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Abstract: 

The moderate and intense geomagnetic storms are identified for the first 77 months of 

solar cycle 23 and 24. The solar sources responsible for the moderate geomagnetic storms are 

indentified during the same epoch for both the cycles. Solar cycle 24 has shown nearly 80 % 

reduction in the occurrence of intense storms where as it is only 40 % in case of moderate 

storms when compared to previous cycle. The solar and interplanetary characteristics of the 

moderate storms driven by CME are compared for solar cycle 23 and 24 in order to see 

reduction in geoeffectiveness has anything to do with the occurrence of moderate storm. 

Though there is reduction in the occurrence of moderate storms, the Dst distribution does not 

show much difference. Similarly the solar source parameters like CME speed, mass and 

width did not show any significant variation in the average values as well as the distribution. 

The correlation between VBz and Dst is determined and it is found to be moderate with value 

of 0.68 for cycle 23 and 0.61 for cycle 24. The magnetospheric energy flux parameter epsilon 

(Ɛ) is estimated during the main phase of all moderate storms during solar cycles 23 and 24. 

The energy transfer decreased in solar cycle 24 when compared to cycle 23.  These results are 

significantly different when all geomagnetic storms are taken in to consideration for both the 

solar cycles.  
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1. Introduction 

Geomagnetic storms are major disturbances in the Earth’s magnetosphere caused by 

energetic solar wind magnetic structures impacting and injecting material into the 

magnetosphere by the process of reconnection [Dungey, 1961; Gonzalez et al., 1994]. 

Geomagnetic storms are marked by a decrease in the horizontal intensity of the Earth’s 

magnetic field, which results from ring current enhancement due to the increase in the 

population of magnetopsheric trapped particles [Chapman and Bartels, 1940, Gonzalez et al., 

1994]. Geomagnetic storms are caused by southward interplanetary magnetic field (IMF) that 

allows efficient energy transfer from the solar wind into the Earth’s magnetosphere [Dungey 

1961; Gonzalez and Tsurutani, 1987; Gonzalez et al., 1994; Echer et al., 2005; Echer et al., 

2013]. It is now well understood that geomagnetic storms are caused by coronal mass 

ejections (CMEs) and corotating interaction regions (CIRs) originating from the Sun that 

evolve through the interplanetary medium before impacting the magnetosphere [Brueckner et 

al., 1998; Webb et al., 2001; Berdichevsky et al., 2002; Zhang et al., 2003; dal Lago et al., 

2004; Zhang et al., 2007; Gopalswamy et al., 2007; Gopalswamy, 2010]. CMEs cause severe 

storms while CIRs cause moderate storms [Gosling et al., 1991; Tsurutani and Gonzalez, 

1997; Richardson et al., 2002; Tsurutani et al., 2006; Gopalswamy, 2008, Zhang et al., 

2007]. The counterpart of CMEs in the interplanetary medium are termed as interplanetary 

coronal mass ejections (ICMEs), which are usually categorized as Magnetic clouds (MCs) 

and Non-magnetic clouds or Ejecta (EJ) based on their in-situ plasma and magnetic 

signatures [Klein and Burlaga, 1982; Gopalswamy et al., 2010; Riley and Richardson, 2012 

and references therein]. CIRs develop when high speed solar wind streams (HSS) emanating 

from coronal holes interact with streams of lower speed. CIRs consist of enhanced density 
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and magnetic field, which when associated with southward IMF, result in geomagnetic 

storms [Smith & Wolfe, 1976; Gosling, 1996; Gosling & Pizzo, 1999].  

The type of IP structure causing geomagnetic storms varies with the solar cycle: 

CME-associated storms dominate during solar maxima whereas CIR storms mostly occur 

during the declining phase of solar cycles [Webb, 1991; Yashiro et al., 2004; Mursula and 

Zieger, 1996]. Geomagnetic storms result in intense currents in the magnetosphere, changes 

in the radiation belts, and heating of the ionosphere and upper atmospheric region. 

Geomagnetic disturbances are measured using a variety of indices, one of which is the 

Disturbance storm time (Dst) index [Sugiura, 1964]. The Dst index represents changes in the 

magnetic field caused by  magnetopsheric currents such as the ring current, tail current, 

asymmetric ring current, and magnetopause current [Alexeev et al., 1996; Daglis and Thorne, 

1999; Turner et al.,  2000; Liemohn et al., 2001; Lopez et al., JASTP, 2015]. Using Dst, 

geomagnetic storms are classified as weak (-30 < Dst < -50 nT), moderate (-50 < Dst < -100 

nT) and intense (Dst <-100 nT) [Gonzalez et al., 1994, Sugiura and Chapman, 1960].  

