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Abstract Solar energetic particles, or SEPs, from suprathermal (few keV) up to rel-
ativistic (∼few GeV) energies are accelerated near the Sun in at least two ways: (1)
by magnetic reconnection-driven processes during solar flares resulting in impulsive
SEPs, and (2) at fast coronal-mass-ejection-driven shock waves that produce large
gradual SEP events. Large gradual SEP events are of particular interest because the
accompanying high-energy (>10s MeV) protons pose serious radiation threats to
human explorers living and working beyond low-Earth orbit and to technological
assets such as communications and scientific satellites in space. However, a complete
understanding of these large SEP events has eluded us primarily because their prop-
erties, as observed in Earth orbit, are smeared due to mixing and contributions from
many important physical effects. This paper provides a comprehensive review of the
current state of knowledge of these important phenomena, and summarizes some of
the key questions that will be addressed by two upcoming missions—NASA’s Solar
Probe Plus and ESA’s Solar Orbiter. Both of these missions are designed to directly
and repeatedly sample the near-Sun environments where interplanetary scattering and
transport effects are significantly reduced, allowing us to discriminate between dif-
ferent acceleration sites and mechanisms and to isolate the contributions of numerous
physical processes occurring during large SEP events.
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1 Introduction

1.1 Historical perspective: pre-space age

Motivated by the discovery of the sunspot cycle by Schwabe (1844) and an apparent
connection between variations in sunspots and geomagnetic activity by Sabine (1852),
Richard Carrington embarked on a comprehensive study of sunspots over an ∼8-year
period from November 9, 1853 to March 24, 1861. Carrington’s discoveries included
determination of the Sun’s rotation axis, the latitudinal variation of sunspots over a
solar cycle, and the differential rotation of the Sun’s poles compared with the equatorial
regions. An excellent account of Carrington’s scientific work and its impact on solar
and space physics is provided in a review article by Cliver and Keer (2012). September
1, 1859, marks the first visual observation of a solar flare by Carrington (1859), and
independently by Hodgson (1859). In an eloquent article, entitled “Description of
a Singular Appearance seen in the Sun on September 1, 1859,” Carrington (1859)
describes his observations of that day (quoted and paraphrased):

While engaged in the forenoon of Thursday, September 1, in taking his custom-
ary observation of the form and positions of the solar spots, an appearance was
witnessed which he believed to be exceedingly rare. Describing it as the break
out of two patches of intensely white light (identified as A and B in Figure 1),
Carrington’s first impression was that by some chance a ray of light had pene-
trated a hole in the screen attached to the object-glass. After convincing himself
that this outburst was real and noticing that it was increasing very rapidly, he
ran to call someone else to witness the exhibition. Returning within 60 s, he was
then mortified to find that it was already much changed and enfeebled. Shortly
afterwards the last trace was gone, and although he maintained a strict watch for
nearly an hour, no recurrence took place. He observed the last traces at C and D,
the patches having traveled considerably from their first position and vanishing
as two rapidly fading dots of white light. Carrington noted that the outburst lasted
less than ∼5 minutes, from ∼1118 to ∼1123 Greenwich mean time (GMT).
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Fig. 1 Carrington’s (1859) drawing of sunspot group 520 on September 1, 1859: the first visual record of
a solar flare. The initial (A, B) and final (C, D) positions of the white-light emission are shown. Solar east
is to the right

Later, Carrington also noted that on September 1 at 1120 GMT, the three magnetic
elements obtained at Kew Observatory exhibited moderate but very marked variations,
and that a great magnetic storm had commenced around 0400 GMT on September 2.
Subsequent accounts established that the storm’s effects were “as considerable in the
southern as in the northern hemisphere.” Duly noting “the contemporary occurrence of
solar activity and the geomagnetic disturbance,” Carrington still did not rush to connect
them at that time. Having searched in vain for other instances of the simultaneity of
solar eruptions and geomagnetic disturbances, many scientists, including Lord Kelvin
(see Ellis 1901), abandoned the notion that an erupting sunspot may have a causal
relationship with co-temporal geomagnetic activity. Some 80 years later, following the
discovery that bright eruptions in the solar chromosphere cause simultaneous radio
fade-outs and distinct terrestrial effects by Fleming (1936), Bartels (1937) provided a
complete description of what is now universally known as the 1859 Carrington event.

Describing it as “one of the six outstanding storms observed in the last 100 years,”
Bartels (1937) summarized the events of September 1–3, 1859:

The unusually large solar eruption observed by Carrington was accompanied
by a simultaneous large magnetic effect lasting less than an hour, presumably
caused primarily by a transitory increase of ionization in the ionosphere due to
excessive ultra-violet light, and was followed after an interval of 17h 35m, by
the outbreak of one of the six most violent storms ever observed, presumably
caused primarily by the impact of solar corpuscles.

We now know that radio fade-outs occur when X-rays from solar flares arrive at
Earth and increase the ionization of the ionospheric D layer, which in turn results
in the absorption of radio communication signals. We have also realized that large
flares are typically accompanied by violent expulsions of fast coronal mass ejections
(CMEs) into the heliosphere and that, if these CMEs are faster than the speed of the
ambient solar wind (SW) ahead, they drive strong interplanetary (IP) shock waves.
Violent geomagnetic storms may occur when the IP shock and its driver CME arrive
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at Earth. It is widely accepted that protons, electrons, and heavier nuclei such as
He–Fe are accelerated from a ∼few keV up to GeV energies in at least two distinct
locations, namely, the solar flare and the CME-driven IP shock. The particles observed
in interplanetary space and near Earth are commonly referred to as solar energetic
particles or SEPs: those accelerated at flares are known as impulsive SEP events,
particle populations accelerated by near-Sun CME-shocks are termed as gradual SEPs,
and those associated with CME shocks observed near Earth are known as energetic
storm particles or ESP events.

1.2 Space era: a paradigm shift and the two-class picture

The earliest observations of SEP events extending up to GeV energies were made with
ground-based ionization chambers and neutron monitors (Forbush 1946; Meyer et al.
1956). Since such events, also known as ground level enhancements or GLEs (see
Fig. 2), were closely associated with Hα flares on the Sun, it was presumed that there
was a causal relationship between the flare and the energetic particles observed at 1 AU.
These and subsequent observations sowed the seeds for a popular scenario—the so-
called “solar flare myth” (see Gosling 1993)—that persisted well into the 1990s. In this
scenario, large solar flares are the primary cause of large, non-recurrent geomagnetic
storms, transient shock wave disturbances in the SW, and major energetic particle
events seen in interplanetary space.

Fig. 2 Neutron monitor observations during the 1956 solar flare event. Image reproduced with permission
from Meyer et al. (1956), copyright by APS
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Even so, on the basis of a close association between the SEP events and slow-drifting
type II and various kinds of type IV radio bursts, Wild et al. (1963) proposed that the
energetic particles might be accelerated at magnetohydrodynamic shock waves that
typically accompanied the flares. Later, Lin (1970) reported close associations between
‘pure’ electron events and flares that only exhibited metric type III emissions on the
one hand, and ‘mixed’ events with protons and relativistic electrons and flares with
type II/IV radio events on the other hand, proposing a ‘two-phase’ acceleration process
for the SEP events observed in space.

Despite these results, a two-class paradigm for SEP events was not generally
accepted until the mid-1990s. The close association between CMEs observed on Sky-
lab and large solar proton events led Kahler et al. (1978) to suggest an important
role for the CME either in creating open field lines for flare particles to escape into
the interplanetary medium or for the protons to be accelerated near a region above
or around the outward moving ejecta far above the flare site. Subsequently, detailed
analyses of flare durations, longitudinal distributions from multi-spacecraft observa-
tions, high resolution ionic charge state and elemental composition measurements,
and clearer associations with radio bursts led most researchers to accept the view that
the SEP events observed at 1 AU belong to two distinct classes, impulsive and gradual
(e.g., Kahler et al. 1978, 1984; Cliver et al. 1982; Kocharov 1983; Luhn et al. 1984;
Mason et al. 1984; Cane et al. 1986; Reames 1988a). We now know that the arrival
of “solar corpuscles” as discussed by Bartels (1937) heralds the arrival of fast coronal
mass ejections or CMEs (see Gosling 1993).

By the end of the 1990s, a two-class picture (see Fig. 3; Table 1) for SEP events
had emerged. Here the gradual events occurred as a result of diffusive acceleration at
CME-driven coronal and interplanetary (IP) shocks, while the impulsive events were
attributed to acceleration during magnetic reconnection in solar flares (e.g., Reames
1999). The gradual or CME-related events typically lasted several days and had larger
fluences, while the impulsive or flare-related events lasted a few hours and had smaller
fluences. Impulsive events were typically observed when the observer was magneti-
cally connected to the flare site, while ions accelerated at the expanding large-scale
CME-driven shocks can populate magnetic field lines over a significantly broad range
of longitudes (Cane et al. 1988). The distinction between impulsive and gradual SEP
events was further justified on the basis of the energetic particle composition and
radio observations (e.g., Cane et al. 1986). For instance, the flare-related impulsive
SEP events were electron-rich and associated with type III radio bursts. These events
also had 3He/4He ratios enhanced between factors of 103–104, Fe/O ratios enhanced
by up to a factor of 10 over the corresponding SW values, and had Fe with ionization
states up to ∼20. In contrast, the gradual events were proton-rich, had average Fe/O
ratios of ∼0.1 with Fe ionization states of ∼14, had no measurable enhancements in
the 3He/4He ratio, and were associated with type II bursts (e.g., Reames 1999; Cliver
2000). It is now believed that CME-driven coronal and interplanetary shocks are the
most prolific producers of SEPs that pose radiation hazards for us, our environment,
and our assets on Earth and in space (Reames 1999).

This review attempts to provide a comprehensive picture of the observations and
theoretical concepts relevant to large gradual SEP events. A subsequent review will
discuss the 3He-rich or impulsive SEP events. We start in Sect. 2 by describing state-
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Fig. 3 The two-class picture for SEP events where a the gradual event is produced by a large-scale CME-
driven shock wave that accelerates the SEPs and populates interplanetary magnetic field (IMF) lines over a
large longitudinal area, and b the impulsive event is produced by a solar flare that populates only those IMF
lines well-connected to the flare site. Intensity-time profiles of electrons and protons in c a large gradual
SEP event, and d a small impulsive SEP event (adapted from Reames 1999)

of-the-art observations that focus on the origin, acceleration, and transport of remotely
accelerated large SEP events. In Sect. 3, we describe observations of the locally mea-
sured CME-shock accelerated particle populations known as ESP events. In Sect. 4,
we discuss the extremely large SEP events, known as GLEs, that create signatures
in ground-based cosmic ray neutron monitors. In Sect. 5, we review observational
and theoretical ideas concerning the origin and acceleration of the poorly measured
and understood suprathermal population, which serves as a source of material for
CME-driven shocks. Section 6 presents the current status of multi-spacecraft, lon-
gitudinally separated SEP observations that have challenged existing notions about
source sizes and locations, as well as ways in which particles are transported in the
inner heliosphere. Section 7 provides a summary of the theoretical concepts that are
relevant to SEP acceleration and transport. In Sect. 8, we discuss the future outlook
for SEP studies, particularly how measurements from new inner heliospheric mis-
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Table 1 Two-class paradigm of
SEPs (from Reames 1995b;
Kallenrode 2003)

Property Impulsive Gradual

Electron/proton ∼102–104 ∼50–100
3He/4He ∼1 ∼4 × 10−4

Fe/O ∼1 ∼0.1

H/He ∼10 ∼100

QFe ∼20 ∼14

SEP duration <1–20 h <1–3 days

Longitude cone <30◦ <100◦–200◦
Seed particles Heated Corona Ambient Corona or SW

Radio type III II

X-ray duration ∼10 min–1 h �1 h

Coronagraph N/A CME

Solar eind N/A IP shock

Events/year ∼1000 ∼10

sions such as Solar Probe Plus (SPP) and Solar Orbiter (SolO) during the next decade
(2017–2027) will revolutionize and overturn many of our existing notions about the
relationships between CMEs, shocks, seed populations, turbulence and waves, and
large SEP events. Finally, we conclude this review by emphasizing the fact that, in
order to maximize the return of these new missions, we also need to make critical
near-Earth in-situ measurements that serve as the ground-truth for SEP acceleration
and transport models. Satellites near Earth orbit are critical for measuring the con-
volved and combined end effects of multiple physical processes that contribute to SEP
events.

2 Large gradual solar energetic particle events

As discussed above and in Sect. 3, an ESP event is observed when an IP shock arrives at
a given location; at ∼1 AU this is typically ∼2–4 days after the driver CME leaves the
Sun. Somewhat earlier in its lifecycle, however, the near-Sun CME shock is likely to be
substantially faster and therefore should drive a stronger shock that is far more efficient
at accelerating particles than its near-Earth counterpart (e.g., Kallenrode et al. 1993;
Rice et al. 2003). The ion populations accelerated by near-Sun CME shocks arrive
significantly earlier compared with the IP shocks and their associated ESP events,
and are known as large gradual SEP events. However, since CMEs and solar flares are
nearly co-temporal and occur when the same or nearby active regions erupt, the precise
origin of the remotely accelerated SEPs continues to be hotly debated (see Sects. 2.6.1,
2.6.3 for the opposing viewpoints of Cane et al. 2006; Tylka et al. 2005). This situation
is exacerbated by the fact that properties of large gradual SEPs are influenced by a
confluence of multiple processes and effects; by the time they are observed at 1 AU,
scattering during transport plays an important role. Other important factors include:
(1) origin and variability of the suprathermal seed populations; (2) the efficiency with
which populations from different sources and with distinct distribution functions are
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injected into the shock acceleration mechanisms; (3) factors that control the efficiency
with which particles are accelerated (e.g., CME speed, kinetic energy); (4) the presence
or absence of multiple, interacting CMEs; (5) the type, level, and characteristics of
the waves and turbulence present near the shock and in the interplanetary medium;
and (6) the charge-to-mass (Q/M)-dependence of scattering and transport through the
turbulent interplanetary medium. This section summarizes the observational evidence
that points to the importance of these factors in large SEP events.

2.1 Early multi-spacecraft observations

Approximately 20 years of multi-spacecraft SEP observations show that the time-
intensity histories of ∼1–30 MeV protons in large gradual SEP events can be
understood if the strongest acceleration occurs near the “nose” of a CME shock that
moves radially outward from the Sun (see Fig. 4; Cane et al. 1988; Reames 1995b;
Reames et al. 1997). For spacecraft (s/c) located east of the source (left panel), the
intensities show abrupt increases and peak relatively earlier during the event when
it is magnetically connected to the nose of the CME shock near the Sun. The inten-
sities decay slowly as the shock moves outward and the s/c becomes magnetically
connected to the eastern flanks of the shock. In contrast, for sources located near the
central meridian, the intensities peak when the nose of the shock reaches the s/c loca-
tion. Spacecraft located to the west (right panel) of the source observe a slow increase
in the intensities that peak well after the shock is observed locally. Based on the distinct
time histories shown in Fig. 4, Cane et al. (1988) established the role of CME-driven
shocks in large SEP events.

Fig. 4 Intensity-time profiles of ∼1–30 MeV protons during gradual SEP events observed at three different
solar longitudes relative to the flare or CME lift-off location (see text; after Cane et al. 1988; Reames 1999;
Cane and Lario 2006)
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Fig. 5 Longitudinal distributions of the solar sources associated with a gradual and b impulsive SEP events.
Image reproduced with permission from Reames (1999), copyright by Springer

Figure 5 shows the longitude distribution of the associated flare for several gradual
and impulsive events. Gradual events are observed regardless of the relative location
(east-or-west) of the flare longitude, while impulsive events are observed primarily
when the observer is magnetically well-connected to the flare site on the western
hemisphere. This comparison shows that the broad longitudinal distribution of grad-
ual events is unlikely to occur as a result of rapid coronal diffusion or cross-field
transport, because such effects should also occur during the smaller impulsive SEP
events. Rather, the observed longitudinal spread of gradual SEPs provides further
support for the notion that a CME shock that accelerates particles across its surface
can easily populate a broad swath of of interplanetary magnetic field (IMF) lines as it
moves further out into the heliosphere. The more recent, multi-spacecraft observations
of large SEP events and their implications are discussed further in Sect. 6.6.

2.2 Evidence for CME shocks in the solar corona

An important source of information about the formation and properties of CME-driven
shocks in the solar corona at distances below ∼10 RS comes from observations of the
so-called type II solar radio bursts. These bursts appear as slowly drifting pairs of
band-like features in the dynamic spectra (frequency vs. time, with color-coded inten-
sity; see Fig. 6). The pairs differ in frequency by a factor of ∼2 and are attributed
to CME-shock accelerated electrons that drive Langmuir waves near the electron
plasma frequency, f p, and produce radio emission near f p and 2 f p (e.g., Wild et al.
1963; Cairns et al. 2003; Gopalswamy et al. 2013). Interplanetary type II bursts with
similar pairs of band-like features are also found in association with transient CME-
driven shock waves (e.g., Cane et al. 1982; Reiner et al. 1998; Bale et al. 1999).
Recently, detailed magnetohydrodynamic (MHD) simulations of CME initiation and
propagation combined with multi-point measurements of type II radio bursts, extreme

123



Living Rev. Sol. Phys.  (2016) 13:3 Page 11 of 132  3 

Fig. 6 a Dynamic spectrum from the Culgoora radio observatory showing a type II burst with fundamental
(F) and harmonic (H) structure. The fundamental component starts around 150 MHz. b A section of the
nearest STEREO A EUVI-A image showing the CME. The CME height can be directly measured from
this frame as 1.29 RS . Image reproduced with permission from Gopalswamy et al. (2013), copyright by
COSPAR

ultraviolet (EUV) spectroscopy, and white-light coronagraph images have greatly
expanded our understanding of CME shock formation in the low solar corona below
∼5 RS (e.g., Schmidt et al. 2013). It is now accepted that CME shock formation can
occur at heights substantially below ∼1.5 RS (e.g., Gopalswamy et al. 2013), which
is critical for understanding the physics of particle acceleration, e.g., the release times
of SEPs during GLEs (Reames 2009a).

2.3 SEPs and CME properties

Comparisons between CME or IP shock and SEP properties have revealed significant
scatter from clear correlations. Depending on the ambient SW speed ahead, faster CME
drivers are generally thought to drive stronger shocks (e.g., Rice et al. 2003), and may
therefore be important for particle acceleration. However, Fig. 7 shows that CMEs with
similar speeds are associated with huge variations (∼3–4 orders of magnitude) in the
intensities of the associated SEPs at 1 AU (Kahler 2001), posing real challenges in our
ability to model and predict SEP properties based on known CME properties. Likewise,
Sect. 3 shows that the lack of clear relationships between various properties (e.g., peak
intensities, spectral indices, etc.) of ESP events and the locally measured IP shock
parameters (e.g., compression ratio) indicates that many factors can contribute to the
local diffusive shock acceleration processes and cause the event-to-event variability.

Emslie et al. (2012) found that only 22 of the 38 largest solar eruptive events are
associated with large SEP events, while Gopalswamy et al. (2008) found that some of
the most energetic CMEs are not associated either with type II radio bursts or large
SEPs. More recently, Kahler (2013a) calculated three different SEP event timescales:
(a) the time from inferred CME launch at 1 RS to the time of the 20 MeV SEP onset
at Wind, (b) the time from SEP onset to the time the intensity reached half the peak
value, and (c) the time during which the intensity remained above half the peak value.
These three timescales ranged between about an order of magnitude and were then
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Fig. 7 Peak proton intensity in SEP events at two energies versus CME speed. Pink circles represent
data from wind/energetic particles—acceleration, composition, and transport/low energy matrix telescope
(EPACT/LEMT) and SoHO/LASCO; green triangles show data from Helios and Solwind, P78-1; blue
lines are linear least-squares fits, r are the corresponding correlation coefficients. Image reproduced with
permission from Kahler (2001), copyright by AGU

compared with CME properties such as speed, acceleration, width, and location. The
main results of this survey are that the onset time (a), decreased with CME speed
and width, while the timescales that characterized the peak intensity, i.e., (b) and (c),
increased with CME width and speed. These results confirm that faster (and wider)
CMEs drive shocks and accelerate SEPs over longer times to produce events with
longer timescales and larger fluences.

Other studies have estimated that CMEs associated with large SEP events can
expend different fractions of their total kinetic energy into accelerating SEPs (see
Fig. 8). Mewaldt et al. (2008) estimated SEP kinetic energies during 23 of the
largest SEP events of cycle 23 using the fluence spectra measured by instruments on
advanced composition explorer (ACE), solar, anomalous, and magnetospheric particle
explorer (SAMPEX) and geostationary operational environmental satellites (GOES)
from ∼0.03 to ∼500 MeV/nucleon. These estimates take into account the source
locations and the longitude distribution of large SEPs, the possibility that SEPs can
cross Earth-orbit multiple times, and transport effects such as adiabatic deceleration
and pitch-angle scattering. The kinetic energies of the associated CMEs were mea-
sured by the Large Angle and Spectrometric Coronagraph experiment (LASCO) on
Solar and Heliospheric Observatory (SoHO) (see, e.g., Ontiveros and Vourlidas 2009).
Using these parameters and the measured proton spectra, and integrating over energy,
time, and space, Mewaldt et al. (2008) and Emslie et al. (2012) compared the CME
and SEP kinetic energies in the rest frame of the SW (e.g., see Fig. 8), and found
that CMEs with energies of ∼1032 ergs could use between <0.4 and ∼20 % of their
energies in accelerating SEPs. These authors also found that, on average, CMEs use
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Fig. 8 Scatter-plot of CME
kinetic energy versus SEP
kinetic energy for 23 large SEP
events from solar cycle 23.
Image adapted from Mewaldt
et al. (2008)

∼5–10 % of their kinetic energy into accelerating SEPs. Similar estimates are obtained
for supernovae shocks that accelerate galactic cosmic rays that fill the galaxy (e.g.,
Ptuskin 2001). Finally, Mewaldt et al. (2005b, 2008) also found that the so-called GLE
events were associated with ∼30 % of the very energetic CMEs with kinetic energies
�1.2 × 1032 ergs (also see Gopalswamy 2006).

The largest SEP events are associated with the fastest ∼1–2 % of CMEs. The
CMEs have typical speeds >1500 km/s, although a few have speeds as low as
∼700–800 km/s (Kahler 2001). Figure 9 compares the mass (left) and energy (right)
distributions of all CMEs (in blue) with those associated with 23 of the 50 largest SEP
events (in red) from solar cycle 23. Similarly, Yurchyshyn et al. (2005) found that the
distributions of the plane-of-sky-speeds for >4000 CMEs, whether they are acceler-
ating or decelerating, showed no physical distinction and exhibited log-normal forms
similar to the ones shown in Fig. 9. The figure clearly shows that large SEP events are
associated with CMEs that have masses >1015 g and kinetic energies >3 × 1031 ergs,
with the kinetic energy of the CME being more indicative of whether the associated
SEP event is also likely to be large and intense.

2.4 Size distribution of SEP events

The size distribution of SEP events has often been characterized in terms of a power-
law in the peak proton flux or fluence and then compared to the peak soft X-ray
(SXR) flux in flares (see, e.g., Hudson 1978; Belov et al. 2007; Cliver et al. 2012, and
references therein). However, the power-law characterizing SEP size is significantly
flatter than that of the SXR flux. This is not surprising, given that large SEP events
are believed to be produced by CME shock acceleration rather than by the associated
flare (Reames 1999). Furthermore, Cliver et al. (2012) showed that the steeper SXR
flux distribution occurs because there exist two other types of X-ray flares that are not
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Fig. 9 Left Comparison of the mass distribution of all CMEs observed from 1996–2003 (Gopalswamy
2006) to the masses of CMEs associated with 23 of the 50 largest SEP events of solar cycle 23 (scaled
up by 20). Right Comparison between the distributions of the kinetic energy of CMEs associated with 23
large SEP events from solar cycle 23 and all CMEs observed from 1996–2003. Images reproduced with
permission from Mewaldt et al. (2008), copyright by AIP

associated with large SEP events: (1) those associated with the smaller 3He-rich SEP
events (e.g., Mason et al. 2004), and (2) compact flares not associated with any escaping
interplanetary SEP component. In fact, Cliver et al. (2012) showed that the difference
in the slopes of the power-law size distributions of solar flares and SEP events arises
primarily because the flares associated with large gradual SEPs represent an energetic
subset of all flares that are also accompanied by fast (>1000 km/s) CMEs. They also
showed that the small difference of ∼0.15 between the slopes of the distributions of
SEP events and the peak SXR fluxes during the associated flares is consistent with the
observed variation of SEP event peak flux with SXR peak flux. Finally, using several
lines of evidence, Kahler (2013b) argued against using scaling laws to describe the
relationship between the SEP event peak fluxes and SXR peak fluxes, and therefore,
against a close physical connection between flares and SEP production. They instead
suggest that the differences in the power-law distributions of the SXR peak fluxes
and that of the SEP peak fluxes can be understood in terms of the fractal-diffusive
self-organized criticality model proposed by Aschwanden (2012), which decouples
the causal and physical connections between flares and large gradual SEPs events.

2.5 SEPs associated with interacting or twin-CMEs

Timing and correlation studies of cycle 23 SEP events show that (see Fig. 10, left) fast
and wide CMEs erupting from an active region that also produced fast (∼488 km/s)
and wide (≥60◦) CMEs within the preceding ∼24-h interval are almost always asso-
ciated with large SEP events. Gopalswamy et al. (2004) suggest that the preceding
CMEs may provide seed particles for CME-driven shocks that follow, and that this is
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Fig. 10 Left Peak proton intensity versus CME speed for SEP events with a preceding frontside CME (P;
red diamonds) and for no preceding CME (NP; plus symbols). Solid lines are regression lines for the P and
NP groups. The dashed regression line is for all data points. Right The “twin-CME” scenario for a large SEP
event. Two CMEs erupt from the same or nearby source active regions. Interchange reconnection between
open magnetic field lines and those draping the first CME can release seed particles accelerated by the first
CME shock into the disturbed downstream region, which has enhanced turbulence levels. This material
can then be subsequently accelerated by the second CME shock. Images reproduced with permission from
(left) Gopalswamy et al. (2004), copyright by AGU, and (right) Li et al. (2012), copyright by Springer

the primary reason why SEP intensities in events without preceding CMEs are lower;
in other words, the differences in SEP properties may not have resulted due to inherent
properties of the CMEs themselves. The Li et al. (2012) survey of 16 GLEs in solar
cycle 23 showed that fast and wide CMEs from the same active region are associated
with GLEs, even if the preceding CMEs were slower (>300 km/s) and narrower, and
occurred within ∼9-h intervals (see Sect. 4; Li et al. 2012).

Some of the physical mechanisms that could account for these observations are:
(1) the first CME shock disturbs the ambient coronal and interplanetary environment
and enhances turbulence levels, which increase the efficiency of the second CME
shock (e.g., Li and Zank 2005; Ding et al. 2013); (2) the first CME shock produces
a suprathermal-through-energetic particle population whose intensities decay slowly
with e-folding times of ∼8–16 h, thereby creating a pre-accelerated particle population
that the second CME shock can readily inject and re-accelerate (e.g., Gopalswamy
et al. 2004; Reames et al. 1997, 2013; Mewaldt et al. 2012a); (3) a pseudo-streamer-
like pre-eruption magnetic field configuration leads to reconnection between closed
field lines that drape the first CME and its shock as well as the open field lines that drape
the second CME, creating enhanced seed populations and higher turbulence levels in
front of the second CME shock (see Fig. 10, right); and (4) differences in open and
closed field-line geometry and a decrease in Alfvén velocity creates a stronger shock
in front of the second CME (Gopalswamy et al. 2004).

In contrast with the above studies, Kahler and Vourlidas (2014) argue against the
interacting or twin-CME scenario as a direct cause of enhanced SEP intensities because
they did not find any pre-CME property (e.g., number of CMEs, timing, widths, speeds)
that correlated either with enhanced SEP proton intensities above ∼20 MeV or with
SEP event timescales. These results provided no clue as to how the preceding CMEs
could interact with the primary CMEs and produce larger SEP events. Instead, they
found that the SEP event intensities and the occurrence rates of pre-CMEs increases
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with the pre-event 2 MeV proton intensities. They suggested an alternate explanation
for the association between pre-CMEs and enhanced SEP proton intensities: the 2 MeV
pre-event particles serve as seed populations for the higher (∼20 MeV) energy SEPs,
and that both, the CME occurrence rates and the increases in the pre-event 2 MeV
SEP intensities are manifestations of higher solar activity. Re-analyzing the data from
Gopalswamy et al. (2004) and Ding et al. (2013), Kahler and Vourlidas (2014) also
found no correlation between enhanced SEP intensities and the ∼2 MeV intensities
measured during a significantly shorter (∼2 h) interval prior to the onset of the primary
CME; the previous studies used 1-day intervals to measure the pre-event ∼1 MeV
intensity. On this basis, Kahler and Vourlidas (2014) ruled out the contributions of
providing enhanced seed populations by the preceding CMEs. These results clearly
imply that the origin of the enhancements in the pre-event seed population intensities
remains unclear, and that the relationship between enhanced proton intensities in larger
SEP events and CME interactions is still not well understood.

2.6 Spectral variability

One of the most puzzling aspects of large SEP observations of cycle 23 is the variability
in the energy-dependent behavior of the Fe/O ratio between 0.1 and 100 MeV/nucleon.
Figure 11 provides an example of such variability, as seen in the August 24, 2002 SEP
event and the April 21, 2002 SEP events observed at ACE. Both events were asso-
ciated with western hemisphere flares near ∼W80 and CMEs with similar speeds of
∼2000 km/s (e.g., Cohen et al. 2003; Tylka et al. 2005), yet the associated heavy
ion spectral behaviors were remarkably different. Diffusive shock acceleration (DSA)
processes tend to accelerate ions with higher mass-per-charge (M/Q) ratios less effi-
ciently than those with lower M/Q ratios (e.g., Desai et al. 2003). Since, Fe has higher
M/Q than O, and since the abundances are normally measured in energy/nucleon rather
than rigidity, the Fe/O ratio at equal energy/nucleon in large CME-shock accelerated
SEP events is expected to decrease with increasing energy. Particle rigidity is defined
as momentum per unit charge. Also, since C and O have similar M/Q ratios, the DSA
processes are not expected to significantly alter the SEP C/O ratio with increasing
energy. Thus, the nearly energy-independent C/O ratio observed in both SEP events in
Fig. 11 is generally consistent with DSA of species with similar M/Q ratios. Likewise,
the decrease in the Fe/O ratio during the April 21, 2002 event with increasing energy
is also qualitatively consistent with shock acceleration models wherein Fe with higher
M/Q ratio is accelerated less efficiently than O. However, the Fe/O ratio in many large
SEP events of cycle 23, as seen during the August 24, 2002 SEP event, increased with
increasing energy (e.g., Tylka et al. 2005; Cane et al. 2006), which is inconsistent with
M/Q-dependent processes and poses serious challenge to DSA models.

