On the Statistical Relationship between CME Speed and Soft X-ray Flux and Fluence of the Associated Flare

C. Salas-Matamoros ${ }^{1,2}$. K.-L. Klein ${ }^{1}$
(C) Springer ••••

Abstract

Both observation and theory reveal a close relationship between the kinematics of coronal mass ejections (CMEs) and the thermal energy release traced by the related soft X-ray (SXR) emission. The major problem of empirical studies of this relationship is the distortion of the CME speed by the projection effect in the coronagraphic measurements. We present a re-assessment of the statistical relationship between CME velocities and SXR parameters, using the SOHO/LASCO catalog and GOES whole Sun observations during the period 1996 to 2008. 49 events were identified where CMEs originated near the limb, at central meridian distances between 70° and 85°, and had a reliably identified SXR burst, the parameters of which - peak flux and fluence - could be determined with some confidence. We find similar correlations between the logarithms of CME speed and of SXR peak flux and fluence as several earlier studies, with correlation coefficients of 0.48 and 0.58 , respectively. Correlations are slightly improved over an unrestricted CME sample when only limb events are used. However, a broad scatter persists. We derive the parameters of the CME-SXR relationship and use them to predict ICME arrival times at Earth. We show that the CME speed inferred from SXR fluence measurements tends to perform better than SoHO/LASCO measurements in the prediction of ICME arrival times near 1 AU. The estimation of the CME speed from SXR observations can therefore make a valuable contribution to space weather predictions.

Keywords: Coronal mass ejections; Interplanetary coronal mass ejections; Flares; X-ray bursts

1. Introduction

Coronal mass ejections (CMEs) are expulsions of huge masses of plasma and magnetic field into the heliosphere. When intercepting the Earth, they can

[^0]trigger geomagnetic storms, i.e. major disturbances of the terrestrial magnetic field (Gold, 1962; Gonzalez and Tsurutani, 1987, Gosling, 1993; Zhang et al., 2007, Gopalswamy, 2010). CMEs are often associated with soft X-ray (SXR) bursts (Tandberg-Hanssen and Emslie, 1988), which are routinely observed by the Geosynchronous Operational Environmental Satellites (GOES) spacecraft. SXR bursts reveal the heating of plasma in a flaring active region. The mechanical energy release to CMEs and the thermal energy release are closely related in many models on the origin of large-scale instabilities in the corona (Forbes et al. 2006, and references therein). Observational studies confirm such a close relationship, when revealing that the acceleration phase of a CME is temporally associated with intense energy release during the rise of the associated SXR burst (Zhang et al., 2001, 2004, Maričić et al., 2007). Relationships between the speed or kinetic energy of CMEs on the one hand and the importance of the SXR burst, most often the peak flux, on the other have also been revealed by many statistical studies (Moon et al., 2003, Burkepile et al., 2004; Vršnak, Sudar, and Ruždjak, 2005, Maričić et al., 2007, Yashiro and Gopalswamy, 2009; Bein et al., 2012). Occasional negative reports (Aggarwal et al. 2008) and the broad scatter in the statistical relationship show, however, that the quantitative relationship between CMEs and SXR bursts is not simple.

The interest of clarifying the situation is twofold: on the one hand such statistical relationships show to which extent different manifestations of magnetic energy release in solar eruptions are related. On the other hand empirical relationships between different parameters of solar activity can assist space weather forecasting. This is especially interesting for Earth-directed CMEs whose velocity is not directly measurable by coronagraphs on the Sun-Earth line. Understanding how different quantities describing the output of eruptive solar activity are related is also essential if one wants to use correlation analyses to derive physical relationships with a third quantity, for instance the intensity of solar energetic particle events (see, e.g., Trottet et al., 2015).

A major source of uncertainty in statistical studies involving CME speed is the distortion of the measurement in coronagraphic images by projection effects. Moon et al. (2003), Burkepile et al. (2004) and Yashiro and Gopalswamy (2009) investigated the above correlations with event samples restricted to CMEs that originated near the solar limb, where projection effects are not expected to affect the CME speed. These authors suggested that the correlations are indeed improved. However, they did not consider the statistical uncertainties of the correlation coefficients. Yashiro and Gopalswamy (2009) also concluded that the CME speed is more strongly correlated with SXR fluence than with SXR peak flux, but again without addressing the uncertainties in their comparison.

In the present work we re-assess the correlation between CME speed and both SXR peak flux and SXR fluence, restricting ourselves to CMEs near the solar limb. The event selection based on CMEs between 1996 and 2008 from the LASCO CME catalog and the associated GOES SXR bursts is described in Section 2. In Section 3 the results of the statistical analysis are presented, and empirical relationships between CME speed and SXR parameters are derived. The empirical relationships are used in Section 4 in an attempt to predict the arrival times of interplanetary CMEs (ICMEs) at Earth. The results are
compared with predictions using CME measurements from SOHO/LASCO and with the observations of ICME arrival near 1 AU.

2. Methodology and Data Selection

The data set analyzed in this study consists of parameters of CMEs originating near the solar limb and of the associated SXR bursts. CME parameters (position angles, widths, heights and speeds) are provided in the catalog of CMEs ${ }^{1}$ observed by the Large Angle and Spectrometric Coronagraph experiment (LASCO; Brueckner et al., 1995) of the Solar and Heliospheric Observatory (SOHO), during the period from 1996 until 2008. Time histories of SXR flux measured by the GOES satellites in the $0.1-0.8 \mathrm{~nm}$ range were retrieved through the database at NASA/GSFC using the IDL routine goes.pro in the SolarSoft package.

2.1. Selection of Limb CMEs

Limb CMEs were selected in two steps. We first excluded events whose central position Angle (PA, measured counterclockwise from solar north) was within $\pm 60^{\circ}$ of the projected solar north and south, because such CMEs can only be associated with activity at relatively small central meridian distances. In order to obtain only CMEs with a well-defined direction of propagation, we delimited also the CME width between 60° and 120°, especially avoiding halo CMEs. We also excluded CMEs whose speed was $\leq 100 \mathrm{~km} \mathrm{~s}^{-1}$ in order to facilitate the flare association.