There are several studies on intense geomagnetic storms and the associated solar 

sources and the interplanetary conditions [Tsurutani et al., 1988, 1992, 1995, 2006 Gonzalez 

et al., 1999, 2007, 2011; Gonzalez and Echer, 2005; Zhang et al., 2006, 2007; Echer et al., 

2008].  The magnetosphere-solar wind coupling has also been considered using the energy 

flux parameter epsilon (Ɛ) for severe geomagnetic storms [Perrault and Akasofu, 1978; 

Nishida, 1983; Mac-Mahon and Gonzalez., 1997; Holzer and Slavin, 1979; Sibeck et al., 

1991; Alex et al ., 2006]. The Ɛ parameter gives the maximum energy transferred to the 

magnetosphere from the solar wind during the geomagnetic storms and it is highly dependent 

on the magnetic field component and the solar wind velocity. The solar wind- magnetosphere 

dynamo is generated during the interaction of IMF with the magnetosphere and the energy 
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transfer is in the range of 10
12

 - 10
13 

W during geomagnetic storms [Weiss et al., 1992; 

Mahon and Gonzalez., 1997; Alex et al., 2006].  

As the Sun emerged from the deep solar minimum to the rising phase of the solar 

cycle 24, the Sunspot number (SSN) was relatively small [Gopalswamy et al., 2012; Solomon 

et al., 2013; Lean et al., 2014; Potgieter et al,. 2014, Kilpua et al., 2014]. Although SSN 

decreased by 40 % in solar cycle 24, the CME rate was similar to that in cycle 23 

[Gopalswamy et al., 2014]. There is not much diminution observed in the number of halo 

CMEs, which are generally more geoeffective. However, there was a severe reduction in the 

geoeffectiveness of CMEs as indicated by the drastic decrease in the number of intense 

geomagnetic storms during solar cycle 24. An average reduction in Dst from -66 to -55 nT 

was found for MC-associated storms during the first 73 months of solar cycle 24 compared to 

the same epoch in cycle 23. This has been attributed to the anomalous expansion of CME in 

the current solar cycle [Gopalswamy et al., 2015a].  In another study [Gopalswamy et al ., 

2015b] a significant reduction in CME mass and increase in CME width for limb CMEs is 

found in solar cycle 24 when compared to cycle 23.  

While the reduction in intense storms is clear, it is of interest to know what happens to 

moderate storms. Although there are other works on cycle-23 moderate storms [Tsurutani 

and Gonzalez, 1997; Wang et al., 2003; Zhang et al., 2006; Xu et al., 2009; Echer et al., 

2011; 2013; Hutchinson et al., 2011; Tsurutani et al., 2011], there is no comparative study 

between solar cycles 23 and 24. This work attempts to see if there is any change in the 

occurrence of moderate storms between solar cycles 23 and 24. This work involves the 

identification of the source of the moderate geomagnetic storms in solar cycles 23 and 24 and 

comparison of the interplanetary parameters and the response of magnetosphere related to 

moderate storms. 
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2. Data and Observations 

This study concerns moderate geomagnetic storms that occurred during the first 77 

months of cycles 23 (01 May 1996 to 30
 
September 2002) and 24 (01 September 2008 to 31 

January 2015). Based on the availability, final, provisional and real time Dst values are 

obtained from (http://wdc.kugi.kyoto-u.ac.jp/index.html). The Dst values are carefully 

examined to identify moderate storms by eliminating Dst excursions due to prior 

geomagnetic storms in progress.  Only occurrences when a prior storm recovered up to 80% 

have been considered. We use the source CME identification for solar cycle 23 reported in 

the Interplanetary (IP) shock catalogue by Gopalswamy et al. [2010a] and the list provided by 

Richardson and Cane [2010] online (http://www.srl.caltech.edu/ACE/ASC/DATA/level3/ 

icmetable2.htm). For cycle 24, the CMEs are identified by running movies of coronograph 

images available at http://cdaw.gsfc.nasa.gov/CME_list/index.html. A few identifications are 

taken from the list given by Richardson and Cane as mentioned above. The solar source 

location is taken from the halo CME catalogue (http://cdaw.gsfc.nasa.gov/CME_list/halo 

/halo.html [Gopalswamy et al,. 2010b]. For other CMEs we identify the solar source from the 

flare locations given in the on-line Solar Geophysical Data (SGD) report. For events not 

listed in SGD, the sources are identified using images from the Extreme ultraviolet Imaging 

Telescope (EIT) on board SOHO, the Atmospheric Imaging Assembly (AIA) on board the 