The differences in the energy-dependent behavior of Fe/O could not be attributed
to observed differences in the sources and their locations relative to ACE. Three
plausible ideas could account for the increase in the Fe/O at higher energies: (1) direct
flare contribution above ∼10 MeV/nucleon (e.g., Cane et al. 2003, 2006), (2) re-
acceleration of suprathermal and energetic particles from previous or accompanying
flares (e.g., Mason et al. 1999; Desai et al. 2006a), or (3) preferential injection of flare
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Fig. 11 Left Event-integrated fluence spectra of C, O, and Fe. Right C/O and Fe/O ratios in two large SEP
events measured by the Ultra Low Energy Isotope Spectrometer (ULEIS) and the Solar Isotope Spectrometer
(SIS) on board ACE (adapted from, Tylka et al. 2005; Desai et al. 2006a)

suprathermals at quasi-perpendicular shocks (e.g., Tylka et al. 2005). In the remainder
of this section, we discuss the observational evidence and arguments used in favor for
each of these scenarios.

2.6.1 Direct flare contributions

Cane et al. (2003, 2006) examined temporal variations in the intensity profiles of Fe
and O and in the Fe/O ratio during individual SEP events above ∼25 MeV/nucleon (see
Fig. 12) and proposed that many large SEP events are a mixture of flare-accelerated and
shock-accelerated populations. As shown in Fig. 12, Cane et al. argue that the relative
contributions from flares and CME shocks at a given energy depend on properties of
the flare, the strength of the CME shock, and the observer’s magnetic connection to
the flare site.

In this scenario, well-connected western hemisphere events associated with longer
duration flares and weaker CME shocks are dominated by flare-accelerated material
above ∼10 MeV/nucleon, causing the intensities to rise promptly and the Fe/O to
increase significantly over the corresponding SW value, as in Fig. 12a; this effect
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Fig. 12 Fe and O intensity-time profiles at ∼30 MeV/nucleon during three large gradual SEP events
measured by ACE/SIS. Image reproduced with permission from Cane et al. (2003), copyright by AGU

could also account for the increasing Fe/O ratios with increasing energy during the
August 24, 2002 event. On the other hand, eastern hemisphere SEP events (Fig. 12b)
have broader time profiles and Fe/O ratios similar to or lower than the corresponding
SW values. Finally, central meridian events (Fig. 12c) have two components: a prompt
rise accompanied by higher Fe/O ratios due to flare particle contributions earlier in
the event, followed by a larger IP shock-accelerated component with Fe/O ≤ 0.1
superposed on the flare population. Thus, in the Cane et al. scenario, the CME shock
during the April 21, 2002 event is sufficiently strong to accelerate >10 MeV/nucleon
particles at 1 AU and cause the Fe/O to decrease with increasing energy.

It is worthwhile mentioning that the Cane et al. (2003, 2006) two-component asser-
tion essentially implies that the >10 MeV proton intensities in some SEP events should
be completely dominated by either the flare or the CME shock associated component.
In particular, this suggests that some SEP events with CMEs too slow to drive fast
and wide shocks might still be associated with significant >10 MeV proton intensity
increases due to the flare component. However, Kahler et al. (2000) searched for SEP
events in association with posteruptive arcades following CMEs, and identified 30
CME-arcade cases with no detectable increases in the >10 MeV proton intensities.
While this study does not rule out pre-CME flare contributions to large gradual SEP
events, it does provide evidence that magnetic reconnection in posteruptive coronal
arcades do not contribute to large gradual SEP events.

More recently, Cane et al. (2010) examined the association between SEP properties,
such as the peak intensities, time-intensity profiles, the electron-to-proton and Fe/O
ratios, in 280 solar proton events that extended above ∼25 MeV during 1997–2006
and properties of the accompanying flare, CME, and radio emissions. They found that
the events do not separate into groups, as expected from the simple two-class picture,
but instead exhibit continuous distributions. Based on these results, Cane et al. (2010)
concluded that both flare and CME shock acceleration could contribute in the majority
of the largest SEP events.

2.6.2 Suprathermal seed populations: 3He and heavy ion abundances

Understanding remotely accelerated large SEP events is difficult because the accel-
eration processes occur near the Sun, and other effects (e.g., propagation to 1 AU)
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Fig. 13 a Temporal profiles of ∼0.7 MeV/nucleon 3He and 4He ions in a large CME-related SEP event.
b 0.5–2.0 MeV/nucleon He mass histogram obtained during several large SEP events. The right scale
corresponds to the open histogram. Image reproduced with permission from Mason et al. (1999), copyright
by AAS

have to be considered. Nevertheless, the mere presence of rare tracer ions like 3He can
be used to identify the origin of the seed population. Figure 13a shows time-intensity
profiles for 0.5–2.0 MeV/nucleon 3He and 4He ions in a large CME-related SEP event
that occurred on June 4, 1999 (from Mason et al. 1999). The temporal profiles of the
two species are remarkably similar, which indicates that they probably share the same
acceleration and transport history. In this particular event, the 3He is enriched by a
factor of 16 ± 3, while the Fe/O ratio (not shown) is simultaneously enhanced by about
a factor of 10 relative to the corresponding SW values. Since the M/Q ratio for Fe is
larger than that of O while that of 3He is smaller than that of 4He, these results cannot
be reconciled with M/Q- or rigidity-dependent acceleration mechanisms in which the
shock operates solely on a SW-like seed population.

The event in Fig. 13a was selected from a list of large CME-related NOAA
Space Environment Center events that produced significant 10 MeV proton inten-
sity enhancements at 1 AU. A substantial fraction (∼50 %) of these events had 3He
enrichments (e.g., Mason et al. 1999; Wiedenbeck et al. 2000). Figure 13b shows
the low energy He mass histogram from several such events. Notice that the 3He is
clearly resolved from 4He and the background. These enhancements are attributed to
the presence of residual or remnant flare-accelerated 3He-rich suprathermal material
in the seed population for CME-driven shocks near the Sun.

ACE measurements have also allowed us to explore whether the heavier ions orig-
inate from the SW peak. Desai et al. (2006a) compared the ∼0.4 MeV/nucleon heavy
ion abundances averaged over 64 large SEP events with those measured in the fast and
slow SW (see Fig. 14a) as a function of the ion’s M/Q ratio. In Fig. 14b, Mewaldt et al.
(2002) normalized the >5 MeV/nucleon abundances averaged over ∼40 large SEP
events to those measured in the SW and plotted them versus the first ionization poten-
tial (FIP). The figure shows that SEP abundances at both energies are not organized in
any systematic fashion by the M/Q ratio or the FIP. Rather, the heavy ion abundances
are scattered randomly about the 1:1 line. Kahler et al. (2009) directly compared SEP
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Fig. 14 a Average heavy ion abundances at ∼0.32–0.45 MeV/nucleon in 64 large SEP events events
relative to those measured in the fast and slow solar wind, normalized to oxygen and plotted versus M/Q
(adapted from Desai et al. 2006a). b Average abundances measured in the slow solar wind divided by those
measured in 40 large CME-related SEP events above ∼5 MeV/nucleon, plotted versus the FIP of each
element (adapted from Mewaldt et al. 2002)

abundances with corresponding abundances in three different types of background
solar wind in which the SEPs were observed; this study found no differences in SEP
composition among the three types of SW; fast, slow, and intermediate. These results
are yet another indication that the material accelerated in large SEP events is quite
distinct from that measured in the solar wind; and therefore, the SEP heavy ions are
unlikely to originate from the bulk solar wind.

Figure 15 shows that, over a 100-day interval, solar wind densities (blue) vary only
by about a factor of 10, while the 30 keV/nucleon suprathermal Fe intensity (red)
varies by nearly three orders of magnitude. This large variation could play a critical

Fig. 15 Hourly averaged intensity of suprathermal ∼30 keV/nucleon Fe (red) and number density of solar
wind Fe (blue) during a 100-day period in 2004. Image reproduced with permission from Mason et al.
(2005), copyright by AIP
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Fig. 16 Left Fluences of 12–80 MeV/nucleon Fe in large SEP events from solar cycle 23 versus the
suprathermal Fe density averaged over the day before the SEP event. The dashed black line is 3333 times
the number-density scale. Right Histogram of daily averaged suprathermal Fe densities for all days from
March 1998 to December 2005 (left scale) compared to a histogram of suprathermal Fe densities, measured
one day before the associated SEP events (right scale). Image reproduced with permission from Mewaldt
et al. (2012b), copyright by AIP

role in determining the peak intensities and SEP kinetic energies in SEPs that show an
extremely large range for CMEs of the same speed, mass, or kinetic energy, as seen
in Figs. 7, 8 and 9.

Mewaldt et al. (2012a) investigated whether pre-existing suprathermal ion densi-
ties are related to SEP fluences. Figure 16 (left) compares the Fe fluence in 90 large
SEP events, defined as events with >12 MeV/nucleon Fe fluences >0.1/(cm2 sr),
from 1998–2005, with the number density of suprathermal Fe at 1 AU one day before
the SEP event occurred, i.e., on the day before the solar flare and CME eruption.
Days with high fluences [e.g., >103 Fe/(cm2 sr); red dashed line] only occur when
the density of pre-existing suprathermal Fe was >0.3 Dm−3. Figure 16 (right) shows
that the suprathermal Fe densities are generally significantly greater before the occur-
rence of these large SEP events compared to all other days, perhaps indicating that
the presence of high-density suprathermal Fe is necessary for SEP events with large
Fe fluences to occur. Mewaldt et al. (2012a, b) speculated that the inner heliosphere
served as a reservoir of suprathermal ions from a variety of sources, including 3He-
and Fe-enriched material accelerated in flares and suprathermal material accelerated
at previous CME shocks. This material is subsequently re-accelerated by the CME
shock that produced the large SEP event (also see Mason et al. 1999; Desai et al.
2006a).

2.6.3 Shock geometry and compound seed populations

In contrast to Cane et al. (2003, 2006), Tylka et al. (2005) suggest that the extreme
Fe/O behavior in the SEP event in Fig. 11 could occur if different orientations of
the shock normal relative to the upstream magnetic field result in the injection and
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Fig. 17 Left Schematic of a CME-driven shock as seen at azimuthally-separated 1 AU spacecraft illustrating
the variation in shock obliquity and the corresponding regions of variable injection threshold speeds (adapted
from Zank et al. 2006). Right According to the Tylka and Lee (2006) model, the suprathermal seed population
for shock-accelerated ESPs and SEPs comprises both coronal (or solar wind) and flare-accelerated ions.
Flare suprathermals are more likely to be accelerated at quasi-perpendicular shocks with higher injection
thresholds. The inset shows the energy-dependence of Fe/O ratio in the accelerated population (adapted
from Tylka et al. 2005)

acceleration of vastly different seed populations. In this scenario, illustrated in Fig. 17,
Tylka et al. assume that perpendicular shocks are unable to accelerate low-energy ions
and have a higher injection threshold, therefore they predominantly accelerate the Fe-
rich, suprathermal-through-energetic particle population associated with solar flares
(e.g., Forman and Webb 1985). This causes the Fe/O ratio to increase with increasing
energy as in the August 24, 1998 SEP event. On the other hand, Tylka et al. further
assume that since quasi-parallel shocks have a lower injection threshold energy, they
can accelerate the ambient solar wind (or coronal suprathermal ions), which causes the
Fe/O ratio to decrease with increasing energy as in the April 21, 2002 SEP event. While
there is some theoretical justification for the assumptions regarding the existence of
injection threshold energy in DSA processes, this issue is not simple; in fact, there
may exist situations where there is no dependence of the injection threshold energy
on the shock-normal angle. This issue is discussed further in Sect. 7.2.6.

While the Tylka et al. (2005) model uses the shock orientation near the Sun and
requires the presence of suprathermal flare seed populations, it is essentially indepen-
dent of the longitude of the observer relative to that of the source or the flare location.
In contrast, the observer’s relative longitude is a critical feature of the Cane et al. (2003,
2006) scenario. Based on large enhancements in the Fe/O during the initial phases of
two large SEP events observed at Wind and Ulysses when the two s/c were separated
by >60◦ in longitude, Tylka et al. (2013) argue that the initial Fe/O enhancements
cannot be construed as evidence for direct flare contributions, but rather that such
enhancements are better understood in terms of radial diffusion and transport-related
effects (see Sect. 2.8). Likewise, the Mason et al. (1999) scenario also requires that
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CME-driven shocks have access to flare material en route to 1 AU, but it does not
depend on the relative longitude of the observer. Thus, while somewhat distinct, both
the Tylka et al. (2005) and Mason et al. (1999) scenarios require the re-acceleration
of flare suprathermals at CME-driven shocks.

2.6.4 Constituents of suprathermal seed populations

While there is little doubt that flare suprathermals can occasionally contribute to
the seed population for large gradual SEPs, it is still unclear just how much of the
source material is actually composed of flare-accelerated ions. Desai et al. (2006a),
for instance, compared the average ∼0.38 MeV/nucleon heavy ion abundances in 64
large SEP events to event-averaged, heavy-ion abundances in 3He-rich SEPs (Mason
et al. 2004) and in large gradual SEP events at ∼5–12 MeV/nucleon (Reames 1995a)
to show that the average large SEP seed population could comprise up to ∼75 %
flare-rich material and >25 % ambient coronal material. In contrast, Mewaldt et al.
(2006) concluded that, on average, the remnant or residual suprathermal Fe densities
observed during quiet days prior to the occurrence of several large Fe-rich SEP events
were not sufficient to account for the observed ∼10 MeV/nucleon Fe fluences, and
that an additional source of Fe was necessary; possible sources considered were the
co-temporal flare, lower-energy material, suprathermal tails, interplanetary coronal
mass ejection (ICME) material in the case of multiple CMEs, and previous gradual
and IP shock events.

In an attempt to account for the dramatically distinct behavior of Fe/O in Fig. 11,
Tylka and Lee (2006) formalized the ideas put forward by Tylka et al. (2005) in an
analytical model. The results of these model calculations are shown in Fig. 18. Two
cases are shown: (a) includes injection threshold for quasi-perpendicular shocks, i.e.,
suppresses the injection of coronal seed population at quasi-perpendicular shocks;
and (b) no injection threshold at quasi-perpendicular shocks. The parameter R ≡
CFe,Flare/CFe,Coronal, reflects the relative strengths of the remnant flare and coronal
source contributions at a parallel shock, where seed ions from both populations are
injected with equal efficiency.

The April 21, 2002, SEP event in Fig. 11 is best represented by R ∼ 0,
while the August 24, 2002, SEP event is best represented by R ∼ 0.05. In the
August 24 event, substantially different Fe/O ratios in the two components imply
that CFe,Flare/CFe,Coronal = 0.79. Thus it appears that the increase in Fe/O ratio above
∼10 MeV/nucleon in some SEP events may reflect the fact that the seed popula-
tion comprises substantial amounts of flare (∼40 %) material mixed with the ambient
coronal population. Strikingly, this simple analytical model could also account for
the Q/M-fractionation of ∼12–60 MeV/nucleon event-averaged C–Fe abundances, as
originally reported by Breneman and Stone (1985). Above ∼1 MeV/nucleon, the
Tylka and Lee (2006) model calculations were in reasonable agreement with the
observed behavior of: (1) Fe/O versus energy, (2) the 3He/4He ratio, and (3) the mean
ionic charge state of Fe. However, the same model was unable to reproduce obser-
vations below ∼1 MeV/nucleon. Tylka and Lee (2006) suggest that this discrepancy
occurred probably because their calculations, which averaged the effects of θBn over
all shock normal angles, are likely to be valid near the Sun but not for the lower-energy
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Fig. 18 Model calculations for the Fe/O ratio versus energy. The Fe/O ratio is normalized to 0.134, which
is taken as typical of the coronal population. The bottom curve in both panels shows the quasi-parallel
case in which the spectra are averaged over 0◦ ≤ θBn ≤ 60◦, while the rest of the curves represent
quasi-perpendicular shocks where the spectra are averaged over the full range of 0◦ ≤ θBn ≤ 90◦. The
calculations are performed by assuming different fractions of the flare component in the seed population,
as specified by the parameter R (see text for more details). Other energetic particle parameters are fixed:
spectral index γ = 1.5 and E0 = 3.0 MeV/nucleon. a Injection of ions from the coronal component is
suppressed at quasi-perpendicular shocks. b Same calculations without coronal seed suppression. Image
reproduced with permission from Tylka and Lee (2006), copyright by AAS

SEPs, most of which are probably accelerated later during the CME shock’s transit
from the Sun to the observer.

More recently, Reames (2014) used the systematic correlation between the enhance-
ments and depletions in the ∼3.2–5 MeV/nucleon Fe/O and the ∼2–15 MeV/nucleon
Fe spectral index in 54 large SEP events to argue that most of the temporal and spatial
variations in the abundances and energy spectra of heavy ions occur after acceleration
and are therefore due to rigidity-dependent scattering during transport. Reames (2014)
concludes that the strongest effects of the seed population occur above the spectral
knee energies, which depend on both the species Q/M ratio and θBn (see Tylka and
Lee 2006), and that even a small amount of flare material in the seed population can
have a large effect above ∼10s MeV/nucleon, where spectral knees become domi-
nant. Using these results, Reames (2014) measured the ∼2–15 MeV/nucleon heavy
ion abundances using appropriate sampling and averaging time intervals to retrieve
compositional information about the coronal source material, which is remarkably
similar to that reported earlier by Reames (1995a).
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Fig. 19 Left Average ionic
charge of Fe in the energy range
0.18–0.24 MeV/nucleon in ∼40
impulsive and ∼40 gradual SEP
events; see text for details. Right
Mean ionic charge QFe at
0.18–0.25 MeV/nucleon versus
that at 0.36–0.43 and
28–65 MeV/nucleon. Image
reproduced with permission
from Klecker et al. (2007),
copyright by Springer

2.6.5 Ionic charge states in gradual SEPs

Ionic charge states provide another key diagnostic of SEP acceleration locations and
conditions, as well as of the source populations. Since the acceleration and transport
processes depend on the ion’s M/Q-ratio and also on its velocity, variations in the mean
ionic charge of heavy ions, e.g., Fe at ∼1 MeV/nucleon, are often used to distinguish
flare-accelerated material from CME-shock accelerated ions (e.g., Reames 1999). In
particular, gradual SEPs have mean Fe charge states, QFe, consistent with coronal
source temperatures of ∼1.5–2 × 106 K. In contrast, the 3He-rich or flare-associated
SEPs have QFe ∼15–20, consistent with charge-stripping in the low corona (e.g., see
Fig. 19 (left) and review by Klecker et al. 2007; Dröge et al. 2006).

The QFe in many large SEP events is essentially energy-independent up to few
MeV/nucleon, which is consistent with CME shock acceleration in the tenuous high
corona or in interplanetary space. This is because processes such as: (1) charge-
changing effects resulting from ionization by thermal electrons and ions, (2) mixing
of sources with different ionic charge distributions, and (3) M/Q-dependent energy
spectra, do not significantly affect the ionic charge states as a function of energy (see
e.g., Kovaltsov et al. 2001; Klecker et al. 2007).

However, ionic charge state measurements over an extended energy range from
SAMPEX, ACE, and Wind during solar cycle 23 showed significant energy-dependent
variations in individual large SEP events. For instance, below ≤1 MeV/nucleon, typ-
ical observed values of QFe were ∼9–12, which remained essentially constant with
energy or, in some cases, increased with energy by up to 4 charge units (see Bog-
danov et al. 2000; Möbius et al. 1999, 2000; Mazur et al. 1999). In general, these
sub-MeV/nucleon Fe charge states are similar to those measured in the solar wind (Ko
et al. 1999). Figure 19 (right) shows event-averaged values for QFe in three energy
ranges between 0.18 and 65 MeV/nucleon in several large SEP events. The figure
shows that the largest variations and differences in these three SEP events are observed
above ∼10 MeV/nucleon, with QFe ∼15–20 (e.g., Leske et al. 1995; Labrador et al.
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2005; Oetliker et al. 1997). These results challenged the previously held notion that
Fe charge states are related only to an equilibrium plasma temperature reflecting that
of the ambient solar corona.

Barghouty and Mewaldt (1999) developed a model in which the energy-dependence
of QFe in large SEP events occurs when charge-changing processes associated with
ionization–recombination and energy-changing processes due to shock acceleration
have similar timescales. This dynamic interplay results in an equilibrium that reflects an
accelerated seed population with its own characteristic temperature and non-thermal
energy spectrum. In contrast, when these two processes operate on vastly different
timescales, QFe is largely energy-independent and reflects both the pre-accelerated and
accelerated populations. In contrast, Reames et al. (1999) developed a model in which
large energy-dependent variations of Si and Fe charge states in the November 6, 1997
event occur primarily due to electron stripping in moderately dense coronal plasma
during shock acceleration. We note that, even though the Tylka and Lee (2006) model
was developed to explain the large heavy ion compositional variations and spectral
features, it also predicts an energy-dependent increase in the mean ionic charge for
quasi-perpendicular shocks that inject flare suprathermals. As noted above, this model
is able to account for large SEP observations above ∼10 MeV/nucleon but not below
∼1 MeV/nucleon. Alternatively, in the Cane et al. (2003, 2006) scenario, a direct
flare component with high Fe charge states and high Fe/O ratios dominates above
∼10s MeV/nucleon, while the CME shock-accelerated component with coronal-like
QFe and Fe/O values dominates at lower energies.

To summarize, recent measurements of the energy dependence of ionic charge states
in large SEP events have yielded important clues about: (1) conditions and locations
of particle acceleration, (2) source populations, and (3) physical processes contribut-
ing to the charge-stripping processes. For instance, shock acceleration of a coronal
seed population and electron impact ionization starting in the lower corona at ∼1.5–
2 RS can account for a large increase in QFe with increasing energy between ∼0.1 and
1 MeV/nucleon (Kocharov 2006), i.e., at much lower energies than previously thought.
In contrast, large SEP events with nearly constant QFe below ∼1 MeV/nucleon accom-
panied by a large increase in QFe above ∼10s of MeV/nucleon and an enhancement in
the Fe/O ratio point to contributions from both a coronal source and a highly ionized,
heavy ion-enriched flare population.

Finally, as noted by Tylka et al. (2013), observations of highly charged Fe accom-
panying Fe/O abundance enhancements during the initial phases of large SEPs may
provide evidence of direct flare contributions, because at ∼MeV/nucleon energies
the flare-accelerated Fe and O ions are nearly fully ionized, therefore Fe ions do not
have significantly different M/Q ratios compared with O ions. In such cases, rigidity-
transport related effects (see Sect. 2.8) cannot cause large enhancements in the Fe/O
ratio. However, even in such situations, the flare-accelerated, highly charged Fe ions
could be subsequently energized by the CME-shock (see Tylka and Lee 2006). The
lack of instruments with sufficient sensitivity and geometric factor for measuring
charge states in the ∼MeV/nucleon energy range during SEP event onsets, when the
count rates are low, continues to fuel the ongoing controversy, i.e., do flares contribute
directly to large SEP events above ∼10s MeV/nucleon or do they contribute to the
seed population for further acceleration by the CME-driven shock.
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2.7 Scattering during acceleration

Following Zank et al. (2000), Cohen et al. (2005b) reported that the position of the
breaks in the heavy ion spectra and the resulting energy-dependent behavior in the Fe/O
ratio during the October–November 2003 SEP events can be understood in terms of
leakage from the shock region, if the mean free path λ‖ is proportional to a power-law
with index α in ion rigidity (i.e., λ‖ ∝ (Mv/Q)α , where v is the ion speed, and M
and Q are the mass and charge in units of proton mass, m p, and electronic charge,
e, respectively.) Specifically, Cohen et al. (2005b) noted that the breaks in the energy
spectra for different species should occur at the same value of the diffusion coefficient,
κ , and used this to calculate a single value for α that allowed a scaling in kinetic energy
per nucleon between an element ‘X’ relative to O as:

EX

EO
=

[
(Q/M)X

(Q/M)O

]2α/(α+1)

. (1)

The value of α was selected so that the abundance ratios between ∼0.3 and
30 MeV/nucleon were relatively constant.

An example of this energy scaling technique is shown in Fig. 20 for the October 26,
2003, event where α = 1. Thus, the spectral behavior of Fe and O in the October 26,
2003, SEP event is better organized in terms of ion rigidity, as predicted by shock
acceleration theory (see Zank et al. 2000). Cohen et al. (2005b) used this technique
to infer the Q/M-dependence of the scattering mean free path in the vicinity of the
shock where the ions were accelerated and suggested that such rigidity dependence is
consistent with a source of enhanced wave turbulence near the shock.

Fig. 20 Left Event-integrated fluences of O, Ne, Mg, Si, S, Ca, and Fe plotted versus energy during the
large SEP event on October 26, 2003. All the spectra except O and Mg have been scaled to better compare
the spectral shapes. The solid lines are the oxygen spectra scaled appropriately in energy (see text). Right
Abundance ratios relative to oxygen, calculated from the spectra shown on the left, plotted versus scaled
energy. Image reproduced with permission from Cohen et al. (2005b), copyright by AGU
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2.8 Interplanetary scattering

Tylka et al. (1999) and Ng et al. (1999) modeled the energy spectra and systematic
temporal evolution of the elemental abundances of ∼5–10 MeV/nucleon He, C, O,
Ne, Si and Fe ions in two large SEP events (e.g., Fig. 21) in terms of rigidity-dependent
scattering by Alfvén waves generated by streaming energetic protons accelerated at
CME-driven shocks. These studies showed that, when compared at the same kinetic
energy-per-nucleon, elemental abundances such as Si/O and Fe/O exhibited strong
enhancements during SEP event onsets because Si and Fe have higher M/Q (i.e.,
higher rigidity) values when compared with O, which allows them to escape from the
scattering region near the shock more easily and to be observed earlier than O at a
distant s/c. As the CME shock expands and propagates out into the heliosphere, its
ability to accelerate particles and create waves declines, thereby causing a reduction in
the Si/O and Fe/O ratios with time. Evidence for self-generated Alfvén waves comes
from the opposite evolution of the ∼2–10 MeV/nucleon He/H ratios, as seen in Fig. 21.
Note that, although the relative M/Q values of Fe and O are similar to those of He
and H, the He/H ratios at all energies drop at the start of the event, indicating that
the scattering is due to a dynamic wave spectrum generated by streaming energetic
protons rather than a background Kolmogorov-like wave spectrum (Ng et al. 1999).

Fig. 21 One-hour averaged elemental composition normalized to coronal values (Reames 1995a) measured
by Wind/EPACT/LEMT during the April 20, 1998 SEP event. Image reproduced with permission from Tylka
et al. (1999), copyright by AGU
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Fig. 22 a Fe and O intensity-time profiles during the November 4, 2001, (DOY 308) large SEP event at
∼35 MeV/nucleon. b Time-intensity profiles for the event in (a), with O at ∼twice the kinetic energy of
Fe (adapted from Mason et al. 2006, 2012)

Mason et al. (2006) pointed out that the dramatic variations in the Fe/O ratio at all
energies between ∼0.1 and 60 MeV/nucleon vanish in >70 % of the prompt western
hemisphere SEP events if the Fe intensities are compared to O intensities at ∼ twice the
Fe kinetic energy-per-nucleon. An example of such a comparison for the November 4,
2001, central meridian SEP event is shown in Fig. 22. Note that the O intensity com-
pared at twice the Fe energy results in nearly indistinguishable time histories. Mason
et al. (2006) attributed this behavior to rigidity-dependent scattering of particles as
they propagate through the corona and the interplanetary medium.

Figure 23 illustrates the temporal behavior of Fe and O ions in different types
of SEP events. Figure 23a–c shows particle arrival spectrograms of 6–80 AMU ions
plotting 1/ion speed versus time, which, for pure velocity dispersion propagation along
a typical 1.2 AU interplanetary field line from the Sun, produces arrival times along
the red diagonal lines in the panels. The spectrogram color scales peak at red for the
most intense periods, with separate scales for each plot. Figure 23d–f shows hourly
averaged O and Fe intensities at ∼386 keV/nucleon. Figure 23a, d shows a narrow
pulse of heavy ions with arrival times consistent with pure velocity dispersion from
the Sun along a 1.2 AU nominal field line with release at the time of the associated
X-ray flare (Kahler 2001). Events of this type are the so-called impulsive SEPs, and
have enrichments of 3He and heavy ions (Mason et al. 2002). In such events, Fe and
O ions with the same kinetic energy-per-nucleon or speed arrived simultaneously, as
can be seen from Fig. 23d where the two profiles overlap at the same energy/nucleon
(Mason et al. 2004).

Figure 23b, c, e and f shows examples of two CME-shock associated events. Fig-
ure 23b, c shows that low-energy heavy ions arrive much later than that expected from
the diagonal line. Both velocity dispersion events in Fig. 23a, b are remotely acceler-
ated near the Sun. Figure 23e shows that, during the rise phase, the 386 keV/nucleon
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Fig. 23 Columns show low energy ion data for three SEP events observed on: a May 1 (DOY 122), 2000;
b April 21 (DOY 105), 2001; and c January 20 (DOY 20), 2005. a–c Spectrograms for 6–80 AMU ion
arrivals plotted as 1/v versus time; red diagonal lines show arrival pattern for pure velocity dispersion along
a 1.2 AU IMF line for particles injected at the time of the associated X-ray flare; red dashed vertical lines
marked S show times of shock passage. d–f 386 keV/nucleon O and Fe intensity profiles during the events.
g–i Fe intensities at 386 keV/nucleon from the (d), (e), and (f) compared with O at 773 keV/ nucleon in
(g) and (i) and at 546 keV/nucleon in (h). Image reproduced with permission from Mason et al. (2012),
copyright by AAS

Fe ions arrived several hours earlier than O, therefore the Fe/O ratio decreased later on
day 107. Figure 23h shows that Fe and O intensities nearly match (yielding constant
Fe/O ratios) when the Fe intensity is compared with that of O at ∼1.4 times the Fe
energy (O intensity is renormalized by ∼2.2).

Finally, Fig. 23c, f, i shows a third type of behavior. The spectrogram for this
event shows that at low-energies, there is no evidence of an SEP event onset and that
instead, there is a dispersionless arrival of locally accelerated ESPs coincident with
the CME-driven IP shock (dotted red line, marked S) on day 21, 2005. Note that
ACE/SIS did observe a rapid increase in the high energy (>10 MeV/nucleon) particle
intensities (Mewaldt et al. 2005c; Reames 2009a) during this period. In contrast, the
<1 MeV/nucleon ions show no initial increase; the intensities increased gradually
and peaked when the CME shock passed 1 AU at ∼16:45 on day 21. Figure 23f also
shows that the Fe/O ratio decreased during the shock-associated period. Figure 23i
shows that if the Fe intensity is compared to the O intensity at twice the kinetic energy-
per-nucleon, the differences in the O and Fe profiles are markedly reduced, although
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there is still a decrease in Fe/O close to the shock passage (the O intensity has been
renormalized by a factor of 0.5).

Thus, the energy scaling technique used by Cohen et al. (2005b) can flatten the
energy-dependent behavior of the event-integrated Fe/O and also diminish the dramatic
time variations in the Fe/O ratio during some SEP events. To explore the physical
process involved, Mason et al. (2012) modeled the rise phases in 17 large SEP events
and showed that the temporal evolution of Fe/O can be reasonably fitted by a state-
of-the-art model where the differences in the transport of Fe versus O are due to the
slope of the turbulence spectrum of the IMF. In summary, comparisons between SEP
observations and modeling results are consistent with the notion that, at 1 AU, SEP
composition, spectra, and temporal variations are heavily influenced by scattering and
diffusion during acceleration and transport from the Sun through the corona and the
interplanetary medium (e.g., Tylka et al. 1999; Ng et al. 1999; Mason et al. 2006;
Tylka et al. 2013).

