints in the chromosphere.
Wheatland and Melrose (1995) developed a simple model that has been used and
investigated further (e.g., Metcalf and Alexander 1999; Fletcher and Martens 1998).
The thermal coronal source acts as an intermediate thin–thick target on electrons
depending on energy (thick target for lower energetic electrons, thin target on higher
energies). This model is known as intermediate thin–thick target, or ITTT model.
It features a dense coronal source into which a beam of electrons with a power-law
energy distribution is injected. Some high-energy electrons then leave the dense region
and precipitate down to the chromosphere. The coronal region acts as a thick target
on particles with energy lower than a critical energy Ec and as thin target on elec-
trons with energy > Ec. This results in a characteristic hard X-ray spectrum showing
a broken power-law as well as soft X-ray emission due to collisional heating of the
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coronal region. The altered electron beam reaches the chromosphere, causing thick
target emission in the footpoints of the magnetic loop. Battaglia and Benz (2007) have
tested the ITTT model in a series of flares using RHESSI data. The results indicate
that such a simple model cannot account for all of the observed relations between
the non-thermal spectra of coronal and footpoint sources. Including non-collisional
energy loss of the electrons in the flare loop due to an electric field can solve most of
the inconsistencies.

The simple ITTT model shows that the standard flare geometry is partially consistent
with current observations. The remaining inconsistencies concern the coronal source.
Its non-thermal component was found less bright than the footpoints would predict
according the ITTT model (Battaglia and Benz 2008). A possible remedy is a filling
factor smaller than unity for the thermal source and acceleration in the gaps. Jiang
et al. (2006) argue that thermal conductivity in the coronal source is reduced by wave
turbulence to interpret the soft X-ray emission. Turbulence could also scatter non-
thermal particles or even accelerate them.

Coronal sources were intensively observed recently (review by Krucker et al.
2008a), but it is proper to conclude that they are not understood.

3.4 Emissions from above the coronal X-ray source

The standard model (Fig. 13) predicts that magnetic reconnection takes place above the
loop emitting thermal X-rays. Relatively little is known about that region apart from
the previously mentioned rare above-the-loop-top emissions in hard X-rays. Soft X-
rays were reported by Sui and Holman (2003), Sui et al. (2004), and Liu et al. (2008)
to extend far beyond the coronal source. In a flare where the loop’s chromospheric
footpoints were occulted, thus reducing the dynamic range of the image, various
wavelengths show double sources. Nonthermal photons at higher energies were found
between the low-energy sources (Fig. 17). In an event observed also by the SUMER
spectrometer on SOHO, Wang et al. (2007) reported material flowing away from the
coronal source.

Radio emission from the region above the loops may be more frequent, but lit-
tle imaging information is available. Outward moving radio sources at meter waves
are often associated with CMEs (e.g., Pick et al. 2005). At decimeter waves station-
ary bursts above the flaring region have been observed by Benz et al. (2002). Their
centroid positions outline cusp-like structures in decimetric spike events (Battaglia
and Benz 2009) and radial structures in the case of pulsations (Benz et al. 2011).
Figure 18 shows that the centroid positions of a decimetric pulsation follow a
height dependance typical for emission at the local plasma frequency, indicating
deceasing density. Surprisingly, the suggested structure is strongly non-radial in this
case.

Hard and soft X-rays and radio emissions above the flare loop suggest activity at
higher altitude, such as an upward rising current sheet. They do not necessarily prove
the standard model as at is not possible to estimate the energy released in these sources.
It is clear, however, that the region above the flare loop sometimes takes part in the
event.
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Fig. 17 RHESSI observations of the flare SOL2002-04-30 with soft X-ray emissions that extend beyond
the loop top. The footpoints are occulted by the solar limb. In the lowest energy band (9–10 keV, red) two
contours are shown representing 17 and 80% of the maximum brightness. Image reproduced by permission
from Liu et al. (2008), copyright by AAS

Fig. 18 The flare SOL2006-12-05 occurred at the solar limb. The averaged centroid positions of radio
emission observed by the Nançay Radioheliograph and indicated in MHz are shown on a GOES/SXI
image. The contours show RHESSI observations at 18–25 keV (red, coronal source, mostly thermal), and
25–50 keV (blue, non-thermal, footpoint source). Image reproduced by permission from Benz et al. (2011),
copyright by Springer
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3.5 Particle acceleration site

Observations of the region above the flare loop cannot locate compellingly the energy
release and acceleration region. Accelerated particles precipitate from the acceleration
site or are temporarily trapped. On their way spiraling along the magnetic field, they
radiate various radio emissions at frequencies depending on the local plasma. As the
corona is transparent to radio emission above the plasma frequency, the accelerated
particles may outline the geometry of the environment of acceleration and/or the actual
site of acceleration.

Gyrosynchrotron radiation is emitted incoherently by relativistic electrons over the
whole loop (review by Bastian et al. 1998, Fig. 19). The spectrum at high frequencies is
close to a power-law, shaped by the initial power-law energy distribution of accelerated
electrons. The loop-top radio spectrum falls off far more steeply at high frequencies
than does the footpoint spectrum. Thus the centimeter radio emission confirms the
differences between loop-top and footpoints found in X-ray sources. In addition to
gyrosynchrotron emission, Wang et al. (1994) and Silva et al. (1996) report thermal
loop-top radio emission at a temperature of about 30 MK, in rough agreement with
the hot thermal component of the coronal soft X-ray source. These imaging results
confirm previous interpretations of thermal flare radiation at centimeter wavelengths,
known as “post-burst increase” and “gradual rise and fall” bursts with correlated soft
X-ray emission (Kundu 1965).

The most intense flare radio emission at meter and decimeter wavelengths originates
not from single particles, but from waves in the plasma, i.e., from coherent radiation
processes. Fast-drift radio bursts, or type III bursts, were among the first types of
meter wave emissions discovered in the 1940s, and they represent the most frequent
incidents of known particle acceleration by the Sun (more than 5000 in an active
year). The drift of the radiation to lower frequencies with time was interpreted by
Wild (1950) as the signature of an electron beam propagating upward through the
corona at a speed of 0.2–0.6c. Later, occasional reverse-drift bursts were discovered
(downward-directed beams). The number of electrons in type III driving beams is
small and difficult to observe in X-rays. A tentative detection was reported by Krucker
et al. (2008c). Summaries of earlier type III observations can be found in Krüger
(1979), Suzuki and Dulk (1985), and Pick and van den Oord (1990).

Imaging observations have shown that the type III sources are often not single,
but emerge simultaneously into different directions (Fig. 21). Paesold et al. (2001)
found double type III sources to diverge from a common source of narrowband spikes
around 300 MHz. Figure 21 shows a three-dimensional reconstruction assuming an
exponential (constant temperature) model for the density. The spikes observed to
be close to the point of divergence suggest the location of the acceleration at an
altitude around 90,000 km. Krucker et al. (1995, 1997a) located spike sources at
about 5 × 105 km altitude. Klein et al. (1997) found evidence for acceleration of
type III electron beams at the height of one solar radius.