Solar Dynamics Observatory (SDO), and H-alpha observatories (as detailed in Gopalswamy 

et al., 2007). Mass and width of the CMEs are taken from the CME catalog 

(http://cdaw.gsfc.nasa.gov/CME_list/index.html [Gopalswamy et al., 2009]. The solar wind 

plasma and magnetic parameters with one-min resolution are obtained from CDAWeb 

(http://cdaweb.gsfc.nasa.gov/cgi-bin/eval1.cgi).    
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Based on the Dst index criterion as mentioned in section 1, a total of  166 moderate 

and intense geomagnetic storms are identified  in Solar cycle 23 and 67 in cycle-24 (hereafter 

all the comparisons of solar cycles 23 and 24 storms refer to the corresponding epoch of 77 

months in each cycle). We see that the storm occurrence rate in cycle 24 is reduced by 57.5% 

compared to that in cycle 23. The monthly average SSN is ~69 and ~40 for solar cycles 23 

and 24, respectively. So, nearly 40 % decrease is observed in SSN for solar cycle 24 when 

compared to solar cycle 23 [Gopalswamy et al., 2014]. The storm occurrence rate reduced 

more than SSN did.  The decrease in SSN is not sufficient to explain the observed reduction 

in geoeffectiveness in solar cycle 24.  

Not all storm sources follow the Sun spot activity, so in order to understand the 

relation between solar activity and the occurrence of storms it is necessary to differentiate the 

storms of different origin. The distribution of geomagnetic storms between CME and CIR 

sources is given in Figure 1 (a-d) for cycles 23 and 24. The combined set of intense and 

moderate storms, are compared with the moderate storms.  There was a small data gap (DG) 

in solar cycle 23 because there was no CME observation for a brief period (3 months in 1998 

and 1 month in 1999) when the SOHO spacecraft was temporarily disabled. Apart from the 

data gap, 5 moderate storms are not included in the study. The first two occurred on 17 

September 2000 and 09 October 2001. These cases are complex and no CME is detected by 

SOHO. No shocks are detected in situ in these events. The 17 September 2000 storm is 

associated with a narrow negative Bz interval. The other three occurred on 12 April 2014, 30 

April 2014 and 07 January 2015 with a minimum Dst of -80 nT, -67 nT and -99 nT, 

respectively. The 07 January 2015 is probably associated with the 04 January 2015 CME, but 

the confidence in the association is not high since the CME could not be tracked to 1AU. The 

solar source location of the 30 April 2014 storm is identified from SDO images, but LASCO 
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did not detect it may be the CME was too narrow. No STEREO observations exist during this 

period making it difficult to trace the CME at 1 AU.   

The CME-driven storms are examined based on the ICME structure observed at 1 

AU. Similarly, CIR-associated storms are identified by examining the variation in total 

magnetic field, proton temperature and density at 1 AU. Table 1 gives the statistics on the 

moderate and intense storms occurring in the two cycles. From Table 1 and Figure 1 it is 

clear that CME storms constitute the majority in both cycles. In cycle 23, out of a total 166 

storms, 111 (~66.8 %) are of CME origin, 43 (~25.9 %) of CIR origin and 12 (~7.2 %) have a 

data gap. Out of the 111 moderate storms in cycle 23, 63 (56.7 %) are of CME origin, 40 (36 

%) of CIR origin and 8 (7.2%) have a data gap. Echer et al. [2013] investigated 213 moderate 

storms from cycle 23 (1996-2008) and found that the moderate storms were due to: CIRs and 

pure High speed streams (HSSs) (47.9%), MCs and non-cloud ICMEs (20.6%), pure sheath 

fields (10.8%), and sheath - ICME combination (9.9%). The difference between Echer et al. 

[2013] and our results can be attributed to the different periods considered for analysis.  In 

solar cycle 24, ~77.6 % (52 out of 67) of all storms (the combined set of intense and 

moderate storms) are of CME origin and only ~22.3 % (15 out of 67) are of CIR origin. 

Considering only the moderate storms of cycle 24, we find that ~74.5 % (41 out of 55) are of 

CME origin whereas 25.5 % (14 out of 55) are of CIR origin. Table 1 also shows that there 

were 48 CME-driven intense storms in cycle 23 compared to only 11 in cycle 24, which 

corresponds to a reduction of ~78%.  
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Figure 2 shows the yearly distribution of CME- and CIR-driven storms grouped into 

all storms (a,b) and moderate storms (c,d) of cycles 23 and 24, respectively. The occurrence 

rate of all storms peaks around 2001 for solar cycle 23 and around 2012 for solar cycle 24 

when CME-associated storms is considered. The occurrence rate of CME-associated 

moderate storms peaks around 2000 and sustains till 2001 in solar cycle 23 (Figure 2c). The 

behaviour of moderate storms in cycle 24 is similar to that in cycle 23 (Figure 2d). All CIR-

associated storms peak around 2000 (cycle 23) and around 2011 (cycle 24). The peak of 

CME storms in solar cycle 23 matches with the SSN peak.  Echer et al. [2013] observed two 

different peaks in the storm occurrence rate during solar cycle 23, one in 2001 and other 

during 2003 - 2005. The first peak during the solar maximum phase and the second one is in 

the declining phase of the cycle. Our peak matches with Echer et al. [2013] when source 

region of the moderate storms are not separated. 