2.9 Streaming limits

Proton intensities near ∼few MeV/nucleon exhibit energy-dependent upper bounds
or plateaus regardless of the solar longitudes of the progenitor CMEs (Reames 1990).
This effect has been predicted and modeled by theoretical studies and self-consistent
numerical calculations of wave generation or amplification by shock-accelerated pro-
tons escaping or streaming away from the near-Sun CME shock (e.g., Lee 1983, 2005;
Ng et al. 2003, 2012). The idea here is that particles accelerated later are scattered
and trapped near the shock by the Alfvén waves generated by the high-energy protons
accelerated earlier. This trapping and scattering causes the lower-energy particle inten-
sities at 1 AU, or at other locations well away from the acceleration site, to increase
more slowly until they are throttled and reach the so-called streaming limit. Examples
of this near-equilibrium effect on the particle energy spectra are shown in Fig. 24. Here,
high intensities of streaming ∼10 MeV protons produce waves that scatter both the
∼1 MeV protons and the lower energy O ions and suppress their intensities, causing
the spectra to turn over during the October 2003 SEP event. In contrast, the >2 orders
of magnitude lower ∼10 MeV proton intensities during the May 1998 SEP event do
not generate wave growth (Reames and Ng 2010), and the spectra continue as power
laws down to lower energies.

While establishing streaming limits could serve as a practical means to model and
predict the worst-case proton fluxes and hence the associated radiation hazard during
a given SEP event, the situation is far more complex because of the non-linearity
of wave-particle interactions, interplay between the intensities at different energies,
trapping of particles near the shock, and magnetic connection between the near-Sun
CME shock and the observer. Indeed, the trapping of ∼10 MeV protons near the CME
shock, as well as mirroring by plasma structures beyond 1 AU, are invoked to account
for cases where the proton intensities exceed the equilibrium-case streaming limits in
some SEP events; but this scenario does not appear to account for all cases where the
proton intensities are greater than the theoretical streaming limits (e.g., Lario et al.
2008, 2009).
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Fig. 24 Left Turn-overs in the energy spectra of H and O in 5 large GLEs. Right Proton spectra in 2 GLEs
with large differences in proton intensities at ∼10 MeV. Image reproduced with permission from Reames
and Ng (2010), copyright by AAS

2.10 Electron observations in large gradual SEP events

Though discovered in the 1960s, the origin of and link between energetic solar electron
events and large gradual SEP ion events have been somewhat elusive. Lin (1970, 1974)
classified solar flare events in terms of the associated emission of non-relativistic
(energy <100 keV) electrons observed at 1 AU into three groups: (1) small flares with
no particle or electromagnetic emission; (2) small flares with low energy electrons
accompanied by type III and microwave radio bursts and hard X-ray bursts; and (3)
large flares associated with relativistic proton and electron generation, type II and IV
radio bursts, and intense microwave and X-ray emission. Simnett (1974) pointed out
that, compared with the scatter-free transit time of ∼10 min along the Archimedean
spiral IMF of length 1.2 AU, the maximum of the Hα flare and the arrival of the first
relativistic electrons (energy>1 MeV) at 1 AU was typically delayed by around 30 min.

These earlier results were confirmed by studies of Krucker and Lin (2000a, b)
and Simnett et al. (2002). In addition, these studies clarified the relationship between
SEP ion and electron events. Specifically, it is now widely accepted that the Lin (1970)
class (2) events are associated with impulsive or 3He-rich SEP events and are therefore
most likely produced during the solar flare. In contrast, the larger, delayed electron
events are associated with the escape or release of electrons due to the presence,
propagation, and acceleration at CME-driven shocks, which are also responsible for
accelerating the large gradual SEP ion events (Reames 1988b, 2013; Reames and
Stone 1986; Reames et al. 1985, 1990; Simnett et al. 2002). Studies by Klein and
Posner (2005) and Posner (2007) emphasize the use of early onsets and intensities of
relativistic electrons to forecast the intensity of the associated SEP proton events.
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Further support for the existence of two distinct types of electron-associated SEP
events is provided by the study of Cliver and Ling (2007) who found that the peak
intensities of ∼1 MeV electrons and ∼10 MeV protons in SEP events could be grouped
into two distinct populations—one associated with the 3He-rich and heavy nuclei-rich,
smaller impulsive SEP events, and the other with the larger, proton-rich gradual SEP
events. Applying this two-class distinction for the SEP electron events may also shed
some light on the puzzling multi-spacecraft and broad longitudinal distribution (see
Fig. 68) reported by Wibberenz and Cane (2006). These observations are discussed in
more detail in Sect. 8.

2.11 New insights using energetic neutral atoms

In association with an X9 flare on December 5, 2006, at E79, i.e., when Earth and the
recently launched twin STEREO s/c were magnetically poorly connected to the Sun,
the earliest >30 MeV protons arrived at the two s/c at ∼1445 UT (see Fig. 25). How-
ever, both of the low-energy-telescopes (LET) on board STEREO A and B detected
a lower energy signal of ∼2–12 MeV “protons” from ∼1130–1350 UT that arrived
within ±10◦ of the Sun-s/c line. Since it is impossible for ∼2–12 protons to travel
from the Sun and arrive at Earth-orbit (i.e., distance of at least ∼1 AU) within the first
hour of the corresponding solar event (flare or CME shock), Mewaldt et al. (2009)
concluded that this precursor signal must have consisted of energetic neutral atoms
(ENAs) of hydrogen that were most likely produced by CME-shock-accelerated pro-
tons as the shock moved from ∼2 to 20 RS . This model (simulations in blue in Fig. 25b)
can explain both the ENA fluence and emission time profile from the Sun. Note that
the ENA emission profile is also consistent with the GOES 1–8 Å X-ray time pro-
file, raising the possibility that the ENAs could also have been created by charge

Fig. 25 Left Measured angle with respect to the Sun-s/c line for individual 1.6–12 MeV protons observed on
December 5, 2006 by the low energy telescopes (LET) on STEREO. Red = STEREO A and blue = STEREO
B. A small group of events arrived from within ±10◦ of the Sun-s/c line between ∼1130 UT to ∼1350 UT,
i.e., well before the SEP onset at ∼1445 UT. The range of magnetic field orientations connecting to the Sun
between 1130 and 1350 UT is shown as a bar. Right Comparison between the timing of associated solar
events and ENA arrival at STEREO (adapted from Mewaldt et al. 2009)
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exchange of flare-accelerated particles. However, based on estimates of the number
of flare-accelerated protons from RHESSI γ -ray observations, the flare-origin sce-
nario requires that a significant fraction of these protons escape into the high corona,
because otherwise the ENAs would have been stripped before leaving the Sun and
would therefore have arrived much later with the SEP protons.

Thus, ENA imaging may provide a new tool to map SEP intensity distributions
versus time and radius, and to compare with CME and radio data to enable more
accurate “nowcasts” of near-Sun SEP intensities. Note that, for a typical SEP event,
the flux of the initial higher energy SEPs would overwhelm the relatively smaller,
lower energy ENA signal. Fortuitously, in the December 2006 event, the SEP event
generated a detectable ENA signal event because the solar progenitor occurred near
the east limb, which resulted in longer delays for the SEP onset. Future ENA detectors
will need to develop techniques that can discriminate ENAs from SEPs to pursue this
exciting research area.

3 Energetic storm particle events

Transient IP shocks at ∼1 AU are occasionally accompanied by enhancements in
the intensities of energetic ions above ∼0.05 MeV/nucleon (e.g., Scholer et al. 1983;
Armstrong et al. 1985; Kennel et al. 1986; Reames 1999). It is well established that the
majority of such IP shocks are driven by fast CMEs as they propagate through inter-
planetary space (see Gosling 1993), and the accompanying particle enhancements,
historically known as ESP events because of their association with “Sudden Storm
Commencements,” are energized via the DSA processes (e.g., Lee 1983; Reames
1999). Simultaneous in-situ measurements of the magnetic field and solar wind prop-
erties that can characterize IP shock properties, and their direct comparison with
properties of the associated ESP events, yield crucial information about the source
populations and the underlying acceleration mechanisms. This is primarily because
the effects of transport through the interplanetary medium from remote acceleration
sites near the Sun and in the inner heliosphere (e.g., flares and CME shocks) during
ESP events are essentially negligible. This section presents some of the recent ESP
observations that have significantly advanced our understanding of the physics of the
source, injection, and DSA acceleration mechanisms at IP shocks.

3.1 Temporal profiles

Figure 26 (taken from Lario et al. 2003) shows six different categories of time histories
of 47–68 keV and 1.9–4.8 MeV ions, and 38–53 keV electrons associated with IP
shocks observed by the ACE/Electron, Proton, and Alpha Monitor (EPAM) at the L1
Langrangian point. These are: (1) Type 0: No obvious intensity variation above the
pre-existing intensity level; (2) Type 1: Slow rise of the particle intensity beginning
several hours before the shock (Classic ESP event); (3) Type 2: Intensity spike of a few
(∼10) minutes duration at or near the shock (Spike); (4) Type 3: A classic ESP event
with a spike at or near the shock superimposed on it (ESP + spike); (5) Type 4: Step-
like post-shock increase (Step-like); and (6) Type 5: Irregular time-intensity profile
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Fig. 26 Examples of the variety of time-intensity profiles of ∼47–68 keV and ∼1.9–4.8 MeV ions and ∼38–
53 keV electrons observed in IP shock-associated ESP events at ACE. Image reproduced with permission
from Lario et al. (2003), copyright by AIP

with flux variations not coincident with the shock passage and not fitting into the types
described above (Irregular).

Lario et al. (2003) classified the time-intensity profiles associated with over 150
IP shock events into one of the six categories described above, as shown in Fig. 27.
The category “classic ESP” refers to the prediction of DSA of an exponential rise
to the shock, followed by a nearly constant downstream intensity. The most striking
feature of this figure is that the most common of the categories is that there was no
change in the energetic particle intensity. The Lario et al. (2003) study showed that
approximately 40 % of the IP shocks observed near Earth orbit were not accompanied
by ion intensity enhancements above ∼50 keV energy, and that the observed com-
plexity must be taken into account while comparing or testing particle observations
with locally measured shock parameters. Schwadron et al. (1996) performed a similar
study of interstellar pickup ions associated with corotating interaction regions (CIRs),
and arrived at a similar conclusion. Similarly, Reames (2012) found that only 39 of the
258 IP shocks observed at Wind were associated with ∼10 MeV/nucleon He inten-
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Fig. 27 A histogram of the classification of time-intensity profiles of energetic protons and electrons
associated with 168 interplanetary shocks observed by ACE from 1997–2001. Image reproduced with
permission from Lario et al. (2003), copyright by AIP

Fig. 28 Left Distribution of IP shocks with measurable intensities of >1 MeV/nucleon4He ions versus
shock speed (green) within the total distribution of 258 shock waves versus shock speed (yellow and green)
observed by Wind. Right Scatter-plot of the background-corrected peak intensity of ∼1.6–2.0 MeV/nucleon
4He nuclei versus shock speed. Image reproduced with permission from Reames (2013), copyright by
Springer

sity increases (see Fig. 28) and, similarly, Cohen et al. (2005a) found that only 57 of
354 shocks at ACE were associated with ∼10 MeV proton intensity increases. Thus, it
appears that the association between ESP events and IP shocks decreases substantially
with increasing energy.

Giacalone (2012) analyzed ∼50 keV proton intensities and energy spectra at 19 IP
shocks with Alfvén Mach numbers >3 and plasma density jump >2.5; they found
that 18 of these strong IP shocks were also associated with intensity enhancements of
ions with energies between ∼50 and 300 keV. The time-intensity profiles in these 18
events were quite similar to the predictions of DSA theory (i.e., would fall into the
“Classic ESP” category of Fig. 27). One way to understand these results is that the
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Fig. 29 Hourly averages of a ∼0.16–0.23 and ∼0.91–1.28 MeV/nucleon C, O, and Fe intensities; b C/O
ratios; and c Fe/O ratios from June 22–29, 1999, measured by ACE/ULEIS. The IP shock is identified using
5 min averages of d the magnetic field magnitude B, and e the SW speed V . Blue vertical lines marked S1
and S2 denote the IP shock arrival times at ACE. Dashed black vertical lines represent the time interval
for measuring shock-associated energetic ions. Solid black vertical lines represent the time interval for
measuring ambient energetic ions in the interplanetary medium. Image reproduced with permission from
Desai et al. (2004), copyright by AAS

much larger IP shock-event list studied by Lario et al. (2003), contains many weak
shocks that are perhaps not capable of accelerating particles locally. Thus, the fraction
of shocks that have concomitant energetic particle enhancements is likely related to
the strength of the shock, to the general issue of the seed particles on which the shock
acceleration mechanisms operate (Desai et al. 2006a), and to the effects of turbulence
(e.g., Neugebauer et al. 2006; Giacalone and Neugebauer 2008).

Figure 29 shows the temporal behavior of heavy ions C, O, and Fe at two different
energies during an IP shock event observed at ACE. Contrasting the behavior of the
C/O ratio with that of the Fe/O ratio at the two energies near shock passage: the
C/O ratio at both energies remains essentially constant, while the Fe/O ratio at both
energies shows dramatic decreases that coincide with the increases in intensities at
corresponding energies. Further, the Fe/O ratio at ∼1 MeV/nucleon decreases even
more when compared with the corresponding decrease at ∼0.2 MeV/nucleon. The
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decrease in the Fe/O ratio is typical for strong IP shocks and is observed at all energies
up to ∼100 MeV/nucleon (e.g., Desai et al. 2004).

3.2 ESP properties, CME and IP shock properties

Reames (2012) investigated the influence of various shock parameters on the proper-
ties of accelerated particle populations. Figure 28 (left panel) shows a histogram of the
shock speed distribution for all IP shocks (yellow) observed by Wind and for the sub-
set (green) that showed measurable signatures of particle acceleration, i.e., intensity
increases in the ∼1–10 MeV/nucleon He ions. This survey found that the strongest
particle acceleration effects occurred for IP shocks with high shock speed, high shock
compression ratio, and highly oblique shock-normal angles (θBn), in decreasing order
of importance. Specifically, Reames (2012) also found that quasi-perpendicular IP
shocks with θBn>60◦ were more likely than quasi-parallel shocks with θBn<30◦ to
be associated with larger effects of particle acceleration. This is consistent with predic-
tions from one application of DSA theory—that highly oblique shocks have a higher
acceleration rate compared to shocks that move nearly along the field (e.g., Jokipii
1987; Giacalone 2005a). However, this result is at odds with other DSA theoretical
models and numerical calculations by Lee (2005) and Zank et al. (2006), which pre-
dict that protons accelerated by quasi-parallel shocks stream away from the shock and
generate self-excited Alfvén waves, which makes such shocks highly efficient at trap-
ping and accelerating particles. The dependence of the particle intensity on the shock
speed also follows naturally from DSA theory and is discussed further in Sect. 7.2.3.

Figure 28 (right panel) shows that the pre-event, background-subtracted ∼1.6–
2.0 MeV/nucleon peak 4He intensity correlates with the IP shock speed, with a
correlation coefficient of ∼0.8. Although this correlation is statistically significant,
the nearly two orders of magnitude in peak intensity variations over a limited range
(∼500–1000 km/s) of shock speeds pose significant constraints on theories and mod-
els used to explain and predict ESP properties at Earth-orbit.

3.3 Spectral properties of ESP events

Figure 30 shows the C, O, and Fe spectra (left panels) and the energy-dependence of
C/O and Fe/O ratio during three ESP and IP shock events from solar cycle 23; top
panels shows the spectra and ratios for the June 26, 1999 event shown in Fig. 29 (taken
from Desai et al. 2004). Out of 33 ESP events that extended to ∼2 MeV/nucleon, the
Fe/O ratio decreased with increasing energy in 19 events, remained constant in 12
events, and increased with energy in two events.

The spectra in the left-hand panels are fitted by the expression J = CE−γ

exp(−E/E0), where J is the differential intensity, E is the particle energy in
MeV/nucleon, γ is the spectral index, and E0 is the e-folding energy (Jones and
Ellison 1991). The values of E0 for C, O, and Fe during the June 26, 1999 event (top
panels) are ∼0.79 ± 0.06,∼1.0 ± 0.12, and ∼0.48 ± 0.03; i.e., the value of E0
for Fe is lower by about a factor of 2 than those for C and O, leading to the dramatic
decrease in the Fe/O ratio with increasing energy seen in Fig. 30d. The values of the
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Fig. 30 Left Energy spectra of C, O, and Fe during three ESP events. The solid curves show fits with the
Jones and Ellison expression, where the differential intensity is given by J = CE−γ exp(−E/E0). Right
C/O and Fe/O ratios versus energy for the three IP shock events. Image reproduced with permission from
Desai et al. (2004), copyright by AAS

spectral indices and E0 for the event shown in Fig. 30b, e are similar for all three
species, while the heavy ion energy spectra for the event shown in Fig. 30c, f can be
fitted by pure power laws.

Desai et al. (2004) interpreted the behavior seen in Fig. 30a, d as evidence of an
M/Q-dependent acceleration mechanism where ions with larger M/Q ratios like Fe
are accelerated less efficiently than those with lower M/Q ratios like C and O. IP
shock events that extended above ∼10 MeV/nucleon also exhibited Fe/O ratios that
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Fig. 31 Left Heavy ion energy spectra from ACE and GOES following an IP shock on October 29, 2003, are
fitted with the Ellison and Ramaty (1985) spectral form for differential intensity, J = CE−γ exp(−E/E0).
All elements are fitted with power-laws of the same spectral index: γ = 1.3 (Mewaldt et al. 2005c). Spectra
of different elements are scaled for clarity. Right Values of the e-folding energies E0 versus the ion’s Q/M
ratio. Fits to the values of E0 for Z ≥ 2 give a (Q/M)1.75 dependence, which is somewhat weaker than that
predicted by Li and Zank (2005)

decreased with increasing energy (Desai et al. 2004). The behavior seen in the other
two events was interpreted in terms of re-acceleration of pre-existing seed populations
that exhibit similar spectral properties, e.g., the increase in Fe/O with increasing energy
seen in Fig. 30c, f is attributed to a suprathermal-through-energetic ion seed population
that also has an increasing Fe/O ratio with increasing energy.

Mewaldt et al. (2005a, c) fitted the energy spectra of many heavy ion species during
the October 29, 2003 IP shock event with a constant spectral index γ = 1.3 and
explored the M/Q-dependence of the roll-over or break energy E0, as shown in Fig. 31.
Mewaldt et al. (2005c) suggested that this behavior can be explained if the heavy-ion
spectra roll over at the same value of the diffusion coefficient (see also Tylka et al. 2000;
Cohen et al. 2005b). In this case, if the diffusion coefficients of different ion species
depend on particle rigidity or M/Q, then Fe, with its higher M/Q ratio or rigidity, will
roll-over at lower energy/nucleon. The observed Q/M-dependence of the e-folding
energies scales as (Q/M)s , with s ≈ 1.75, which is close to the value of s ≈ 2,
as predicted by Li and Zank (2005) for quasi-parallel shocks. Li et al. (2009) later
developed a more general model for the Q/M-dependence for shocks with different
θBn and showed that s could range from ≈ 0.2 for quasi-perpendicular shocks to ≈ 2
for quasi-parallel shocks.

Early theoretical studies based on DSA theory (e.g., Lee 1983) successfully pre-
dicted many features of ESP events associated with some IP shocks near 1 AU (e.g.,
Kennel et al. 1986). However, such detailed agreements between theory and observa-
tions are extremely rare (see also Lario et al. 2005). In contrast, studies involving a
large number of IP shocks have shown that the predicted spectral indices for energetic
protons and heavy ions near ∼100 keV/nucleon are significantly different from the
observations (van Nes et al. 1984; Desai et al. 2004). Giacalone (2012) showed that a
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Fig. 32 Left Shock compression ratio versus spectral index γ of ∼30–50 keV energy ions in 50 ESP events
(adapted from van Nes et al. 1984). The symbols denote ESP events with four different types of time-
intensity profiles (see text for details). Right Scatter plot of the 0.1–0.5 MeV/nucleon O spectral indices
versus (M + 2)/(2M − 2) for 60 ESP events; here M is the magnetic compression ratio (adapted from
Desai et al. 2004). The solid curve represents γ = (M + 2)/(2M − 2), as expected from diffusive shock
acceleration theory; the dashed curves arise from ±25 % uncertainty in the compression ratio (left) and M
(right). N is the number of events, r is the correlation coefficient, and p is the probability that the value of
the correlation coefficient can be exceeded by a pair of uncorrelated parameters

better agreement between theory and observations is obtained when considering only
strong shocks, but the uncertainties are still significant.

Desai et al. (2004) studied the energy spectra of ∼0.1–100 MeV/nucleon heavy
ions during 72 CME-driven IP shock events surveyed by Desai et al. (2003). They
found that the power-law spectral indices for 0.1–0.5 MeV/nucleon O ions were poorly
correlated with the values predicted by simple one-dimensional steady-state models,
as shown in Fig. 32. Likewise, poor agreement between the theoretical predictions
and the low-energy (≤0.5 MeV) proton spectral indices were also found earlier by van
Nes et al. (1984), and more recently by Ho et al. (2009). Desai et al. (2004) also found
that the characteristic e-folding or roll-over energy of the O spectra at IP shocks was
uncorrelated with shock parameters such as shock normal angle or shock speed.

In contrast, Fig. 33 shows that the O spectral index in IP shocks is well correlated
with the corresponding quantities measured in the ambient population. Such strong
correspondence between the accelerated ions and the ambient suprathermal ions is not
predicted by simple DSA theory. We remark that Fig. 2 of Reames (2012) shows similar
results for ∼1–10 MeV/nucleon He intensities observed at 39 IP shocks. Specifically,
Reames (2012) showed that the observed spectral indices are poorly correlated with
those expected from DSA theory, in which particles are injected out of a fixed low-
energy thermal seed population. In contrast, these indices are well correlated with
the upstream or background spectral index. Based on theoretical considerations of
re-accelerating a power-law seed spectrum at shocks (e.g., Axford 1982; Melrose and
Pope 1993; Lee 2008), Reames (2013) discussed and emphasized the importance of
how a harder background or seed population spectrum is observed or preserved at
weaker shocks for which the shock compression ratios should yield steeper spectra.
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Fig. 33 O spectral index at IP
shocks versus that for the
ambient suprathermals. Image
reproduced with permission
from Desai et al. (2004),
copyright by AAS

These models also predict that the power-law indices at stronger shocks reflect the
shock compression ratios (also see Channok et al. 2005).

3.4 3He and He+ ions in IP shocks

Like SEPs, the origin of the source populations of ESPs also remains an unsolved
problem. Some researchers have proposed that ESP protons result from the acceler-
ation of thermal solar wind (e.g., Lee 1983; Baring et al. 1997), while others point
out that the suprathermal tail of the solar wind may be the source (e.g., Gosling et al.
1981; Tsurutani and Lin 1985; Tan et al. 1989). Tsurutani and Lin (1985) and Tan
et al. (1989) suggest that the concomitant solar flares might provide the suprathermal
seed particles accelerated at the IP shocks.

Since these earlier studies, instruments with greater sensitivity and resolution on
board ACE (Stone et al. 1998) have provided major observational advances in terms
of measuring the solar wind ion composition and its variations (e.g., von Steiger et al.
2000) and comparing them with the energy-dependence and event-to-event variability
of the ionic charge state, and elemental and isotopic composition in ESP and SEP
events over a broad energy range (e.g., Oetliker et al. 1997; Mazur et al. 1999; Möbius
et al. 1999; Cohen et al. 2005b; Desai et al. 2006a; Klecker et al. 2007). These new
observations have made it possible to re-examine questions about the origin of the
seed populations and probe details of the acceleration mechanisms in individual ESP
events. In the remainder of this section, we discuss key observations that have spawned
a re-evaluation of the origin of the seed populations, and of the role of self-excited
waves during ESP events.

Using measurements from ACE/ULEIS (Mason et al. 1998), Desai et al. (2001)
surveyed 48 IP shocks between October 1997 and November 2000. The results showed
upper limits of 3He in 23 events, while the remaining 25 events had substantial
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Fig. 34 The
∼0.5–2.0 MeV/nucleon mass
histograms during four
3He-enriched IP shock events at
ACE. Image reproduced with
permission from Desai et al.
(2001), copyright by AAS

enhancements in 3He abundance that ranged between factors of ∼2–600 times the
corresponding solar wind value. Figure 34 shows the 0.5–2.0 MeV/nucleon He mass
histograms in four events where the 3He/4He ratio was a hundred times greater than
that measured in the solar wind. Such 3He enrichments are routinely present during the
smaller flare-related events that are more frequent during periods of high solar activity.
These solar flares populate and replenish the interplanetary medium with suprather-
mal 3He-rich material, which subsequently gets re-accelerated by the CME-driven IP
shocks whenever they encounter it en route to Earth (Mason et al. 1999). ACE results
also showed a good correspondence between the occurrence frequency of 3He-rich IP
shocks and the fraction of time that suprathermal 3He is present at 1 AU (Wiedenbeck
et al. 2003), which provides further support for a suprathermal origin for the seed
population.

Similarly, He+ ions act as tracers of the interstellar neutral gas that flows unim-
peded into the inner solar system (Möbius et al. 1985). Neutral He gets ionized inside
1 AU and is subsequently picked up by the out-flowing solar wind (Gloeckler et al.
1993). Near 1 AU, these ions are present in the suprathermal tail with relative abun-
dances of more than 103 times the corresponding solar wind value. Figure 35 shows
the He+/He2+ ratio at ∼0.5 MeV/nucleon during a CME-driven IP shock event (from
Allegrini et al. 2008). The He ionic charge state histogram is obtained by the Solar
Energetic Particle Ionic Composition Analyzer (SEPICA: Möbius et al. 1998), and
shows a clear enhancement in the He+ abundance, well above that measured in
the solar wind. Kucharek et al. (2003) also compared the time histories of ∼0.2–
0.8 MeV/nucleonHe+/He2+ ratios measured in several IP-shock events with those
measured in the thermal SW surrounding the event. The SW He+/He2+ is obtained
by the Solar Wind Electron Proton and Alpha Monitor (SWEPAM: McComas et al.
1998) on board ACE. Kucharek et al. found that large enhancements in the energetic
He+ abundance at two IP shocks did not coincide with the ones observed earlier in the
thermal plasma. Conversely, Kucharek et al. studied the case of one “cloud” in which
thermal He+ ions were relatively more abundant, but the IP shock that followed it did
not appear to accelerate as many He+ ions as the two IP shocks discussed above.
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Fig. 35 a Hourly averaged intensity profiles of ∼0.25–0.8 MeV/nucleon 3He, 4He, O, and Fe (solid lines)
measured by ACE/ULEIS and the He+/He2+ ratio (filled circles) measured by ACE/SEPICA during an IP
shock event. The yellow-shaded region identifies the ambient interval, the purple-shaded region shows the
time interval for sampling the shock-associated energetic particles, the brown line denotes the shock arrival
time at ACE, and arrows at the top indicate the estimated and actual CME lift-off times near the Sun. b He
mass histogram from ULEIS, and c He charge state histogram from SEPICA showing well-resolved He2+
and He+ peaks during the ESP event (adapted from Allegrini et al. 2008)

The presence of energetic 3He and He+, which are very rare in the solar wind,
suggests that these species were accelerated from a population of pre-existing
suprathermal ions, rather than from the bulk solar wind. Near ∼ twice the bulk SW
speed region, pickup ion distributions are more prominent compared with SW alpha
particles (Gloeckler et al. 1994). This taken together with substantial He+ enrichments
in the accelerated populations suggest that the DSA injection process may also be sub-
stantially more efficient near and above this energy range (also see Chotoo et al. 2000;
Mason 2000).

3.5 Heavy ion composition in ESP events

ACE measurements have also allowed us to investigate whether the more common
heavier ions such as C–Fe originate from the bulk solar wind or from the suprathermal
tail. Desai et al. (2003) compared the average ∼1 MeV/nucleon ion abundances in
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Fig. 36 Mean abundances in 72 IP shocks normalized to: a slow SW values, and b mean abundances
measured upstream of the shocks, plotted versus the ion’s M/Q ratio (adapted from Desai et al. 2003)

72 IP shocks at ACE with those measured in the solar wind (from von Steiger et al.
2000) and other candidate seed populations. Figure 36a shows the average IP shock
abundances normalized to the slow solar wind values and plotted versus M/Q. The
ionization states used here are typical of those measured in the slow solar wind (von
Steiger et al. 1997). Note that the C/O ratio in IP shocks is about a factor of 2 lower
than that measured in the solar wind. Since most known shock acceleration mech-
anisms (e.g., Lee 1983) fractionate ion species according to their M/Q ratios, such
large differences in the abundances of accelerated and solar wind material cannot be
primarily attributed to injection and acceleration of a seed population dominated by
solar wind material. The unsystematic behavior of other heavier nuclei such as N, O,
Ne, and Mg with similar M/Q ratios results in a poor correlation with the correspond-
ing solar wind abundances. These results provide additional evidence that the ESP
heavy ion population probably does not originate from the solar wind but rather from
a pre-accelerated suprathermal pool.

In contrast, Fig. 36b shows that the IP shock abundances were well correlated
with the average abundances measured at the same energy (∼1 MeV/nucleon) in the
interplanetary medium prior to the arrival of the IP shocks at ACE (Desai et al. 2003).
In particular, elements with higher M/Q ratios are systematically depleted, which is
consistent with shock acceleration models wherein ions with higher M/Q ratios are
accelerated less efficiently than those with lower M/Q values (e.g., Lee 2005). In
addition to the correlations between the average quantities, Desai et al. (2003) found
significant correlations between the IP shock abundances (e.g., ∼1 MeV/nuc Fe/O
ratio) and those measured in the ambient suprathermal ions for individual events. Since
the ambient heavy ion population contained ∼30 % of material from flare-related SEP
events and the remainder from large CME-related SEP events, these results indicate
that the heavy ions from C–Fe also originate from a suprathermal tail that is essentially
dominated by ions accelerated by prior IP shocks (Desai et al. 2003).
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3.6 Role of self-excited waves

Particles can gain energy at shocks either via the first-order Fermi mechanism by
being scattered between magnetic inhomogeneities or waves that are convected by
converging flows on either side of the shock, or via the shock-drift mechanism by
drifting along the shock front parallel to the V × B electric field (e.g., Jokipii 1982;
Lee 1983; Decker 1988). Although these mechanisms have been studied extensively
and incorporated within the framework of DSA theory (see Sect. 7.2.4), the identity
of the seed particles, the manner in which they are injected into the acceleration
processes, and the mechanisms that limit these processes have remained controversial
(e.g., Eichler 1981; Lee and Fisk 1982; Forman and Webb 1985; Jokipii 1987; Jones
and Ellison 1991).