Spikes at meter waves have been found to be associated in some cases with impulsive
electron events in the interplanetary medium (Fig. 20; Benz et al. 2001). The low energy
cut-off of the interplanetary electron distribution defines an upper limit of the density
in the acceleration region (Lin et al. 1996). The derived electron density is of the order
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Fig. 19 Still from a movie: Thermal emission and a flare observed with the Nobeyama interferometer at
17 GHz. The event has the classic signatures of an event associated with a coronal mass ejection: motion is
seen first in the prominence material, then the flare goes off, leaving long-duration soft-X-ray emitting loops
around for several hours. Note that the prominence material is at a temperature of less than 10,000 degrees
K (shown at top), whereas the flare loops come from material at 10 MK: both cool and hot material show up
at this radio frequency. The left panel shows total brightness, and the right panel shows circularly-polarized
radio emission. Polarization is only detected during the early phase of the flare, when very energetic non-
thermal electrons fill up the loop and emit intense synchrotron radiation. Image courtesy of Stephen White

of 3 × 108 cm−3, consistent with the density in the source of metric spikes, assuming
second harmonic plasma emission. The difference between acceleration height in
hard X-rays, particle events and coherent radio waves suggests different acceleration
processes.

3.6 Energetic ions

Gamma-ray lines between 0.8 and 20 MeV are emitted by atomic nuclei excited by
impinging ions. Not all flares have gamma-ray lines (Vilmer et al. 2011), yet there
is a good correlation between ions accelerated beyond 30 MeV and electrons having
energy above 300 keV (Shih et al. 2009).

The neutron-capture line at 2.223 MeV (forming deuterium) is usually the strongest
of the many lines (Fig. 22). Protons and other nuclei accelerated from about 10
to �100 MeV per nucleon collide with the nuclei in the dense chromosphere and
produce neutrons. Neutrons thermalize and are captured by an ambient proton to
form deuterium (Ramaty and Kozlovsky 1974; Hua and Lingenfelter 1987). Thus
images in the 2.223 MeV line indicate the site of high-energy ion precipitation.
Comparison of imaged and spatially integrated fluences observed by the RHESSI
satellite show that in all cases most of the emission was confined to compact sources
within the active region (Hurford et al. 2006). In some events double footpoints
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Fig. 20 Spectrogram of type III radio bursts (drifting structures in the upper right) and meter wave type
of narrowband spikes (center) that occurred on March 19, 1980

were observed. Thus the flare associated gamma-rays are produced by ions accel-
erated in the flare process and not by a large-scale shock driven by a coronal mass
ejection.

Surprisingly, RHESSI found that the footpoints of the 2.223 MeV line—
indicating ion precipitation—and the footpoints of the non-thermal continuum
emission—produced by precipitating electrons—do not always coincide (Fig. 23).
The discrepancy demonstrates that protons and electrons are accelerated differ-
ently, or originate, as proposed by Emslie et al. (2004), in large and small loops,
respectively.

3.7 Thermal flare

Most of the flare energy is thermalized in the solar atmosphere, some of which is heated
to high temperatures. This part is visible in soft X-rays (Fig. 24) and centimeter-wave
radiation. Flare loop cooling has been investigated by many authors. In the absence of
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Fig. 21 Reconstructed trajectories of two radio events involving type III bursts and spikes, both of the kind
often observed at meter wavelength. Upper right positions with error bars observed by the Nancay Radio
Heliograph at three frequencies. The symbols represent the observed frequencies: cross sign for 327.0 MHz,
open square for 236.6 MHz, and open triangle for 164.0 MHz. Bottom left Position of the radio emissions
on the Sun. The small square indicates the size of the image presented in the upper right image. Upper
left projection of the sources on the meridian plane relative to Earth (as seen by an observer West of the
source). Lower right the radio sources projected on the equatorial plane, showing the view of an observer
North of the Sun). In both graphs the trajectories have been 3-dimensionally spline interpolated to outline
the trajectory. Image reproduced by permission from Paesold et al. (2001), copyright by ESO

further energy release the plasma cools by thermal conduction to the chromosphere
and by radiating X-rays. Radiative cooling and conduction losses have been found to
balance approximately (e.g., Jiang et al. 2006). At high temperature and low density,
conductive cooling dominates; radiative cooling is more efficient in the opposite case
(Cargill et al. 1995). If conductive cooling leads to evaporation of chromospheric
material, the cooling time becomes longer as the energy remains in the loop. In the late
phase, radiative cooling usually dominates, but considerable heat input is frequently
observed (e.g., Milligan et al. 2005). Note that thermal conduction implies a multi-
thermal plasma, observational evidence of which has been presented by Aschwanden
(2007).
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Fig. 22 RHESSI gamma-ray spectrum from 0.3 to 10 MeV integrated over the duration of the flare
SOL2002-07-23. The lines show the different components of the model used to fit the spectrum. Image
reproduced by permission from Lin et al. (2003), copyright by AAS

Fig. 23 Location of the gamma-ray sources of the flare SOL2003-10-23 observed by the RHESSI satel-
lite. The contours at 50, 70, and 90% of the peak value show in blue the deuterium recombination
line at 2.223 MeV and red the electron bremsstrahlung at 200–300 keV. The centroid positions of the
bremsstrahlung emission at different times are indicated by plus signs. The FWHM angular resolution is
35′′, given at bottom left. The RHESSI data are overlaid on the negative of a TRACE 195 Å image dominated
by the emission of Fexii. Image reproduced by permission from Hurford et al. (2006), copyright by AAS
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Fig. 24 Still from a movie:
Hinode soft X-ray images
observed on April 30, 2007. It
shows an active region during
two hours. Some small flares or
microflares occurred; the largest
was of class B2.6. Image
courtesy of Antonia Savcheva

4 Energy budget

Magnetohydrodynamic models suggest that reconnection releases magnetic energy
into ohmic heating and fluid motion in the ratio 40:60 (textbook by Priest and Forbes
2000, p. 133). Using 3-dimensional simulations Birn et al. (2009) specified this
partition in relation to the magnetic field strength. Ohmic heating is the result of
resistivity in a current loop. At the level of kinetic plasma theory, the resistivity may
be greatly enhanced by collisionless wave turbulence. Thus ohmic heating may amount
to stochastically accelerating particles, possibly leading to a non-thermal energy dis-
tribution. The motion of the reconnection jet may involve waves and shocks, both are
also capable of acceleration. Thus a flare releases energy initially into the forms of
non-thermal particles, heat, waves, and motion. Non-local transport by the energet-
ically dominant suprathermal particles changes the course of the processes and the
energy partition. The energy release may in reality be very different from the MHD
prediction.

In the past, the reported partition of energy in flares into the various forms has often
changed with new instrumentation. The increase in total solar irradiance provides a
good measure of the thermalized flare energy (Milligan et al. 2014). Woods et al. (2004)
determined the total flare irradiance to exceed the soft X-ray emission (<27 nm) by a
factor of 200 in two well observed, large flares. The total irradiance enhancement is
dominated by white light and infra-red emission (77%). UV and soft X-ray emissions
<200 nm amount to 23%.