3. Comparison of solar source / interplanetary parameters/ magnetopheric response of 

moderate storms:  

3.1 Dst value and source location distribution 

Figure 3 shows that the distribution of Dst in moderate storms is narrower in solar 

cycle 24 than in cycle 23. Most (~68 %) of the moderate storms in solar cycle 24 had Dst in 

the range of -50 nT to -75 nT.  The average Dst values for the two cycles is comparable (~-70 

nT), though there is nearly 40 % reduction is observed in number of events, the average 

values are same. Since we considered only moderate storms, we do not expect much change 

in the average Dst values. To verify whether there is significant difference in Dst distribution 

for solar cycle 23 and 24, we have used Kolmogorov-Smirnov (KS) test 

(http://www.physics.csbsju.edu/stats/KS-test.html). The KS test gives 95% confidence 

interval for the actual means. Based on the number of data points the KS statistic critical D 
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value varies, which is the maximum difference between the cumulative distributions of two 

data sets. The critical values are Dc= 0.168 (for 63 events in cycle 23) and Dc= 0.210 (for 41 

events in cycle 24). The KS statistical test results are given in Table 2. The resulting D value, 

0.1178, is less than Dc indicating that the distributions are similar.  The 95% confidence 

intervals of the means overlap (-73.33 and -66.87 nT for cycle 23 and -73.15 and -65.65 nT 

for cycle 24), again suggesting no significant difference between the distributions. 

The solar source location of a CME plays a considerable role in deciding its 

geoeffectiveness. CMEs occurring near to the disk centre are most likely to hit the Earth 

directly and cause storms [Gopalswamy et al ., 2007]. Gopalswamy et al. [2007] reported that 

the majority of 378 front side halo CMEs were geoeffective and the geoeffectiveness 

decreased for CME source locations farther from the disk center. Figure 4 shows the CME 

source locations in heliospheric coordinates for the storms considered here. The moderate 

storms are differentiated using small (-50 to -75 nT) and large (-75 to -100 nT) circles. The 

two solar cycles are differentiated by the colour of the circles. We determined the average Dst 

value for the disk CME (central meridian (CMD) within 30 degrees) and non-disk CMEs 

(CMD > 30 degrees). The averages are -72.4 nT for disk and 67.4 nT for non-disk CMEs in 

cycle 23; for cycle 24 they are -67.5 nT and -72.9 nT, respectively. These values do not show 

significant variation. Thus, moderate storms did not show any center-to-limb variation in the 

geoeffectivness of CMEs.  The average speed of limb CMEs is observed to be ~1100 km/s 

whereas the non limb CMEs average speed is ~670 km/s in the sky plane. Although 

projection effects are expected, it appears that limb CMEs with higher CME speed are 

required to produce moderate storms.    
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3.2 CME speed, width, and mass distributions 

Most of the geoeffective CMEs are halos; they mostly originate from close to the disk 

centre. Out of the 63 storms in cycle 23, 32 (~50.7 %) are due to halo CMEs; in solar cycle 

24 is 20 out of 41 (or 48.7 %) are due to halos. The fraction of halo CMEs in the two cycles 

are similar. The occurrence rate of all halo CMEs in cycles 23 and 24 are also similar 

[Gopalswamy et al., 2014; Gopalswamy et al., 2015 a,b]. The average CME speed for cycle-

23 storms is ~716 km/s compared to~671 km/s in cycle 24 (see Figure 5).  Thus there is only 

a 5 % decrease in the average CME speeds; the difference is within the measurement errors.  

The CME speed distribution slightly broader in cycle 23: nearly 60% of the speeds are in the 

range of 300-900 km/s. The spread is narrower in cycle 24: ~75% of the CME speed values 

are in the range of 300-700 km/s. The maximum CME speed is ~2700 km/s (cycle 23) and ~ 

2300 km/s (cycle 24) and both are halo CMEs. The 95% confidence intervals of the means 

obtained from the KS test overlapped  (602 to 830 km/s in cycle 23 and 538 to 800 km/s in 

cycle 24), indicating no statistically insignificant differences in CME speeds between the two 

cycles. Gopalswamy et al. [2014] reported a decrease of 15% and 17% in MC and shock 

speeds respectively, but the white light observations do not show any such change in average 

CME speeds for both the cycles. 