For the subsequent correlation studies, we checked the quality of the linear fits to the time-height trajectory and the representativity of the derived CME speed in the LASCO/CME catalog. We found some CMEs whose time-height diagram showed acceleration or deceleration phases in the LASCO field of view (FOV). We included those events where only few points at low altitudes were affected by this acceleration/deceleration, and the linear fit gave a satisfactory estimation of the final speed. In 11 events the acceleration/deceleration was pronounced in the LASCO/C2 FOV. In this case, we used the speed at a distance of 20 solar radii infered from the constant acceleration fit as approximation of the final CME speed.

2.2. Identification of the Associated Flares

For the final determination of the origin of CMEs, we identified those associated with flares close to the limb. As a compromise between proximity to the limb and a significant number of events, we focused on flares located, according to Solar Geophysical Dat $\left.\right|^{2}$, at central meridian distance between 70° and 85°. The events too close to the limb were excluded in order to avoid a partial occultation of the SXR emission. The CME-associated flares were searched in a first step

[^1]

Figure 1. Time profiles of three different SXR bursts: (a) a well-defined burst with a single peak, (b) a superposition of two different soft X-ray bursts and (c) a burst with a very complex time profile. Vertical black lines delimit the two hour window centered on the time when the extrapolated CME trajectory intersected the solar limb. The vertical red line marks the peak of the SXR burst associated with the CME.
within a fixed time interval with respect to the CME origin. The CME speed (see section 2.1) and the time and heliocentric distance when the CME was first detected were used to extrapolate its trajectory to the limb of the sun. An automated procedure was used to identify SXR bursts that peaked between an hour before and an hour after the instant when the backward extrapolated trajectory intersected the solar limb. This way we identified 77 CMEs associated with flares near the limbs; 44 occurred in the eastern and 33 in the western solar hemisphere.

The time profile of each SXR burst of this sample was studied in detail to identify cases when the CME-flare association found by the automated search was ambiguous. We discarded weak bursts, because they would not allow us to obtain reliable values of the fluence.

Three different types of time profiles were identified (see Figure 11: (a) a well-defined peak, (b) a burst with more than one peak, which may mean a superposition of different bursts, and (c) a very complex profile where no burst could be unambiguously associated with the CME. The events in the latter category were discarded. For the cases with several peaks, we verified the coordinates of the flare related to each peak in the time profile directly through the analysis of image sequences from SOHO/EIT 19.5 nm (Delaboudinière et al., 1995) or Yohkoh/SXT (Tsuneta et al. 1991). The events where images revealed flares in active regions within $\pm 70^{\circ}$ from the central meridian or at the opposite limb of the CME were eliminated, as well as events where several peaks were associated to the same active region without possibility to distinguish if one or several were actually associated with the CME. We also discarded cases when the CME reported in the catalog was not clearly recognizable in the LASCO daily movies. We eventually obtained a list of 49 events for which the correlation between CME speed and SXR peak flux and fluence could be studied. They are listed in Table 1. The fluence calculation will be discussed in Section 3 .

The CME speeds in the sample range from 154 to $1822 \mathrm{~km} \mathrm{~s}^{-1}$, with a median of $639 \mathrm{~km} \mathrm{~s}^{-1}$, the SXR peak fluxes from $6 \cdot 10^{-7}$ to $1.6 \cdot 10^{-3} \mathrm{~W} \mathrm{~m}^{-2}$, i.e. from GOES classes B6 to X16.

Table 1. Table of events: date (col. 1), time (2), heliocentric distance (3) of the first detection of the CME in the SoHO/LASCO field of view, speed in the plane of the sky (4), time when the linear backward extrapolation of the time-height trajectory intersected the solar limb (5); times of onset (6), peak (7), peak flux (8), start-to-peak fluence (9) of the SXR bursts, quality flag of the fluence determination (10).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(N\) \& \multicolumn{4}{|l|}{CME parameters} \& \multicolumn{5}{|l|}{SXR parameters} \\
\hline Date
(1) \& \& \begin{tabular}{l}
\[
\begin{aligned}
\& r\left(t_{0}\right) \\
\& {\left[R_{\odot}\right]}
\end{aligned}
\] \\
(3)
\end{tabular} \& \[
\begin{array}{r}
V_{\mathrm{CME}} \\
{\left[\mathrm{~km} \mathrm{~s}^{-1}\right]}
\end{array}
\] \& \begin{tabular}{l}
\(t_{\text {limb }}\) \\
(5)
\end{tabular} \& \(t_{0}\)

(6) \& | t_{p} |
| :--- |
| (7) | \& \[

$$
\begin{array}{r}
F \tag{9}\\
{\left[\mathrm{Wm}^{-2}\right]} \\
\left(\times 10^{5}\right)
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\Phi_{\mathrm{sp}} \\
{\left[\mathrm{Jm}^{-2}\right]} \\
\left(\times 10^{4}\right)
\end{array}
$$

\] \& \[

\mathrm{Qu}
\]

(10)

\hline \multicolumn{10}{|l|}{1996}

\hline 0712 \& 16:01 \& 5.1 \& 1085 \& 15:17 \& 14:59 \& 15:32 \& 0.49 \& 22.80 \& 2

\hline $$
\begin{aligned}
& 1997 \\
& 0630
\end{aligned}
$$ \& 00:30 \& 2.9 \& 346 \& 23:25 \& 23:35 \& 23:53 \& 0.11 \& 4.20 \& 1

\hline \multicolumn{10}{|l|}{1998}

\hline 0313 \& 21:30 \& 2.7 \& 409 \& 20:40 \& 20:51 \& 21:10 \& 0.56 \& 27.70 \& 1

\hline 0425 \& 15:11 \& 2.9 \& 349 \& 14:09 \& 14:02 \& 14:37 \& 0.36 \& 31.30 \& 1

\hline \multicolumn{10}{|l|}{1999}

\hline 0403 \& 23:47 \& 5.5 \& 923 \& 22:50 \& 22:50 \& 23:10 \& 4.46 \& 137.60 \& 1

\hline 0508 \& 14:50 \& 3.8 \& 641 \& 13:59 \& 14:21 \& 14:40 \& 4.87 \& 256.05 \& 1