The origin of white-light flare emission is not clear. It was found to correlate excel-
lently in time with hard X-rays (Matthews et al. 2003; Metcalf et al. 2003; Hudson
et al. 2006) (Fig. 25). Recent imaging data indicate that white light and hard X-rays
(40 keV) also coincide in space within less than an arcsecond (Krucker et al. 2011;
Martínez Oliveros et al. 2012). According to these authors, the source region of the
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Fig. 25 Still from a movie: A
white-light flare near the solar
limb. The RHESSI hard X-ray
(30–50 keV, blue) contours are
overlaid on a white-light
difference (background and red)
image observed by HMI/SDO.
Note spatial coincidence of hard
X-ray and white-light
brightenings. Image courtesy of
Säm Krucker, for details see
Martínez Oliveros et al. (2012)

white light is in the low chromosphere. Jess et al. (2008) point out that white light
flares are not different from others, and that possibly all flares may be observed in
white light with sufficient sensitivity.

Not included in the total irradiance is the energy that leaves the corona in coronal
mass ejections. Emslie et al. (2012) report on 38 large eruptive flares. The kinetic
energy of the CME exceeds the non-thermal electrons’ energy of the associated flare
by about an order of magnitude. However, taking into account the flare energy radiated
at wavelengths other than X-rays, in particular in white light, brings the flare energy
up to nearly the CME energy within a factor of a few (Table 1).

4.1 Non-thermal electron energy

Particles accelerated to a non-themal energy distribution are a primary form of flare
energy. The energy, Ekin, of these electrons is

Ekin =
∫ εmax

εmin

F(ε)ε dε, (3)
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Table 1 Energy budgets as reported by Saint-Hilaire and Benz (2005) for two M-class flares (a) and by
Emslie et al. (2005) for two X-class flares (b)

Energy mode 2002/11/10 2002/08/22 2002/04/21 2002/07/23

M2.6 (a) [erg] M7.8 (a) [erg] X1.7 (b) [erg] X5.1 (b) [erg]

Non-thermal electrons 1.9 × 1030 6.5 × 1030 2.0 × 1031 3.2 × 1031

Non-thermal ions <4.0 × 1031 7.9 × 1031

Thermal hot plasma 1.4 × 1030 2.6 × 1030 1.2 × 1031 1.0 × 1031

Total radiated 1.6 × 1032 1.6 × 1032

Kinetic CME 2.0 × 1032 1.0 × 1032

Gravitational CME 5.0 × 1030 1.6 × 1031

Non-thermal CME 3.2 × 1031 <1030

The non-thermal electron energy strongly depends on the low-energy turn-over of the electron distribution,
which may be masked by thermal radiation. Thus the non-thermal electron energy is a lower limit. The total
radiated energy includes the contributions of soft X-rays, UV, and optical emissions

where ε is the electron energy and F is the electron distribution per energy unit. If
the accelerated electrons have a power-law distribution with a spectral index of δ,
the emitted bremsstrahlung by a thick target is also approximately a power-law in
photon energy with index γ = δ − 1. As δ > 2 in all observations, the integral
in Eq. (3) depends strongly on the low-energy cut-off εmin. It is difficult to observe
as the emission of the non-thermal electrons is usually outshone by the emission of
the thermal plasma below about 10 keV. Only with the 1 keV spectral resolution of
RHESSI, it has become possible to reconstruct the electrons’ energy distribution at low
energies (<20 keV). Structure in the reconstructed electron distribution was reported
by Kontar et al. (2002, 2005), indicating that spectral features may indeed be observed.
It suggested that the inversion of photon spectra into electron energy distributions is
possible (Piana et al. 2003). However, several effects distort the photon spectrum
around 10 keV, in particular reflection of X-rays at the chromosphere, termed albedo
effect (Kontar et al. 2006; Kašparová et al. 2007), free-bound emission and pulse
pile-up in the detectors. Thus the low-energy turn-overs of the electron distribution
measured and reported to be at 20–40 keV or below by Saint-Hilaire and Benz (2005)
and between 15–50 keV by Sui et al. (2007) may be upper limits, underestimating the
energy of accelerated electrons.

4.2 Thermal energy

Electron energy distributions can be inferred from X-ray spectra with high spectral
resolution, e.g., Fig. 7. The quasi-thermal part, observed mostly in coronal sources,
reaches temperatures of several ten MK. For simplicity, it is often modeled with a
single temperature, sometimes with an additional much hotter, but smaller second
component. In reality, the distribution of the emission measure with temperature (called
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differential emission measure, DEM) typically decrease with increasing temperature
in the MK range (McTiernan et al. 1999; Chifor et al. 2007; Aschwanden 2007).
The quasi-thermal population may be directly heated coronal material or evaporated
chromospheric material heated by precipitating particles accelerated by the flare. As
the coronal emission measure greatly increases during a flare, most of the thermal
flare plasma must originate from the chromosphere. The first X-ray emissions appear
to be purely thermal, but already contain more material than expected in the corona of
quiescent active regions. Thus the thermal X-ray plasma is generally assumed to be
evaporated chromospheric material. The thermal energy Eth of this plasma is thus of
flare origin and amounts to

Eth = 3

2

∑
α

∫
nαkBTα dV, (4)

where α refers to the plasma species, n, T , and V refer to density, temperature, and
volume. Assuming a homogeneous source having equal temperatures among species
and approximate equality between electron and ion density,

Eth = 3kBT
√
MV , (5)

where M is the observed emission measure of soft X-rays. The observations suggest
that Ekin is larger by a factor of 0.5–10 than Eth for plasma at T > 10 MK (Emslie
et al. 2012). The factor concurs with the uncertainty in the total energy in electrons due
to the low-energy cut-off and with the expectation that heating to coronal temperature
is not a loss-free process. The result is also consistent with the observations in white
light suggesting that a major part of the precipitated energy is lost to low-temperature
plasma not observable in X-rays (Sect. 4.4).

4.3 Energy in waves

The reconnection scenario of magnetic energy release involves flux tubes combining;
this launches two reconnection jets that can be viewed as Alfvénic excursions of two
waves. The waves cascade to smaller wavelengths until they resonate with electrons or
ions (Miller et al. 1997; Petrosian et al. 2006). Thus waves are essential in the currently
most popular view of particle acceleration. Reconnection may still be collision-free
as found in the terrestrial magnetosphere (Øieroset et al. 2001), involving effects
of electron inertia. For solar conditions, involving much larger energies and particle
numbers, intense wave turbulence may play a more prominent role.

Waves of all frequencies from large scale MHD waves to high-frequency waves up
to whistler waves have been predicted and observed in magnetospheric reconnection
(Deng and Matsumoto 2001; Øieroset et al. 2001). Waves can propagate energy across
magnetic field lines. Low-frequency Alfvén waves produced by coronal reconnection
can move through most of the corona and be partially absorbed at inhomogeneities.
Thus they can transport energy even to the high corona and solar wind.
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MHD waves related to flares have been inferred from pulsating radio bursts
(Roberts et al. 1983) and were more recently reported in high-temperature EUV
emission (Aschwanden et al. 1999) and in X-rays (Foullon et al. 2005; Nakariakov
et al. 2006). Schrijver et al. (2002) have shown that most larger flares (classes M
and X) trigger low-frequency loop oscillations. However, the energy deposited in
these oscillations is typically six orders of magnitude smaller compared to the flare
energy release (Terradas et al. 2007). Furthermore, the oscillations are observed to
damp within a few oscillation periods. From the existing observations it is not clear
how far the energy of these oscillations propagates into the corona. Nevertheless, it
is obvious that the observed oscillations do not significantly contribute to coronal
heating.