We now consider the mass and width of CMEs and the mass estimates are accurate to 

within a factor of 2. The disk-centre CME widths are likely to be affected by projection 

effects.  Figure 6a shows the width distribution of CMEs associated with moderate storms in 

the two cycles. Halo CMEs represent the tallest bar in both the cycles. Excluding the halo 

CMEs, the average width is estimated to be 122° for solar cycle 23 and 141° for SC 24. The 

non-halo CME widths are consistent with the anomalous expansion of CME during cycle 24 

when compared to the CME for cycle 23. But when the halo CMEs are included the average 
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widths are similar (~245°). Gopalswamy et al. [2014, 2015a,b] found an average width of 

82.5° for cycle 23 compared to 98.1° for cycle 24 excluding halo CMEs, and observed 93.4° 

for cycle 23 and 133.5° for solar cycle 24 when included. They reported an anomalous 

expansion of CME for cycle 24 when compared to solar cycle 23 for same CME speed but 

the criteria is different in their work, only limb CMEs are considered along with that CMEs 

associated with solar flare c3 or larger. Limb CMEs are free from projection effect but the 

moderate storms are mainly from the disk centre and are subject to projection effects.  

Figure 6b gives the distribution of CME masses for the two cycles. There are a few 

events in both the cycles for which the mass could not be measured using LASCO or 

STEREO and hence are excluded from the CME mass distribution. The average mass of 

CMEs associated with moderate storms in solar cycle 23 is 8.24 x10
15

 g and 7.4 x10
15

 g in 

cycle 24. Given the uncertainty in mass measurements, these values are not significantly 

different. The mass of limb CMEs during first 62 months of solar cycle 24 is decreased by a 

factor of 3 when compared to solar cycle 23 [Gopalswamy et al ., 2015b]. Also the average 

CME mass during the whole of cycle 23 was found to be greater than that in cycle 24 

[Gopalswamy et al., 2010a; Vourlidas et al., 2011]. But CMEs associated with moderate 

storms do not show much variation in mass.  

3.3 Interplanetary and magnetospheric response : 

 The main relation between CMEs and geomagnetic storms owes to the presence of 

negative Bz component of interplanetary magnetic field [Gonzalez et al., 1994; Zhang et al., 

2007; Gopalswamy, 2008; Echer et al., 2008a, 2008b, 2013; Cid et al., 2012]. The negative 

Bz is not only found in CME flux ropes (Wilson, 1987), but also in the compressed sheath 

region between the flux rope and the shock [Tsurutani et al ., 1988; Veendhari et al., 2012]. 

The strength of a geomagnetic storm is proportional to the product VBz, where V is the speed 



 

 

© 2016 American Geophysical Union. All rights reserved. 

of the solar wind structure causing the storm. In addition to this, the ring current injection rate 

depends on VBz along with the negative-Bz duration and shock speed [Balan et al., 2014; 

Sandeep et al., 2015].  Since these two factors determine the geoeffectiveness, it is necessary 

to compare minimum Bz and VBz between the cycles. At 1 AU, ICMEs can be differentiated 

as MC, non-magnetic cloud or EJ and sheath based on the magnetic structure. In cycle 23, 

~26.9 % storms are caused by MC, ~49.2 % by EJ and 16% by sheath. Majority of the 

moderate storms are from non-magnetic cloud in cycle 23. In cycle 24, the 41% of storms are 

caused by MCs, ~38 % by EJs and 21% by sheaths. The average Dst values for MC-

associated moderate storms is ~73 nT in cycle 23 and ~65 nT for cycle 24. Although we 

restricted to a narrow range of Dst values, the results are in agreement with Gopalswamy et 

al. [2015b]. 

 Figure 7 shows the distribution of minimum Bz and VBz values for the storms in 

cycle 23 and 24. One moderate storm is not included in this statistics due to a OMNI data gap 

(10 November 2014). The Bz and VBz values are taken from the region responsible for the 

Dst minimum, irrespective of MC, EJ or sheath. The distribution of minimum Bz is longer in 

cycle 23 than that in cycle 24. The largest negative Bz observed is ~-30 nT and ~-20 nT for 

solar cycles 23 and 24, respectively. The smallest negative Bz is ~-7 nT for both the cycles. 

The average Bz values are -13.2 nT in cycle 23 and -12.5 nT in cycle 24. A difference of 0.7 

nT is not significant. The right side panel of Figure 7 shows the distribution of computed 

VBz for the storms. The largest negative value for cycle 23 is -14082 km/s nT and it is -9543
 

km/s nT for cycle 24. The average VBz values in solar cycle 23 and 24 are -5822 km/s nT 

and -5890 km/s nT respectively. These small variations are not significant. The KS test again 

shows overlap in the 95 % confidence intervals for both Bz and VBz.  Gopalswamy et al. 