In one such DSA mechanism, the first accelerated protons stream along the upstream
magnetic field away from quasi-parallel shocks and excite Alfvén waves, which then
trap, scatter, and accelerate the subsequently accelerated ions with increased efficiency
(e.g., Lee 2005). This coupling between the self-excited waves and the accelerated ions
is often invoked to account for many ESP and SEP phenomena. However, during the
last three decades of observations, clear signatures of wave excitation (Lee 1983), or
first-order Fermi acceleration (Jokipii 1982), or shock-drift (Decker 1988) acceleration
processes have been identified in only a handful of ESP events (Sanderson et al. 1985;
Kennel et al. 1986; Gordon et al. 1999; Bamert et al. 2004; Lario et al. 2005; Smith
et al. 2008). More recently, Desai et al. (2012) reported two case studies with clear
signatures of wave excitation and shock-drift acceleration; here the intensity, energy
spectra, and anisotropies were interpreted as being consistent with predictions of DSA
theory. Figure 37 shows the energetic ion properties measured by the SupraThermal
through Energetic Particle Telescope (STEP) on board Wind during two IP shocks
that were observed at: (1) ∼0716 UT on August 6, 1998: θBn ∼ 83◦ ± 3◦; and (2)
∼0248 UT on February 18, 1999: θBn∼55◦ ± 2◦.

Fig. 37 Wind/STEP C + N + O observations during the August 6, 1998 (left) and the February 18,
1999 (right) IP shock events. Each figure shows 10-min averages of a, b ∼0.025–2.56 MeV/nucleon
CNO intensities; c, d first-order A1/A0; and e, f second-order A2/A0, anisotropy components for ∼80–
160 keV/nucleon CNO ions in the solar wind frame. Vertical lines marked S indicate the IP shock arrival
times at 1 AU. The yellow bar in (f) is the ICME interval. Image reproduced with permission from Desai
et al. (2012), copyright by AIP

123



Living Rev. Sol. Phys.  (2016) 13:3 Page 47 of 132  3 

Fig. 38 Temporal evolution of the energy spectra of CNO from Wind/STEP and O from ACE/ULEIS
measured during three separate intervals identified by the color-coded horizontal bars shown in the two
panels of Fig. 37, normalized to the intensity at ∼300 keV/nucleon

Figure 37 shows that the CNO intensities between ∼0.25 and 1.2 MeV/nucleon
increase by about a factor of 10 during ∼6-h intervals on either side of the August 6,
1998 shock. In the case of the February 18, 1999 event, the intensities at all energies
increase ∼14 h prior to the arrival of the shock, but only the ∼25–80 keV/nucleon
CNO intensities peak near the shock. For the August 6, 1998 event, A1/A0 shows
a large anti-sunward flow upstream of the shock, a flow reversal at the shock, and a
sunward flow downstream. Note that, A2/A0 has a large negative component during
a ∼4 h period downstream of the shock, indicating that the pitch-angle distributions
peak at 90◦ to the local interplanetary magnetic field (IMF) direction, consistent with
previous observations and theoretical predictions of the shock-drift mechanism (e.g.,
Decker 1988). For the February 18, 1999 event: A1/A0 is close to zero for ∼6 h on
either side of the shock; A2/A0 is close to zero from ∼1200 UT on February 17,
1999 to ∼1200 UT on February 18, 1999, then exhibits large positive values until
∼1200 UT on February 19, 1999, indicating the presence of bi-directional ion flows
inside an ICME event (see Lario et al. 2004).

Figure 38 shows the temporal evolution of the CNO energy spectra from Wind/STEP
and O spectra from ACE/ULEIS for the two events in Fig. 37. Note that the ACE/ULEIS
data are obtained by considering the time shift equal to the time it takes solar wind
plasma to advect from one s/c to the other. These snapshots are taken at three separate
intervals near the two IP shocks, as indicated by the color-coded bars in Fig 37a,
b. The CNO spectra for the August 6, 1998 event for all three intervals have similar
shapes, with no evidence of a distinctive roll over at lower energies during the upstream
interval (red) compared with those measured at the shock (orange) and downstream
(green). In contrast, the CNO spectrum upstream of the February 18, 1999 event shows
a dramatic roll-over or flattening below ∼200 keV/nucleon followed by unfolding or
steepening as the shock and its associated lower-energy ion population approach the
s/c, as predicted by DSA theory (Lee 1983, 2008).
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Fig. 39 Upper panels ACE measurements of the magnetic power versus time in three different frequency
ranges. Lower panels PSDs at four time intervals identified by the vertical bars in the upper panels. The
local proton cyclotron frequency νpc is shown in each of the four lower panels. The two shocks arrived at
ACE at ∼0644 UT on August 6, 1998, and ∼0211 UT on February 18, 1999, i.e., <40 min earlier than at
Wind. ACE was located at the L1 point and separated from Wind by ∼135 RE and ∼164 RE , respectively.
Image reproduced with permission from Desai et al. (2012), copyright by AIP

Figure 39 shows the magnetic power versus time in three different frequency ranges
(upper panels) and the power spectral densities or PSD (lower panels) at four different
time intervals for the two events shown in Fig. 37. The PSD upstream (brown curve
in Fig. 39c) of the August 1998 shock shows no increase in the energy of the fluc-
tuations across the entire spectral range (∼10−3–1 Hz) and has no significant wave
activity around the proton cylcotron frequency, νpc, i.e., at ∼0.1–0.2 Hz. In the case
of the February 1999 IP shock, the energy in the fluctuations across the spectral range
increases by about a factor of 10 ahead (brown curve in Fig. 39e) of the shock, while
immediately upstream (red curve in Fig. 39f), the PSD shows a dramatic departure
from a power-law (dashed line) due to significant wave growth between ∼0.05 and
1 Hz, i.e., centered on νpc at ∼0.1 Hz. Two types of ion populations streaming away
from the shock can generate such upstream waves: (1) beams of low-energy protons
(e.g., Kennel et al. 1986), or (2) pre-accelerated SEP protons (e.g., Bamert et al. 2004).
In either case, Figs. 37, 38 and 39 demonstrate that such wave excitation upstream
of a shock can have a dramatic influence on the properties of the associated ESP
event.

Desai et al. (2012) interpreted the observations of the August 6, 1998 quasi-
perpendicular shock as evidence for shock-drift acceleration of a pre-existing
suprathermal spectrum (see Desai et al. 2003, 2004). In contrast, the ESP event associ-
ated with the oblique IP shock on February 18, 1999, is an example of wave excitation
and the first-order Fermi acceleration process; enhancements in the PSD around νpc

indicate the presence of Alfvén waves excited presumably by the accelerated protons
streaming away from the shock. The softening or unfolding of the CNO spectrum
below ∼200 keV/nucleon in Fig. 38b is likely due to M/Q-dependent trapping and
scattering of these ions by the proton-excited waves. Finally, the near-zero values and
the reversal of A1/A0 around the shock (see Fig. 37f) point to the shock as the source
of the isotropic ion population.
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4 Ground level enhancements

Some large SEP events are so intense that the intensity of the accompanying high-
energy (>1 GeV) protons exceeds the lower-energy portion of the galactic cosmic ray
(GCR) background in at least one of the many ground-based neutron monitors (e.g.,
Lopate 2006), muon detectors (Falcone et al. 2003; Abbasi et al. 2008), or ionization
chambers (Forbush 1946). Such increases in the radiation levels on Earth’s surface
that are detected by neutron monitors are commonly known as GLEs. Thus, GLEs are
SEP events in which the particle acceleration process is more efficient (Meyer et al.
1956). These events pose severe radiation hazards to astronauts and technological
assets in space and disrupt airline communications (Shea and Smart 2012). The origin
of GLEs has generated much interest since they were first detected (Forbush 1946).
Only recently has sufficient progress been made such that it is now widely accepted
that they are a result of CME shock acceleration in the low corona below ∼2 RS . In
this section, we summarize the body of evidence that points to this conclusion.

4.1 Velocity dispersion and timing studies

During the onset phase of SEP events, the arrival times of high-energy ions and elec-
trons are governed largely by velocity dispersion effects; ions and electrons with the
highest speeds arrive first and the slower particles arrive later (see Fig. 23). Thus, by
measuring the arrival times of the earliest arriving particles and assuming that they
travel essentially scatter-free from the Sun to the Earth, one can estimate the solar par-
ticle release (SPR) times at the Sun to within ∼3-min uncertainty (see Rouillard et al.
2012). Figure 40 shows an example of the timing analyses based on >2 MeV/nucleon
H, He, O and Fe ions observed during the onset phase of the May 6, 1998, large SEP
event. By using multiple species at different energies, the SPR time at the Sun for this
event was estimated to be at ∼0803 UT on May 6, 1998, well after the onset of the
type II radio burst and the maximum of the associated X-ray flare.

Figure 41 compares the SPR times at the Sun, estimated from onset time versus 1/v
scatterplots like the one shown in Fig. 40, with the solar X-ray and γ -ray emission
profiles. The two left panels show that the SPR times for the two impulsive SEP events
agree well with the timing of the hard X-ray peaks, but in the case of both GLEs, the
SPR times occur several minutes after the γ -ray peaks. These results are consistent
with the earlier results of Cliver et al. (1982), who found that the release times of
∼GeV protons and the SEP onset times were poorly correlated with photon emission
from the associated flares, while for impulsive events, the flare and SEP onset times
were well correlated (see Reames et al. 1985; Reames and Stone 1986).

Using the onset times of energetic particles of various species and velocities, v, in
13 large SEP events that were also associated with GLEs, Reames (2009a, b) reported
that the SPR times occurred after the onset of the CME shock wave-induced type II
radio emission and that SEP events with well-defined SPR times occurred over a wide
span in solar longitude (see Fig. 42b). Reames (2009b) suggested that, regardless of
source longitude, all ion species and energies are released together in all these GLEs,
with no evidence of energy- or rigidity-dependent coronal transport, which essentially
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Fig. 40 Left Arrival of 4He ions of different energies at the Wind s/c during the May 6, 1998 GLE. Right
Ion intensity onset time in each energy interval versus 1/v. Parameters of the linear fit (solid line) are: slope
gives the path-length, and the intercept yields the SPR time at the Sun. Image reproduced with permission
from Reames (2009b), copyright by AAS

Fig. 41 Onset times for two impulsive SEP events (left) and two GLEs (right). Blue curves show the
intensities of hard X-rays (left panels) and of 4–7 MeV γ -rays (right panels). The red curves are the GOES
1.5–12 keV soft X-ray intensities. The red vertical lines represent the SPR times inferred from measuring
the arrival times of the GLE particles. Also shown are onset times of type II and type III radio bursts and
CME lift-off times (after Tylka et al. 2003)

rules out a flare origin for GLEs. This is because particle populations accelerated and
released from a point source, such as an active region or a flare, have to be transported
across the coronal magnetic field lines through substantially denser material, and
would therefore exhibit properties (e.g., abundance ratios) that depend on distance
between the observer’s connection point and the source longitude (see, e.g., Mason
et al. 1984). By converting the SPR time to a radial distance of the CME shock wave
from the Sun at the release time (see Fig. 42a), Reames (2009b) noted that acceleration
for well-connected events begins at ∼2–4 RS within ∼100◦ of the source longitude
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Fig. 42 Top Radial height of CME shocks at the time of the first SPR versus flare longitude. Bottom SPR
time—the type II onset time at the Sun versus source longitude during several GLEs. Image reproduced
with permission from Reames (2009b), copyright by AAS

and rises to greater heights at longitudes more distant from the source, as would be
expected from CME shock-acceleration models.

4.2 Energy spectra, composition and charge states

Surveying the ∼0.1 to ∼500–700 MeV proton energy spectra in 16 GLEs that occurred
during solar cycle 23, Mewaldt et al. (2012a) found that the spectra exhibited breaks
between ∼2 and 50 MeV and were better represented by a double power-law function,
as shown in Fig. 43. This study also showed that, in comparison with other SEP events,
the proton spectra associated with GLEs are harder, with spectral indices γ∼3 above
40 MeV/nucleon.

Mewaldt et al. (2012a) reported that ∼50 % of GLEs exhibit properties generally
associated with “flare material” as observed in impulsive or 3He-rich SEP events
(e.g., Mason et al. 1994, 2004; Reames et al. 1994)—including enrichments in Fe/O,
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Fig. 43 Proton fluence spectra during two GLEs observed during the October–November (Halloween)
2003 SEP events. Both spectra are fitted with the double power-law function of Band et al. (1993), with
different spectral slopes above and below the break energy. Green curves show the GCR fluence levels.
Image reproduced with permission from Mewaldt et al. (2012a), copyright by Springer

Ne/O, 22Ne/20Ne, and highly-ionized charge states of Fe—and that the fraction of
GLE events that was Fe-rich during solar cycle 23 was significantly lower than that
seen during solar cycles 21 and 22 (see also Dietrich 1999; Dietrich and Tylka 2003;
Tylka et al. 2005). Like the ESP events and large gradual SEP events discussed above,
possibilities that could account for flare signatures during GLE events are: (1) shock
acceleration of suprathermal ions left over from previous impulsive SEPs (Mason
et al. 1999; Tylka et al. 2005; Mewaldt et al. 2006; Tylka and Lee 2006); (2) mixing of
flare- and CME shock-accelerated particles (Cane et al. 2003, 2006); (3) CME shock
acceleration of a mixture of solar wind and flare particles (Li and Zank 2005); (4)
CME shock acceleration of a mixture of suprathermals and material from the CME
ejecta (Mewaldt et al. 2007a); and (5) acceleration of an admixture of flare material
and material from a preceding CME shock (Li et al. 2012).

Mewaldt et al. (2012a) also modeled electron stripping during CME shock accel-
eration in the low corona and were able to account for the higher mean Fe charge
states of ≈20 during 5 GLEs by assuming that the acceleration process started at
∼1.24–1.6 RS , which is consistent with recent comparisons of CME propagation and
type II radio bursts. Kahler et al. (2012) noted that some GLEs are also associated with
shorter duration (<1 h) flares—timescales that are comparable to those associated with
the impulsive 3He-rich SEP events. In surveying the relationships between the SEP
electron/proton (e/p) and Fe/O ratios and characteristics of the associated flares, active
regions (AR), and CMEs for ∼40 GLEs observed since 1976, Kahler et al. (2012) noted
that the e/p and Fe/O abundance ratios trended toward typical values seen in large grad-
ual SEP events with increasing flare timescales, thermal and non-thermal peak fluxes,
and active region sizes. Kahler et al. (2012) concluded that these results and the wide
range of solar longitude connections for GLEs (see Fig. 42) with high abundance ratios
argue against a significant role for flare contributions in GLEs, and instead point to
acceleration at CME-driven shocks as the dominant mechanism for GLEs.
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4.3 Radiation hazards

As discussed in Sect. 2, the largest SEP events occur as a result of acceleration by
coronal and interplanetary shocks with speeds >2000 km/s that are driven by CMEs
with kinetic energies >1 × 1032 ergs and widths >100◦ in longitude (e.g., Gopal-
swamy 2006; Mewaldt et al. 2008). Although shock acceleration occurs in a variety
of space plasma environments and the basic physical mechanisms are reasonably well
understood, the relative roles of various factors that control a given shock’s efficiency
are not fully identified. These factors combine to cause large variations from one SEP
event to the next, making it difficult to forecast key properties such as peak intensities
and fluences, maximum energies, and temporal, spatial, spectral, and compositional
evolution.

Understanding the origin of event-to-event variations in CME-related SEP events
has therefore become a top priority for heliophysics, since high-energy protons in the
largest events pose severe radiation hazards for humans and technological systems in
space, particularly as humankind continues its quest to venture outside the protective
cocoon of the Earth’s magnetic field (e.g., Cucinotta et al. 2010; Schwadron et al.
2010b; Xapsos et al. 2012). Most of the radiation risk from SEPs is due to intense fluxes
of ∼50–200 MeV protons—the energy at which protons can penetrate s/c housing and
spacesuits. The radiation hazards associated with SEP events can be assessed in terms
of the roll-over or knee energy—the energy at which the particles escape from the
shock and the spectrum steepens (Ellison and Ramaty 1985). Typical knee energies of
soft and hard radiation SEP events are shown in Fig. 44; events with higher roll-over
or knee energies have significantly higher proton intensities above ∼100 MeV and can
pose a severe radiation hazard to astronauts (Reames et al. 2001; Reames 2013).

Figure 44 shows that an important factor in determining the ionizing radiation
dose associated with SEP protons is the location of the spectral break (Reames et al.
2001). The figure shows that, although the April 1998 SEP event had higher fluxes
below ∼50 MeV, the spectrum rolls over much more rapidly at higher energies. In
contrast, the September 1989 event had somewhat lower intensities below ∼50 MeV,
but because the spectral break occurred between ∼200 and 300 MeV, it was associated
with a significantly higher radiation dose. In fact, during the September 1989 event,
even an astronaut shielded by 10 g/cm2 of material would have received an ionizing
dose of ∼40 millisieverts (mSv). The annual dose limit for a radiation worker in
the United States is 20 mSv (see Fig. 45). The unit Sv takes account of the relative
biological damage from different types of ionizing radiation (e.g., X-rays, γ -rays,
cosmic rays) and is defined as the amount of ionizing radiation equivalent to 1 gray
or 100 rads of γ -radiation; 1 mSv corresponds to 10 ergs of energy of γ radiation
transferred to 1 g of living tissue.

Recently the radiation assessment detector (RAD) on board the Curiosity rover,
which was carried by the Mars Science Laboratory (MSL) on its way to Mars during
2012, provided direct measurements of the radiation that astronauts could encounter
as they voyage beyond Earth’s protective magnetic field (Kerr 2013; Zeitlin et al.
2013) during this particular phase of the solar cycle. After converting the MSL-RAD
measurements into dose rate and total dose, Zeitlin et al. (2013) concluded that, during
a 360-day round trip, an astronaut would receive a dose of about 662 mSv (see Fig. 45).

123



 3 Page 54 of 132 Living Rev. Sol. Phys.  (2016) 13:3 

Fig. 44 Proton energy spectra during the SEP events of April 1998 (green Tylka et al. 2000) and September
1989 (blue Lovell et al. 1998). Yellow hazardous radiation portion of the spectrum during the April 1998
event; red additional hazardous radiation from the September 1989 event. Image reproduced with permission
from Reames (2013), copyright by Springer

Fig. 45 Left Dose rates (∼16-min averages) recorded by MSL-RAD in a silicon detector (black circles)
and in a plastic scintillator (red circles) during MSL’s journey to Mars. Five SEP events were observed
during the cruise phase. For a given incident flux, the dose rate in silicon is generally less than the dose
rate in plastic because of the comparatively large ionization potential of silicon. Right Radiation exposure
compared with that measured by MSL-Rad on its way to Mars. Image reproduced with permission from
Zeitlin et al. (2013) and Kerr (2013), copyright by AAAS

The amount of radiation is cumulative and increases the overall lifetime cancer risk for
an astronaut. The dosage measured by this experiment is considerable when compared
with an exposure limit of ∼1000 mSv or less during an astronaut’s entire career. Note,
however, that in terms of sunspot numbers, CMEs, and flare occurrences, the current
solar activity cycle is the weakest of the Space Age (e.g., Wang and Colaninno 2014),
and a manned mission to Mars is not likely to occur until well after the next solar
maximum in 2021–2023, when the Sun could unleash more powerful CMEs even
more frequently and cause astronauts to reach their exposure limits perhaps during
part of their journey.
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Using flare and CME observations to predict the size and impact of SEP events is
highly unreliable. Nonetheless, flares can be useful for predicting the occurrence of
SEP events (e.g., Balch 2008), while relativistic electrons have been used as a precursor
for predicting the arrival of <50 MeV protons (Posner 2007). Additionally, Kahler
(2001) showed that the peak intensities of ∼110–500 MeV protons are correlated with
the CME speed. Thus, an early measure of the CME or shock speed as inferred from
coronagraph observations or from the drift rate of the accompanying type II burst could
be used to forecast SEP intensity. Unfortunately, >50 MeV protons, which cause much
of the radiation damage, tend to arrive within ∼10–30 min of the occurrence of the X-
ray flare, detection of the type II radio burst, or arrival of relativistic electrons at Earth.
This leaves very little time for astronauts performing extra vehicular activity (EVA)
on the lunar surface or on the International Space Station (ISS) to take appropriate
evasive action.

4.4 How big was the SEP event associated with the Carrington event?

The Carrington event, discussed in Sect. 1.1, was associated with probably one of the
strongest and fastest CMEs that occurred over the last ∼200 years. More recently, by
July 23, 2012, a solar active region being tracked by inner heliosphere s/c had already
produced four fairly fast Earthward-directed CMEs. This region then released one of
the fastest CMEs on record in the direction of STEREO A, which was well away from
Earth. The CME had a speed of >2000 km/s and was accompanied by an unusually
intense SEP event at STEREO A (see Fig. 46). At the same time, Earth was near the
edge of the SEP cloud, therefore ACE and Wind at L1 observed a modest SEP event. At
STEREO A, the SEP energy density (pressure) was comparable to that of the magnetic
field, which weakened the CME-driven shock wave. Such effects are thought to occur
in supernovae shocks but have not been previously observed inside the heliosphere.
Even though the initial shock was weak, the solar ejecta and magnetic cloud that
followed had speeds above ∼2000 km/s and contained strong magnetic fields. This
event shows that the Sun can produce extreme events even during relatively modest
sunspot activity cycles and that Carrington-sized events may be frequent.

While the Carrington event has been extensively studied and discussed in terms of
the associated flares, CME, and intense geomagnetic storm, it remains unclear exactly
how big the associated SEP event was. In fact, this topic has been highly controver-
sial ever since McCracken et al. (2001) postulated that spikes in the concentration
of nitrates (NO−

3 ) in polar ice cores might also provide a quantitative measure of
large SEP events over the past ∼500 years. On the basis of these data, McCracken
et al. (2001) and Shea et al. (2006) interpreted a large NO−

3 spike observed around
the late 1800s as a signature of a large SEP event associated with the Carrington
event. In contrast, studies using different polar ice core records did not show similar
evidence of an SEP event associated with the Carrington event, and instead indi-
cated that all the NO−

3 spikes were accompanied by chemical tracers that pointed to
anthropogenic biomass burning, and therefore, the ice core NO−

3 spikes constitute an
unreliable proxy for large SEP events that occurred in the past (Wolff et al. 2012).
More recently, Duderstadt et al. (2014) investigated whether the nitrate spikes seen in
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Fig. 46 Top 10-min averaged
energetic proton intensities
measured on STEREO A in
three different energy ranges:
SEPT from 0.4–0.6 MeV, LET
from 4 to 6 MeV, and HET from
40 to 60 MeV. Bottom The
energetic proton pressure in
three energy ranges and their
total during the event. Magnetic
pressure is included for
comparison. Image reproduced
with permission from Russell
et al. (2013), copyright by AAS

snow samples from August 2000 to August 2002 at Summit, Greenland are associ-
ated with large solar proton events (SPEs). Specifically, they identified tropospheric
sources of nitrates and used the three-dimensional global Whole Atmosphere Com-
munity Climate Model (WACCM) to conclude that while the November 9, 2000, SPE
significantly enhanced the mesospheric and stratospheric nitrate levels, the associ-
ated atmospheric nitrate-column density is still too low for deposition in the surface
snow. This requires alternative proxies for studying historical SPEs and their terrestrial
impacts.

Many researchers have also surveyed naturally existing archives of cosmogenic
radionuclides such as 14C and 10Be that are produced by high-energy galactic cosmic
rays interacting with the Earth’s atmosphere and deposited in, for example, tree rings or
ice cores on the surface (e.g., Beer et al. 2003; Usoskin and Kovaltsov 2012; Usoskin
2013). Since particles with GeV energies are required to produce these signatures,
only those SEPs that produce significant proton fluences above GeV energies, i.e.,
GLEs, are likely to initiate atmospheric cascades and generate such signatures on
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the Earth’s surface. Surveying over ∼12,000 years of these natural records, Usoskin
and Kovaltsov (2012) identified 23 candidate episodes where the accompanying SEP
events had an average flux above 30 MeV of >1010 cm2, but the Carrington event
did not even feature in this list. In other words, it appears that the Carrington event
did not leave any tell-tale signatures in the cosmogenic isotope records, and therefore,
somewhat surprisingly, may not have been associated with a very large SEP event at
Earth.

5 Properties of suprathermal ion populations

5.1 Spectral behavior

Until a decade or so ago, large gradual SEP events and IP shock-associated ESP
events were believed to occur when fast CME-driven shock waves accelerated material
out of the ambient corona or the thermal solar wind (e.g., Reames 1999). However,
measurements from ACE (Stone et al. 1998) have shown that CME-driven shocks
routinely accelerate tracer ion species like 3He and He+ near 1 AU (Desai et al.
2001, 2003; Kucharek et al. 2003) and near the Sun (Cohen et al. 1999; Mason et al.
1999; Desai et al. 2006a). Although both the 3He and He+ ions are extremely rare in
the solar wind (relative abundance ratios are of the order of ∼10−4), they are more
abundant in the suprathermal energy region between ∼1.5 and 10 times the solar wind
speed (Gloeckler 2003; Desai et al. 2006b). The 3He ions are probably accelerated
in impulsive solar-flare related SEP events (e.g., Mason et al. 2004), while the He+
ions originate as interstellar neutral atoms that get ionized when they enter the inner
solar system within ∼0.2 AU (e.g., Ruciński et al. 1996). These observations provide
compelling evidence that CME-driven shocks accelerate material preferentially out
of the suprathermal pool, which also comprises heated solar wind or coronal material
(e.g., Mason et al. 2005), thereby forcing a re-examination of where the seed population
for large SEP and ESP events originated.

Figure 47 shows the oxygen fluences from solar wind to cosmic ray energies
obtained by several ACE instruments from October 1997–June 2000 (from Mewaldt
et al. 2001). The suprathermal (ST) energy region is defined here as that between ∼2
and 100 keV/nucleon and is shaded in the figure. Note the presence of a continuous
distribution extending from the solar wind peaks through the suprathermal region out
to cosmic ray energies. Figure 47 also shows the energy spectra measured during var-
ious sources and populations that can contribute to this energy region. In addition to
these sources, the suprathermal pool includes interstellar and inner source pickup ions
and the heated solar wind (e.g., Mason et al. 2005).

Figure 48 shows that ST proton tails typically extend up to ∼20 times the solar wind
speed (∼200–700 keV/nucleon) under a variety of solar wind conditions as measured
at Ulysses and ACE. One key feature of these tails is the apparent near constancy of
the slope of the power-law distribution; v−5 in particle velocity, v, or E−1.5 in particle
energy, E , during “quiet” solar wind conditions (Gloeckler et al. 2008).

Figure 49 shows the temporal profiles of the SW proton speed and density, and the
density and spectral index of the ST proton tail during 2009. The figure shows large
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Fig. 47 Oxygen fluences
measured by several instruments
on board ACE during a 3-year
period. The black data points
show the fast and slow solar
wind components along with a
suprathermal tail that extends
well above ∼100 MeV/nucleon.
Also shown are representative
particle spectra obtained for
gradual and impulsive SEPs,
corotating interaction regions
(CIRs), anomalous cosmic rays
(ACRs), and GCRs. Image
adapted from Mewaldt et al.
(2001)

Fig. 48 Phase space density during the extreme quiet SW conditions in 2009. aHighest and lowest observed
tail densities during the first 82 days of 2009. b Four spectra selected according to their tail densities. Image
reproduced with permission from Fisk and Gloeckler (2012), copyright by Springer

increases in the proton tail density in SW compression regions, which are associated
with increases in the solar wind speed, temperature or thermal speed, and the solar wind
proton density. Analyzing ACE/SWICS 1 h-averaged ST tail densities in 61 possible IP
shocks during the extremely disturbed conditions of 2001, Fisk and Gloeckler (2012)
found that unless the shock was associated with an extended compression region, it
produced only a small or no tail density increase. In contrast, enhancements in the ST
tail density, which indicate particle acceleration, were almost always associated with
an extended compression region and had a common v−5 spectral slope. In the four
events that could be due to DSA, the spectral index did not match the steady-state
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Fig. 49 Solar wind parameters, the density of the suprathermal proton tail, and the spectral index of the
ST tail for the extreme quiet conditions in the solar wind during 2009. Possible shocks are marked with
thin vertical lines; the compression ratio across the shock is also shown. The shaded regions indicate time
periods during which spectra shown in Fig. 48 were taken. Image reproduced with permission from Fisk
and Gloeckler (2012), copyright by Springer

DSA theoretical predictions. In Sects. 3.2 and 3.3, we discussed possible reasons why
this may occur.

In contrast to the Fisk and Gloeckler (2012) study, Giacalone (2012) selected 18
strong shocks over the 1998–2003 period and used ∼5-min resolution ACE/EPAM
energetic proton data to show that the largest intensities of ∼47-keV ions, which are
part of the ST tail, nearly always occurred within 5 min of the passage of a strong
IP shock. Giacalone (2012) also noted that there was no additional increase in the
particle intensity in the region behind the shock in some of the cases, which sug-
gests that, at least for these cases, there is no additional acceleration there. Giacalone
(2012) concluded that the acceleration occurs directly at the shock, where the plasma
compression is the largest, and essentially ruled out any acceleration in the turbulent
plasma behind it. In summary, the acceleration of the ST tail densities remains a sub-
ject of much debate, as different studies appear to highlight the relative importance of
different plasma and interplanetary structures in the solar wind.

5.2 Abundances

The above situation is exacerbated by the fact that current observational studies of
ST ion populations are conflicting (see Mason and Gloeckler 2012). In particular,
observations of ST tails between ∼6 and 20 times the solar wind speed (Dayeh et al.
2009) and above a few MeV/nucleon (Mewaldt et al. 2007b) indicate that that the
spectra do not conform to a single power-law but are somewhat variable, with indices
ranging from −4.5 to −6.5 (see Fig. 50a). Moreover, Giacalone (2012) noted that the
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Fig. 50 Yearly averages of the quiet-time suprathermal a Fe and CNO spectral indices, γ , given by
fitting a power-law of the form j = j0 E−γ to the measured differential intensities j at energy E ; E
is in MeV/nucleon, b C/O ratio, c Fe/CNO ratio, and d 3He/4He ratio measured by the Wind/STEP and
ACE/ULEIS from 1995–2009 (adapted from Desai et al. 2006b; Dayeh et al. 2009)

power-law part of the distributions observed just behind strong interplanetary shocks
also have a range of spectral indices, but are generally flat (near −4). As shown in
Fig. 50c, d, Desai et al. (2006b) and Dayeh et al. (2009) reported that the suprathermal
heavy ion composition near 1 AU varies with solar activity; it is dominated by CIR- or
solar wind-like material during solar minimum and by impulsive SEP-like ions during
periods of increased solar activity. Thus, the suprathermal population appears to be
highly dynamic and varies on long (solar cycle) and probably also on shorter (∼hours)
timescales. Indeed, Fig. 51 (from Wiedenbeck and Mason 2013) shows that: (1) the
fraction of time that 3He ions from impulsive flares are present at 1 AU varies from
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Fig. 51 Fraction of time that energetic 3He above >MeV/nucleon is present in the interplanetary medium,
compared with the sunspot number, and current sheet tilt (adapted from Wiedenbeck and Mason 2013)

one solar rotation period to the next; and (2) the presence of 3He ions is significantly
diminished as solar activity decreases, essentially reducing to zero during the extended
solar minimum of 2008–2010.