Recent acceleration models are based on wave damping (Sect. 6). The relatively
small energy in observed MHD waves originating from flares is in striking contrast to
expectation from the assumed role they are proposed to play in acceleration.

4.4 Other energies

The energy in the non-thermal ions is less known than for electrons. Ramaty et al.
(1995) have argued that the fraction of the available flare energy that is contained
in accelerated ions above 1 MeV is similar to that of electrons above 20 keV. This
conclusion is supported by the observations that the derived non-thermal energy in
protons is occasionally comparable within an order of magnitude to the non-thermal
energy in electrons (e.g., Cliver et al. 1994; Miller et al. 1997). On the other hand,
there are flares with no signature of accelerated ions within the observational limits.
Unfortunately, the total energy content of accelerated ions is difficult to assess, since
there are few diagnostics for ions below 1 MeV. The above observations, however,
leave doubtful whether the energy in non-thermal electrons and ions add up to the
energy of flares observed in total irradiance (see Table 1).

The possibility remains that some energy propagates from the release site to the
chromosphere by means of low energy (non-thermal) particles below the current
threshold for X-ray detection or by heat conduction (i.e., thermal particles). This
is supported by the observation that in a quarter of the events there is clear evidence
for the presence of an additional energy transport mechanism other than non-thermal
electron beams (Veronig et al. 2002, 2005). Furthermore, the relative contribution to
energy transport by non-thermal electrons is found to decrease with the flare impor-
tance and in the late phase of flares.

Other forms of energy must also be considered. The reconnection process releases
bipolar outflows that may be observed as ejections. Magnetic field and plasma are
expelled from the X-point where oppositely directed field lines meet. Reconnection
jets may not propagate far and are distinct from CMEs. Saint-Hilaire and Benz (2002)
observed a stopped ejection in a flare having an initial kinetic energy of motion of
some 1029 erg, about the same as the thermal energy in the soft X-ray plasma, and
interpreted it as a reconnection jet (Fig. 26). The thermal energy that such ejections
contain was found even an order of magnitude larger, but it was not possible to estimate
what fraction of it originated in the flare.
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Fig. 26 Still from a movie: An
overview in Fexii EUV emission
observed by EIT/SOHO, later
zooming into the observations
by TRACE, both showing
thermal coronal emission of a
plasma at about 1.5 MK. The
12–25 keV hard X-ray emission
observed by RHESSI is shown
in red and yellow colors. Image
courtesy of Pascal Saint-Hilaire

The reconnection outflows also carry magnetic energy. The motion amounts to a
Poynting flux that transports magnetic energy (Fletcher and Hudson 2008; Birn et al.
2009). The mode is Alfvénic, thus the energy can be transported without loss and is
released where the density or magnetic field are inhomogeneous, resulting in heating
and/or acceleration.

If the expansion of the heated flare plasma from chromospheric density to the
observed value of the thermal X-ray source were adiabatic, the temperature would
drop by many orders of magnitude. This is not observed, the expansion appears to
be basically isothermal (McTiernan et al. 1993; Graham and Cauzzi 2015). Thus the
thermal plasma of the coronal source contains also the work done by the expansion
(enthalpy: Benz and Krucker 2002; Bradshaw and Cargill 2010; Cargill et al. 2012).
This expansion in volume by a factor of 103 or more at constant temperature, con-
sumes energy that is not accounted for in the thermal energy measurement of X-rays.
The expansion energy is released when the material cools and rains back to the chro-
mosphere. A fraction is finally radiated away at temperatures below coronal. The
uncertainties in these estimates make it difficult to assess the energy partition of flares
and their contribution to coronal heating.

4.5 Energy input into the corona

The predominant heating of the stationary corona is a long-standing debate and is
not the issue here. Occasional large flares occurring in active regions during solar
maximum are unlikely candidates because their energy is not sufficient for heating
and because of their intermittency (Hudson 1991). Hannah et al. (2011) arrived at the
same conclusion from the statistics of active region microflares observed by RHESSI.
The existence of tiny flares in active region loops unobservable by current instruments

123



 2 Page 38 of 59 Living Rev. Sol. Phys.  (2017) 14:2 

Fig. 27 Time profile of
quiet-region microflare observed
in Fexi/x, and Fexii lines at
17.1 nm and 19.5 nm by
EIT/SOHO. Top panel
temperature averaged over the
area of the event; second panel
the emission measure; third
panel radio flux observed by the
VLA at 6 and 3.6 cm wavelength
at the location of the 6 cm peak;
bottom panel same at the
location of the 3.6 cm peak
(after Krucker and Benz 2000)

(Parker 1988) is an unproven hypothesis, although the evidence is increasing (e.g.,
Viall and Klimchuk 2015). We note that the theoretical concept of nanoflares is based
on the reconnection of twisted magnetic field lines in loops, thus appealing to a scenario
different from the standard flare cartoon.

In the quiet Sun the question of flare heating is different. It has come up by obser-
vations of extremely small brightenings in low-energy soft X-rays in the quiet corona
(Krucker et al. 1997b). Their energies are up to three orders of magnitude smaller than
the smallest RHESSI flares in active regions. Some of the larger events have been found
to correlate with centimeter radio emission. Similar events have also been reported in
high-temperature EUV lines (Benz and Krucker 1998; Berghmans et al. 1998; Krucker
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and Benz 1998). Figure 27 shows the time profiles of two radio sources at the oppo-
site ends of a small Fexii loop. In one of them (third panel), the radio source has a
negative slope (3.8 cm flux larger than 2 cm flux), indicating gyrosynchrotron emis-
sion. The radio peaks occur before the temperature maximum and emission measure
peak of the thermal EUV emission, following the Neupert relation between thermal
and non-thermal flare emissions. The other source (fourth panel) has an increasing
spectrum, indicating optically thick thermal radio emission, coincident with the EUV
emission. The events were soon realized to be at least similar to regular flares and thus
also termed “nanoflares”. The most relevant difference to regular flares is the order
of magnitude lower ratio of synchrotron emission to soft X-rays compared to regular
flares (Krucker and Benz 2000). To avoid confusion with Parker’s theoretical concept
of nanoflares, we will use here the term “quiet-region microflares”.

The pertinent question is how much the observed flare-like events contribute to the
heating of the corona. The largest quiet-region microflares reported contain energies
of a few 1026 erg (Krucker and Benz 1998). This number refers to the thermal energy
in the soft X-ray plasma and is identical to the largest individual flare-like quiet-
region events inferred from Fexi/x, and Fexii lines. Quiet-region microflares differ
from coronal bright points, locations in the quiet corona where continuous flaring
during many hours is observed. The smallest flares reported given by the TRACE
instrumental limit is a few 1023 erg (Parnell and Jupp 2000). The rate of events larger
than few 1024 erg and lasting about 15 min each, estimated over the whole Sun is
300 per second (Krucker and Benz 1998). Benz and Krucker (2002) have estimated
that the total energy measured in quiet-region microflares in the energy range from
5 × 1024 erg to 5 × 1026 erg observable by EIT/SOHO amounts to about 12% of the
energy radiated by the corona in the area in which the quiet-region microflares were
observed.