\hline 0511 \& 22:26 \& 4.3 \& 735 \& 21:34 \& 21:25 \& 22:05 \& 0.40 \& 47.80 \& 2

\hline 0913 \& 17:31 \& 3.3 \& 444 \& 16:30 \& 17:17 \& 17:31 \& 0.13 \& 5.70 \& 2

\hline 1108 \& 07:26 \& 3.5 \& 154 \& 04:18 \& 05:55 \& 06:01 \& 0.53 \& 7.20 \& 1

\hline \multicolumn{10}{|l|}{2000}

\hline 0617 \& 03:28 \& 4.8 \& 857 \& 02:36 \& 02:19 \& 02:37 \& 0.38 \& 119.30 \& 1

\hline 0623 \& 14:54 \& 4.7 \& 847 \& 14:03 \& 14:18 \& 14:32 \& 3.22 \& 120.30 \& 1

\hline \multicolumn{10}{|l|}{2001}

\hline 0203 \& 00:30 \& 4.0 \& 639 \& 23:36 \& 23:47 \& 24:06 \& 2.45 \& 122.10 \& 1

\hline 0415 \& 14:06 \& 4.3 \& 1199 \& 13:34 \& 13:37 \& 13:50 \& 161.00 \& 2708.80 \& 1

\hline 0810 \& 02:06 \& 2.5 \& 376 \& 01:18 \& 01:27 \& 01:36 \& 0.75 \& 15.30 \& 1

\hline 1029 \& 08:26 \& 2.6 \& 617 \& 07:56 \& 08:00 \& 08:13 \& 1.08 \& 17.96 \& 1

\hline 1101 \& 14:30 \& 2.7 \& 1053 \& 14:11 \& 13:50 \& 15:01 \& 1.26 \& 341.20 \& 1

\hline 1229 \& 09:54 \& 2.6 \& 634 \& 09:25 \& 09:06 \& 09:45 \& 9.46 \& 316.50 \& 2

\hline \multicolumn{10}{|l|}{2002}

\hline 0313 \& 23:54 \& 3.6 \& 489 \& 22:53 \& 22:59 \& 23:36 \& 0.99 \& 90.90 \& 1

\hline 0404 \& 05:06 \& 2.8 \& 468 \& 04:22 \& 04:12 \& 04:40 \& 0.87 \& 56.00 \& 1

\hline 0705 \& 13:31 \& 2.4 \& 818 \& 13:10 \& 12:59 \& 13:26 \& 3.49 \& 124.50 \& 1

\hline 0803 \& 19:31 \& 5.2 \& 1150 \& 18:49 \& 19:00 \& 19:07 \& 11.80 \& 137.50 \& 1

\hline 0816 \& 06:06 \& 2.5 \& 1378 \& 05:53 \& 05:44 \& 06:12 \& 2.55 \& 193.00 \& 1

\hline 0822 \& 18:26 \& 3.0 \& 750 \& 17:54 \& 17:35 \& 18:02 \& 1.07 \& 97.00 \& 2

\hline 0823 \& 13:27 \& 2.4 \& 321 \& 12:38 \& 11:41 \& 12:00 \& 0.88 \& 34.70 \& 2

\hline 0829 \& 13:31 \& 2.5 \& 353 \& 12:42 \& 12:35 \& 12:52 \& 3.24 \& 75.70 \& 1

\hline 0908 \& 02:06 \& 2.5 \& 364 \& 01:18 \& 01:30 \& 01:43 \& 1.51 \& 34.00 \& 1

\hline 1016 \& 04:54 \& 2.8 \& 250 \& 03:30 \& 04:05 \& 04:23 \& 0.21 \& 08.70 \& 1

\hline \multicolumn{10}{|l|}{2003}

\hline 0409 \& 23:50 \& 3.3 \& 511 \& 22:58 \& 23:24 \& 23:29 \& 2.57 \& 21.40 \& 1

\hline 0425 \& 05:50 \& 2.9 \& 806 \& 05:22 \& 05:22 \& 05:40 \& 1.24 \& 62.75 \& 1

\hline 1023 \& 20:06 \& 2.6 \& 1136 \& 19:49 \& 19:50 \& 20:03 \& 11.20 \& 383.70 \& 1

\hline 1024 \& 02:54 \& 2.7 \& 1055 \& 02:35 \& 02:18 \& 02:55 \& 7.43 \& 864.00 \& 1

\hline 1103 \& 10:06 \& 2.5 \& 1420 \& 09:53 \& 09:44 \& 09:56 \& 43.50 \& 1404.40 \& 1

\hline
\end{tabular}

Table 1. Table of events (cont'd).

3. Correlation between CME Speed and SXR Peak Flux and Fluence

Based on the new filtered list of 49 events (25 at the eastern and 24 at the western limb), we related the speeds of the CMEs with parameters of the associated SXR bursts as observed by GOES in the 0.1-0.8 nm channel. Figure 2 displays the scatter plot of the CME speed vs the SXR peak flux on a double-logarithmic scale. We found a positive correlation of $r=0.48 \pm 0.12$ between the logarithms of the CME speed and of the SXR peak flux. Here and in the following the errors were calculated using a bootstrap method (Wall and Jenkins, 2012, ch. 6.6): the correlation coefficient was calculated repeatedly for a randomly selected sample of 49 out of the 49 observed data pairs, and the mean and standard deviation are quoted as the correlation coefficient and its statistical uncertainty.

Besides the peak flux we also considered the fluence. Two types of fluence were calculated in the $0.1-0.8 \mathrm{~nm}$ band for these events, namely start-to-peak fluence and total fluence. The background was determined as the average flux in a suitable time interval before the SXR burst. The start-to-peak fluence was calculated by integrating the background-subtracted flux from the start of the

Figure 2. The logarithmic plot of the speed of CMEs near the solar limb during the period 1996-2008 versus the SXR peak F of the associated flares. The straight line is the result of a least absolute deviation fit. The insert shows the correlation coefficient, the parameters of the straight line, and the number of events.