5.3 Theoretical ideas regarding ST origins

The considerable disparity in observational aspects of ST populations has led to two
basic categories of competing theories: (1) ST tails result from continuous acceleration
in interplanetary space (e.g., Fisk and Gloeckler 2008, 2012, 2014; Zhang 2010; Fahr
et al. 2012; Drake et al. 2012; Zank et al. 2014), or (2) ST tails are lower energy portions
of material accelerated in energetic particle events such as CIRs, CME shocks, flares,
etc. (e.g., Livadiotis and McComas 2009; Jokipii and Lee 2010; Schwadron et al.
2010a). Table 2 summarizes the mechanisms and sources of ST ions and provides
citations for their primary proponents. Existing ST ion observations pose different
challenges for both types of models. For instance, the latter models are favored by
observations above ∼6 times the SW speed where the spectral slopes vary considerably
and the heavy ion composition (e.g., 3He) varies with solar activity. In contrast, the
near constant spectral shape for ions with speeds �5 times the SW speed seems to favor
the former types of models and poses challenges for discrete event origin scenarios.

In other words, models advocating continuous acceleration processes could account
for the constant spectral shapes, but it is not obvious why or how such processes could
produce ST composition resembling the more energetic CIRs or SEPs and cause
variations with solar activity. In addition, many ST ion studies have used long-term
averages (e.g., Gloeckler et al. 2008; Dayeh et al. 2009), thereby making it difficult
to distinguish between ST contributions from local and remote sources. Despite the
difficulties in measuring the ST ions in the heliosphere, an improved understanding
of the ST ion properties, origins, and acceleration mechanisms is urgently needed to
achieve closure with SEP and CIR particle acceleration models because such pre-
accelerated populations are clearly injected into shock acceleration processes more
efficiently when compared with the more abundant solar wind ions (e.g., Mason et al.
1999).
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Table 2 Known sources and mechanisms of ∼2–100 keV/nucleon suprathermal ions near 1 AU

Acceleration
location

Continuous acceleration in IP space Discrete high-energy particle events

Mechanism/source References Mechanism/source References

Local Bulk velocity
fluctuations

Fahr and Siewert
(2012) and Fahr
et al. (2012)

CIR shocks and
compressions

Fisk and Lee (1980),
Giacalone et al.
(2002) and
Richardson (2004)

Compressional
turbulence

Fisk and Gloeckler
(2006, 2008,
2012, 2014)

CME shocks
(ESP events)

Jones and Ellison
(1991), Lee (2005),
Zank et al. (2006)
and Li et al. (2009)Waves and

turbulence in the
IMF

Schwadron et al.
(1996), Zhang
(2010) and Zhang
and Lee (2013)

Reconnection
between
magnetic islands

Drake et al. (2012)
and Zank et al.
(2014)

SEPs from flares Mason et al. (2002)

Remote N/A SEPs from CME
shocks near Sun

Reames (1999)

CIR shocks >2 AU Fisk and Lee (1980)

Upstream ion events Lee (1982) and
Desai et al. (2008)

6 Multi-spacecraft observations of SEP events

6.1 Particle reservoirs and spectral invariance

In Sect. 2.1, we discussed how the longitudinal spread of large SEP events allowed
researchers in the 1990s to classify SEP events into two distinct types. Here we discuss
in detail the differences in the SEP properties as observed at different vantage points.
Figure 52 shows that Helios 1 encounters an SEP event near the central meridian and
observes a peak in the 3–6 MeV proton intensity near the time of shock passage. At
the other two s/c, the proton intensities reach a peak after shock passage and then track
those seen at Helios 1 for several days thereafter. This time interval has been termed a
particle reservoir (also see McKibben 1972; Roelof et al. 1992; Roelof 2012a, b) and
reflects a region where the intensities and energy spectra throughout much of the inner
heliosphere (see Fig. 52: top right panel) at different azimuthal, radial, and latitudinal
locations are nearly identical (e.g., McKibben 1972; Reames 2010; McKibben et al.
2003). These results indicate that only a small number of particles escape from and
leak out of the reservoir, because if the ions were able to do so, then the SEP energy
spectra in the reservoir would soften or steepen with time while the corresponding
intensities would decay far more rapidly than is typically observed.

Key physical processes believed to play important roles in creating the reservoir
effect during the decay phases of large SEP events include: (1) fine-scale mixing of
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Fig. 52 Top left Proton intensity-time profiles during the March 1, 1979 event at 3 s/c; ‘S’ represents the the
time of shock passage at each s/c. Top right Energy spectra in the reservoir or the spectral invariant region
behind the shock at time ‘R’. Lower panel Spacecraft trajectories through the the CME. Image reproduced
with permission from Reames (2013), copyright by Springer

open and closed coronal magnetic fields (Reames 2010); (2) energy-dependent trans-
port and the inhibition of particle escape due to the presence of one or more preceding
magnetic disturbances, such as magnetic clouds or ICMEs (Roelof et al. 1992; Roelof
2012a, b; Reames 2013); and (3) non-diffusive transport that includes effects such
as convection and adiabatic deceleration (Lario 2010). Additionally, for SEP events
where the low-energy portion of the spectrum slowly unfolds or steepens, reservoir
theoretical concepts must include: (1) replenishment of lower-energy particles by con-
tinuous acceleration at the increasingly weakening CME shock, (2) preferential escape
of high-rigidity or higher-energy particles, and (3) energy-dependence of perpendic-
ular transport (Reames 2013).

6.2 SEP observations at Helios and Ulysses

The Helios and Ulysses missions explored the inner heliosphere inside Earth orbit
and at high latitudes inside ∼5 AU, providing new insights into the spatial distribution
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of SEP events. Kallenrode (1996) found that the ∼5 MeV proton intensity increases
associated with >350 transient IP shocks at Helios correlated with local and transit
shock speeds and the angular distance between the s/c and the flare location; the
highest intensities were observed close to the nose of the shock and decreased near the
flanks, confirming the role of CME shock acceleration in large SEP events. Kallenrode
(1997) studied the radial evolution of shock acceleration efficiency and found that CME
shocks are more efficient at accelerating particles closer to the Sun, and that since this
efficiency decreases with radial distance, the particles that are accelerated in IP space
do not require significant energization and could originate from a pool of material that
was accelerated earlier and closer to the Sun (also see Kallenrode et al. 1993).

Comparing SEP observations near the ecliptic plane with those observed by Ulysses
at higher latitudes, McKibben et al. (2003) noted significant intensity increases at both
locations regardless of their positions with respect to each other or to the location
of the flare. The onsets at both locations during such multi-point SEP events were
prompt; however, at the highest latitudes, the maximum intensities were somewhat
lower and their rise was also slower. Onset anisotropies were field-aligned and directed
outward at all latitudes, which indicated acceleration over a broad front or efficient
perpendicular transport across the magnetic field lines. The SEP intensities at both
locations then reached similar levels during the decay phases, which indicated that
the spectral invariance region and reservoir effects were essentially three-dimensional
in nature. Dalla et al. (2003a, b) studied the differences between SEP onset times
and times-to-maximum as a function of latitude and found that the delays at Ulysses
were best organized by the difference in latitude between the associated flare and the
s/c. Dalla et al. (2003b) concluded that the presence of a shock is not necessary for
creating the near-equal intensities observed at Ulysses and near Earth during decay
phases; these observations are better explained by diffusion across the main IMF.

6.3 Intensities of CME-associated ESP events

Figure 53 shows intensity-time profiles of ∼1–200 MeV protons and ∼3–8 MeV
electrons during the January 1, 1978 SEP event as observed at four different s/c.
Helios 2 and IMP 8 observe an SEP event near central meridian; the proton intensity
peaks just after shock passage. For different energies, the particle reservoir is observed
at different times; for electrons and high-energy protons, equal intensities at Helios 1,
Helios 2, and IMP 8 are seen ∼2 days earlier than that for the lower-energy protons.
Interestingly, the intensity peak at ∼6–11 MeV at Voyager 2 (located at 1.95 AU) is
comparable to those seen at Helios 2 and IMP 8, which were located near or within
∼1 AU. This one case study is somewhat at odds with the large statistical survey
of Kallenrode (1997), and indicates that this particular CME shock was still just as
efficient at accelerating protons up to at least ∼10 MeV, all the way out to ∼2 AU.

6.4 STEREO observations of SEP events

More recently, remote sensing and in-situ measurements from SoHO, STEREO, ACE,
and Wind combined with state-of-the art modeling have provided new insights into
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Fig. 53 Left Proton and electron intensities in several energy ranges as measured by 4 s/c whose relative
locations are shown at right during the January 1978 SEP event. Vertical lines show the time and longitude
of the flare (E6) and the times of shock passage at each s/c. Blue asterisks represent data from Helios 1,
green circles represent Helios 2 data, red squares show data from IMP 8, and violet triangles are Voyager 2
data. Image reproduced with permission from Reames et al. (2013), copyright by Springer

the spatial distributions of SEP events. In particular, white light coronagraphs on
STEREO and SoHO can image the temporal evolution of the spatial structure, speed,
position, and acceleration of the CME and its shock (see Rouillard et al. 2011, 2012).
These observations can then be compared with model results to infer CME shock
properties in the corona and inner heliosphere (see Fig. 54). The Rouillard et al. studies
combined ultraviolet and white-light images of the CME and the solar corona with a
comprehensive study of velocity dispersion of energetic particles observed at STEREO
and L1 and found that the delayed solar particle release times at STEREO and L1 are
consistent either with: (a) the time required for the CME shock to reach field lines
connected to the s/c, or (b) the time required (∼30–40 min) for the CME to perturb the
corona over a wide range of longitudes. These results established a direct association
between the longitudinal extent of the SEP event in the heliosphere and that of either
the CME shock or the disturbed corona due to the lateral extension of the CME.

6.5 Large longitudinal spread of 3He-rich SEP events

While the specific topic of 3He-rich or impulsive SEP events will be covered in a
subsequent review article, in this section we discuss some of the key recent multi-
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Fig. 54 Left Contour plots of the simulated plasma radial speed showing the solar ecliptic plane from the
solar north pole at 1700 UT on April 3, 2010 (top), at 2100 UT on April 03, 2010 (middle), and at 1600 UT
on April 04, 2010 (bottom). Black/white lines indicate the magnetic field lines passing through the L1 s/c.
Right Shock speed (Vshock), compression ratio (N1/N0), and the angle between the magnetic field lines
threading the shock and the shock normal (θB N ) simulated along the magnetic field connected to L1. Image
reproduced with permission from Rouillard et al. (2011), copyright by AAS

spacecraft observations of these smaller events that have essentially re-opened the
broader debate about particle transport in the corona and interplanetary medium, and
the role of meandering field lines in distributing particles over a larger range of lon-
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gitudes than previously thought. It is generally understood that impulsive SEP events
observed in-situ near Earth—characterized as being rich in 3He—are associated with
solar flares occurring over a relatively narrow range of western-hemisphere longitudes
on the Sun. Figure 5a shows a histogram of the source longitude of impulsive events
observed at Earth (from Reames 1999). Physically, this is straightforward to under-
stand. High-energy particles associated with a small, localized source on the Sun will
move in the IMF, which is consistent with the well-known Parker spiral. Since particles
tend to move more easily along the field than across it, the particles will essentially
follow the Parker-spiral magnetic field. When following this field backwards from an
observer near Earth to see where its footpoint is at the Sun, one finds that under typical
solar wind conditions, the solar longitude of this footpoint is about 60◦ west. This is
roughly consistent with the histogram shown in Fig. 5a.

However, more recent observations have challenged this idea, noting that the lon-
gitudinal distribution of impulsive SEPs can be larger than originally thought. For
example, Wibberenz and Cane (2006) analyzed high-energy electrons in individual
SEP events observed at multiple s/c and found that their longitudinal distribution was
larger than expected. This suggests particles may not adhere to the mean magnetic
field as much as previously thought.

Wiedenbeck et al. (2013) analyzed several impulsive-flare-related SEP events
observed by three different s/c which were separated widely in heliolongitude. This
suggests an even greater longitudinal extent of such SEP events than that found by
Wibberenz and Cane (2006). Figure 55a shows the 2.3–3.3 MeV/nucleon 3He inten-
sity as a function of time, observed by three s/c. Figure 55b shows the 70–100 keV
electron intensities measured by the three s/c during the same period. Figure 55c is a
scatter plot of all X-ray flares seen during this time period, with each dot indicating
the time and intensity (vertical axis) of the flare. Figure 55d shows the occurrence of
CMEs during this period, with the vertical axis corresponding to the CME speed and
each symbol representing the direction of propagation (for details, see Wiedenbeck
et al. 2013).

Wiedenbeck et al. (2013) noted that, during the time period in which the SEP event
was observed, there was a large active region on the Sun (AR1045) approximately
at the center of the solar disk. This active region was presumably the source of the
energetic particles. Using the observed solar wind speed, the authors also noted that a
magnetic line of force whose point of origin was near zero solar longitude would cross
1 AU—the orbit shared by the three s/c that observed this event—at approximately the
same location as STEREO B. In fact, as can be seen in the figure, the highest intensity is
indeed seen by this s/c. ACE was about 70◦ to the west of STEREO B during this time
and also clearly observed the event. It is surprising, however, that even STEREO A,
which was separated from STEREO B by more than 130◦ in heliolongitude, observed
an increase in the SEP ion intensity, although the intensity was clearly much smaller
than that seen by the other two s/c. Note that two prominent impulsive electron events,
both consistent with the AR11045 source region, were also seen by all three s/c, but
only the second 3He-rich event was observed—probably due to a combination of lower
intensities and instrument sensitivities at ACE and STEREO A.
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Fig. 55 Observations of a single 3He-rich SEP event seen by three s/c widely separated in heliolongitude.
A large solar active region, AR11045, was seen on the Sun at about the center of the solar disk when the
3He-rich SEP event was observed by all three s/c; arrows depict the delayed onset times of the event. Image
reproduced with permission from Wiedenbeck et al. (2013), copyright by AAS

Wiedenbeck et al. (2013) fit the resulting longitudinal distribution of the event-
integrated 3He intensity seen by all three s/c to a Gaussian function whose maximum
occurs at the longitude connecting 1 AU and the source (near STEREO B in this case).
They found that the width of standard deviation of the functional fit was about 48◦.
This is considerably larger than the width inferred from the histogram shown in Fig. 5a,
suggesting very efficient longitudinal transport of the ions associated with the SEP
event. In addition, if all SEP ions and electrons are simultaneously and impulsively
injected from the flaring source onto open field lines, then the longitudinal spread
of these particles could pose a serious challenge for the generally accepted notion of
scatter-free transport in impulsive SEPs. Giacalone and Jokipii (2012) used a diffusive-
transport model for the propagation of energetic ions in interplanetary space, which
took into account the transport both along and across the local Parker-spiral magnetic
field and the longitudinal motion of the magnetic lines of forces rooted at the Sun as
it rotates. In this model, such effects lead to substantial longitudinal transport of the
particles, such that even spacecraft separated by as much as 180◦ or more may observe
impulsive SEP events associated with compact solar flares.
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6.6 Longitudinal distributions of large gradual SEP events

Dresing et al. (2012) analyzed a CME shock-related SEP event that revealed an even
larger longitudinal extent of the energetic particle intensities than the ones discussed
above. The solar eruption that may have caused the particle event at 1 AU occurred
on the far side of the Sun, as observed from Earth. Energetic electrons were seen
essentially all the way around the Sun. This event was likely larger than the ones
discussed above as it also involved a CME shock. These authors also presented results
from a model of SEP transport that included cross-field diffusion. They considered
two possible explanations: (1) the event involved an unusually long “injection” time;
and (2) there was an unusually large amount of cross-field diffusion of particles in
interplanetary space. They argued that (1) was not likely because there was no evidence
of an extended injection, and concluded that (2) was the most likely scenario, but this
required an unrealistically large value for the ratio of the perpendicular-to-parallel
diffusion coefficient of ≈0.3.

Surveying the 55–105 keV electron anisotropies during 21 large SEP events using
the STEREO s/c as they reached a separation of up to ∼180◦ in azimuth, Dresing
et al. (2014) found that the events could be divided into three distinct groups (see
Fig. 56): (1) a small source region (flare) injects particles in a narrow region, resulting in

Fig. 56 Three possible causes of the large longitudinal spread of SEP events as observed by the STEREO
s/c. Image reproduced with permission from Dresing et al. (2014), copyright by ESO
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Fig. 57 Left 10–30 MeV proton intensities for the April 11, 2013 event from STEREO A, ACE, and
STEREO B. Inset shows s/c locations relative to the flare. Center 12–33 MeV/nucleon event-integrated
fluences of He, O, and Fe versus s/c longitude; STEREO B is at 58◦ and ACE is at −77◦. Right ACE/SIS
He mass histograms compared with those measured during two Fe-rich SEP events in solar cycle 23. Image
from ACE News #170, adapted from Cohen et al. (2014)

large particle anisotropies at well-connected s/c and near-isotropy at widely separated
locations; (2) an extended source region injects SEPs into the IP medium over a broader
region near the Sun, resulting in large anisotropies at locations connected to the extent
of the source region and in decreasing anisotropies at widely separated s/c; and (3)
particles injected from an extended source region near the Sun undergo substantial
cross-field transport in the IP medium or encounter earlier CMEs or other IP structures.
The third scenario results in complex anisotropy features: large anisotropies at less
well-connected locations indicate that the SEPs experienced little or no scattering or
did not encounter structures that inhibit transport, while smaller anisotropies at well-
connected s/c indicate the opposite. The precise mechanisms are not discernible from
these observations.

Rouillard et al. (2012) also addressed the large longitudinal spread of SEP events for
an event that occurred on March 21, 2011. They combined several data sets, including
remote-sensing observations, to relate the event at the Sun to the SEP event seen at
1 AU. Among their key findings was that the solar corona was perturbed by the CME
over a range in longitudes roughly corresponding to the longitudinal separation of s/c
at 1 AU. Rouillard et al. (2012) argued that their results are consistent with a scenario
where the acceleration process itself occurs over a wide range of longitudes rather than
the alternative scenario in which particles that are accelerated in a confined location
undergo substantial lateral transport in the corona or interplanetary medium before
being injected at a distant longitude.

Lario et al. (2013) fitted the longitudinal distributions of peak proton intensities in
35 multi-s/c large SEP events with a Gaussian distribution that is offset by φ0 from
the flare longitude and the magnetic footpoint of the observing s/c: j = j0 exp[−(φ −
φ0)

2/2σ 2], φ is the separation between the flare and the magnetic footpoint of the
s/c, and σ is the width of the distribution. They found an average offset of φ0 =
−12◦ ± 3◦ (also see Lario et al. 2006). Cohen et al. (2014) studied the April 11, 2013,
large Fe-rich SEP event—the first of solar cycle 24—and noted that the high, but
longitudinally variable, Fe/O ratios and simultaneously low 3He/4He ratios were not
expected from either direct flare contributions or re-acceleration of flare suprathermals
(Fig. 57, Sect. 2.6).
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Following Rouillard et al. (2012), Lario et al. (2014) compared the estimated release
time of SEPs observed by multiple s/c during the 2013 April 11 event with the arrival
time of the CME-associated structures at the field line footpoints connecting each s/c
to the Sun. They concluded that the arrival of the EUV wave and CME-driven shock at
the STEREO B footpoint is consistent with the corresponding SPR time, but the EUV
wave never reached the field-line footpoints that connect near-Earth observers with
the Sun, and that the intense SEPs observed near Earth are most likely produced by
the higher altitude, western portion of the CME-driven shock that did not create EUV
signatures on the solar surface. Based on their results for the April 2013 SEP event,
and in contrast with the Rouillard et al. (2012) study, Lario et al. (2014) concluded that
the angular extents of EUV waves cannot serve as proxies for solar surface phenomena
that accelerate and inject SEPs over broad ranges of longitudes.

We note, however, that the Lario et al. (2014) conclusion is in stark contrast with
several other studies that explored links between the lateral or coronal expansions of
EUV waves and SEP proton events (e.g., Nitta et al. 2012; Park et al. 2013, 2015;
Miteva et al. 2014). In particular, Park et al. (2015) reported that the SEP peak fluxes
increased and the SEP spectral indices became harder with the EUV wave speeds,
while Gómez-Herrero et al. (2015) found a good correlation between the EUV wave
arrival times at the connecting magnetic footpoints and the proton onset times during
the November 3, 2011 multi-spacecraft SEP event. This indicates that higher SEP
fluxes, harder spectra, and direct injection of SEPs onto well-connected IMF lines
are associated with lateral expansions of CME-driven shocks in the low corona, and
may therefore be responsible for the rapid longitudinal spread as observed at vastly
distributed s/c in many SEP events.

The above conclusions are further supported by Gopalswamy et al. (2014), who
reported that only those fast CMEs that are magnetically connected to the strongest
part of the CME shock, i.e., the nose, are associated with GLEs near Earth, and
that conversely, GeV-proton-producing fast CMEs may not result in a GLE event
because of poor latitudinal connectivity between the nose and the Earth. Other studies
that also support the importance of magnetic connectivity have shown that key SEP
properties, such as enhancements in the Fe/O ratio and the Q/M-ordering of the heavy
ion abundances, depend on the proximity of active regions (AR) to the magnetic
footpoints that link the source regions to s/c near L1, which indicates that the nearby
ARs may occassionally supply suprathermal seed ions to the CME-driven shocks (Ko
et al. 2013). In contrast, Shen et al. (2006) and Kahler et al. (2014), found that SEP
proton intensities are not well correlated with any property (e.g., proximity, relative
location) of coronal holes, which implies that SEP events can be routinely produced in
fast solar wind source regions and that the associated CMEs need not be significantly
faster.

It is also worthwhile noting that many of the above studies also found that the onsets
and properties of relativistic electrons during SEP events were essentially uncorrelated
or independent of the lateral expansion times or properties of EUV waves, suggest-
ing that transport processes in interplanetary space, including cross-field diffusion,
may also play an important role in providing SEPs access to a broad range of helio-
longitudes (e.g., Miteva et al. 2014; Park et al. 2015). Other factors that may also play
a role in distributing SEP events longitudinally include the large-scale IMF configura-
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tion inside interplanetary CMEs or magnetic clouds (e.g., Kahler and Vourlidas 2013;
Kahler et al. 2014; Miteva et al. 2013), and the relative strength of the CME shock,
which depends on the local Alfvén speed, rather than the actual speed of the CME
(e.g., Shen et al. 2007; Gopalswamy et al. 2014).

Thus it appears that a combination of physical processes can disperse high-energy
charged particles in interplanetary space and cause their large longitudinal spread, both
from compact solar sources such as flares and large-scale phenomena such as CME-
driven shocks. These include lateral expansion of EUV waves, proximity of magnetic
footpoints to nearby ARs, solar rotation and transport—including pitch-angle scatter-
ing, cross-field diffusion, motion along the large-scale IMF and meandering magnetic
field lines, and adiabatic energy losses—near the Sun and in interplanetary space. It is
presently not known whether most of the transport-related effects take place near the
Sun, and if the particles simply diffuse outward from there, or whether these effects
occur during particles’ transit from the Sun to Earth. Transport across the nominal
Parker spiral magnetic field is almost certainly enhanced by the meandering of mag-
netic field lines associated with large-scale turbulence (e.g., Jokipii and Parker 1968;
Giacalone et al. 2000a), but it is not clear whether this is the dominant effect that is
responsible for the observed large longitudinal spread of SEPs. However, we note that,
recent numerical models that solve equations for energetic particle transport using rea-
sonable transport parameters find qualitatively good agreement with the observations,
even for a point-source impulsive release of particles at the Sun (Giacalone and Jokipii
2012). Thus it is particularly important to know the spatial and temporal extent of the
source region.

6.7 Flux dropouts

As we have just discussed, impulsive SEP events, quite surprisingly, can be dispersed
over a wide range in solar longitudes, which suggests that charged particles are trans-
ported across magnetic fields more easily than previously thought. However, many
impulsive SEP events exhibit features that suggest quite the opposite. Mazur et al.
(2000) first reported the phenomena now known as “dropout” events. During many
impulsive SEP events, detectors at 1 AU first see the highest energy particles associated
with the event simply because they are the fastest and reach the detector the soonest.
Lower energy particles arrive later. By analyzing the ACE/ULEIS data, Mazur et al.
(2000) were able to plot each particle detection as a function of time and revealed this
velocity dispersion in a unique way. The event shows up essentially as a backwards-
shaped comma feature (see Fig. 58). During a subset of these events, intermittent
depletions, or “flickering” on and off of the particle intensity, was also observed. This
can clearly be seen in the left panel of the figure. This flickering on and off of the SEP
intensity is known as SEP flux dropouts.

Dropouts are likely caused by the s/c passing through alternately filled and empty
“tubes” of particles (Giacalone et al. 2000a). The tubes in this scenario refer to mag-
netic lines of force to which charged particles adhere rather closely. The magnetic
connection between the s/c and source (impulsive flare) determines which field lines
are populated with particles and which are not. In fact, Mazur et al. (2000) related
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Fig. 58 Two SEP events displayed such that each dot in the top panels represents the detection of an ion by
ACE/ULEIS. SEP velocity dispersion, and the presence (left) or absence (right) of flux dropouts are easily
identified. Image reproduced with permission from Mazur et al. (2000), copyright by ESO

Fig. 59 Analysis of ACE/ULEIS observations of the edges of impulsive SEP dropout events. Left Superpo-
sition of dropout edges plotted in units of diffusion length, L (km), which take into account the convection
of flux tubes that passed the s/c with the observed solar wind speed. Right Superposition of six dropouts
observed during the impulsive SEP events that occurred on DOY 225 of 2000. Each panel shows three
different energies. Image reproduced with permission from Chollet and Giacalone (2011), copyright by
AAS

the timing of the dropouts to the characteristic scale of interplanetary magnetic-field
turbulence, showing that the observations are generally consistent with this picture.
This explanation requires the particles to be essentially trapped inside the flux tubes,
because if there were significant leakage off of the field lines, then the particles would
fill in the regions between them, smoothing out the particle flux to the point where
dropouts would not occur. Chollet and Giacalone (2011) analyzed the edges of the
intermittent drops in intensity by fitting the exponential in Eq. (2), and found that the
gradients are indeed very large. Here, L is the fitted exponential length of the intensity
drop, x is the distance from the edge of the dropout, and N (x) is the number of par-
ticles in a given energy bin. Results of this analysis are shown in Fig. 59. Clearly, the
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drop in intensity is independent of energy and occurs over a scale of the same order as
the particle gyro-radii, suggesting that the particles undergo very little scattering off
of the field lines during the time they are transported from the Sun to Earth.

N (x) = A exp(−x/L) (2)

We note that numerical simulations by Giacalone et al. (2000a) support the picture
of alternately filled and empty flux tubes described above. These simulations showed
that the dropouts occur when the spatial size of the source is of the same order,
or possibly smaller, than the typical scale size of solar supergranulation, which is
thought to be responsible for the large-scale field line meandering (e.g., Jokipii and
Parker 1968; Giacalone et al. 2000a; Giacalone and Jokipii 2004). The spatial size
of the supergranulation cells is ∼4 × 104 km (Giacalone et al. 2000a), while the
average scale size of a typical filled flux tube is ∼4.7 × 106 km or ∼0.03 AU (Mazur
et al. 2000). This implies that the dropout events likely originate from small localized
regions on the Sun. Other interpretations of the impulsive-SEP-dropout phenomena
invoke: (1) temporary trapping of particles within small-scale structures followed by
rapid magnetic-field line diffusion (e.g., Ruffolo et al. 2003; Chuychai et al. 2007); (2)
interplanetary turbulence that allows the magnetic-field lines to meander and spread out
independently of supergranulation (Ragot 2012; Laitinen et al. 2013b); (3) stochastic
nature of the time-varying magnetic connectivity to the source regions in the presence
of magnetic turbulence (Ruffolo and Matthaeus 2015).

Chollet et al. (2009) used the Giacalone et al. (2000a) interpretation, along with
in-situ observations of electrons and ions, to infer the source locations (longitude and
latitude in the solar atmosphere) of impulsive SEP events. They found several events
in which the <1300 eV suprathermal electrons and the <2 MeV/nucleon energetic
ions, i.e., species with similar speeds, exhibit simultaneous, dispersionless intensity
dropouts, which indicates that the corresponding source regions for these events must
overlap, at least partially. In the same survey, they also identified several other events
where the ion and electron dropouts were not coincident, which indicates that the
corresponding source locations for these events are distinct, consistent with X-ray and
γ -ray observations of solar flare events (e.g., Lin et al. 2003).

Indeed, the distinct electron and ion source locations may also be related to another
important unresolved issue—why do some impulsive electron events show little evi-
dence of dropouts? It is tempting to attribute this discrepancy to the fact that the flux
dropouts during isolated 3He-rich SEP events are observed when the energies of indi-
vidual ions are pulse-height-analyzed by instruments such as ACE/ULEIS, whereas the
energetic electron measurements are typically obtained by single parameter solid state
detector-based instruments such as ACE/EPAM, which measure the energy deposited
by electrons in broad energy bands (Gold et al. 1998). Upon closer examination, how-
ever, the ∼3-h sub-intervals used by Mazur et al. (2000) to characterize the ion count
rate flux dropouts shown in Fig. 58 should also be adequate for observing electron
flux dropouts, even accounting for the broader energy intervals.

The right panel of Fig. 58 shows a large SEP event. In this case no dropouts are
observed. There are two possible reasons for this: (1) there is so much scattering during
transport between the Sun and Earth that any dropouts have been smoothed out; and
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(2) the source of particles for this event had a particularly large spatial extent so that
the magnetic field lines through which the s/c moves all connect to the source. These
are discussed further in Giacalone et al. (2000a, b).

7 Theoretical concepts

Understanding the origins of SEPs is a considerable theoretical challenge. On the
one hand, there is a general consensus that acceleration at shock waves—presumably
driven by CMEs and also possibly in the vicinity of solar flares—is responsible for
producing the vast majority of particles seen in SEP events at Earth (cf. Reames
1999). However, there remain significant gaps in our understanding of how exactly
this happens. Moreover, it is typical to treat the acceleration of SEPs and their transport
away from the acceleration site as two separate problems, even though the basic
physics involved in acceleration and propagation are intrinsically linked. In fact, in
most acceleration mechanisms that have been proposed, charged particles must be
sufficiently confined in the acceleration region to achieve high energies; thus it is
important to understand the transport of particles in the vicinity of acceleration sites.

Much of the theoretical basis for our understanding of the physics of energetic-
charged particle transport1 in the solar corona and solar wind was first discussed in a
seminal paper by Parker (1965). Although Parker’s analysis made the approximation
that the distributions were quasi-isotropic and averaged over the magnetic gyro-phase
of the particles, this work laid the theoretical foundation for many of the numerical
and analytic approaches used today. The resulting well-known, cosmic-ray transport
equation—sometimes simply called the “Parker equation”—is extremely useful, even
though it does not apply in some important situations that we will discuss below. In
fact, this equation contains the basic physics of particle acceleration at shocks as well.
The equation, despite its relative simplicity, is not easy to solve except for very simple
geometries, which are not suitable for one-to-one comparisons with observations of
SEPs. The modern approach is to solve the equation—or extensions of it that include
pitch-angle information—using a computer.