This review of flare observations emphasizes that the thermal energy measured at
peak soft X-ray or EUV emission is not equivalent to the total flare energy input into
the corona. Most of the thermal flare plasma is just the reaction of the chromosphere on
a coronal phenomenon. We may thus end this short subchapter by the conclusion that
the hypothesis of coronal heating by flares needs more accurate measurements. Flare
heating cannot be quantitatively assessed from observations of one energy receiving
channel alone as long as the energy partition of regular flares into waves, direct heating,
motion, and particle acceleration is unclear.

5 Signatures of energy release

As explained in Sect. 3, the location of energy release is not well known. Even less
understood is its process. Some observational evidence restricting the possible mech-
anisms is presented in the following.

5.1 Coronal hard X-ray signatures

The coronal hard X-ray source is a thin or thick target for accelerated electrons, but
not necessarily identical to the acceleration region. The relation between coronal hard
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Fig. 28 Top light curves in two X-ray energy bands (upper curve 6–12 keV; lower curve, 25–50 keV)
for SOL2002-04-15 as observed by RHESSI. Bottom altitude of the loop-top centroid obtained using the
60% contour for the images in the 6–12 (crosses) and 12–25 keV (diamonds) bands. The triangles show the
altitude of the lower source above the flare loop. The horizontal bars on each point represents the integration
time of the corresponding image. The lines show linear fits to the altitudes versus time for two time ranges
and two energy bands. Image reproduced by permission from Sui et al. (2004), copyright by AAS

X-rays and acceleration is not clear. The centroid position of the coronal hard X-
ray emission has been reported to be higher with increasing photon energy, and to
be located above the thermal soft X-ray loop (Masuda et al. 2000). In some cases it
has been reported to move out (Shibata et al. 1995). In another case, the speed of the
outward motion of several hundred km s−1 was correlated with the flux of accelerated
electrons (Sui et al. 2004, Fig. 28). The altitude of this source decreases from the start
of the hard X-rays until peak time at 23:12 UT, while a source above the loop-top
moves upwards at a speed of 23 km s−1. Well contained emission is also seen (e.g.,
Fig. 26). Elongated tongues stretching out from the loop-top are frequently reported
(e.g., Sui et al. 2004).

With higher spectral resolution it became possible to determine also the photon
energy distribution. The coronal hard X-rays have been found to be well represented
by a power-law in energy (Emslie et al. 2003; Battaglia and Benz 2006), similar to
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Fig. 29 Flux density at 35 keV and power-law index as determined from RHESSI observations of the
non-thermal component of flare hard X-ray emission in SOL2002-11-09. Colors mark individual subpeaks.
The close correlation demonstrates soft-hard-soft behavior in the smallest details. Image courtesy of Paolo
Grigis, for details see Grigis and Benz (2004)

what is well known for footpoint sources. The predominant near power-law distribution
of accelerated electron energies is thus a stringent characteristic of the acceleration
process, and not the result of propagation.

5.2 Soft-hard-soft behavior in hard X-rays

The hardness of the non-thermal spectrum changes in the course of a flare, starting soft
(steep), getting harder at the peak and softening toward the end (Parks and Winckler
1969; Kane and Anderson 1970). A few large flares continue to harden after the
peak (Frost and Dennis 1971; Krucker et al. 2005b). These flares were shown to be
particularly well associated with solar energetic particle events (Kiplinger 1995), but
this relation was recently questioned by Kahler (2012).

The great majority of flares follows a soft-hard-soft behavior (illustrated in Fig. 29).
This correlation between (negative) spectral index and flux is generally interpreted as
a signature of the acceleration process. A similar relation also holds for peak values
of flares, showing that small flares are on the average softer (Battaglia et al. 2005).
Both the time variation and the size variation of the spectral index with flux indi-
cate that intense hard X-ray radiation is not a superposition of many small events.
High flux means that the acceleration process is driven more forcefully, resulting in a
harder spectrum. It is a intrinsic property of the acceleration process, but alas, many
acceleration processes show this behavior.
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The soft-hard-soft property becomes relevant if it is possible to express the relation
between flux and spectral index in a quantitative way that can be compared to models.
Grigis and Benz (2004, 2005b) found a power-law relation between the photon spectral
index γ and the flux density F(E0) measured at a given energy E0 for SOL2002-11-09
(Fig. 29),

γ = AF(E0)
−α , (6)

where A is constant that varies from flare to flare, and α is 0.121 ± 0.009 in the flare rise
phase and 0.172±0.012 in the decay phase for E0 = 35 keV (Grigis and Benz 2004).
In this quantitative form, the soft-hard-soft behavior becomes a stringent condition for
electron acceleration theories.

5.3 Radio emissions from the acceleration region

There are several flare-related processes that emit radio waves. The large variety of
radio emissions may be grasped from Fig. 30. Their emission processes must be
distinguished as they refer to widely different physical mechanisms. Only few of the
radio emissions in Fig. 30, if any, come directly from the acceleration region. Most
flare radio emissions, except thermal radiations at millimeter and submillimeter waves
(post-burst increases and gradual rise and fall), are interpreted to be caused by non-
thermal electrons. Non-thermal emissions come in two kinds: incoherent and coherent.
In incoherent emissions, such as the synchrotron process, non-thermal electrons radiate
individually. When a wave organizes electrons to emit in phase, the emission becomes
coherent. On some cases, radio emission results from coupling two plasma waves
(textbooks by Melrose 1980; Benz 2002). Coherent emissions are emitted at the local
plasma frequency, upper hybrid frequency, electron gyrofrequency, or their harmonics
and carry information on the plasma parameters in the source. As the plasma frequency
exceeds the electron gyrofrequency by more than an order of magnitude in most of
the corona, the plasma frequency is the lowest frequency observable from outside the
solar atmosphere. If the flare energy is released at electron densities between 108 and
1011 cm−3, as generally believed, the corresponding emission is at short meter waves
and, predominantly, in the decimeter region.