Figure 3. The logarithmic plot of the speed of CMEs near the solar limb during the period 1996-2008 versus the SXR start-to-peak fluence Φ_{sp} of the associated flares. See caption of Figure 2

SXR burst until its maximum, including possible small previous peaks that we considered as precursors. The existence of such previous peaks, and problems with background determination introduce uncertainties inside the fluence calculation. The quality flag in col. 10 of Table 1 is an assessment based on visible inspection. $\mathrm{Qu}=1$ means that the fluence is reliable, $\mathrm{Qu}=2$ labels less certain cases.

The total fluence is more difficult to calculate, because the end of the SXR burst is generally not well defined, and new events may be superposed on the decay of the burst of interest. Kahler, Sheeley, and Liggett (1989) defined the end of the burst as the time when the X-ray flux returns to the GOES C2 level, while Yashiro and Gopalswamy (2009) used the time when the soft X-ray flux decays to half of the peak value. We fitted the decay from the main peak by an exponential and calculated the fluence analytically until infinity. This avoids contamination by new SXR bursts during the decay phase as well as an arbitrary definition of the end time.

We obtained the same correlation between the CME speed and the SXR start-to-peak fluence and total fluence, $r=0.58 \pm 0.09$. The probability to obtain this or a higher correlation coefficient from an unrelated sample is $1.3 \cdot 10^{-5}$. The result is similar to those of Moon et al. (2002) and Yashiro and Gopalswamy (2009) who found correlations of 0.47 and 0.56 , respectively.

The relationship between the logarithms of the CME speed V_{CME} and of the peak flux F and fluence (start-to-peak fluence ϕ_{sp} and total fluence ϕ_{p}) of the associated SXR burst were inferred using linear fits minimizing least squares deviation and least absolute deviation. Differences between the resulting velocities amounted up to some tens of $\mathrm{km} \mathrm{s}^{-1}$ in extreme cases. Although these differences are small compared with the overall statistical uncertainty, we use in the following the result from the least absolute deviation fit, which is less sensitive to outliers. This leads to the following empirical relationships:

$$
\begin{equation*}
\log V_{\mathrm{CME}}=(0.20 \pm 0.08) \log F+(3.83 \pm 0.38) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\log V_{\mathrm{CME}}=(0.24 \pm 0.05) \log \phi_{\mathrm{sp}}+(3.36 \pm 0.12) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\log V_{\mathrm{CME}}=(0.22 \pm 0.05) \log \phi_{\mathrm{p}}+(3.21 \pm 0.10) \tag{3}
\end{equation*}
$$

These results are independent of whether we use all events or only those with quality flag 1.

Our analysis is simplified in several respects. We used a standard minimization technique that is in principle justified only when all the measurement uncertainties are in the dependent variable, here the CME speed, whereas the independent variable is supposed to be exactly known. This is of course not the case, and we would have to apply a more general technique, such as total least squares minimization. We checked this and found no significant difference with the results of the standard fits above.

A second problem is a bias in our statistics, due to our rejection of CMEs that were accompanied by weak or undetected SXR bursts. The fitted straight line would be expected to have a steeper slope if these events, which are located in the lower left corner of Figures 2 and 33 had been considered. We found indeed that the straight line steepened when we gradually extended the minimum fluence considered from $10^{-2} \mathrm{~J} \mathrm{~m}^{-2}$ to the lowest value detected, and it would likely steepen more than indicated by Equation 2 if weak SXR bursts were not hidden
in the background. The above relationships may hence overestimate the speeds of CMEs associated with weak SXR bursts and underestimate those of CMEs with intense SXR emission.

4. Application of the CME-SXR Relationship to ICME Propagation

In this section we test the relationship between CME speed and SXR fluence by applying it to the prediction of ICME arrival times at Earth.

The arrival of an ICME at Earth is one of the rare issues of space weather where the Sun leaves a substantial warning time. Yet the prediction of the arrival time is difficult: on the one hand the speeds of Earth-directed CMEs cannot be directly measured by a coronagraph on the Earth-Sun line. On the other hand the CME is not a rigid object, but changes during propagation in the interplanetary medium, where CMEs expand, change shape due to compression and reconnection, and are accelerated or decelerated. The relevant processes are reviewed, e.g., in Forbes et al. (2006) and Démoulin (2010). Detailed analyses using heliospheric imaging from STEREO were reported by Colaninno, Vourlidas, and Wu (2013) and Möstl et al. (2014); see also the review of Rouillard (2011).

Many attempts were undertaken in the literature to derive simple methods to forecast ICME arrival times at the Earth using CME observations at the Sun. These models must take account of the acceleration or deceleration of CMEs in the interplanetary medium (Gopalswamy et al., 2001, Schwenn et al., 2005, Vršnak et al., 2010).

Gopalswamy et al. (2001) proposed a simple analytical treatment of the interplanetary propagation, based on an empirical relationship between the acceleration, assumed constant out to a limiting heliocentric distance, and the radial front speed of the CME in the corona. We applied the empirical relationship from their Equation 4, which can be formulated as

$$
a\left[\mathrm{~m} \mathrm{~s}^{-2}\right]=-0.0054\left(V_{\mathrm{CME}}-406\left[\mathrm{~km} \mathrm{~s}^{-1}\right]\right)
$$

We suppose that the acceleration ceases either when the ICME attains the speed of $406 \mathrm{~km} \mathrm{~s}^{-1}$ or at the latest when it is at heliocentric distance 0.76 AU. This differs slightly from Gopalswamy et al. (2001) who considered that the acceleration or deceleration always continued out to 0.76 AU . For CME speeds below $800 \mathrm{~km} \mathrm{~s}^{-1}$ the travel times derived from the two methods differ by a few hours. We will refer to the model as empirical interplanetary propagation model in the following. We estimated the CME speed in the corona in two different ways: firstly, using the speed measurements from LASCO and secondly, using Equation 2 to infer the CME speed from the SXR fluence.