[2015a] observed a declination of ~51% and ~40% in average VBz with sheath and MC for 
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solar cycle 24 when compared to 23 but in our work restriction of storm intensity (Dst) to a 

narrow range is expected to restrict the range of VBz (and Bz) to similar values. In 

Gopalswamy et al. [2014, 2015a] revealed the reduction in geoeffectiveness while 

considering total geoeffective CMEs. In the moderate storm case, the only indicator of 

reduced geoeffectiveness is the smaller number of moderate storms. 

  In order to see whether the Dst-VBz relation holds for moderate storms, Dst is 

plotted against VBz in Figure 8. The plot shows a linear variation with negative slopes for 

both the cycles. The correlation is found to be moderate with value of 0.68 for cycle 23 and 

0.61 for cycle 24. Thus the Dst – VBz correlation did not change much. This means the storm 

process of converting solar wind energy to ring current energy did not change which is 

consistent with Gopalswamy et al. [2015a]. This correlation is statistically significant and it is 

double the critical value of Pearson’s correlation coefficient (for P = 0.05). The plot shows a 

few outliers in cycle 23 and a little more for cycle 24; this might be because the storm source 

is not differentiated among sheath, magnetic cloud, and non-magnetic cloud that caused the 

Dst.  In solar cycle 24 there was an extreme outlier due to the 29 June 2013 storm with a Dst 

of -98 nT with Bz -12.28 nT. In order to understand this discrepancy we examined the case 

separately. It was found that at 1 AU the CME was followed by an HSS with negative Bz, 

which made it last longer and resulted in a larger Dst magnitude. 

In order to investigate the magnetopsheric response during moderate storms, we 

performed a superposed epoch analysis of Dst and the associated Interplanetary electric field 

(IEFy) for all the moderate storms that occurred during cycles 23 and 24. The results are 

shown in Figure 9 (a,b). The time 0 hours (black line) in the figure indicates the main phase 

onset of all the moderate storms and the dark blue line refers to the average Dst and IEFy. 

Figure 9c shows the average plot of Dst and IEFy obtained from the superposed epoch 
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analysis. We see that the average minimum Dst stands out to be -58.7 nT for cycle 23 and -

54.9 nT for cycle 24 with a difference of ~3.7 nT. The IEFy did not show much variation in 

their average values. The average time taken by the moderate storm to reach minimum Dst is 

less by 4 hours for cycle 23 when compared to cycle 24. This delay suggests that although the 

average IEFy is similar, the response of the magnetosphere and the rate of ring current 

injection is rapid for cycle 23. This observation can be confirmed by evaluating the total 

energy injected in to the magnetosphere for the two cycles. In order to check the response of 

magnetosphere, Ɛ is estimated for the main phase of all moderate storms.  Ɛ gives the total 

energy transferred to the magnetosphere during the solar wind interaction [Perrault and 

Akasofu, 1978; Nishida, 1983]. Rcf  is the distance at which  the balance between solar wind 

kinetic plasma pressure and the magnetospheric magnetic pressure is obtained. We 

determined Rcf for all the moderate storms during the main phase and used it to estimate Ɛ 

[Holzer and Slavin, 1979; Sibeck et al., 1991]. Figure 10 shows the energy transfer during 

moderate storms as a function of VBz for cycle 23 (blue) and 24 (red). Three events are 

excluded in solar cycle 23 due to unavailability of By required for calculating Ɛ. The Ɛ is 

estimated to be 1.83 x 10
12

 W for cycle 23 and 9.93 x 10
11

 W for cycle 24. So the average 

energy transfer is larger by 9.05 x 10
11 

W for cycle 23 than in cycle 24. Though VBz is the 

same for the moderate storms the energy transfer is different. The difference in the energy 

transfer has led to main cause for delay in the minimum Dst during solar cycle 24 and a rapid 

main phase is observed in cycle23.  
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4. Discussion 

 We compared the characteristics and sources of moderate storms between cycles 23 

and 24. The first study about the interplanetary association of moderate storms is carried out 

by Tsurutani and Gonzalez [1997]. They studied the moderate storms occurred in solar 

maximum (1978-1979) of solar cycle 21 and reported that 40% of the storms were associated 

with ICME and remaining are due to HSS, CIR and some phenomena related to Alfvenic 

fluctuations. Similarly Xu et al. [2009] made a statistical study on the identification of 

interplanetary structure of moderate storms occurred during the period of 1998-2008 and 

found that nearly 51 % of the moderate storms are due to by ICMEs. This result is similar to 

our result that 68.2 % of moderate storms are caused by ICMEs in cycle 23. The difference is 

clearly due to the consideration of different study periods, especially different phases of solar 

cycle.   

 Echer et al. [2013] found two peaks in the occurrence rate during the solar maximum 

and declining phases. Our results are consistent with this when the corresponding epochs are 

compared. They also reported that the CIR/ HSS were the dominant source of moderate 

storms in the whole of cycle 23 which is opposite to our result. This discrepancy is attributed 

to the fact that Echer et al. [2013] included the declining phase of the solar cycle in which 

more CIR/HSS storms are known to occur. Our study does not include the declining phase. 