Because of its importance to the theoretical understanding of SEPs, this review
will start with a discussion of basic SEP transport processes in the context of the
Parker equation. Then we will discuss possible SEP acceleration mechanisms, focusing
primarily on acceleration by CME-driven shock waves (for a similar discussion, see
Lee et al. 2012).

7.1 The physics of charged-particle transport

The forces that govern SEP transport are dominated by electric and magnetic fields in
space. The magnetic field, B, we are most interested in is that which originates at the
Sun and is carried outward by the nearly radially expanding solar wind moving with
velocity, U. Since SEPs move very fast compared to the typical characteristic wave

1 Note that, in this review, the term “transport” includes both acceleration and propagation.
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speeds of the plasma, it is commonly assumed that the electric field—in the frame
of reference fixed with respect to the Sun—is simply −U × B/c, which comes from
assuming there is no electric field in the frame moving with the plasma. Of course,
other electric fields can be included, depending on the particular problem of interest,
most notably near sites of magnetic reconnection. Other forces are usually neglected,
since it can be shown they are extremely small in most problems. Also, it is important
to note that SEPs and other high-energy charged particles suffer few particle-particle
collisions, because the space through which they move is extremely tenuous. In fact, it
is for this reason that SEPs exist, since such collisions would act rapidly to thermalize
the distribution.

SEPs can usually be treated as test particles, since their number density is small
compared to the typical number density of the solar wind. The energy density is also
typically a small fraction of the solar wind energy density. However, there may be
important situations where this is not true, and we must consider a self-consistent
treatment of the energetic particles and plasma dynamics that includes SEP effects
on the background plasma (e.g., Russell et al. 2013). Besides SEPs, there are likely
other phenomena where this is important, such as charged particles accelerated at the
solar wind termination shock (e.g., Decker et al. 2008; Florinski et al. 2009), and
cosmic rays accelerated by blast waves associated with supernovae (e.g., Lucek and
Bell 2000).

SEPs also offer insights into the physical processes involved in their acceleration
and transport in space. The equations of motion, in fact, can be cast in a form that is
similar to the radiative transfer equation describing the distribution of photons used
in remote-sensing observations of distant sources. Thus, SEPs can be used to infer
properties of remote regions of space by using in-situ observations combined with
solutions to the transport equations.

7.1.1 The diffusive approximation: the Parker transport equation

The Parker equation, which governs the spatial, temporal and momentum evolution
of a distribution of energetic charged particles, is given by Parker (1965):

∂ f

∂t
= ∂

∂xi

[
κi j

∂ f

∂x j

]
− Ui

∂ f

∂xi
+ p

3

∂Ui

∂xi

[
∂ f

∂p

]
+ Sources − Losses. (3)

where f is the phase-space distribution function of test particles as a function of the
magnitude of the particle momentum, p, position, xi , and time, t ; Ui is the bulk plasma
velocity; and κi j is the diffusion tensor. We note that the distribution function is related
to the differential intensity, dJ/dE, which is commonly used in representations of SEP
energy spectra, by dJ/dE = p2 f .

The Parker equation averages over the pitch and phase angles of charged particle
distributions—thus the equation is only strictly valid when the SEP distribution is
nearly isotropic. Spacecraft observations of SEP events usually reveal that the first-
arriving particles from large SEP events are not isotropic—distributions are beam-like
and aligned mostly along the magnetic field—so the Parker equation is not suitable to
describe these particles, and extensions of the equation must be considered. Nonethe-
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less, after a few hours, many SEP events are observed to be nearly isotropic. This
is especially true after the passage of shock waves associated with CMEs. Thus, the
Parker equation is appropriate to model the intensity and spectra of SEPs for later
times. We note that the assumption of isotropy is the only significant approximation
in the Parker equation; thus, provided that the observed distributions are isotropic, the
Parker equation is valid. This equation is widely used to model galactic cosmic-ray
transport in the heliosphere and interstellar space, as well as the propagation of SEPs
throughout the heliosphere. The Parker equation can also be used to solve for particle
acceleration at shocks, as we discuss further below. For an expanded discussion of the
Parker equation, see Giacalone (2010).

The Parker equation describes four main transport processes. These include: spatial
diffusion due to the scattering of particles by fluctuations in the IMF associated with
magnetic-field turbulence, advection with the solar wind, energy change, and drifts,
such as gradient and curvature drifts due to variations in the large-scale heliospheric
magnetic field. Energy change results from the particles moving against any electric
field that is present, i.e., for a particle of mass m and charge q moving with velocity
w and magnitude of momentum p, we have

d

dt

(
p2

2m

)
= qw · E. (4)

For the most commonly considered case—that of the motional electric field (E =
−U×B/c) for a nearly isotropic distribution of particles, it can be demonstrated (see
Jokipii 2012) that this reduces to the remarkably simple form:

dp

dt
= p

3
∇ · U, (5)

which is directly related to a term appearing in the Parker equation. This last form
does not explicitly contain the electric field which ultimately gives rise to the particles’
energy change, but any changes in energy resulting from momentum diffusion can be
added, if needed, although in many cases in the heliosphere this process is too slow to
be important.

The energy change term in the Parker equation is proportional to the divergence in
the bulk plasma flow velocity. The magnitude of this term can be quite large when the
plasma undergoes a compression, such as at a shock wave, where there is a significant
acceleration of the charged particles. Particle acceleration at shocks is discussed in
detail in Sect. 7.2. However, this term can also lead to energy loss. In fact, for a purely
radial solar wind moving with constant speed, Vw,∇ ·U = 2Vw/r , which is finite and
positive. This leads to the charged particles losing energy. This “adiabatic cooling”
occurs for any charged particle moving in a constant, radial solar wind. This effect is
especially important for SEPs that are accelerated close to the Sun, where adiabatic
cooling can be quite large. The cooling time scale at 1 AU, for a typical value of
Vw = 4 × 107 cm/s, is about 6.5 days.
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7.1.2 The spatial diffusion tensor

The diffusion tensor appearing in Parker’s Eq. (3), κi j , can be separated into compo-
nents across the magnetic field, κ⊥, and along it, κ‖, where each are scalar functions
of position and momentum. The diffusion tensor also includes particle drifts, since the
form of the transport equation used does not explicitly separate them, which is often
done in other treatments of cosmic-ray transport. The full tensor can be written (cf.
Jokipii 1971; Giacalone 1998) as:

κi j = κ⊥δi j − (κ⊥ − κ‖)Bi B j

B2 + εi jkκA
Bk

B
, (6)

where Bi is the magnetic field vector, δi j is the Kronecker delta function, and εi jk is
the Levi–Civita tensor. Determining κ‖ and κ⊥ has been the subject of considerable
study and is discussed further below.

The antisymmetric diffusion coefficient appearing in Eq. (6) can be explicitly related
to drifts caused by large-scale variations in the magnetic field, including those asso-
ciated with its gradients and curvature of lines of force. By inserting the diffusion
tensor into Eq. (3) and separating out the antisymmetric components, one obtains a
new term given by, Vd · ∇ f , where Vd is the drift velocity. It can be shown rigorously
that, by averaging the guiding-center drift velocity for any given charged particle (e.g.,
Northrop 1963) over an isotropic distribution, one obtains the following expression for
the drift velocity: Vd = (cmw2/q)∇ × (B/B2) (following Isenberg and Jokipii 1979,
where w is the magnitude of the particle velocity). This term, representing charged-
particle drifts, is commonly included in models of galactic cosmic-ray transport in
the solar system. Such drift effects give rise to the 22-year cosmic-ray modulation
cycle (Jokipii and Thomas 1981), but are often neglected in SEP transport. It can also
be shown that the antisymmetric diffusion coefficient for most problems of interest,
including GCRs, ACRs, and SEPs, can be written as κA = (1/3)wrg , where rg is the
ion Larmor radius (e.g., Giacalone 1999). The approximation only begins to break
down for extremely turbulent magnetic fields.

It is generally accepted that drifts have important effects on GCRs, but have negli-
gible effects on SEPs. Although it can be shown quantitatively that the magnitude of
the drift term compared to the diffusion term is indeed small for the majority of SEPs,
drifts can actually produce noticeable effects. For example, Jokipii (1970) showed
that gradient and curvature drifts lead to a different timing in the peak intensities of
electron and proton events, with ions lagging the electrons by up to several hours.
Drifts are also likely to be more important at higher SEP energies (e.g., Marsh et al.
2013; Dalla et al. 2013).

As was discussed in Sect. 2.8, Mason et al. (2006) found that, in many SEP events
observed at 1 AU, the time intensity profiles of O and Fe were much more simi-
lar to each other when compared at a “scaled” energy than at the same energy per
nucleon, especially during the period when the intensities rise to a maximum. In par-
ticular, the time-intensity profile of 546 keV/nucleon O was nearly identical to that
of 273 keV/nucleon Fe (and similarly for other energy pairs). These authors sug-
gested that, although the matching time-intensity profiles were for species having a
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different energy per nucleon, the diffusion coefficient associated with their transport
was the same. This can be understood in terms of the Parker equation if drifts are
neglected and the particle source is a power law with each species having the same
spectral exponent. For such a situation, the Parker equation is identical for the two
different species. This means that the time-intensity distribution will be the same.
This would change if drifts—which depend explicitly on speed, charge, and mass—
were important. These observations provide an important constraint on the underlying
acceleration mechanism and the transport process. They also clearly have important
implications for the observed variability of the Fe/O ratio. In a follow-up study, Mason
et al. (2012) employed a transport model that assumed, for simplicity, that all energetic
particles were released impulsively at the Sun. Their model results showed reason-
able agreement with the observations, but did not consider the effect of a continuous
acceleration at a propagating shock, which clearly must also be occurring in these
events.

7.1.3 Parallel diffusion

Charged particles execute a helical motion about a center of gyration, known as the
gyro-center. In situations where the field is relatively smooth compared to the radius
of this gyration, the particle moves along the field for many gyro-periods before it
ultimately scatters when it encounters a fluctuation whose scale is comparable to its
gyro-radius. The average distance between many such scatters is known as the parallel
mean free path, λ‖, and the average time between them is the scattering time, τ . It is
important that this not be confused with motion normal to the magnetic field, which
is more appropriately discussed in terms of the spatial diffusion coefficient, discussed
below, rather than a mean free path.

The cause of this scattering in the case of SEPs is fluctuations in the IMF. The IMF
power spectrum has an approximate power-law dependence on wavenumber between
the scales corresponding to the coherence scale measured to be about 0.01 AU for the
random component of the IMF (Jokipii and Coleman 1968) and solar wind plasma
turbulence (Jokipii and Hollweg 1970; Intriligator and Wolfe 1970), and the dissipation
scale at about the thermal ion gyro-radius, about 100 km or so (Leamon et al. 1999).
The spectral slope in this range, known as the inertial range, is −5/3, consistent with
Kolmogorov’s theory for turbulence in an incompressible fluid (Kolmogorov 1941).
The corresponding range of proton energies whose gyro-radii (in a 5 nT magnetic field)
are comparable with the range in scales from the coherence scale to the dissipation
scale is about 1 GeV to 1 keV, which covers the energy range of nearly all SEPs. Thus,
the gyro-radii of almost all SEPs are smaller than the coherence scale of interplanetary
magnetic turbulence and larger than the dissipation scale, meaning that the relevant
part of the turbulence spectrum is the inertial range. Since most of the magnetic-field
variance, or total power in the turbulent component of the magnetic field (typically
one-third that of the average component) is contained at large-scale fluctuations, the
field is relatively smooth on the scale of the gyro-radii of most SEPs, meaning the
mean free path is typically much larger than the gyro-radii. This may not be the case
near shocks where turbulence can be enhanced, most notably in the shocked plasma
behind the shock.
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SEP observations have been used extensively to examine charged-particle scattering
in the IMF (see reviews by Palmer 1982; Bieber et al. 1994). As SEPs cross the Earth,
a gradual rise to the maximum intensity is commonly observed, followed by an even
more gradual decline, often lasting several days. This is suggestive of a diffusive
process (e.g., Meyer et al. 1956). A common approach to determining the diffusion
coefficient is to fit SEP intensity and anisotropy profiles seen by s/c to solutions of the
Parker transport equation (or extensions of it that include variations in particle pitch
angle). Since the average magnetic field is the well-known Parker spiral, this approach
gives a reasonable estimate of κ‖. A compilation of many studies of SEP (and other)
events used to estimate κ‖ was performed by Palmer (1982). He found that the range of
values of the parallel mean free path, λ‖ (=3κ‖/w), is generally between 0.08–0.3 AU
for both electrons and protons covering a wide range of particle energies and rigidities.

The diffusion coefficients can also be determined from analytic theory using the
well-known quasi-linear approximation (e.g., Jokipii 1966; Roelof 1968). In this
approach, the equations of motion for charged particles moving in a turbulent magnetic
field are solved and (typically) averaged over an ensemble of magnetic field realiza-
tions and initial particle velocities. The result gives an estimate of the pitch-angle
diffusion coefficient, which can be related to the spatial diffusion coefficient (see, e.g.,
Jokipii 1966; Earl 1974; Luhmann 1976).

The observed (inferred) parallel mean free paths based on observations of SEPs are
generally much larger than the estimates from quasi-linear theory (e.g., Palmer 1982).
This topic was also reviewed recently by Giacalone (2013), who discussed other
situations of unusually long parallel mean free paths, including energetic particles in
the outer heliosphere.

One possible resolution of the discrepancy between theory and observations con-
cerns the structure of the magnetic-field fluctuations. In early analyses, the so-called
“slab” geometry was assumed, in which the wave vectors of the magnetic fluctuations
are aligned with the average magnetic field. Such a situation leads to efficient particle
scattering. It was noted by Bieber et al. (1994) that IMF fluctuations are likely to be
more complex than the simple slab geometry and must have a significant component
that does not readily scatter particles in pitch angle. Later, these authors concluded that
the random component of the IMF is dominated by fluctuations whose wave vectors
are normal to the average magnetic field, which do not efficiently scatter particles, with
a smaller fraction of the total power in slab modes. The ratio of power in perpendicular
modes to slab modes that best fits the observations is 80–20 % (Bieber et al. 1996).

7.1.4 Cross-field diffusion, including field-line random walk

Particle diffusion across the magnetic field is a topic of much significance to cosmic
rays and SEPs. For cosmic rays entering the solar system from the outside, for example,
the particles must cross the nearly transverse IMF to be observed at Earth. The topic
is also important for SEPs, especially in light of recent observations of individual SEP
events made by multiple s/c widely separated in solar longitude, as discussed in detail
in Sect. 6.

Unfortunately, cross-field diffusion is not as well understood as parallel diffusion.
There has been considerable work on this topic in the past decade or so, much of which
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has emphasized the importance of the dimensionality of the turbulence. Particularly,
in models that contain at least one ignorable coordinate, cross-field diffusion is artifi-
cially inhibited (Jokipii et al. 1993; Jones et al. 1998), so that realistic models that lead
to cross-field diffusion must be fully three dimensional (Giacalone and Jokipii 1994,
1999). Slab turbulence is a good example of a situation where there can be no cross-field
diffusion. As discussed above, this turbulence model assumes that all wave vectors
point in the direction of the mean magnetic field. In this situation, the components of
canonical momentum of any charged particle moving in this field in the two other direc-
tions is conserved. One consequence of this is that the particles cannot move by more
than one gyro-radius off the magnetic line of force from where they begin their motion.

Cross-field diffusion consists of two parts: (1) the motion of particles that move
along meandering magnetic fields, which leads to significant deviations in their posi-
tion relative to the mean magnetic field; and (2) the actual transfer of particles from
one magnetic field line to the next. In most situations, the former effect dominates.
This is because SEPs are of low enough energy that the field is relatively smooth on
scales of the same order as the SEP gyro-radii, so that particles tend to propagate
along the IMF lines more easily than across them. Motion across the local magnetic
field requires some form of a scattering event. This can happen when particles scatter
in pitch angle. When this happens, the particles may move normal to the local mag-
netic field by approximately one gyro-radius. Because the parallel mean free path is
much larger than the gyro-radius, in most situations the relatively infrequent scattering
events lead to inefficient cross-field transport. It is straightforward to show that the
cross-field diffusion coefficient for this case—which is similar to the result obtained
from hard-sphere scattering—is a small fraction of the parallel diffusion coefficient. In
contrast, the cross-field diffusion coefficient resulting from charged-particle motion in
meandering magnetic fields can be 2–5 % of the parallel diffusion coefficient, which is
much larger. In a recent paper, Costa et al. (2013) noted that the frequent occurrence of
a phenomenon known as “magnetic holes”, which are rather small pressure-balanced
regions of the solar wind where the magnetic field decreases significantly from the
background, can lead to a non-resonant process whereby particles are displaced normal
to the average magnetic field.

As mentioned previously, it is important to make a distinction between the spatial
diffusion tensor and the scattering mean free path, particularly with regard to charged-
particle motion along and across the magnetic field. Generally, it is correct to relate
the parallel diffusion coefficient and parallel mean free path of scattering by κ‖ =
(1/3)wλ‖, where λ‖ is the average distance that a particle travels along the magnetic
field before it is scattered, which can be thought of as the point where the particle is
reflected and its motion is reversed. Upon this reflection, the particle can also move
normal to the local magnetic field by a distance less than the gyro-radius, which
happens because its magnetic gyro-phase becomes randomized upon scattering. When
λ‖ is large compared to the gyro-radii of the particles, the particles move freely along
magnetic field lines with little or no motion across them. However, while not strictly
incorrect, relating κ⊥ to a perpendicular mean free path in the same way can lead to
some confusion. Often we associate the mean free path with the amount of scattering.
For the case of weak scattering, intuitively this means the particles move freely along
the field for long distances (compared to the particle gyro-radii) between scattering
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events. However, this is also associated with very little motion across the local magnetic
field. The confusion is that, even though the scattering is infrequent, if one chooses
to define it this way, the perpendicular mean free path would be very small, which is
counterintuitive.

To illustrate this, consider the special case of hard-sphere scattering in which par-
ticles move across the local magnetic field by one gyro-radius, rL (on average), each
time they scatter. The ratio of the perpendicular to parallel diffusion coefficients for
this case is given approximately by:

κ⊥
κ ‖ ≈

(
rL

λ‖

)2

. (7)

If we define λ⊥ = 3κ⊥/w, where w is the particle speed, then through simple sub-
stitution and manipulation, we find that for situations in which the parallel mean free
path largely exceeds the gyro-radius of the particles,

λ⊥
rL

≈ rL

λ‖
� 1. (8)

It makes little sense for the mean free path normal to the local magnetic field to be
much less than the gyro-radius of the particles. This is counterintuitive and can lead
to misconceptions about the diffusive nature of charged-particle transport across the
magnetic field.

For SEPs propagating in the IMF, the dominant form of cross-field diffusion can be
understood by tracking or following the meandering magnetic field lines. The origin
of the field-line meandering is large-scale magnetic-field turbulence. One possible
source of this is solar supergranulation (e.g., Jokipii and Parker 1968). Magnetic lines
of force in the heliosphere are rooted in the plasma that originates at the Sun. Plasma
motions transverse to the radial direction near the Sun, combined with the outward
advection with the solar wind, lead to large-scale meandering.

Let Usg(θ, φ) be the turbulent plasma motions associated with solar supergranula-
tion (e.g., Leighton 1964) occurring at the source surface, R0,2 where θ and φ are the
polar angle and longitude, respectively. We assume a constant, radial solar wind with
speed Uw for any heliocentric distance r>R0. By solving Faraday’s law, we find that
the resulting magnetic field can be expressed as:

Br (r) = Br (R0)(R0/r)2,

Bθ (r, θ, φ, t) = Br (R0)

(
R0

r

)
Uθ,sg(θ, φ, t ′)

Uw

,

Bφ(r, θ, φ, t) = Br (R0)

(
R0

r

)−R0Ω� sin θ + Uφ,sg(θ, φ, t ′)
Uw

, (9)

2 In this analysis, the complex nature of magnetic fields extending from the solar photosphere, where
supergranulation is seen to occur and the source surface where the SW is assumed to be fully accelerated
to the speed, Uw , is ignored. It is assumed that transverse random plasma motions at the photosphere also
occur at the source surface.
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Fig. 60 Interplanetary magnetic lines of force showing field-line meandering due to solar supergranulation,
as discussed in the text. The coordinate system chosen has Z pointing normal to the heliographic equatorial
plane. Tc is the time scale associated with supergranulation that was chosen for each case. The right columns
show the case of no transverse fluctuations at the source surface, and the result is the usual Parker spiral.
Image reproduced with permission from Giacalone (2001), copyright by AGU

where t ′ = t − (r − R0)/Uw, and Ω� is the solar rotation rate. Note that the Parker
spiral is recovered if Usg = 0.

Figure 60 shows a plot of magnetic-field lines of force associated with Eq. (9).
In the figure, Tc refers to the typical lifetime associated with supergranulation (for
details, see Giacalone 2001). To produce the left and middle panels, the rms speed
of transverse plasma motions at the Sun was taken to be 2 km/s, which is larger than
what is typically observed (0.6 km/s).

We can estimate the spreading of magnetic field lines between the Sun and 1 AU due
to field-line meandering associated with supergranulation. Any given magnetic line
of force is rooted at the source surface and executes a random walk across the source
surface sphere. The amount of spreading of field lines at 1 AU relative to the nominal
Parker spiral is equivalent to the spreading of footpoints, relative to an assumed initial
location, over the time it takes the solar wind to propagate from the source surface
to 1 AU. Since the motion of the footpoints is diffusive, the rms spread of field lines
in the longitudinal direction at the heliographic equator,

√〈Δφ2〉, can be determined
from

R2
0〈Δφ2〉
Δt

= 2κsg, (10)

where Δt = (1 AU − R0)/Uw is the diffusion coefficient associated with supergranu-
lation. Taking κsg ∼ 1900 km2/s as found by Giacalone and Jokipii (2004),3 we find

3 As was noted in the Giacalone and Jokipii (2004) paper, the value of κsg ∼ 1900 km2/s is larger than
that found previously by Smithson (1973), Schrijver and Martin (1990), and Wang et al. (2002), and more
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that at 1 AU, the rms spread of field lines relative to the Parker spiral is about 3◦,
assuming a solar wind speed of 400 km/s and that R0 is the solar radius R� (see also
Wang and Sheeley 1994). This is a fairly small effect, but it can be much larger during
more disturbed periods.

Borovsky (2008) has suggested that the interplanetary medium consists of many
large-scale magnetic flux tubes that separate different turbulent plasmas. The walls of
these flux tubes are magnetic discontinuities, and since the magnetic field is advected
outwards with the solar wind, a (nearly) stationary observer would detect many such
discontinuities, which is generally consistent with s/c observations. In this scenario,
the magnetic field lines cannot cross the boundaries; however, the magnetic flux tubes
can meander in space, and at least conceptually, the associated diffusion coefficient
is similar to that associated with the random walk of field lines discussed above.
Alternatively, the large number of discontinuities in the solar wind may be related to
the dissipation of magnetic turbulence at small scales (e.g., Vasquez et al. 2007; Greco
et al. 2008; Owens et al. 2011).

The influence of magnetic field-line random walk on the cross-field diffusion coef-
ficient has received considerable attention in the past (e.g., Jokipii 1966; Jokipii and
Parker 1968; Forman et al. 1974; Forman 1977; Bieber and Matthaeus 1997; Matthaeus
et al. 1995; Gray et al. 1996; Barghouty and Jokipii 1996). Numerical simulations of
cross-field diffusion in fully three-dimensional magnetic turbulence were first per-
formed by Giacalone and Jokipii (1994, 1999), who found, rather surprisingly, that
the simulation results did not agree with previous theories. In particular, the numer-
ical simulations showed the importance of field-line random walk in enhancing the
perpendicular diffusion coefficient to a value much larger than that obtained from
hard-sphere scattering (mentioned above), but the numerically simulated value was
considerably less than that predicted from previous theories, which included field-line
random walk. The reason for this is that an important effect was missing in the theory:
particles that move along meandering magnetic field lines and ultimately reverse their
direction when they are scattered tend to re-trace their paths backwards along the same
magnetic field lines. Quasi-linear theory (which includes field-line random walk), in
contrast, essentially assumes that upon scattering, the particle will move along a new
magnetic field line that is uncorrelated with the one along which the particle was pre-
viously moving. This is an oversimplification; in reality, the particles are not exactly
moving along field lines due to gradient and curvature drifts or due to small deviations
in the pitch angle and magnetic gyro-phase angle of the particles. The discrepancy
between the numerical simulations and previous theories of perpendicular diffusion
was addressed by Matthaeus et al. (2003), who suggested a new theory for particle
transport. It is known as the non-linear guiding center or NLGC theory. A different
assumption is used for the correlation of charged-particle trajectories relative to indi-
vidual magnetic lines of force compared with that used in the quasi-linear theory. For
the parameters chosen in that study, the NLGC theory agrees better with the numerical
simulations presented in the Matthaeus et al. (2003) paper.

recently Hathaway et al. (2010). The cause of this discrepancy is still not clear, but may be related to the
assumption of a divergence-free plasma velocity associated with solar supergranulation, as assumed by
Giacalone and Jokipii (2004).
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7.1.5 Beyond the diffusive approximation: focused transport

In cases where the anisotropies are large, other transport equations must be used (e.g.,
Roelof 1967; Ruffolo 1995; Isenberg 1997; Kóta 2000; Dröge et al. 2010; Zhang
et al. 2009). The resulting transport equation is similar to the Parker equation in that it
contains terms associated with advection with the plasma, energy change, drifts, and
the parallel spatial diffusion coefficient being associated with pitch-angle scattering,
but it also has terms that appear as a result of retaining the pitch-angle dependence of the
distribution function. In large shock-associated events, the earliest arriving particles
have large pitch-angle anisotropies. Thus, focused transport is particularly relevant
for studying the early time behavior of large SEP events, but it is also important in
studies that simultaneously solve for the generation of magnetic fluctuations due to the
streaming of energetic particles accelerated by the shock, as discussed in Sect. 7.2.4.
In addition, focused transport is important in situations in which charged particles
undergo very weak pitch-angle scattering in regions where the magnetic field diverges
strongly, e.g., near the Sun. In this case, the particles tend to be focused towards
alignment with the IMF as it weakens in the expanding solar wind. This adiabatic
focusing can influence the effective mean free path of the particles (cf. Kóta 2000; He
and Schlickeiser 2014).

Solutions of the focused transport equation with simultaneous solutions to the mag-
netohydrodynamic (MHD) equations for CMEs were first performed by Kóta et al.
(2005). Like the Parker equation discussed above, there are terms in the focused trans-
port equation involving the fluid velocity and magnetic field where the results of MHD
simulations of CMEs couple with particle transport. In the Kóta et al (ibid) study, the
transport equation was solved along individual magnetic lines of force that were out-
put from the MHD simulation of Manchester et al. (2005) at various times. Despite
this simplification, their results revealed a reasonable qualitative agreement with the
energy spectra and intensity of CME-related SEP events. This work has recently been
expanded upon in much larger simulations, solving for the transport along many field
lines at once (see Schwadron et al. 2010b; Kozarev et al. 2010, 2013; Dayeh et al.
2010).

7.1.6 Super-diffusion and sub-diffusion

The topic of super- and sub-diffusion has been discussed recently by a number of
authors (see Klafter et al. 1987; Kóta and Jokipii 2000; Perri and Zimbardo 2008,
2009; Giacalone 2013). It is important to clarify what is meant by these terms. Particle
diffusion arises from random changes in the velocity of charged particles as they
encounter turbulent magnetic fields; however, depending on the level of turbulence,
it takes time for an initially anisotropic distribution of particles to become isotropic.
Diffusion generally applies to time scales that are large compared to the scattering time
and length scales, which in turn, are large compared to the mean free path. However,
for SEPs these conditions are only marginally satisfied. For example, in some SEP
events, intermittent depletions or dropouts in the particle intensity are seen over very
short time scales (Mazur et al. 2000; Giacalone et al. 2000a). For these events, the
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scattering time of the particles is comparable to the time between their observation
and initial release into the heliosphere (Chollet and Giacalone 2011). Moreover, the
particles move along meandering magnetic lines of force, which meander on scales
much larger than the particle gyro-radii, but since the particles do not rapidly transfer
between the field lines, their early time behavior is not necessarily diffusive (e.g.,
Laitinen et al. 2013a). It is important to understand the early time behavior of diffusion,
especially as it applies to SEP transport.

For diffusion, the mean-square displacement of a particle relative to an initial ref-
erence point, 〈Δx2〉, increases linearly with time, t , i.e., 〈Δx2〉 ∝ t . Super-diffusion
occurs when this quantity increases more rapidly. For purely ballistic motion, this
would increase with t2. Sub-diffusion occurs when 〈Δx2〉 either increases at a rate
that is less than linear, or even decreases with time. Despite their names, neither of
these are diffusive processes.

We have primarily emphasized the concepts of sub- and super-diffusion as they
pertain to particle transport, but the same concepts can be applied to separation of
magnetic field lines of force in turbulent magnetic fields (e.g., Ragot 2006a, b, 2011).

This topic may be relevant for understanding some SEP observations and warrants
further study. For example, a common feature in SEP events associated with strong
interplanetary shocks is that the energetic-particle intensity does not rise exponentially
from the background to the peak intensity, which occurs at the shock (cf. Giacalone
2012). Moreover, Perri and Zimbardo (2008) showed that SEP events associated with
CIRs were consistent with super-diffusive behavior.

7.2 SEP acceleration at shocks

In this section we discuss general aspects of particle acceleration at shocks and empha-
size the basic physics of shock-acceleration mechanisms, which can be applied to
acceleration at CME-driven shocks—the primary focus of this review.

Before proceeding, it is important to make clear that we focus on the mechanisms
of particle acceleration by shocks because there is considerable, even overwhelming,
evidence that shocks are the most dominant contributors to the production of intense
SEP events. In fact, it could credibly be argued that most high-energy charged particles
observed in space, including galactic cosmic rays, have undergone acceleration at a
shock wave at some point in their past. The largest SEP events are observed to be
closely associated with strong CME-driven shocks. Galactic cosmic rays are widely
believed to be accelerated by supernovae blast waves. However, while particle acceler-
ation by shocks has been studied extensively since the early 1970s, recent observational
data have presented serious challenges to our understanding of the detailed physics.
While the association between enhanced intensities of energetic particles and inter-
planetary shocks is well documented in the literature, there is seldom a one-to-one
agreement between the predictions of standard theory described in Sect. 7.2.1 and the
s/c observations described earlier.

We begin with a simple derivation—the application of DSA theory at a planar shock.
To achieve better agreement with s/c observations often requires extending the theory
to more complicated shock geometries and including the evolution of the shock. This is
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especially true for SEPs accelerated by interplanetary shocks that undergo considerable
variation as they move from near the Sun into the inner heliosphere.