The study of the spatial distribution of the synchrotron emission by mildly relativis-
tic electrons (gyrosynchrotron) has a long history. Both loop-top sources and double
sources located close to the conjugate magnetic footpoints were reported (Marsh and
Hurford 1982; Kundu et al. 1982; Kawabata et al. 1983). The comparison with theoret-
ical simulations of the gyrosynchrotron brightness distribution along model magnetic
loops (see Bastian et al. 1998, for a review) strongly suggests that the distribution of
mildly relativistic electrons along an extended flaring loop must be highly inhomoge-
neous: accelerated electrons are concentrated in the upper part of the loop (Nindos et al.
2000; Melnikov et al. 2002). Some of the centimeter loop-top emissions were observed
in the late phase of flares (e.g., Karlický 2004). They are not related to the main energy
release, but possibly to high-energy X-rays detected late in flares (Krucker, personal
communication) and possibly the end stage of the spectral hardening observed in
non-thermal X-rays (see Sect. 5.2). The investigation of the acceleration region using
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Fig. 30 Radio spectrogram observed by the Phoenix-2 spectro-polarimeter operated by ETH Zurich. At
low frequencies (top of image), the radio emission is dominated by type III bursts and U bursts emitted
by escaping electron beams and trapped electron beams. The brightest feature is a type V event, possibly
caused by electrons left behind by unstable beams. At high frequencies (bottom of image) the synchrotron
emission of mildly relativistic electrons (gyrosynchrotron) dominates, correlating well with hard X-rays.
In the middle of the frequency range at about 800–2000 MHz, narrowband spikes of the decimetric type
can be seen. Image adapted from Benz (2004)

gyrosynchrotron emission has greatly profited from combination with hard X-rays. It
may result in the measurement of the magnetic field in loop-tops in future work.

Benz et al. (2007) found some coherent radio emission in all flares larger than C5
class, except near the limb where absorption seems to play a role. While there is good
association between coherent radio emission and X-rays, correlation in details of the
time profile is less frequent. Thus coherent emissions cannot expected to be reliable
tracers of the main flare energy release in general. Emissions at higher frequencies,
such as decimetric narrowband spikes, pulsations, and stationary type IV events appear
to be more directly related to the acceleration process. The association but loose
correlation between HXR and coherent radio emission may be interpreted by multiple
reconnection sites connected by common field lines, along which accelerated particles
may propagate and serve as a trigger for distant accelerations. Thus coherent radio
emissions may be interesting diagnostics in for large-scale flare dynamics.

Correlation of coherent radio emissions with hard X-rays (or gyrosynchrotron emis-
sion) has been reported for spikes and pulsations (Slottje 1978; Benz and Kane 1986;
Aschwanden et al. 1990; Kliem et al. 2000; Dabrowski and Benz 2009). If these coher-
ent radiations are emitted at the second harmonic of the plasma frequency—the usual
assumption—the density of the source region is in the range from 109 cm−3 to a few
times 1010 cm−3. This range is a possible indication for the density in the acceleration
region. Although initially interpreted as loss-cone emissions of trapped particles near
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footpoints, they have been found at high altitudes (Benz et al. 2002; Khan et al. 2002;
Kundu et al. 2006). As the emission mechanism of spikes and pulsations is not well
understood, the origin of the radiating high-frequency waves is not known.

Best candidates for direct emission from an acceleration region are small clusters
of narrowband spikes around 300 MHz, reported to correlate in detail with electron
beam emission (type III radio bursts). About 10% of all meter wave type III groups are
accompanied with spikes near but slightly above the start frequency (Benz et al. 1982).
The spikes are concentrated in the spectrogram on the extrapolation of the type III
bursts to higher frequency. More precisely, as suggested by Fig. 21, metric spikes are
located on the extension of type III trajectories, supporting a model of energy release
in or close to the spike sources (Benz et al. 1996). If this is the case, radio observations
can approximately locate the acceleration region for the type III electrons and measure
the electron density of the acceleration region (Sect. 3).

Type IV emissions occur late relative to the hard X-ray peak and appear to be
connected to some late-phase acceleration (e.g., Švestka et al. 1982; Klein et al. 1983).
They may be related to delayed electron releases of interplanetary electron events in
the corona (Klein et al. 2005).

Some radio emissions (like type III and V) are due to electrons escaping from the
acceleration region. Hard X-ray flares are associated with meter-wave type III bursts
in 33% of all cases, and in 4% of them type III bursts are the exclusive radio emission.
Type III emission is caused by electron beams becoming unstable towards growing
electrostatic plasma waves at the local plasma frequency. These waves are converted
into radio waves slightly above the plasma frequency ωp,

ωp =
√

4πe2ne
me

, (7)

or its harmonic, where ne is the electron density, e the elementary charge, and me

the electron mass. Type III emission thus occurs at a frequency that varies with the
local density. Observed at many different frequencies, it can be used to trace the path
of the electron beam in the corona. Different beams following different trajectories
diverging from the acceleration region have been used to locate the acceleration region
(Fig. 21). The distance from this region to the start of type III emission depends on the
energy spectrum of accelerated electrons (Benz 2002, p. 32). Future interferometers
observing at many frequencies will refine this method.

A major constraint by radio emission on particle acceleration is the fact, that in 15%
of larger flares (>C5.0 class) there is no coherent radiation except some electron beam
emission at very high altitude (Benz et al. 2007). The flare capability to accelerate elec-
trons without emitting coherent radio waves is, therefore, an observable criterion for
the validity of acceleration models. The frequent lack of direct radio emission from
the acceleration region suggests that the acceleration is “gentle”, excluding signifi-
cant deviations from a distribution monotonically decreasing with velocity, such as a
monoenergetic beam, which would emit observable Type III emission. The deviations
only build up after the non-thermal electrons have traveled some distance and the
faster particles have outpaced the slower particles, or after a loss-cone results from
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magnetic trapping. Gentle acceleration favors acceleration by diffusion in velocity
space as predicted by stochastic acceleration (Sect. 6).

Another constraint suggested by radio waves is the rarity of shock emission from
the termination of the reconnection outflows. Termination shocks are expected from
the standard scenario (Fig. 2). Observational indications were presented by Aurass
et al. (2002) and Mann et al. (2006), but seem to be rare.

6 Acceleration processes

A remarkable fraction of the total flare energy released first appears as kinetic particle
energy in non-thermal electrons and sometimes ions (Sect. 5). White-light observa-
tions (Sect. 4) suggest that substantial energy is transported to the chromosphere and
photosphere in addition to the particles that are observed in X-rays and gamma-rays
(Lin and Hudson 1976). The acceleration process thus is a major issue in flare physics
and constitutes the core of the flare enigma. We will briefly review here the major
ingredients of the current theories and then present the observational evidence.

The transfer of magnetic energy to kinetic particle energy has been observationally
separated into two phases. In the impulsive flare phase, the concept is “bulk ener-
gization”, involving an increase of the electron energy by more than two orders of
magnitude starting from the coronal thermal energy (some 0.1 keV) within less than
1 s as derived from hard X-ray observations (Kiplinger et al. 1984). The other class of
acceleration occurs in a secondary phase, possibly as a result of the first phase such
as shock wave initiated by a flare or an associated coronal mass ejection. The second
phase may be less efficient in particle acceleration, but is more important for solar
energetic particles in interplanetary space.

We will concentrate here on bulk energization, in which the whole particle popu-
lation gains energy and remains close to a Maxwellian distribution and/or develops
a non-thermal tail. The acceleration of a particle to an energy Ekin must occur faster
than the collision time τcoll(Ekin) for energy loss. The energy loss time for an electron
with velocity v is

τcoll(Ekin) = 3.1 × 10−20 v3

ne
= 0.31

( v

1010 cm s−1

)3
(

1011 cm−3

ne

)
[s], (8)

where ne is the electron density. Equation (8) yields a collision time requiring accel-
eration within less than 1 s. Note that densities up to some 1012 cm−3 are reported
for coronal sources (Sect. 3.2). Equation (8) excludes efficient particle acceleration at
high densities if the process takes a finite time.