Gopalswamy et al. (2014) showed that the anomalous expansion diminished the magnetic 

content of CMEs in cycle 24, which in turn led to the reduction of large geomagnetic storms. 

Our result of ~75% reduction agrees well with this in case of intense storms although the 

moderate storms are reduced only by 30%. Since CME width is proportional to the speed, 

CMEs producing major storms probably have a larger dilution of the CME magnetic content 
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because they are faster.  The number of halo CMEs among those causing moderate storms is 

similar in the cycle in agreement with Gopalswamy et al. [2015a]. 

Gopalswamy et al. [2015b] observed a cycle-23 to cycle-24 reduction of the Dst index 

associated to MCs: from -66 nT to -33 nT in the sheath portion and from -55 nT to -23 nT in 

the cloud portion. They estimated the reduction in geoeffectiveness by considering Dst values 

associated with the sheath and cloud portions. In our study we have considered MCs, non-

MC as well as their sheaths. Furthermore, we restricted the range of Dst, unlike Gopalswamy 

et al. (2015a). These considerations reduced the difference between the two cycles. When 

MC-associated moderate storms are considered, there is a reduction in the average Dst 

values. The average mass of CMEs associated with moderate storms also did not show much 

variation between the two cycles.  Whereas Gopalswamy et al. [2015a] found a reduction of 

CME mass by factor 3 in limb CMEs in solar cycle 24 when compared to cycle 23, it was not 

found in CMEs causing moderate storms. This is likely to be due to the fact that the CMEs 

associated with moderate storms are mostly disk events, for which the mass estimate is 

difficult. Gopalswamy et al. [2015b] also reported that CMEs had the same average speed in 

two cycles but not the width: a 33° increase in CME width was found for non-halo limb 

CMEs in cycle 24. We found a change of 18° but the average width did not show much 

change when halo CMEs are included. Again, the main difference is that our CMEs are 

subject to projection effects because they are mostly disk events, whereas Gopalswamy et al. 

[2015a] considered strictly limb events. We observed that limb CMEs with higher speeds are 

important to produce the moderate storms. But, as the limb CMEs have undergone anomalous 

expansion in cycle 24 (CMEs with flare C3 or greater) [Gopalswamy et al. 2014], they could 

not produce moderate storms even with higher CME speeds. 
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The empirical relationship between Dst and VBz for interplanetary magnetic 

structures causing storms [Wu and Lepping, 2002; Gopalswamy, 2010a]. Gopalswamy et al. 

[2015a] obtained high correlation between Dst and VBz for MCs in both cycles: correlation 

coefficients of 0.76 and 0.77 for the sheath and cloud portions in cycle 23 and 0.73 and 0.86 

for cycle 24. We obtained moderate correlation between VBz and Dst of 0.68 and 0.61 for 

solar cycle 23 and 24. The moderate correlation is due to the fact we have included many 

storms driven by EJ and sheath portions of ICME. Echer et al ., (2008a) have obtained the 

best correlation for solar cycle-23 intense storms: 0.80 for Dst-Bs, 0.84 for Dst-Ey (where Ey 

is electric field) and 0.55 for Dst-Vsw (where Vsw is solar wind speed). For moderate storms, 

Echer et al. [2013] found a correlation coefficient of 0.55 between Ey and Dst, 0.48 between 

Bs and Dst and negligible correlation between Vsw and Dst.  We obtained a better correlation 

because of the fact that we have considered only CME driven storms in which most of the 

cases have stable negative Bz and VBz. The transfer of energy in to the magnetosphere is less 

for cycle 23 than in cycle 24. As solar cycle 23 has undergone a long solar minimum, the 

background interplanetary condition in the cycle 24 has been low (Kalegaev et al., 2014) 

similar to the weak heliospheric conditions. As a result, the rate of magnetopsheric energy 

transfer and response of their current system is less for cycle 24 than the typical response in 

cycle 23 with the same interplanetary input. The CME with the optimum energy input which 

produced moderate storm in cycle 23 could not able produce the same in cycle 24. So apart 

from the anomalous expansion of CMEs the energy distribution in to the magnetosphere also 

played a major role in the reduction of moderate storms in solar cycle 24. 
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Conclusions 

We investigated the solar source and the interplanetary characteristics of moderate 

geomagnetic storms that occurred during the first 77 months of solar cycles 23 and 24. We 

find that the distribution of CME speed and average mass is almost the same in both the 

cycles whereas slight variation was observed in average width of non-halo CMEs. The Dst 

values of moderate storms did not show considerable change with the source location of the 

CMEs in the two cycles. The minimum Bz values showed a wider distribution in cycle 23 

when compared to cycle 24. The highest correlation is obtained between VBz and Dst for 

both the cycles, a property universal to storms of all strength. From the statistical analysis, we 

find that moderate storms did not show much change when compared to cycle 23. This is 

because the restricted Dst range restricts the range of VBz. The reduced geoeffectiveness in 

cycle 24 is mainly due to the decrease in the intense storms and to a smaller extent in the 

number of moderate storms, which is the resultant of anomalous CME expansion and less 

magnetopsheric energy transfer in cycle 24. 