4.1. Results

We compared the predicted arrival time with observations at Wind and ACE for a list of selected ICMEs with well-observed arrival times at the spacecraft.
 empirical interplanetary propagation model．An asterisk $\left(*^{*}\right)$ in col． 1 indicates that the ICME arrival is uncertain．Suffix（f）in col Table 2．：Comparison of travel time of CMEs based on Wind and ACE measurements and based on inferred speeds using the

	9\％¢	$9865^{\circ} 0$	Zп： $\mathrm{SI}_{\text {I }}$	gz：gt mic st	988	ゅ¢：91［n¢ zL	08：90［n¢ 9 ¢	00： $20 \mathrm{~L}^{\mathrm{n}} \mathrm{C} 9 \mathrm{ST}$	97
（ヵさ：6I unc LI－0币：to unc 9t）0z：0z unc 9t	L201	L\＆ャ0．0	0¢：ZI	0さ： 50 unc 21	286	60 ¢t un¢ ャI	0\＆：zz unf 91	00：8z un¢ 9 9	9%
（g¢：zi xen et－if：00 xen zi）¢f：gt xen zi	68ZI	2LLOO	9t： 2 L	90：61 xen di	16t	¢¢：LI xen 0 Ot		（f）00：zz xent z I	ゅて
	889	0LLZ＇0	00：00	モて：8L ren	¢892	モて：00 xenk 2	－	08：ャ0 xen 6	¢z
	6 L\＆	z001．0	$87:$ ti	00：0z urf Lz	0zti	60：¢ ¢ upf 6 L			${ }^{\text {z }}$
	$\llcorner 86$	เъて0．0	z0：z\％	08：8L des 0 ¢	929	0¢：zz dәs 9	00：go des 0t	（J） $0 ¢: 80$ dos 0t	LZ
	062	8Lto 0	8 8 ¢0	$0 \mathrm{~S}: 2 \mathrm{~L}$ 8nv g	ZIL	68：90 ${ }^{\text {snv }}$ z	$00: 80{ }^{\text {8n }} \mathrm{V}$ g	（f） $00: \neq 0$ ¢nv g	$0{ }^{\text {a }}$
	zgit	0290＇0	99： 10		699	¡ъ：z0 qән ¢ ¢	08：90 qج， 8 ¢		61
	\＆St	Z100＊0	89：60	08：00 dd V L	899	08：01 ad \％\＆	00：zI fd f g	$\begin{gathered} 0 \varepsilon: z \mathrm{Id} \mathrm{dV} \text { g } \\ 0 \text { otoz } \end{gathered}$	81
	6801	LSE0．0	00：zz		でロI		00：00 ${ }^{\text {²¢ }}$ LI	00：00 دә⿺𠃊 4 L	21
	0091	\＆๖てz＇0	81： zo		tLLI				91
	8LIt	¢190\％	8z：91	08：00 Kent ct	6891	zt： 2 L Keju 8 L	00：90 Kene si	00：90 Kene si	gI
	8961	9089．0	z8：90	¢¢：¢0 urf ¢\％	z88	¢¢：90 urf 0z	00：6I uef tz	$\begin{aligned} & 00: 6 \mathrm{~L} \text { पeर } \mathrm{IZ} \\ & 900 \mathrm{z} \end{aligned}$	\dagger
	988	06500	LI：ZI		012		－	$\begin{gathered} 00: 8 \mathrm{I} \mathrm{In} \mathrm{C} z z \\ \mp 00 z \end{gathered}$	$\varepsilon \tau$
	8691	0\＆zz＇0	9t： 2 L	0t：90 70 ${ }^{\text {P\％}}$	LEGI	¢¢：LI 7009 ¢	－	$\begin{gathered} 0 \varepsilon: z 0{ }^{\circ} \mathrm{O} 8 \mathrm{Z} \\ \varepsilon 00 z \end{gathered}$	ZI
	∓ 02	\＆200\％ 0	64：91	¢¢：zz das 9	8t2I	¢¢：9t das g	00： 0_{0} des 8	$\begin{gathered} 00: \not 00 \text { dəS } 8 \\ \text { zooz } \end{gathered}$	II
	60t	0970．0	80：91	gz：IZ AON 9	0181	98：91 10 N п	－	00：ZI AON 9	01
	26It	8990 0	¢f：91		106	09：9L ${ }^{\text {ºO }} 6 \mathrm{~L}$	－	$\begin{gathered} 00: 0 z \not{ }^{70 \mathrm{O} \text { LZ }} \\ \text { L00z } \end{gathered}$	6
	ヵL¢	$8000 \cdot 0$	9\％： 2 I		z88	08：8I［ $\mathrm{In}^{\text {c }} 8 \mathrm{z}$			8
	ztL	L200＇0	0¢：z0	co：zo In¢ 6z	z\＆s	$08: 80$ In¢ gz	00： 81 In¢ 8 \％	$00:$ ¢L In¢ 8 \％	2
	919	0zoo 0	Lz：80	0ヵ：LI Un¢ ゅて	LLT	0t：60 un¢ 0 \％	00：80 un¢ ¢ \downarrow	（J）00： 20 unf \ddagger 亿	9
	Lest	zooz＇0	9z： 9 I	90：zz unf 8	8601	tg：gi unf 9	08：ZI unf 8	000 Z	（＊）${ }^{\text {g }}$
	608	z000\％ 0	ゅt： zo	00：8I ${ }^{\text {d }} \mathrm{V}$ V 2 I	z87			$\begin{gathered} 00: 6 \mathrm{I} \mathrm{xd} \mathrm{~V} 9 \mathrm{I} \\ 666 \mathrm{I} \end{gathered}$	\dagger
	6 ¢9	\＆ャ00\％	81：90	9z：8I un¢ ¢ $\mathrm{g}^{\text {c }}$	208	¢¢：so unf $\frac{\text { L } Z}{}$	00： 2 L un¢ \ddagger \％	$\begin{gathered} 00: 8 \mathrm{~L} \text { une } \ddagger Z \\ 866 \tau \end{gathered}$	ε
	998	¢000 0	gs：$\ddagger 0$	08：61 Kefu 9t	908	08：90 KeJt zi	－	08：0t Mene gi	z
	Z69	$9800{ }^{\circ}$	80：もI	00：8I IdV OI	0 08	LZ：もL adv L	－	$\underset{\angle 66 \mathrm{I}}{00: 60 \mathrm{~d} \mathrm{~d}} \mathrm{It}$	I

Figure 4. Representation of the predictions of arrival at the Earth with reference to the observed ICME arrival (0 on the ordinate). The vertical lines indicate the time interval between the shock arrival and the ICME arrival at the Wind spacecraft.