7.2.1 The standard theory of diffusive shock acceleration, DSA

Charged particles can be accelerated by collisionless shocks provided they can move
back and forth across the shock many times. They gain energy because the scattering
centers are embedded in converging plasma flows across the shock (Krymsky 1977;
Axford et al. 1978; Bell 1978; Blandford and Ostriker 1978). The electric field that ulti-
mately accelerates the particles is the usual convective electric fieldE = −(1/c)U×B,
where U is the plasma velocity vector and B is the magnetic field vector. For a
collection of charged particles moving in the vicinity of a shock, the evolution of
the phase-space distribution in space, momentum, and time, is given by Eq. (3),
which, as previously mentioned, assumes that the pitch-angle distribution is nearly
isotropic.

To obtain the so-called standard solution to DSA, one solves Eq. (3) for a shock-
like discontinuity. The solution is best obtained in a frame moving with the shock,
although it is important to realize that the momentum variable, p, in the Parker equation
is defined relative to the local plasma frame. In the shock frame, consider the situation
in which unshocked plasma moves opposite the unit normal to the shock front, towards
the shock, with a speed U1, and is then instantly decelerated to a speed U2, now moving
away from the shock in the downstream region. Suppose that we take the plasma motion
in the shock frame to be in the x direction, with the shock front located at x = 0. It
is also convenient, although not strictly necessary, to assume that the spatial diffusion
coefficient normal to the shock, κxx , does not depend on space.4 Solutions to Eq. (3)
are obtained separately for the upstream and downstream regions and are matched at
the shock with conservation relations. For the case of a steady one-dimensional planar
shock with particle injection at the shock at a momentum p0, it is readily shown that
the steady-state solution to Eq. (3) is given by:

f (x, p) = Ap−3ζ/(ζ−1) H(p − p0)

{
exp(U1x/κxx (p)) x ≤ 0

1 x > 0
(11)

where A is a normalization constant, ζ is the ratio of the downstream to upstream
plasma density, and H(p) is the Heaviside step function. The downstream momentum
spectrum depends only on the shock compression ratio.

DSA contains acceleration at both parallel and perpendicular shocks, and at shocks
with any shock-normal angle in between. In the case of acceleration at a shock other
than purely parallel, particles can gain energy by drifting along the shock front due
to the gradient in magnetic field across the shock, which is in the same direction
as the convective electric field. This drift acceleration is contained in DSA. In the
special case where there is no pitch-angle scattering, this form of acceleration is

4 Increased magnetic-field turbulence in the shocked plasma behind the shock, which is commonly
observed, will likely reduce the diffusion coefficient. This can easily be included in the analysis, but is
not necessary since the steady-state solution for f does not depend on the downstream diffusion coefficient.
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Fig. 61 Numerical simulations of trajectories of individual charged particles moving through kinematically
prescribed, turbulent electric and magnetic fields in the vicinity of two different shocks. The trajectories
are displayed with kinetic energy along the vertical axis and position, relative to the position of the shock,
which is fixed along the horizontal axis. In this frame, plasma flows from the upstream region at left to
the downstream region at right. The average upstream magnetic field for the shock on the left makes an
angle of 15◦ relative to the shock normal. This is a nearly parallel shock. The shock on the right has an
average upstream shock-normal angle of 60◦, making it a quasi-perpendicular shock. The particle on the
left was followed for 270 gyro-periods (using the average upstream magnetic field) and the one on the right
for 65 gyro-periods. See the text for more details. Image reproduced with permission from Decker (1988),
copyright by Kluwer, who adapted it from Decker and Vlahos (1986)

often called shock-drift acceleration (e.g., Armstrong et al. 1985). First-order Fermi
acceleration is another term that is often used when describing particle acceleration at
shocks. However, it is important to correct a common misconception: first-order Fermi
acceleration is not the same as DSA. First-order Fermi acceleration (e.g., Fermi 1949)
occurs when particles gain energy by scattering between converging magnetic clouds.
This is analogous to particle acceleration at shocks, but it lacks drift acceleration that
occurs directly at the shock. In fact, defined in this way, a strong case could be made that
first-order Fermi acceleration likely occurs nowhere, since real shocks move through
large-scale magnetic-field turbulence, which results in a non-zero angle between the
local magnetic field and unit shock normal. Thus, there are always places along the
shock where some drift acceleration occurs at the shock even when it is parallel on
average (cf. Giacalone 2005a).

Figure 61 shows simulations of the trajectories of two charged particles encoun-
tering two different shocks, one that is nearly parallel (left plot), and one that is
quasi-perpendicular (right plot). The particle on the left was followed more than four
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times longer than the particle on the right. The energy is measured relative to the shock
frame of reference, which leads to increases and decreases in the energy, depending
on whether it is moving along or opposite the motional electric field during its gyro-
motion. Note that for the case of a parallel shock, this particle gains most of its
shock-frame energy by scattering upstream of the shock. In fact, this particle loses
shock-frame energy when it scatters downstream of the shock because the scattering
centers, which are embedded in the plasma flow, are retreating from the shock. Even
in this case, episodes of energy gain directly at the shock due to drift acceleration arise
because the local magnetic field is oblique to the shock front, as discussed above. For
the particle on the right, most of the energy gain comes by drifting along the shock.
Although it is dangerous to draw far-reaching conclusions from inspection of individ-
ual particle trajectories, it is clear that acceleration at oblique shocks is faster than that
at quasi-parallel shocks. This is discussed further below.

7.2.2 Relating predictions of the standard theory to SEP observations

In Sect. 3.3, we discussed studies that compared DSA theory predictions to SEP obser-
vations, and here we extend that discussion to relate some of the theory’s most basic
predictions to general aspects of the observations. Perhaps the simplest of these is
that the intensity of energetic particles increases in the upstream region and reaches a
maximum at the shock, after which it remains constant in the downstream region. The
particles are accelerated directly at the shock, which is the source, and then advected
downstream of it, leading to the constant intensity. Thus, if DSA theory is correct, we
expect that particles that are locally accelerated by a propagating shock will peak at the
time of the shock passage. Indeed, energetic particles are commonly seen to be asso-
ciated with heliospheric shocks. In the 1960s, the idea was put forth that high-energy
charged-particle events seen at Earth were often associated with traveling interplane-
tary disturbances (Bryant et al. 1962; Rao et al. 1967). Spacecraft observations later
revealed that these SEPs were often seen peaking at the same time s/c were overtaken
by interplanetary shock waves (e.g., Armstrong et al. 1970; Sarris and Allen 1974;
Gosling et al. 1981; Scholer et al. 1983; Decker 1983). High-energy charged parti-
cles are also commonly seen to be associated with CIRs (Barnes and Simpson 1976;
McDonald et al. 1976). The classic exponential rise to the shock passage, followed by
an essentially constant intensity downstream, is occasionally seen (Kennel et al. 1986;
Giacalone 2012). For large SEP events, it is common to see an intensity enhancement
at the time the shock crosses 1 AU (cf. the review by Reames 1999).

However, the DSA theory prediction of an exponential rise of the particle intensity
to the shock, followed by a constant intensity downstream of it, is not commonly
observed, even for low-energy SEPs. It is almost never seen for the highest-energy
SEPs. On the one hand, as discussed in Sect. 3.1, part of the discrepancy can be
attributed to the strength of the shock—low-energy SEP intensities look much more
like the DSA prediction for the strongest interplanetary shocks. On the other hand, the
standard theory of DSA discussed above assumes a steady-state distribution, and this
is not the case for SEPs accelerated at IP shocks. The time dependence is critical and
is discussed further below. We note that, in propagating shocks the energetic particle
intensity must decay behind the shock, partly because of adiabatic cooling. Moreover,
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the IMF strength decreases with distance from the Sun, affecting the diffusion coeffi-
cient, which affects the rate at which particles are accelerated (see Sect. 7.2.4). Closer
to the Sun, the acceleration rate is much higher than it is at 1 AU. Thus, high-energy
particles can be accelerated close to the Sun by the shock; however, when the shock
reaches 1 AU, it is no longer accelerating particles (efficiently) at these energies. This
would lead to the particle intensity at very high energies peaking well before the shock,
which is commonly observed.

Another important prediction of DSA is that of a power-law dependence of the
differential intensity spectrum on energy. In many cases, SEPs exhibit power-law
energy or momentum spectra with an index that varies over a small range from some
low, initial energy to a higher energy where there is a transition to a roll-over or
to a different, usually steeper, power law (due to losses or finite acceleration time).
More than 40 years ago, Syrovatsky (1960) explicitly discussed this and pointed out
that it was an important clue about the mechanism or mechanisms responsible for
particle acceleration. This issue of a power-law spectrum remained unresolved until
the discovery of DSA. DSA gives a power-law index that depends only on shock
compression ratio [see Eq. (11)]. In practice, since the relevant shocks in the inner
heliosphere are usually at least moderately strong, the distribution function is expected
to be f (p) p−4 to −6. In the situation of finite time or spatial scales, the spectrum is the
asymptotic power law at lower momenta with a rollover above some higher energy.
This suggests that DSA is involved in the acceleration of many, if not most, of the
SEPs observed in space (also see Channok et al. 2005).

More recently, Fisk and Gloeckler (2006, 2008) reported that suprathermal particles
are not only power laws in velocity (or momentum), but that the index of the power
law is most often −5, and deviates within a range of 0.2–0.3 from this value (Decker
et al. 2008). This could be the result of shock acceleration, but there is as yet no widely
accepted explanation of this preferred power-law index.

It is also important to note that the calculated power-law spectra are hard enough
that the particles themselves can modify shocks. Although this is usually not seen,
it may occur at very fast CME shocks, such as the type recently reported by Russell
et al. (2013), and possibly at the solar wind termination shock as reported by Florinski
et al. (2009).

7.2.3 The rate of acceleration and maximum energy

Of particular importance to understanding the intensity and energy spectra of SEPs is
the rate of acceleration, which is directly related to the maximum energy achievable
by the mechanism of shock acceleration. We note that SEPs are commonly seen many
minutes to hours after the occurrence of the associated solar flare or CME, and since
it also takes time for the particles to reach 1 AU because of scattering in the IMF, the
acceleration must occur quickly.

Analytic time-dependent solutions to Eq. (3) can be obtained for the simple case of
a planar shock (e.g., Drury 1991). The result is that the energy spectra of accelerated
particles behind the shock is a power law from some initial injection momentum p0
up to a momentum pc where the spectrum rolls over to a steeper spectrum, which, for
the simplest case, is exponential. The time it takes a one-dimensional planar shock
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with a unit normal pointing in the −x direction to accelerate particles from p0 to pc

is given by (e.g., Drury 1983; Forman and Drury 1983):

τA = 3

U1 − U2

∫ p

p0

dp′

p′

(
κxx,1(p′)

Ux,1
+ κxx,2(p′)

Ux,2

)
, (12)

where the subscripts 1 and 2 refer to the upstream and downstream regions of the
shock, and Ux is the flow speed normal to the shock, in the shock frame of reference.
κxx is the particle diffusion coefficient defined in the direction normal to the shock
and can be related to the components along and across the magnetic field, κ‖ and κ⊥,
respectively, and the angle between the unit normal to the shock and average magnetic
field vector, θBn , by

κxx = κ‖ cos2 θBn + κ⊥ sin2 θBn . (13)

By inspection of Eq. (12), we see that the time it takes to accelerate particles is
directly related to the diffusion coefficient—the smaller the diffusion coefficient, the
smaller the acceleration time. Given a certain amount of time over which to accelerate
particles, a shorter acceleration time means that the maximum energy attainable is
larger. Thus, high energies are achieved when the diffusion coefficient is small. This,
of course, makes sense intuitively because the acceleration is most rapid when particles
are confined near the shock.

It is also interesting to note that acceleration time depends on diffusion coefficients
both upstream and downstream of the shock. The plasma behind shocks is well known
to be turbulent, which generally means that the downstream diffusion coefficient is
much smaller than the one upstream. Thus, the acceleration time is dominated by the
upstream diffusion coefficient.

We note from Eq. (13) that perpendicular shocks are more rapid accelerators of
particles than parallel shocks because, typically, κ⊥ � κ‖. Figure 62 shows the results
from test-particle orbit integrations that illustrate this point. The simulation results
(for details see Giacalone 2005a) shown in this figure are distributions downstream of
three strong shocks with the same parameters, except that the average shock-normal
angle is varied. All distributions are time dependent and obtained at the same time.
As the figure shows, when the shock is perpendicular, on average, the distribution
extends to the highest energies. The case shown is for relatively strong turbulence
with a variance that is equal to the mean field squared. The disparity between parallel
and perpendicular shocks is even larger if the turbulence is a bit weaker, as discussed
in Giacalone (2005a).

This is likely important for understanding acceleration of SEPs by CME-driven
shocks. As a CME-driven shock expands through the corona, there are places on
the shock where the propagation direction is normal to the magnetic field. In these
locations, the acceleration is most rapid and the highest energies are attained. Figure 63
illustrates a shock expanding in the solar corona and shows perpendicular locations at
the flanks where efficient particle acceleration to high energies may occur.

The concept of the maximum energy must be considered carefully. In time-
dependent diffusive shock acceleration for a planar shock, the spectrum of accelerated
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Fig. 62 Distributions of
charged particles averaged over
the downstream region of three
shocks that differ only in the the
angle between the average
upstream magnetic field and the
unit shock normal direction. The
distributions were obtained from
test-particle orbit integrations of
particles moving through
kinematically prescribed electric
and magnetic fields associated
with strong collisionless shocks.
Image reproduced with
permission from Giacalone
(2005a), copyright by AAS
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Fig. 63 Cartoon illustration of a
CME-driven shock expanding in
the solar corona (courtesy of
Allan Tylka)

particles has a power-law dependence on momentum, p, up to a critical momentum,
pc. The value of pc increases with time according to the rate of acceleration discussed
above. For p > pc the spectrum deviates from the power law and becomes expo-
nential. In the context of DSA theory, we use two terms interchangeably, maximum
energy and break-point energy, which refer to the point where the spectrum deviates
from a pure power law at p = pc. The true maximum energy cannot be easily deter-
mined because the process is diffusive, and there is a finite number of particles with
momenta well beyond pc. For heliospheric shocks, and likely others as well, the inten-
sity at momenta well beyond pc can also be influenced by the existence of background
high-energy particles, possibly produced by other phenomena not associated with the
shock. For example, fast CMEs are almost always associated with solar flares, which
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can also accelerate particles to high energies but are not (likely) associated with the
CME-driven shock seen at 1 AU.

It has long been thought that acceleration of particles to the highest energies must
involve Bohm diffusion5. For instance, the maximum energy of GCRs accelerated at
a supernova blast wave is obtained by setting the acceleration time given in Eq. (12)
to the lifetime of the blast wave, assuming a parallel shock and Bohm diffusion
(κ‖ = κBohm = (1/3)wrG , where rG is the gyro-radii of the particles), and solv-
ing for the maximum energy (e.g., Lagage and Cesarsky 1983). Similarly, models of
SEP acceleration at evolving CME shocks also assume Bohm diffusion (e.g., Zank
et al. 2000). It is important to note that Bohm diffusion is not the smallest diffusion
coefficient possible, since κ⊥ can be smaller than κBohm in many situations. This can
be shown by determining the ratio of the acceleration time to that for Bohm diffusion.
If we write κ⊥ = εκ‖, where ε � 1 and is independent of energy (e.g., Giacalone and
Jokipii 1999), we find

τA,⊥
τA,Bohm

= κ⊥
(1/3)wrG

= κ⊥
κA

= εη, (14)

where η = λ‖/rG , which can be shown to decrease with energy according to quasi-
linear theory. For reasonable parameters, ratio τA,⊥/τA,Bohm is smaller than unity for
the highest-energy particles. Thus, perpendicular shocks are faster accelerators of par-
ticles than what was previously thought to be the most extreme case of Bohm diffusion.
Moreover, Bohm diffusion results from particles moving in extremely turbulent mag-
netic fields that are seldom (if ever) observed in space, at least in-situ by s/c. Turbulence
is known to be enhanced downstream of shocks, but as noted above, the acceleration
time depends mostly on the diffusion coefficient upstream of the shock, and enhanced
waves are only occasionally observed upstream of interplanetary shocks. Thus, per-
pendicular shocks likely play a major role in the acceleration of SEPs at CME-driven
shocks.

It is complicated to determine the maximum energy attainable from CME-driven
shocks because of the various time scales involved. While the general characteristics of
the DSA mechanisms are still applicable, there is no reason to expect that predictions
of the simple steady-state theory should apply. For example, the shock itself changes
with time since it weakens as it propagates outward. The heliospheric magnetic field
also changes with distance from the Sun, causing the geometry of the shock and the
relevant particle diffusion coefficients to change with time. Factors such as the age and
speed of the shock and the strength of the local magnetic field largely determine the
maximum energy attainable. Figure 64 shows the maximum energy at a CME-driven
shock from a study by Li et al. (2005). It is interesting to note that the maximum
energy decreases with heliocentric distance, despite the fact that the shock is moving
outward and therefore older. The key reason for this decrease is that the stronger

5 Bohm diffusion, in the context of our discussion, is the limit in which the particle scattering frequency is
equal to the cyclotron frequency. This is also the limit in which the parallel mean free path is equal to the
particle gyro-radius.
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Fig. 64 The maximum momentum from diffusive shock acceleration at two different CME-driven shocks,
at the shock location, as a function of time as the shock moves outwards in the heliosphere. The curves are
for protons (solid), CNO ions (dashed), and Fe ions (dot-dashed). Image reproduced with permission from
Li et al. (2005), copyright by AGU

magnetic fields near the Sun lead to smaller spatial diffusion coefficients, which give
an increased acceleration rate, and hence a higher maximum energy.

We have not addressed the question of how particles are “injected” into the mecha-
nism of DSA. Some have argued that perpendicular shocks, while rapid accelerators,
do not inject and accelerate low-energy thermal particles efficiently. In fact, in most
situations applicable to the acceleration of SEPs at CME shocks—or most situations in
heliospheric and astrophysical shocks in general—injection of lower-energy particles
at perpendicular shocks may not be an issue. This is discussed in detail in Sect. 7.2.6.

7.2.4 Magnetic fluctuations excited by shock-accelerated ions

Shocks accelerate particles rapidly when the spatial diffusion coefficient is small; one
way this situation arises is when the acceleration occurs at perpendicular shocks. For
quasi-parallel shocks, however, the only way the acceleration can be rapid is when
the magnetic turbulence, upstream and downstream of the shock, is sufficiently high.
In fact, it has been known for some time that the energetic particles themselves can
excite magnetic fluctuations that also act to scatter them (e.g., Bell 1978; Lee 1983,
2005; Lee et al. 2012).

We note that the spatial diffusion coefficient appearing in the Parker equation is
related to the magnetic-field turbulence power spectrum. For instance, the parallel
diffusion coefficient is related to the pitch-angle diffusion coefficient, Dμμ, (e.g., Earl
1974; Luhmann 1976) by
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κ‖(v) = w2

4

∫ 1

0

(1 − μ2)2dμ

Dμμ

, (15)

where Dμμ can be obtained from quasi-linear theory (e.g., Jokipii 1966) and is related
to the magnetic-field power spectrum by

Dμμ = π

4
Ω0(1 − μ2)

kres P(kres)

B2
0

, (16)

where kres = |Ω0/wμ| is the resonant wave number, B0 is the average magnetic field
strength, and Ω0 is the gyro-frequency. Note that in this case of a parallel shock,
resonant scattering is the primary contributor to the spatial diffusion coefficient. Thus,
resonant scattering also determines the critical momentum, pc. The dependence of
scattering on the resonant wave mode gives rise to an explicit dependence of pc on
the gyro-frequency of the particles, which will determine the rigidity dependence of
the spectral rollover (e.g., Tylka et al. 1999; Ng et al. 1999).

The magnetic-field power spectrum, P , in Eq. (16) may be composed of: (1) a
part that is associated with the pre-existing magnetic-field turbulence generated in the
solar corona or solar wind independent of the shock, and (2) a part that is due to an
instability arising from the streaming of energetic particles relative to the background
magnetic field upstream of the shock. Particles stream relative to the shock because
of the gradient in their intensity from the background to a peak at the shock. As they
scatter, they can impart some of their energy to the waves, leading to wave growth
(e.g., Lee 1983, 2005; Gordon et al. 1999).

We note that variations in the elemental composition of large gradual SEP events
may be related to the presence of self-excited waves (this was also discussed in
Sects. 2.8, 2.9). For instance, Fig. 65 shows results of a model that includes SEP
transport of various heavy ion nuclei in the presence of proton-generated magnetic
fluctuations. Plotted are various elemental abundance ratios at a given energy-per-
nucleon, as indicated, as a function of time. In this case, an observer is located at
1.125 AU from the Sun, and the shock arrives at the observer just over 30 h from the
beginning of the simulated event, as indicated.

Consider the Fe/O ratio at 2.5 MeV/nucleon, for instance. The initially very large
value is caused by the fact that Fe, having a larger gyro-radius than O at the same
energy-per-nucleon, presumably has a larger mean free path away from the shock, in
the ambient turbulent magnetic field. Thus, Fe ions of a given energy-per-nucleon reach
the distant observer before O ions of the same energy-per-nucleon. Thus, the ratio of
Fe/O is high. As the shock moves outward and closer to the observer, the O intensity
increases, and the Fe/O ratio decreases. Then, a few hours after the start of the event, this
ratio begins to increase gradually for several hours. Ng et al. (1999) interpreted this as
resulting from the presence of proton-amplified magnetic fluctuations that presumably
become important a few hours after the onset of the event (also see review by Reames
1999). The physical picture is that O ions have a rigidity that is closer to that of the
protons, which excite the magnetic fluctuations, than the Fe ions. Hence, O is trapped
more efficiently near the shock than Fe, leading to fewer of the O ions reaching the
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Fig. 65 Elemental abundance ratios of various heavy ion nuclei associated with a large, gradual SEP event
as a function of time seen by an observer located 1.125 AU from the source of the event. Time is measured
relative to the start of the event. The shock arrival time is indicated by a vertical arrow. Image reproduced
with permission from Ng et al. (1999), copyright by AGU

observer. Thus, the Fe/O ratio will increase once the proton-amplified waves become
stronger. This lasts for several hours before the Fe/O ratio finally begins to decrease
again. The decrease happens only after the self-excited waves are no longer intense.

It is important to note that multiple time scales can affect the temporal behavior
of the heavy ion abundance ratios. These include: (1) the time scale of the growth
of the waves, (2) the acceleration time scale of the ions, (3) the shock propagation
time scale, and (4) the time scale associated with changes in the large-scale magnetic-
field orientation. The physical picture described above is certainly plausible, but many
issues remain open (see Sect. 8). One is that self-consistent kinetic simulations, such
as the well-known hybrid simulation, reveal that the upstream waves do not agree
well with theoretical predictions (e.g., Giacalone 2004). Moreover, the theory usually
only considers a direct exchange in energy between the energetic particles and the
magnetic fluctuations at the appropriate resonant wave mode (discussed above) but
ignores non-linear steepening of the waves. Such hybrid simulations reveal that the
upstream fluctuations contain a considerable, even dominant contribution from large-
amplitude magnetic structures that result from steepening of the smaller-amplitude
waves.

More recently, the equations that couple the growth of magnetic fluctuations and
particle acceleration at shocks have been included in many numerical models of SEP
acceleration at CME-driven shocks (e.g., Zank et al. 2000; Vainio 2003; Ng et al. 2003;
Vainio and Laitinen 2007; Ng and Reames 2008; Li et al. 2009; Verkhoglyadova et al.
2009). One key result is that acceleration to the highest energies occurs—even up
to and beyond a GeV—closer to the Sun, where the background magnetic field is
large, and the intensity of self-excited waves is greatest. As a CME-driven shock
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moves outward towards 1 AU, the background field becomes much weaker, the spatial
diffusion coefficient of the particles becomes much larger, the wave growth is not
as rapid, and the waves are less intense. Thus, the waves that were strongest near
the Sun get advected downstream of the shock. There should, however, remain some
enhancement in wave power observed at IP shocks at 1 AU in the portion of the
magnetic power spectrum with wave modes that are resonant with energetic particles
seen enhanced at 1 AU (typically an MeV or less). There are some examples where
these self-excited waves are seen upstream of shocks at 1 AU (e.g., see Fig. 39 of this
review, and also Zank et al. 2006; Bamert et al. 2004; Tsurutani et al. 1983), but such
observations are rare. Since such self-excited waves are rarely seen upstream of IP
shocks near Earth, one science objective for upcoming inner heliospheric missions—
Solar Probe Plus and Solar Orbiter—is to search for these types of waves as they get
closer to the Sun, and understand how they affect SEP acceleration and transport (see
Sect. 8).

7.2.5 The role of magnetic-field geometry

Because energetic charged particles move along the magnetic field more easily than
normal to it, the geometry and temporal evolution of magnetic field lines play a cru-
cial role in determining the resulting energetic particle spatial distribution, energy
spectra, anisotropy, and composition. The longer the time that magnetic lines of force
are connected to a region where efficient particle acceleration occurs, such as at a
shock, the larger the particle intensity is expected to be. As soon as the field line is no
longer connected to the shock, the particles on that field line are no longer accelerated.
Moreover, curved shocks, and/or curved magnetic lines of force, can also lead to mul-
tiple points of connection of the field lines and shock (e.g., McComas and Schwadron
2006; Guo et al. 2010; Kóta 2010). Thus, the overall geometry of the magnetic field and
shock plays an important role in determining the intensity at any given point along the
shock.

Figure 66, from the study of Guo et al. (2010), shows a good example of this (see
also Kóta 2010). These authors solved the Parker equation for energetic test particles
that are accelerated at a planar shock moving through a spatially dependent magnetic
field whose lines of force connect to the shock in two places, with the connection points
either moving towards or away from each other. The geometry is shown in Fig. 66a.
Figure 66b, c shows color-coded contours of the distribution function of accelerated
particles throughout the two-dimensional domain. Figure 66b is the distribution of
particles of a lower momentum than that of Fig. 66c. This is a steady-state calculation.
The intensity of the highest-energy particles in Fig. 66c is largest towards the sides of
the simulation domain, with a much lower intensity in the center. This is presumably
related to the interpretation given in the preceding paragraph. The shock itself may
be curved and produce similar effects. The acceleration of ACRs at a blunt-shaped
termination shock is another example where such shock curvature effects may be
important (e.g., McComas and Schwadron 2006; Kóta and Jokipii 2008; Schwadron
et al. 2008; Senanayake and Florinski 2013).

Curved shocks and or quasi-planar shocks moving through large-scale, spatially
varying magnetic fields can also have other important effects. For one, they affect the
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Fig. 66 Solutions to the Parker equation for particles accelerated at a shock moving through a spatially
dependent magnetic field whose lines of force connect to the shock in two places. aGeometry of the magnetic
field lines in the upstream and downstream regions. Color-coded representations of the distribution function
of particles of b low energy (3–5 times the injection momentum), and c high-energy particles (15–30 times
the injection momentum), where red is the most intense and black is the least intense. Image reproduced
with permission from Guo et al. (2010), copyright by AAS

observed pitch-angle anisotropies. For example, as an IP shock approaches a s/c, it
could enter a region where the magnetic field configuration connects the observer to
the shock at two places, thus allowing the s/c to observe bi-directional pitch angle
anisotropies (e.g., Decker 1990). In addition, variations in the geometry of interplane-
tary shocks as they evolve from the solar corona outward to 1 AU have also been used
to explain unusual SEP abundance variations (e.g., Tylka et al. 2005; Tylka and Lee
2006; Sandroos and Vainio 2007).

7.2.6 The “injection problem”

Much recent progress has been made on the issue of how low-energy ions, includ-
ing thermal particles, are accelerated by shocks, which is a process that cannot be
described by Eq. (3). In particular, in numerical simulations of quasi-parallel shocks,
a fraction of the incident plasma population is extracted out of the thermal pool by
reflection at the shock layer to become seed particles for further acceleration (Quest
1988; Scholer 1990; Giacalone et al. 1992). This has also been shown to be true for
quasi-perpendicular shocks, but requires sufficient pre-existing large-scale turbulence
(Giacalone 2005a, b).

DSA applies when the Parker equation can be used, which is when the anisotropy
of the particles is small. The anisotropy results from the particle intensity gradient
upstream of the shock. The vector anisotropy is defined as:
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δi = 3Si

w f
, (17)

where w is the particle speed measured in the local plasma frame, and Si is the vector
diffusive streaming flux. It is typically assumed that the particle speed is much larger
than the flow speed. However, here we are concerned with situations in which this may
not be the case, but for which the Parker equation may still be valid. Thus, we con-
sider the diffusive streaming of particles as measured in the local plasma frame given
by:

Si = −κi, j
∂ f

∂x j
, (18)

where κi, j is the spatial diffusion tensor. If we were concerned with the streaming flux
in the shock frame, we would also need to include another term associated with the
so-called Compton–Getting effect.

For a planar shock moving in the −x direction, the distribution function f is given
by Eq. (11). Using the expression for f upstream of the shock and substituting it
into Eqs. (17) and (18), and by writing the diffusion tensor in terms of components
along and across the magnetic field and the average shock normal angle (Eq. 13), the
magnitude of the anisotropy is given by:

|δi | = 3U1

w

[
1 + (κA/κ‖)2 sin2 θBn + (1 − κ⊥/κ‖)2 sin2 θBn cos2 θBn(

(κ⊥/κ‖) sin2 θBn + cos2 θBn
)2

]1/2

� 1,

(19)

where κA = wrg/3 is the antisymmetric component of the diffusion tensor. This
equation first appeared in Giacalone and Jokipii (1999) and is in a slightly different
form in Zank et al. (2006), who included the Compton–Getting term mentioned above.

It is instructive to examine the anisotropy in three extreme cases: weak scattering, a
purely parallel shock, and a purely perpendicular shock (for other cases, see Giacalone
and Jokipii 2005; Zank et al. 2006). For the case of very weak scattering for which
κ‖ � κ⊥, κA, we obtain

|δi |weak scattering = 3U1 sec θBn

w
� 1. (20)

Since U1 sec θBn is the speed at which the intersection point of any given magnetic
field line moves along the shock, this result can be understood intuitively. For the
anisotropy to be small, particles must have sufficient speed to stay ahead of the shock.
The resulting injection energy for this case (the w for which the anisotropy is small)
is a strong function of θBn .

For the case of a parallel shock, Eq. (19) reduces to

|δi |θBn→0 = 3U1

w
� 1. (21)

123



 3 Page 100 of 132 Living Rev. Sol. Phys.  (2016) 13:3 

Fig. 67 The distribution of
thermal protons in the
shock-heated plasma
downstream of two collisionless
shocks with similar Mach
number and shock-normal angle,
and initial thermal proton
temperature. For the distribution
shown in red, the upstream
plasma consisted only of the
thermal protons and electrons.
The distribution in black
includes thermal protons and
electrons, as well as
suprathermal pickup ions with
density ∼30 % that of the
thermal protons. These
distributions are discussed in
greater detail in Giacalone
(2005a) and Giacalone and
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And for a perpendicular shock, it reduces to

|δi |θBn→π/2 = 3U1

w

[
1 +

(
κA

κ⊥

)2]1/2

� 1. (22)

The expression for the parallel shock is relatively easy to understand, but inter-
preting the expression for the perpendicular shock case is not as clear. In situations
of rather weak turbulence (but not so weak that the weak-scattering limit applies),
one might expect that κA � κ⊥, for which simple manipulation of Eq. (22) leads
to the result that the Parker equation is applicable when κ⊥U1/rG � 1. This is the
same condition derived by Jokipii (1992). However, for stronger turbulence in which
the variance is comparable to the mean, κ⊥ can exceed � κA. When this happens, a
perpendicular shock has the same injection velocity as a parallel shock. Physically,
this corresponds to the case where field-line meandering is sufficiently large that the
motion of low-energy particles normal to the shock is enhanced enough that they can
participate in DSA. As noted above, hybrid simulations of perpendicular shocks that
include large-scale magnetic turbulence have revealed that even thermal plasma can
be efficiently accelerated at a perpendicular shock, which provides justification of the
analytic result we have derived.