The main conclusions are 

1) A total of 166 geomagnetic storms (intense + moderate) are identified during the first 

77 months of solar cycles 23 and 67 in cycle 24 over the same epoch. The number of 

moderate storms are 111 and 55 in cycles 23 and 24, respectively. Solar cycle 24 has 

shown nearly 80 % reduction in the occurrence of intense storms where as it is only 

40 % in the case of moderate storms (from Figure 1 and Table 1). 

2) The occurrence of moderate storms approximately follows the SSN and peaks around 

the solar maximum for both the cycles (from Figure 2). 
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3) Average CME speed and Dst values do not show much variation in the two cycles 

(From figure3 and 5). Similarly, average CME mass did not show much variation 

whereas the CME width has shown a slight variation for non-halo CMEs when 

compared to cycle 23 (From figure 6a,b).  

4) The correlation between VBz and Dst is found to be the highest with values of 0.68 

for cycle 23 and 0.61 for cycle 24 (from Figure 8). 

5) The magnetopsheric energy transfer decreased in solar cycle 24 with respect to that in 

cycle 23 (from Figure 10). 
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Table 1:  Intense and moderate storms during the first 77 months of cycles 23 and 24 

  All   Moderate  Intense 

Solar cycle 

23 

CME 111 (66.8%) 63 (56.7%) 48 (88.8%) 

CIR 43 (25.9%) 40 (36 %) 3 (5.5%) 

Data gap 12 (7.2%) 8 (7.2 %) 3 (5.5%) 

Total 166 111 54 

Solar cycle 

24 

CME 52 (77.6%) 41 (74.5) 11 (91.7%) 

CIR 15 (22.3%) 14 (25.5%) 1 (8.3 %) 

Data gap - - - 

Total 67 55 12 

 

 

 

 

 

 

 

Table 2:  KS test result for moderate storm in SC 23 and 24 

 Solar cycle 23 (n=63) Solar cycle 24 (n=41)  

Paramters Mean  Median Confidence 

intervals 

Mean median Confidence 

intervals 

D 

Dst -70.31 -68 -73.77 to -66.8 -70.32 -69 -73.15 to -65.6 0.1178 

CME speed 716.3 562 602 to 830.4 668.8 561 538.1 to 799.5 0.11 

Bz -13.3 -12.52 -14.1 to -12.24 -12.44 -12.0 -13.6 to -11.6 0.288 

VBz -5822 -5201 -6406 to -5238 -5490 -5180 -6001 to -4979 0.08 

Units of parameters: Dst and Bz in nT, CME speed in km/s, VBz in km/s nT 

 

 



 

 

© 2016 American Geophysical Union. All rights reserved. 

 

 

Figure 1:  Distribution of CME and CIR driven for all storms and moderate storms during SC 

23 (a,b) and SC 24 (c,d). DG denotes storms whose sources are unkown due to data gap. 
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Figure 2: Yearly occurrence of CME and CIR driven storms: All storms and moderate 

storms for SC 23 (a,b) and SC 24 (c,d) 
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Figure 3: Distribution of Dst value for moderate storms in SC 23 and 24 



 

 

© 2016 American Geophysical Union. All rights reserved. 

 

 

Figure 4: Solar source location of moderate storms occurred during SC 23 and 24. The size 

difference in the circle indicates the strength of the Dst produced and the range is mentioned 

in the figure. Red colour indicates the source location of SC 23 and blue denotes the cycle 24. 
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Figure 5: CME speed for moderate storm occurred during SC 23 and 24 
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Figure 6a: Distribution of CME width of moderate storm occurred during SC 23 and 24 
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Figure 6b: Distribution of CME mass of moderate storm occurred during SC 23 and 24 
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Figure 7: Distribution of Bz and VBz for SC 23 and 24 with respect to moderate storms 
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Figure 8: Correlation between Dst and VBz for SC 23 and 24 
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Figure 9: Superposed epoch plot of moderate storm Dst along with interplanetary electric 

field. (a) Solar cycle 23 (b) Solar cycle 24 and (c) Average values of cycle 23 and 24.  
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Figure 10: The variation of Ɛ with VBz for solar cycle 23 and 24. Blue circle indicates for 

cycle 23 and red square for cycle 24.  

 

 

 

 

 

 

 

 