We used 26 ICMEs listed by Gopalswamy et al. (2001), in the online catalog of Richardson and Caņ ${ }^{3}$, and by Möstl et al. (2014).

The predicted arrival times were compared with the observed arrival of both the shock and the driver. The driver is considered to be the ICME. While the shock arrival at the spacecraft was usually well determined by a sudden increase of the temperature, density, and magnetic field intensity, the arrival of the ICME was often ambiguous and may depend on the parameter used to identify it. We employed one or a combination of the following: the start of a magnetic field enhancement, of a depression of proton temperature or the proton plasma beta, of a gradually decreasing high solar wind speed or of magnetic field rotation.

The $26 \mathrm{CME} / \mathrm{ICME}$ pairs displayed in Table 2 are those for which we could (i) confirm the onset time identified in the published lists to within one or two hours, (ii) clearly associate a SXR burst with the CME. ICMEs where such bursts could not be identified were discarded (e.g., ICMEs on 10 January and 10 February 1997).

The first column of Table 2 shows the event number followed by the times of ICME arrival identified from Wind and ACE measurements. In all cases but event 5 we used the ICME arrivals from Wind. In four cases (6, 20, 21, and 24) only the flank of the ICME passed over the spacecraft making the determination of the arrival time uncertain. These events are identified with a label " f " in Table 2 after the date. The next three columns summarize the CME data from the LASCO catalog and the predicted arrival time of the ICME at the Earth using the LASCO speed as input to the empirical interplanetary propagation model, and taking as reference the heliocentric distance and the time of the first

[^2]

Figure 5. Comparison of predicted ICME arrival at 1 AU with the observed onset of the shock and ICME at the Wind spacecraft. The predictions are compared with the observed arrival of the shock in histograms (a) and (c), and of the ICME in histograms (b) and (d). Histograms in the top row show the predictions using LASCO measurements, those in the bottom row predictions using the propagation speed inferred from SXR fluence.
detection of the CME by LASCO as given in the catalog. The last columns give the start time and start-to-peak fluence of the related SXR bursts, the CME speed inferred from the fluence and the arrival time of the ICMEs as calculated by the propagation model. The reference is the start time of the burst. Values whithin parentheses give the uncertainty interval of the expected ICME arrival due to the uncertainty of the coefficients of Equation 2.

A graphical comparison between the predicted and observed arrival times is given in Figure 4. The reference zero of the vertical axis is the time when the ICME, i.e. the driver, reached the Wind spacecraft. The vertical bars indicate the time interval between the arrival of the shock and the driver, that is, the size of the sheath region. The arrival time predicted using the LASCO CME speed is represented by an open square, the prediction using the propagation speed inferred from Equation 2 by a cross.

On average we observe that the arrival times predicted using the SXR parameters are closer to the observed arrival times than those predicted using LASCO measurements. Figure 5 gives another comparison between the two predictions of the ICME arrival time and the observations in panels (b) and (d). The comparison with the observed shock arrival time is given in panels (a) and (c). Predictions using the LASCO observations are shown in the top row, those based on the SXR fluence in the bottom row. The events are grouped into 12 h intervals with respect to the arrival of the ICME shock (a, c) and the driver (b, d). The first bar hence gives the number of events where the absolute value of
the delay between the predicted and observed arrival is greater or equal to 0 and less than 12 h , etc. The figure confirms the impression from Figure 4 that ICME travel times estimated from the SXR fluence tend to cluster more closely around the arrival times of both the shock and the driver than the travel times inferred from the LASCO measurements. In 15/26 events the SXR-inferred CME speed leads to an ICME arrival prediction within $\pm 12 \mathrm{~h}$ of the observed time. Only $9 / 26$ cases where coronagraphic observations are used achieve this. The median error of the prediction from SXR fluence is 11.5 h and from LASCO predictions, 14.5 h . Caution is of course necessary because of the small event sample.

4.2. Assessment of Failed Predictions

In $8 / 26$ events the observed arrival time of the ICME is outside the range of uncertainty of the SXR fluence prediction (events $2,4,8,18,19,22,23$ and 26). This set includes the six events in the three highest bins of Figure 5(d), and two other events where the ICME arrival prediction was wrong by more than 20 h . Five of these events are also poorly predicted when the CME speed from LASCO is used, while in the three others $(8,19,26)$ speeds from LASCO observations lead to a better estimate of the ICME arrival than the estimation based on the SXR fluence.

In some of the events we obtained an over estimation or under estimation of the speed that affected the predictions of ICME arrival. In the events 2, 4, and 8 we found low speeds of 355,309 , and $314 \mathrm{~km} \mathrm{~s}^{-1}$, respectively, with a corresponding delay of the ICME arrival of 29, 20, and 29 h , respectively. The LASCO measurements were similarly slow for the events 2 and 4, but not for the event 8 , where the observed speed was $832 \mathrm{~km} \mathrm{~s}^{-1}$ providing a prediction in advance by only 1 hour of the observed ICME arrival.

In the remaining events we can use published observation from the Solar Terrestial Relations Observatory (STEREO) for a more detailed assessment of the failed predictions. In the case of the event 18 on 3 April 2010, the SXR prediction is late by 48 h , while LASCO is late by 36 h . The studied CME is moderately fast, with a higher speed observed by LASCO $\left(668 \mathrm{~km} \mathrm{~s}^{-1}\right)$ than inferred from the SXR fluence ($456 \mathrm{~km} \mathrm{~s}^{-1}$). This event was observed by STEREO B at the limb with a speed of $833 \mathrm{~km} \mathrm{~s}^{-1}$ (Wood et al., 2011). When this speed is used in the ICME propagation model, an interplanetary travel time of about 51 h and an ICME arrival at 1 AU near 12 UT on 5 April is predicted, which is in excellent agreement with the observations. So the failed ICME prediction based on the speeds from LASCO and from the SXR fluence is most likely due to the erroneous estimates of the Earth-directed CME speed.