6.1 Electron acceleration theories

The free mobility of charged particles in dilute plasma and the difference in inertia
between electrons and ions make it likely that electrons are accelerated in every major
impulsive process in the corona. Releasable (free) magnetic energy requires the pres-
ence of an electric current and an associated electric field before the flare-like process.
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Waves of various types from MHD to collisionless are expected to be excited by the
flare and are also capable to accelerate particles in resonance. From a plasma-physics
point of view, acceleration is not surprising; what is controversial is, however, which
process dominates.

The conversion of magnetic energy into accelerated particles can be accomplished
by several processes. It is likely that more than one occurs during a flare and its
secondary effects. The most widely discussed can be grouped into three types (e.g.,
Melrose 1990; Benz 2002):

– stochastic acceleration (e.g., resonant acceleration by waves),
– electric field parallel to the magnetic field,
– perpendicular and parallel shocks (first and second order Fermi acceleration).

The preferred but not generally accepted acceleration model for solar flares is
stochastic acceleration by the magnetic field component of low-frequency waves
(Miller et al. 1997; Schlickeiser and Miller 1998; Petrosian et al. 2006). Particles
near Cerenkov resonance (v ≈ ω/k‖) are mirrored by the waves. The process is
known as “transit-time damping” of waves. It acts as a diffusion process of the parti-
cle distribution f (p) in momentum space, described by the Fokker–Planck equation

∂ f (p)

∂t
=

⎛
⎝1

2

∑
i, j

∂

∂pi∂p j
Di j −

∑
i

∂

∂pi
Fi

⎞
⎠ f (p) . (9)

The diffusion coefficients Di j and Fi contain the physics: the action of accelerating
waves and decelerating Coulomb collisions (Fig. 31).

6.2 Comparing theories with observations

Flare particle acceleration may occur in connection with magnetic reconnection in
low density plasma. The details are still obscure. Current flare observations contain a
wealth of information that limits the scenarios for particle acceleration. Concerning
the three types mentioned in the previous section, observations exclude more than they
confirm. In particular:

– High-frequency waves near the plasma frequency (such as Langmuir waves) can
be excluded as drivers for stochastic acceleration. They would couple into radio
decimeter waves and be present in every flare. On the other hand, acceleration
by transit-time damping is compatible with the frequent lack of radio emission
because the frequency of the postulated turbulence is far below the plasma fre-
quency and does not cause radio emission.

– The number of electrons that can be accelerated in current sheets is limited by the
total current, and observed large values are difficult to match with a classic current
sheet (Holman 1985; Litvinenko 1996).

– Large-scale, stationary electric fields would cause major distortions in velocity
space, susceptible to velocity-space instabilities and beam driven high-frequency
waves observable as radio waves. Such radio emission should correlate well with
hard X-ray emission. Such a tight correlation is not seen in every flare.
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Fig. 31 Still from a movie: The particle distribution versus energy in time (blue in the movie) as described
by Eq. (9). A tail develops out of the thermal distribution (red). The solution becomes stationary after about
1 s when acceleration balances particle escape out of the acceleration region. The spectral index resulting
from fitting a power-law in the region limited by dashed red lines is also shown. Image courtesy of Paolo
Grigis, for details see Grigis and Benz (2006)

– Shock acceleration plays an important role in interplanetary space, which is not
the issue here. More directly related to flares are shocks possibly produced by
the reconnection process. Radio signatures of such shocks have been reported by
Aurass et al. (2002); Mann et al. (2006), but are still disputed and, if confirmed,
extremely rare. Nevertheless, slow shocks have been predicted at the interface
between inflow and outflow regions of reconnection, as well as fast shocks at the
bow of the reconnection outflows. High energies could be readily be achieved
(100 MeV ions in <1 s, Ellison and Ramaty 1985; Tsuneta and Naito 1998).

The transit-time damping scenario is consistent with present observations, although
there is no direct evidence for it. Thus it must be considered as an unproven hypothesis.
In fact, there are other viable scenarios such as low-frequency fluctuating electric fields
parallel to the magnetic field. Such fields may originate from low-frequency and high-
amplitude turbulence, such as kinetic Alfvén waves. They accelerate and decelerate
electrons, leading to a net diffusion in energy space (Arzner and Vlahos 2004).

7 Conclusions

Flares may be considered to result from the loss of equilibrium in magnetic configura-
tions. Although reconnection is a general phenomenon, it occurs in an impulsive way
only in the corona, where collisions are rare and thus the plasma is highly conductive.
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Regular flares must be considered as extreme phenomena of the continuous dynamics
of the corona. Radio noise storms (type I bursts) and meter wave type III bursts hint at
activity in the high corona that is not yet accessible to other wavelengths and is prone
to surprises.

Therefore, flares should not be considered exceptional catastrophes that occur rarely
and mostly during solar maximum. Flare-like brightenings, known as “quiet-region
microflares” or nanoflares, occur in the quiet corona at a rate of at least a few thousand
per second. Is the corona heated by flares? Impulsive processes in the coronal plasma
can suddenly change the resistivity to an anomalous value that is orders of magnitude
higher than normal. They may thus release the energy stored in the magnetic field and
be the cause of the corona. We cannot answer this question yet as long as we do not
understand how much energy flares deposit into the corona in the various possible
ways and how this energy is distributed. Furthermore, the corona below 20,000 km
above the photosphere, including the transition region, is not well explored in flare
research. It is also the place where most of the coronal heating occurs. It may be
added here that the heating of the chromosphere is partly related to the corona and to
reconnection, but is even more demanding.

Regular flares are not two of a kind, and each flare has individual features. For this
reason, it is not surprising that observations at various wavelengths do not correlate in
a simple manner as predicted by a standard scenario. The fact, that every flare appears
to be different, must be taken as evidence that coronal dynamics has many degrees
of freedom. Nevertheless, recent observations in X-rays and EUV allow identifying
the magnetic topologies, confirming the general scenario of reconnection. They have
shown that various groups of flares exist and have greatly contributed to our ever
growing understanding of coronal phenomena.