As stated earlier, many studies have shown that the source of SEPs seems to be
pre-existing suprathermal ions and not thermal solar wind. This suggests a possible
link between the upstream distribution and that of the accelerated particles. Figure 67
shows an example of the importance of the nature of the upstream distribution on the
acceleration efficiency of low-energy protons. Each case shows the incidences of the
distributions of initially thermal solar wind protons on two different shocks, but with
similar parameters. The distributions were obtained from simulations presented in
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two studies published separately (Giacalone 2005a; Giacalone and Decker 2010). The
shocks in each case were of relatively high Mach number, and both were perpendicu-
lar shocks. The main difference between the two cases is that for the black-histogram
distribution, the plasma incident on the shock contained only thermal protons and
electrons and no pre-existing suprathermal particles, whereas for the red-histogram
distribution, in addition to thermal protons and electrons, the incident plasma contained
a significant number of freshly ionized pickup ions. In the latter case, the addition of
the pickup ions, which are a suprathermal population, contained enough of the incident
energy flux that the shock did not require thermal protons to be accelerated to provide
the necessary shock dissipation (cf. Leroy et al. 1981; Winske 1985), i.e., specularly
reflected ions were not necessary for this case. The result is that when pickup ions were
present in sufficient numbers, the acceleration efficiency of thermal solar wind was
significantly reduced, compared to the case where there were no pickup ions present.
This likely has consequences for the observed compositional variations seen in SEPs.

In a recent study, Neergaard-Parker and Zank (2012) estimated the injection energy
for a number of observed quasi-parallel interplanetary shocks. Assuming that the dif-
fusive approximation was valid, they first theoretically determined the distribution of
energetic particles behind the shock based on an assumed distribution upstream of
the shock. The upstream distribution was based on the observed plasma temperature
and density. They then compared the observed energy spectra at higher energies with
their analytic forms of the downstream distribution to determine the injection energy.
They found values ranging from 1 to 3 keV, which is consistent with the theoreti-
cal expectations discussed above. They recently extended their analysis to observed
quasi-perpendicular shocks (Neergaard-Parker et al. 2014). Other recent studies have
emphasized the importance of self-excited waves (as discussed in Sect. 7.2.4) on the
acceleration of low-energy and/or thermal ions at shocks (e.g., Battarbee et al. 2013),
as well as certain aspects of the shock micro-physics such as the cross-shock electric
field (e.g., Zuo et al. 2013).

7.2.7 The effect of pre-existing large-scale turbulence

It is well known that the solar wind and IMF are turbulent. The level of turbulence
varies, but often the variance in the fluctuations of quantities such as the magnetic
field strength, plasma density, and plasma velocity are observed to be comparable to
the means in those quantities. Thus, the shocks that accelerate particles cannot be
considered to exist in isolation, and the effects of turbulence must be considered. It is
now apparent that shocks are significantly affected by this pre-existing turbulence. For
example, by combining observations from multiple s/c, Neugebauer and Giacalone
(2005) showed that the fronts of interplanetary shocks are not planar, but instead are
warped or rippled with a typical local radius of curvature comparable to the coher-
ence scale of IMF turbulence (Jokipii and Coleman 1968; Matthaeus et al. 1986). It
is likely that turbulence caused this rippling in the shock fronts. This can be clearly
seen in numerical simulations of shocks moving through pre-existing turbulence (e.g.,
Giacalone 2005b; Giacalone and Neugebauer 2008; Giacalone and Jokipii 2007).
The shock-surface rippling and pre-existing large-scale turbulence likely have signifi-
cant affects on the observed time-intensity profiles of energetic particles (Neugebauer
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et al. 2006) as well as on their energy distributions (Giacalone and Neugebauer 2008).
Indeed, Giacalone and Neugebauer (2008) used MHD simulations of shocks mov-
ing through large-scale turbulence, combined with solutions to the Parker equation
describing the acceleration of particles at the shock, and showed that the resulting
energy spectrum was essentially independent of location along the shock, despite the
fact that the jump in plasma density across the shock varied along the shock face
because of turbulence effects. One consequence of this is that observations of a single
IP shock made by several s/c are likely to see similar energetic-particle energy spectra.
The Giacalone and Neugebauer study showed three IP shocks that support this notion.

We also note that, in general, the power spectrum of magnetic fluctuations associated
with pre-existing turbulence is directly related to the diffusion coefficients, as discussed
in above in Sect. 7.1. Moreover, the diffusion coefficients are directly related to both the
acceleration rate and injection efficiency, as discussed in Sect. 7.2. Therefore, the level
of turbulence has a significant effect on both the rate and effiency of the acceleration. As
one example, as a shjock moves through a plasma, it generates magnetic fluctuations
which can lead to enhanced turbulence in the dostream plasma, behind the shock.
If a second shock moves through this enhanced turbulence, it will likely accelerate
particles faster, and more efficiently.

7.2.8 Acceleration at multiple shocks

During periods of high solar activity, shock waves from the Sun can occur at a fre-
quency ranging from a few hours to a few days. During much of solar maximum, the
Sun emits as many as 5 or more CMEs per day (Gopalswamy et al. 2007; Olmedo et al.
2008; Robbrecht and Berghmans 2004), a significantly higher number and frequency
than during solar minimum. Simple models that treat CME-driven shocks in isolation
are thus unlikely to be applicable to the vastly more turbulent conditions of solar max-
imum. Moreover, some of the largest SEP events observed, including one during the
late October–early November 2003 period (Mewaldt et al. 2005a), as well as a large
event seen in the summer of 2012 by STEREO A (Russell et al. 2013), were preceded
by at least one other shock in somewhat close proximity to the one associated with
the main SEP event.

DSA theory has been applied to particle acceleration by multiple shocks by Melrose
and Pope (1993) and Schneider (1993). Their analyses considered that the shocks are
identical and that the accelerated particles from one shock are injected into the next
shock in the sequence. The result is that the spectrum downstream of each successive
shock is flatter than the preceding one, but does not become harder than f ∝ p−3

(also see Sect. 2.5).
The effect of multiple shocks on particle acceleration could be better understood

by using more realistic parameters for the shocks. Observations of very large events,
as mentioned above, suggest quite strongly that acceleration at multiple shocks is
important. In addition to the fact that energetic particles may encounter more than one
shock, other consequences may also be just as important for producing high particle
intensities at a shock that moves through plasma heated by a preceding shock. For
example, since shocks are known to produce plasma and magnetic-field turbulence,
the second shock will likely encounter higher magnetic-field turbulence variance,
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which efficiently traps particles near the second shock. This will lead to a more rapid
acceleration at the shock and a higher maximum energy. Moreover, the hot plasma
will contain more seed particles available for acceleration. A twin-CME model for
producing GLE events, which includes these effects, was recently proposed by Li
et al. (2012) and discussed in Sect. 2.5.

7.2.9 Particle acceleration at gradual plasma compressions

Any compression of the plasma, including a shock, may lead to particle acceleration.
In the purely diffusive limit, for which the Parker equation (3) applies, the acceleration
depends on the divergence of the plasma velocity. Thus, shock-like particle energiza-
tion processes can occur even if the plasma gradually compresses over a scale larger
than the thickness of a shock. In fact, the resulting distribution of charged particles
undergoing compression acceleration is the same as that for shock acceleration in the
limit

Δc<
1

2

ΔU

U
r, (23)

where Δc is the thickness of the compressed plasma, U is the flow speed relative to the
Sun, ΔU is the change in U across the compression, and r is the heliocentric distance
to the compression.

Non-shock, gradual plasma compressions are known to exist in the heliosphere,
most notably in association with CIRs. Giacalone et al. (2002) explicitly discussed the
acceleration of particles at plasma compressions associated with CIRs, finding that
particles can be accelerated locally at the compressions. While CIRs are usually bound
by forward and reverse shocks at large distances from the Sun, the shocks are not often
observed at 1 AU, suggesting that the plasma compresses more gradually there. Some
recent observations of energetic particles associated with CIR compression regions
are consistent with local acceleration of charged particles in the vicinity of the grad-
ual plasma compression, rather than with remote acceleration at the forward/reverse
shocks, followed by subsequent transport to the observer as suggested by Fisk and
Lee (1980).

For the case of a gradual compression associated with a CIR at 1 AU, using typical
values of U = 800 km/s (fast solar wind), ΔU = 400 km/s, and r = 1 AU, we find
from Eq. (23) that Δc < 0.25 AU leads to the acceleration of particles in a manner
consistent with diffusive shock acceleration. If we assume that the compression itself
moves at, e.g., 400 km/s, the rise from slow to fast wind would occur over a timescale
of ∼24 h. For the CIRs studied by Mason et al. (2008), the observed time scale was on
the order of a few hours. Thus, such compressions are capable of accelerating particles
locally (also see Bučík et al. 2009; Ebert et al. 2012a, b).

Gradual plasma compressions can also exist near the Sun, or in the inner heliosphere,
in association with CMEs. These compressions may also accelerate SEPs, but as of the
time of writing this review we are unaware of any published studies documenting this
effect. One possible observational consequence of acceleration of SEPs at a gradual
plasma compression near the Sun would be the lack of an associated type II radio
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burst emission with the SEP event. According to Table 1 of Cane et al. (2010), there
are several SEP events with no associated type II bursts which might be interpreted
as evidence of acceleration at a plasma compression and not at a shock (Gopalswamy
et al. 2008).

In addition to acceleration at isolated plasma compressions, such as those associated
with CIRs, acceleration may also occur at random, stochastic plasma compressions
(e.g., Bykov 1982; Ptuskin 1988; Jokipii et al. 2003; Giacalone et al. 2005). This
has been suggested as an acceleration mechanism occurring in the solar wind (Fisk
and Gloeckler 2006, 2008) and heliosheath (Fisk and Gloeckler 2009) to explain the
observed suprathermal tails of energetic particles in these regions. In the context of the
Parker equation, we note that in the case of stochastic plasma compressions, the parti-
cles essentially undergo a random walk in the logarithm of the magnitude of the particle
momentum, leading to a high-energy tail in momentum. The mechanism is likely too
slow, and therefore not important, to overcome adiabatic cooling in the solar wind.

7.2.10 Acceleration of electrons

Energetic electrons are also commonly seen at shocks in the heliosphere. Because
of their small gyro-radii, it is unclear what traps them near the shock, since there is
little power in the turbulent IMF at these scales due to dissipation of turbulence below
the proton gyro-radius (e.g., Leamon et al. 1999). However, electrons move very fast,
and even mildly suprathermal electrons have speeds that are faster than most shocks.
Jokipii and Giacalone (2007) explicitly pointed out that fast-moving electrons closely
follow meandering magnetic field lines that intersect the shock, or any other plasma
compression, many times. Guo and Giacalone (2010) extended this analysis to include
the microphysics of the shock. Moreover, ripples in the shock front may also lead to
similar effects (e.g., Burgess 2006).

Electrons are known to be efficiently accelerated in solar flares (Lin et al. 2003).
While the mechanisms of particle acceleration in flares are not well understood, mag-
netic reconnection is certainly involved, and even shocks may play a critical role. Guo
and Giacalone (2012) performed simulations of electron acceleration at a solar-flare
termination shock that is thought to exist below (the sunward side of) the x-line of a
magnetic reconnection event where the outflowing plasma exhaust encounters strong
magnetic fields closer to the Sun. They found that the acceleration of electrons was
extremely efficient. Moreover, Li et al. (2013) showed that the physical thickness
of the shock—being of the order of the thermal ion gyro-radii, which is much larger
than that of suprathermal electrons—can affect the resulting shock-accelerated energy
spectrum and may even explain the observed spectral features.

7.3 Other possible SEP acceleration mechanisms

This review has focused mostly on large gradual SEP events, and it is widely known that
these events are most commonly associated with CME-driven shock waves. Therefore,
our theoretical review has focused mostly on the mechanism of particle acceleration
at shocks. However, other mechanisms have been proposed to explain SEPs, most
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of which relate to the acceleration of ions and electrons in solar flares. Of course,
shock acceleration may also be a dominant mechanism in flares, since shocks are
thought to exist in the solar-flare environment. It is instructive to mention some other
mechanisms here, though there are no observations that convincingly show direct
evidence for particle acceleration in interplanetary space associated with any of these
mechanisms. In fact, although magnetic reconnection has been observed directly in
the solar wind (Gosling et al. 2005b), no reports of associated energetic particles exist
(Gosling et al. 2005a).

7.3.1 Swann’s mechanism

One of the earliest acceleration mechanisms to be discussed was that proposed by
Swann (1933), who showed that a magnetic field that increased with time, like that
associated with a sunspot when it appears on the Sun, has an induced electric field that
can accelerate particles. Swann’s model for electron acceleration in sunspots assumed
that the magnetic field extended radially outward from the solar photosphere and the
induced electric field was normal, so that the electrons gained energy as they gyrated
around the magnetic field. For a 1000 gauss magnetic field, typical of fields in large
sunspots, electrons could reach energies of about 10 GeV in as little as 1 s. However,
this model did not explain what would happen when the field eventually decreased,
nor did it address the issue of how the electrons escaped. In both cases, the field
experienced by a particle gets weaker, and the particle would lose much of the energy
that it had previously gained.

This mechanism has recently been applied to acceleration of SEPs in solar flares
through their interaction with collapsing magnetic traps (cf. the review by Grady et al.
2012). This is similar to the physics of particle acceleration within collapsing magnetic
islands associated with magnetic reconnection, discussed below.

7.3.2 Second-order Fermi acceleration

Fermi (1949) later proposed a similar mechanism to that of Swann’s, but included
the effect of particle scattering by magnetic fluctuations. This mechanism is currently
known as second-order Fermi acceleration. As a charged particle is scattered by a
fluctuating magnetic field, it either gains or loses energy, depending on whether the
scattering center is moving towards or away from the particle. In the frame of reference
moving with the magnetic fluctuations, there is no associated electric field, and the
particle’s kinetic energy is conserved during the scattering process. But, in the inertial
frame, the particle’s kinetic energy will change. Fermi noted that there are statistically
more head-on collisions, leading to a gain in the particle’s kinetic energy, compared
to those in which the particle must catch up to the fluctuations and lose energy upon
scattering. Thus, there is a net increase in the kinetic energy of the particles.

The process is diffusive in the magnitude of particle momentum. Thus, second-order
Fermi acceleration can be included in the transport equation discussed in Sect. 7.1
by adding a term representing momentum diffusion, and introducing the momentum
diffusion coefficient Dpp given by:
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1

p2

∂

∂p

(
p2 Dpp

∂ f

∂p

)
− f

τloss
= 0, (24)

where τloss is the timescale associated with the loss of particles from the system.
The usual assumption in second-order Fermi acceleration is that Dpp ≈ (vA/w)2

p2/τscat, where vA is the Alfvén speed, w is the particle speed, and τscat is the scattering
time.

We consider a relatively simple situation to illustrate a key point concerning the
importance of this mechanism in the acceleration of SEPs. Although this is an unlikely
situation, suppose that both τscat and τloss are independent of momentum. In this sim-
ple case, Eq. (24) yields a solution having a power-law dependence of f on p. The
resulting power-law index can be shown to depend on τloss, τscat, and vA. These can
all vary considerably depending on the application, leading to a significant variation
in the power-law spectral index from one event to the next. As noted above, power-law
distributions are indeed common in SEP events, but the spectral index typically varies
by less than a factor of 2. For this reason, Syrovatsky (1960) noted that this mech-
anism cannot explain the observed power-law distributions of energetic particles. In
addition, solutions to the momentum diffusion equation above do not necessarily yield
a power law when more reasonable forms for the scattering and loss time scales are
included.

Second-order Fermi acceleration can be made more general by considering types of
magnetic fluctuations other than those considered by Fermi. For instance, resonant sto-
chastic acceleration considers particle acceleration by various types of plasma waves
and relies on a specific resonance condition associated with the frequency and wave-
length of a specific type of wave and the momentum of the particle. Dpp in Eq. (24) is
determined through the resonance condition appropriate to a particular plasma wave
type. In the case of solar flares, a common approach is to assume that large magnetic
loops in the lower solar corona contain hot, turbulent plasma consisting of various
plasma waves. The transport equation is solved by assuming the appropriate form of
Dpp (and, possibly other terms involving the pitch-angle cosine μ, such as Dpμ, etc., if
the distribution also depends on μ, e.g., Petrosian and Liu 2004; Miller 2000; Emslie
et al. 2004). This mechanism is thought to be responsible for the large enhancement
of 3He relative to 4He seen in energetic particles associated with impulsive solar flares
(Fisk 1978).

7.3.3 Acceleration in magnetic islands associated with reconnection

Another statistical acceleration mechanism associated with magnetic reconnection in
solar flares involves the interaction of charged particles with magnetic “islands” that
exist between layers of current that separate oppositely directed magnetic fields (e.g.,
Drake et al. 2006; Oka et al. 2010). Numerical simulations of an individual current layer
of width, L , reveal that multiple islands of closed magnetic field structures are created
during the onset of magnetic reconnection. These islands can grow to L . Islands can
also contract, and this leads to particle acceleration as particles move along the closed
magnetic fields whose lengths decrease as the islands contract, leading to an increase
in the ion’s parallel kinetic energy. The energy gained by moving within a single
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magnetic island is relatively small; thus, to get significant energy gain, the particles
must undergo acceleration within many contracting islands. Power-law energy spectra
may result if the acceleration is also balanced by losses from the system.

7.3.4 Acceleration in random plasma compressions

Another statistical mechanism is described by Fisk and Gloeckler (2006, 2008) to
explain the commonly observed f ∼ p−5 spectrum discussed in Sect. 5. This mech-
anism involves the acceleration of particles by random compressions of the plasma.
Note that in the Parker transport equation, energy change results from a divergence
in the plasma velocity vector. Thus, any compression of the plasma, and not just a
shock, can accelerate particles. In fact, Giacalone et al. (2002) showed that, when the
fast solar wind overtakes the slow SW at a CIR, a shock does not form instantly, and
yet particles can be accelerated by the gradual compression of the plasma between the
two different types of solar wind. This can be generalized to random compressions, as
discussed by Giacalone et al. (2005) and is also similar to the mechanism discussed
by Fisk and Gloeckler (2006, 2008). However, quantitative analyses involving these
mechanisms only explain the shape of the resulting energy spectrum, and do not make
any specific predictions about the time-intensity variations of the energetic particles.
Since shocks are also capable of producing the observed power-law spectra, and ener-
getic particles are known to be enhanced at shock fronts and not necessarily in the
turbulence behind them, most attention has been focused on the mechanisms of shock
acceleration. Furthermore, since these other mechanisms are unlikely to play a major
role in SEP acceleration, they have received little attention.

7.3.5 Acceleration in direct electric fields associated with reconnection

In addition to statistical mechanisms, direct electric fields associated with magnetic
reconnection may also accelerate particles. In the standard model of magnetic recon-
nection, an electric field exists near the magnetic null, or X point, which points normal
to the external magnetic field. This electric field may accelerate particles (e.g., Litvi-
nenko 1996) in such a way as to produce a power law, depending on how close to the
X point the particles get. The highest energy particles are the ones that are closest to
the X point. Litvinenko (2006) found that SEPs with energies of a few hundred MeV
can be achieved by acceleration within a three-dimensional fan-model for magnetic
reconnection, using typical parameters near the Sun.

This mechanism is conceptually straightforward in a steady-state, two-dimensional
solar-flare model. However, recent work on magnetic reconnection has emphasized
its complexity. Many models reveal the existence of magnetic islands and small-scale
plasma turbulence. Three-dimensional magnetic reconnection is likely quite different
from the two-dimensional picture in the standard model. It is not clear whether direct
electric fields play a major role in the acceleration of energetic particles in solar flares.
And, as noted, there is no evidence for particle acceleration at magnetic reconnection
events seen in the solar wind (Gosling et al. 2005a).
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8 Key open questions and future missions

While recent modeling and observations have substantially improved our understand-
ing of the origin, acceleration, and transport mechanisms that govern the behavior of
SEPs observed at 1 AU, many puzzles remain unsolved. This occurs primarily because
testing, discriminating, and refining SEP acceleration models using 1 AU data alone
is difficult due to mixing from different sources and smearing during transport (see
Sect. 2.8). Helios data demonstrated the clear advantages of venturing closer to the
Sun to investigate SEP processes near their origin (see Fig. 68). Figure 68 provides a
powerful example of the need for inner heliospheric observations. Here the Helios 1
s/c located at ∼0.4 AU detected at least five separate impulsive-like injections of elec-
trons and He ions, while IMP 8 at 1 AU observed dramatically different time-intensity
profiles. This indicates that scattering and diffusion during transport between 0.4 AU
to Earth orbit smeared out the time profiles at 1 AU, thereby registering a single particle
event rather than >5, as seen at Helios 1.

Important unanswered questions regarding SEP events observed at 1 AU are:

1. What causes the large event-to-event variations in key SEP properties such as
peak intensity, maximum energy, temporal and spectral profiles, event-integrated
fluences, etc.? In particular, we need to quantify the relative contributions of seed
populations, co-temporal flares, jets, and CME shocks to large gradual SEP events.
We also need to determine whether, and under what conditions, the associated
flares contribute high-energy particles directly or in the form of suprathermal seed

Fig. 68 Electron (e) and He (α) time profiles from Helios 1 (0.3 AU) and IMP 8 (1 AU) during five
SEP events in 1980. Magnetic connections to the flare site are indicated at upper right. Helios 1 observed
five separate injections, while IMP 8 observed only one. Future missions, SPP and SolO, will enable us
to separate the effects of transport by making key near-Sun measurements where SEP acceleration takes
place. Image adapted from Wibberenz and Cane (2006)
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populations to large SEP events. Finally, we need to identify the origins of the
seed populations and determine how their inherent temporal and spatial variations
affect SEP properties.

2. Do self-excited, proton-generated Alfvén waves exist and how do they affect SEP
properties such as spectral breaks and roll over energies? Specifically, we need
to understand the relative roles of ambient turbulence/waves and self-generated
waves in the trapping and escape of SEPs during acceleration and transport.

3. How does scattering during transport modify SEP spectra, abundances, and tem-
poral profiles? Here we need to quantify the roles of diffusion and scattering during
near-Sun acceleration and propagation through the inner heliosphere and link these
physical effects to SEP properties observed in the distant heliosphere, e.g., at 1 AU.

4. How do coronal and interplanetary magnetic field configurations affect the ener-
gization and escape of SEPs from their acceleration regions? To address this
question, we need to understand the structure and dynamics of coronal and inter-
planetary magnetic field topologies and the formation and evolution of CMEs and
their shocks, and how these are related to specific SEP properties.

5. Where are the highest energy SEP protons accelerated during GLEs? We need to
quantify the relative roles of flare-related magnetic reconnection-driven accel-
eration processes, and CME-shock associated DSA and other mechanisms.
Specifically, we need to determine the magnetic field geometry and the condi-
tions under which flare-accelerated SEPs can escape out into the interplanetary
medium and understand the complex coronal environments in which CMEs can
form shocks in the lower solar atmosphere below ∼4 RS .

To address Question 1, recent numerical simulations and analytical models have
incorporated particle acceleration at dynamically evolving IP shocks. While these are
highly promising (e.g., Li et al. 2003; Lee 2005), much work still needs to be done
to achieve closure between the theory and observations. One source of uncertainty is
the identity of the seed particles and their related effects. These include understanding
the exact manner in which particles are injected into the acceleration processes and
how their inherent variability affects the SEP properties. During the 1980s, it was
presumed that since CMEs propagate through the solar wind, their shocks would
accelerate the ambient solar wind material. In addition to the solar wind, prior SEP
events were also proposed as possible candidates for supplying the source populations
for IP shocks (e.g., Forman and Webb 1985; Tsurutani and Lin 1985; Tan et al. 1989).
However, instruments flown during that era lacked the sensitivity to measure small
compositional differences, and so the question of the origin of the seed particles for
CME shocks remained unanswered. Instruments on ACE, Wind, and Ulysses showed
that, in addition to the SW peak at low energies, particle fluences measured at 1 AU also
exhibited a continuous presence of an ST tail extending out to cosmic ray energies (e.g.,
Gloeckler 2003). In addition, contemporary instruments also provided compelling
evidence that seed particles for CME shocks originate from the ST tail rather than from
the more abundant solar wind peak (e.g., Desai et al. 2006a). However, the numerous
controversies (see Sect. 5) surrounding the origin of the ST tails themselves need
to be resolved. Venturing closer into the inner heliosphere and making simultaneous
measurements of the ST tail densities and the accelerated SEPs as functions of radial
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Fig. 69 Simulations of
proton-amplified Alfvén-wave
spectra during a large SEP event.
Accelerated ions resonate at
lower wave numbers (from right
to left), and once they pass the
peak, the acceleration efficiency
and slope of the spectrum
decrease. Solar Probe Plus and
Solar Orbiter will enable
measurements of such wave
spectra inside 0.5 AU in multiple
CME shock-associated events
and determine how they affect
SEP properties such as temporal
evolution of heavy ion
composition and spectral breaks
over a broad energy interval.
Image reproduced with
permission from Ng et al.
(2003), copyright by AAS

distance and solar activity cycle will provide definitive clues about the origin of the
ST tail material and help quantify the role of their variability in SEP events.

Regarding Question 2 above, we remark that, although DSA is thought to be the pri-
mary mechanism that accelerates particles at CME-driven shocks, several unresolved
issues continue to hamper the development of theoretical models of large gradual SEP
events. These include: (1) existence and effects of proton-amplified Alfvén waves near
quasi-parallel shocks, (2) conditions that affect the acceleration efficiencies of CME
shocks, and (3) roles played by shock geometry on the injection thresholds. According
to DSA models, proton-amplified Alfvén waves trap ions near quasi-parallel shocks,
greatly increasing acceleration efficiency (Lee 1983), and perhaps occasionally result-
ing in Q/M-dependent breaks in the heavy ion spectra between ∼1 and ∼30 MeV
(Mewaldt et al. 2005c; Cohen et al. 2005b; Li et al. 2009). While such waves are
difficult to observe near Earth and are seldom seen (e.g., Bamert et al. 2004), signifi-
cantly greater wave intensities are expected near the Sun (see Fig. 69), where sudden
decreases in wave intensities around wave numbers corresponding to the spectral
break-point rigidities, e.g., ∼0.005 MV−1 in Fig. 69, would provide decisive obser-
vational confirmation of the roles of diffusion and wave amplification in SEP events.

Similar breakthroughs can also be expected for Questions 3–5. Clearly then, the next
decade promises to revolutionize our understanding of SEP acceleration and transport
by exploration of the solar corona and inner heliosphere with state-of-the-art sensors
on board upcoming missions such as Solar Probe Plus, SPP (http://solarprobe.jhuapl.
edu; McComas et al. 2014) and Solar Orbiter, SolO (Müller et al. 2013). While Helios
provided SEP observations from unique vantage points, the particle instruments only
measured protons, alphas, and electrons in limited energy ranges, as shown in Fig. 68.
The inclusion of heavy ions and the extension to much higher and lower energy ranges
means that the two s/c probing the inner heliosphere will acquire a more comprehensive
SEP dataset than did the two Helios s/c. In particular, both SolO and SPP will make
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Table 3 Open questions, possible causes, and contributions from future inner heliospheric missions

Open questions Possibilities/effects SPP and SolO contributions

What causes event-to-event
variations in SEPs?

Seed populations, Twin
CMEs, shock properties,
flare contributions

Identify variations in seed
populations and determine how
they affect CME shock acceleration
efficiency and SEPs

Do self-excited
proton-generated Alfvén
waves exist, and how do
they affect SEPs?

Q/M-dependence of
low-energy spectral
flattening; radial and energy
dependence of peak
intensities

Study properties of events with
self-excited waves, and correlate
with associated increases in
streaming-limited peak intensities
and the possible lack of spectral
flattening

How does scattering during
transport modify SEPs?

Rigidity-dependent scattering
and associated variations or
direct flare contributions

Identify and quantify the
contributions of flares to large SEP
events as transport-related time
variations diminish

How do coronal and
interplanetary magnetic
field configurations affect
SEPs?

SEP acceleration and
transport in the presence of
CMEs, shocks, and other
large-scale structures in the
low corona and
interplanetary medium

Determine CME shock formation
and propagation, properties of
evolving CMEs, shocks, and other
large-scale coronal and IP
structures and their relationships
with ambient turbulence spectra
and SEP properties

Where are the highest energy
SEP protons accelerated?

CME shocks in the low
corona or flares

Use onset-time analyses to reduce
uncertainties and identify source
regions in individual SEP events

in-situ measurements of the solar wind plasma, fields, waves, and suprathermal and
energetic particles between ∼10 Rs and Earth orbit, simultaneously, with imaging
and spectroscopic observations of the SEP source regions on the Sun from multiple
vantage points. In tandem, these two historic missions with their unprecedented inner-
heliospheric perspectives will be combined with data from other missions to address
key questions regarding large SEP events. For instance, SEP-related goals of the SPP
mission will address the following:

– Origin: What are the seed populations and physical conditions necessary for ener-
getic particle acceleration?

– Acceleration: What are the roles of evolving shocks, reconnection, waves, and
turbulence in the acceleration of energetic particles?

– Transport: How are energetic particles released from their sources and transported
radially and across magnetic field lines from the corona to the heliosphere?

Table 3 summarizes the five key questions discussed above, lists possible physical
processes that could play important roles in causing these effects, and how SolO and
SPP observations will advance our current knowledge and understanding of SEPs.
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9 Concluding remarks

Studying SEP origins and acceleration continues to spark the interests of the Solar
and Heliospheric community. While significant progress has been achieved recently,
a complete physical understanding prevents us from developing reliable and accurate
predictive models. In the next decade, SPP and SolO promise to fill many of these
gaps, but they will also open up new questions and yield new discoveries that challenge
existing paradigms; only through simultaneous observations at strategically dispersed
locations can we achieve closure with theoretical and model predictions. Moreover,
as long as we are economically limited to a few in-situ observations of SEP events,
we will always lack the big picture that remote imaging can provide for other stud-
ies. For example, CME studies are substantially bolstered by tracking type II radio
bursts that provide evidence of coronal shocks, establishing the magnetic connection
between a particular s/c and the solar source region or surface, and then using global
models and imagery to understand the coronal conditions and magnetic field topology
at source locations. Consequently, during the 2019–2025 timeframe, when both SPP
and SolO are providing the much needed inner heliospheric observations, simultane-
ous near-Earth in-situ and remote sensing observations will provide the ground-truth
observations that are critical for closure with models and for ensuring maximum sci-
ence return from these missions.
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