The SXR prediction of the ICME arrival for the event 19 on 15 February 2011 is early by 25 h , while the prediction from LASCO measurements is late by 10 h. The CME speed inferred from the SXR fluence is higher ($1152 \mathrm{~km} \mathrm{~s}^{-1}$) than from LASCO observations ($669 \mathrm{~km} \mathrm{~s}^{-1}$). An intermediate CME speed of 945 $\mathrm{km} \mathrm{s}^{-1}$ was measured by STEREO A, where the event occurred near the limb (Schrijver et al., 2011). The travel time to 1 AU is about 65 h , predicting the arrival of the ICME on 17 February near 19 UT, that is about 6 h too early. On the other hand, the three-dimensional (3-D) modeling by Temmer et al. (2014)
and Mishra and Srivastava (2014) gave initial CME speeds of about 1000-1100 $\mathrm{km} \mathrm{s}^{-1}$, in good agreement with the speed inferred from SXR fluence. Mishra and Srivastava (2014) reported a pronounced deceleration from $1100 \mathrm{~km} \mathrm{~s}^{-1}$ at $6 R_{\odot}$ to $580 \mathrm{~km} \mathrm{~s}^{-1}$ at $11 R_{\odot}$. This suggests that in this case the CME speed inferred from the SXR fluence was an adequate estimate, but the interplanetary transport was complex, probably due to the interaction with previous CMEs (Temmer et al., 2014, Mishra and Srivastava, 2014).

In the event 22 on 19 January 2012, the SXR fluence-based prediction is early by 39 h , LASCO by 28 h . The CME is fast, with a lower speed estimate from LASCO observations ($1120 \mathrm{~km} \mathrm{~s}^{-1}$) than from the SXR fluence (1319 $\mathrm{km} \mathrm{s}^{-1}$). A CME speed of $1335 \mathrm{~km} \mathrm{~s}^{-1}$ was inferred from 3-D modeling Möstl et al., 2014, confirming our estimation from the SXR fluence. The failure of our arrival predictions is hence not likely to be due to erroneous estimate of the CME speed in the corona. The detailed analysis of the CME and its interplanetary propagation (Liu et al. 2013) reveals a rapid deceleration of the CME down to $700-800 \mathrm{~km} \mathrm{~s}^{-1}$ within $35 R_{\odot}$ from the Sun, and a subsequent propagation at roughly constant speed. The simple propagation model applied in the present study predicts such speeds only at the imposed terminal distance of 0.76 AU , and therefore underestimates the interplanetary travel time.

The CME in the event 23 on 7 March 2012 is very fast, with a higher speed observed by LASCO ($2684 \mathrm{~km} \mathrm{~s}^{-1}$) than inferred from the SXR fluence (1683 $\mathrm{km} \mathrm{s}^{-1}$). A similarly high speed as in the LASCO measurement ($2585 \mathrm{~km} \mathrm{~s}^{-1}$) was found in the 3-D modeling (Möstl et al., 2014). But this CME has a complex propagation into the interplanetary medium (Rollett et al., 2014) The speed inferred from SXR fluence underestimates the CME speed. On the other hand, a deceleration of this ICME in the interplanetary space was observed by Liu et al. (2013), Davies et al. (2013) and Rollett et al. (2014). The analyses of Liu et al. (2013) and Rollett et al. (2014) suggest that the deceleration was enhanced by the interaction of the fast CME with previous ones. The interplanetary propagation cannot be described by a simple empirical propagation model in this case.

Finally, for the event 26 (12 July 2012), the prediction of arrival time of the ICME based on the SXR fluence is early by 28 h , and that based on LASCO observations by 8 h . The CME speed inferred from SXR fluence is high (1545 $\mathrm{km} \mathrm{s}^{-1}$), while the LASCO measurement is $885 \mathrm{~km} \mathrm{~s}^{-1}$. From the analysis of STEREO observations with a drag model of interplanetary transport, Hess and Zhang (2014) derived an initial speed of $1316 \mathrm{~km} \mathrm{~s}^{-1}$. This speed would predict a travel time of about 43 h and an ICME arrival near 12 UT on 14 July, which is well in advance of the observed arrival. The issue is hence rather one of the interplanetary propagation of the CME than of the speed determination from the SXR fluence, which is closer to the result of the STEREO observations than the speed from LASCO.

5. Summary and Discusion

5.1. Summary of Observational Results

The re-assessment conducted in the present work of the correlation between the speed of a CME near the limb and the parameters of the associated SXR burst, provided such a burst can be identified, is summarized as follows:

1. The often found correlation between CME speed and SXR peak flux is confirmed.
2. The correlation of the CME speed is slightly higher with SXR fluence ($r=$ $0.58 \pm 0.09)$ than with SXR flux $(r=0.48 \pm 0.12)$
3. The SXR-inferred CME speed performed better than the speed measured by LASCO as an input to the arrival time prediction of ICMEs at Earth using a simple empirical interplanetary propagation model based on Gopalswamy et al. (2001).

5.2. Comparison with Earlier Work

Detailed comparisons of the kinematical evolution of CMEs in the low corona revealed a close relationship with energy release to the thermal plasma observed in SXR (Zhang et al., 2001, 2004). The statistical studies of Maričić et al. (2007) and Bein et al. \mid (2012) demonstrated that the CME acceleration is usually pronounced between the start and peak of the SXR burst, with a maximum near the time of the steepest rise of the time profile. After the SXR peak the CME propagates at roughly constant speed in the corona. This relationship suggests a correlation between the terminal speed of the CME and parameters of the SXR burst, although exceptions from the general trend do exist (Maričić et al., 2007) and are expected to blur the correlation.

The correlation coefficient between the logarithms of CME speed and of SXR peak flux derived in the present work, $r=0.48 \pm 0.12$, is similar to values reported by others: $r=0.47$ (Moon et al., 2002), $r=0.35$ (Vršnak, Sudar, and Ruždjak, 2005), $r=0.50$ (Yashiro and Gopalswamy 2009), $r=0.32 \pm 0.13$ (Bein et al., 2012). A distinctly higher correlation, $r=0.93$, was found by Moon et al. (2003) in a carefully selected small sample of eight flare-CME events, where for four of them, located on the solar disk, the CME speed was corrected for projection effects.