Flares consist of a series of processes, starting with energy build-up in the corona and
ending by restructuring the magnetic configuration and releasing magnetic energy. The
processes include reconnection, instabilities, anomalous resistivity, efficient particle
acceleration, particle propagation, coronal and chromospheric heating, evaporation,
mass loss, high-frequency waves and MHD oscillations, as well as various emission
mechanisms. All these processes are important issues in astrophysics and worth study-
ing for their own. They all have seen significant progress in the past decades and will
be addressed by the new observing facilities planned and in construction. The low
corona will soon become accessible to white-light imaging and high-temperature line
observations. Flare research will also profit from observations from close to the Sun
and from imaging decimetric radio emissions. New instrumentation in imaging UV
spectroscopy (IRIS) and submillimeter waves (ALMA) are expected to yield new
insights in the near future. A major impact can be expected from simultaneous imag-
ing observations in practically all wavelengths. They will greatly contribute to the
growing physical understanding of solar flares in the near future.
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Neupert effect in solar flares. I. Statistical properties and the evaporation model. Astron Astrophys
392:699–712. doi:10.1051/0004-6361:20020947. arXiv:astro-ph/0207217

Veronig AM, Brown JC (2004) A coronal thick-target interpretation of two hard X-ray loop events. Astrophys
J Lett 603:L117–L120. doi:10.1086/383199

Veronig AM, Brown JC, Dennis BR, Schwartz RA, Sui L, Tolbert AK (2005) Physics of the Neupert effect:
estimates of the effects of source energy, mass transport, and geometry using RHESSI and GOES data.
Astrophys J 621:482–497. doi:10.1086/427274

Viall NM, Klimchuk JA (2015) The transition region response to a coronal nanoflare: forward modeling
and observations in SDO/AIA. Astrophys J 799:58. doi:10.1088/0004-637X/799/1/58

Vilmer N, MacKinnon AL, Hurford GJ (2011) Properties of energetic ions in the solar atmosphere
from γ -ray and neutron observations. Space Sci Rev 159:167–224. doi:10.1007/s11214-010-9728-x.
arXiv:1110.2432

Vorpahl JA (1972) X-radiation (E>10 keV), Hα and microwave emission during the impulsive phase of
solar flares. Solar Phys 26:397. doi:10.1007/BF00165282

Wang H, Gary DE, Lim J, Schwartz RA (1994) Miocrowave spectral imaging, Hα and hard X-ray obser-
vations of a solar limb flare. Astrophys J 433:379–388. doi:10.1086/174652

Wang H, Qiu J, Jing J, Spirock TJ, Yurchyshyn V, Abramenko V, Ji H, Goode PR (2004) Evidence of rapid
flux emergence associated with the M8.7 Flare on 2002 July 26. Astrophys J 605:931–937. doi:10.
1086/382527

Wang T, Sui L, Qiu J (2007) Direct observation of high-speed plasma outflows produced by mag-
netic reconnection in solar impulsive events. Astrophys J Lett 661:L207–L210. doi:10.1086/519004.
arXiv:0709.2329

123

http://dx.doi.org/10.1086/497361
http://dx.doi.org/10.1086/379343
http://dx.doi.org/10.1086/422515
http://dx.doi.org/10.1086/504885
http://dx.doi.org/10.1086/522198
http://dx.doi.org/10.1007/BF00153479
http://dx.doi.org/10.1051/0004-6361:20077404
http://dx.doi.org/10.1051/0004-6361:20000204
http://dx.doi.org/10.1086/311207
http://arxiv.org/abs/astro-ph/9801109
http://dx.doi.org/10.1086/303812
http://dx.doi.org/10.1051/0004-6361:20020947
http://arxiv.org/abs/astro-ph/0207217
http://dx.doi.org/10.1086/383199
http://dx.doi.org/10.1086/427274
http://dx.doi.org/10.1088/0004-637X/799/1/58
http://dx.doi.org/10.1007/s11214-010-9728-x
http://arxiv.org/abs/1110.2432
http://dx.doi.org/10.1007/BF00165282
http://dx.doi.org/10.1086/174652
http://dx.doi.org/10.1086/382527
http://dx.doi.org/10.1086/382527
http://dx.doi.org/10.1086/519004
http://arxiv.org/abs/0709.2329


Living Rev. Sol. Phys.  (2017) 14:2 Page 59 of 59  2 

Warren HP, Bookbinder JA, Forbes TG, Golub L, Hudson HS, Reeves K, Warshall A (1999) TRACE
and Yohkoh observations of high-temperature plasma in a two-ribbon limb flare. Astrophys J Lett
527:L121–L124. doi:10.1086/312410

Wheatland MS, Melrose DB (1995) Interpreting YOHKOH hard and soft X-ray flare observations. Solar
Phys 158:283–299

Wild JP (1950) Observations of the spectrum of high-intensity solar radiation at metre wavelengths. III.
Isolated bursts. Aust J Sci Res A 3:541

Woods TN, Eparvier FG, Fontenla J, Harder J, Kopp G, McClintock WE, Rottman G, Smiley B, Snow
M (2004) Solar irradiance variability during the October 2003 solar storm period. Geophys Res Lett
31:L10802. doi:10.1029/2004GL019571

Wülser JP, Marti H (1989) High time resolution observations of Hα line profiles during the impulsive phase
of a solar flare. Astrophys J 341:1088–1096. doi:10.1086/167567

Wülser JP, Canfield RC, Acton LW, Culhane JL, Phillips A, Fludra A, Sakao T, Masuda S, Kosugi T, Tsuneta
S (1994) Multispectral observations of chromospheric evaporation in the 1991 November 15 X-class
solar flare. Astrophys J 424:459–465. doi:10.1086/173903

Yokoyama T, Akita K, Morimoto T, Inoue K, Newmark J (2001) Clear evidence of reconnection inflow of
a solar flare. Astrophys J 546:L69–L72. doi:10.1086/318053

Zarro DM, Lemen JR (1988) Conduction-driven chromospheric evaporation in a solar flare. Astrophys J
329:456–463. doi:10.1086/166391

Zharkova VV, Brown JC, Syniavskii DV (1995) Electron beam dynamics and hard X-ray bremsstrahlung
polarization in a flaring loop with return current and converging magnetic field. Astron Astrophys
304:284

Zirin H, Wang H (1993) Narrow lanes of transverse magnetic field in sunspots. Nature 363:426–428. doi:10.
1038/363426a0

123

http://dx.doi.org/10.1086/312410
http://dx.doi.org/10.1029/2004GL019571
http://dx.doi.org/10.1086/167567
http://dx.doi.org/10.1086/173903
http://dx.doi.org/10.1086/318053
http://dx.doi.org/10.1086/166391
http://dx.doi.org/10.1038/363426a0
http://dx.doi.org/10.1038/363426a0

	Flare Observations
	Abstract
	1 Introduction
	1.1 Detection and definition
	1.2 Brief history of flare observations
	1.3 The phases of flares
	1.4 The big picture
	1.5 Organization of review

	2 Energy release in a coupled solar atmosphere
	2.1 Flares and photospheric field configuration
	2.2 Geometry of hard X-ray emissions
	2.3 Return current
	2.4 Neupert effect
	2.5 Standard flare scenario
	2.6 Evaporation of chromospheric material
	2.7 Deviations from standard flare scenario

	3 Flare geometry
	3.1 Geometry of the coronal magnetic field
	3.2 Coronal hard X-ray sources
	3.3 Intermediate thin--thick target coronal sources
	3.4 Emissions from above the coronal X-ray source
	3.5 Particle acceleration site
	3.6 Energetic ions
	3.7 Thermal flare

	4 Energy budget
	4.1 Non-thermal electron energy
	4.2 Thermal energy
	4.3 Energy in waves
	4.4 Other energies
	4.5 Energy input into the corona

	5 Signatures of energy release
	5.1 Coronal hard X-ray signatures
	5.2 Soft-hard-soft behavior in hard X-rays
	5.3 Radio emissions from the acceleration region

	6 Acceleration processes
	6.1 Electron acceleration theories
	6.2 Comparing theories with observations

	7 Conclusions
	Acknowledgements
	References