Moon et al. (2002), Yashiro and Gopalswamy (2009) and the present study were restricted to limb CMEs, where projection effects on the CME speed measurements are expected to be minimized. While the correlation coefficients in these limb event studies are higher, the increase is not significant when compared with the statistical uncertainties derived in the present study and Bein et al. (2012). We note, however, that the coefficient of the logarithm of SXR peak flux F in the linear relationship $\log V_{\mathrm{CME}}=a \log F+b$ is higher in our study of limb events $(a=0.20 \pm 0.08)$ than in the unrestricted sample of Bein et al. (2012) ($a=0.08 \pm 0.03$).

The correlation is only slightly increased when the SXR fluence is used ($r=$ $0.58 \pm 0.09)$ instead of the SXR peak flux. Yashiro and Gopalswamy (2009) found
$r=0.56$ for a larger sample, but without error estimate. So the use of fluence does not seem to significantly improve the correlation between SXRs and CME speed. Burkepile et al. (2004) considered the correlation of the kinetic energy of the CME, instead of the speed, with SXR peak flux of limb events. They reported a high correlation ($r=0.74$ for 24 events), well above the $r=0.48$ of Yashiro and Gopalswamy (2009). The absence of an error estimate precludes a comparison of the two values, but the scatter plot in Figure 6 of Burkepile et al. (2004) suggests that the high correlation coefficient is favored by the two extreme events of their sample, and that a lower value might be obtained from a larger sample.

We conclude that the focus on the limb events did provide an improved determination of the relationship between the logarithms of CME speed and of SXR fluence and peak flux. But a considerable scatter remains, probably due to physical differences between individual events. In their analysis of a 2D model of a flux rope eruption, Reeves and Moats (2010) found a power-law relationship between the peak acceleration and the peak SXR flux for a given reconnection rate, measured by the Alfvén Mach number of the plasma inflow into the current sheet. The authors showed that for a given CME peak acceleration the peak GOES flux is expected to increase with decreasing reconnection rate, and concluded that different reconnection rates may contribute to explaining the broad scatter in the observed relationships between CME kinematics and SXR emission.

5.3. SXR Observations and the Prediction of ICME Arrival at the Earth

We tested the performance of the SXR fluence as a proxy of the CME speed by applying it to the prediction of the ICME arrival near the Earth, using an empirical interplanetary acceleration model based on Gopalswamy et al. (2001). For a set of 26 well-defined CME-ICME pairs with associated SXR bursts we found that the SXR-inferred speed tended to perform better than the plane-of-the sky expansion speed measured by a coronagraph on the Earth-Sun line. This suggests that SXR observations can serve as an input to ICME prediction schemes, provided the existence of a CME is ascertained by coronagraphic observations. Problems arise with particularly slow and particularly fast CMEs, where our empirical relationship seems to be a poor predictor. This is probably at least partly due to an inadequate treatment of the bias of the CME-SXR relationship due to the incomplete detection of slow CMEs and faint SXR bursts. Comparisions of selected events with CME speed from STEREO measurements and 3-D modeling confirm the performance of the SXR fluence as a proxy of CME speed.

Recent work using STEREO emphasizes the importance of the interplanetary dynamics of the CME (Kilpua et al., 2012, Colaninno, Vourlidas, and Wu, 2013; Möstl et al., 2014) in arrival time predictions, which cannot be captured by a simple empirical model. But when sophisticated tools such as heliospheric imaging of the Sun-Earth system from a viewpoint away from the Sun-Earth line are not available, the SXR emission can provide valuable constraints for the ICME arrival prediction.

Acknowledgements This study made extensive use of the CME catalog, generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. GOES data were provided by NOAA and the Solar Data Analysis Center (SDAC) at NASA Goddard Space Flight Center. The data bases of ACE and omniweb (Wind) were also used. The authors thank P. Démoulin for his help with the identification of ICMEs, and G. Trottet for providing software for the SXR data analysis. The referee is thanked for the detailed reading of the manuscript and comments. C.S-M gratefully acknowledges the financial support of her doctorate studies given by the University of Costa Rica and the Ministry of Science, Technology and Telecommunications of Costa Rica (MICITT) through the National Council of Scientific and Technological Research (CONICIT). This work was partly supported by Centre National d'Etudes Spatiales (CNES).

References

Aggarwal, M., Jain, R., Mishra, A.P., Kulkarni, P.G., Vyas, C., Sharma, R., Gupta, M.: 2008, X-ray emission characteristics of flares associated with CMEs. J. Astrophys. Astron. 29, 195-205. doi 10.1007/s12036-008-0025-y
Bein, B.M., Berkebile-Stoiser, S., Veronig, A.M., Temmer, M., Vršnak, B.: 2012, Impulsive acceleration of coronal mass ejections. II. Relation to soft X-ray flares and filament eruptions. Astrophys. J. 755, 44. doi 10.1088/0004-637X/755/1/44
Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357-402. doi 10.1007/BF00733434
Burkepile, J.T., Hundhausen, A.J., Stanger, A.L., St. Cyr, O.C., Seiden, J.A.: 2004, Role of projection effects on solar coronal mass ejection properties: 1. A study of CMEs associated with limb activity. J. Geophys. Res. (Space Phys.) 109, 3103. doi 10.1029/2003JA010149
Colaninno, R.C., Vourlidas, A., Wu, C.C.: 2013, Quantitative comparison of methods for predicting the arrival of coronal mass ejections at Earth based on multiview imaging. J. Geophys. Res. (Space Phys.) 118, 6866-6879. doi 10.1002/2013JA019205
Davies, J.A., Perry, C.H., Trines, R.M.G.M., Harrison, R.A., Lugaz, N., Möstl, C., Liu, Y.D., Steed, K.: 2013, Establishing a stereoscopic technique for determining the kinematic properties of solar wind transients based on a generalized self-similarly expanding circular geometry. Astrophys. J. 777, 167. doi 10.1088/0004-637X/777/2/167
Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C., Lemen, J.R., Shing, L., Stern, R.A., Gurman, J.B., Neupert, W.M., Maucherat, A., Clette, F., Cugnon, P., van Dessel, E.L.: 1995, EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO mission. Solar Phys. 162, 291-312. doi 10.1007/BF00733432
Démoulin, P.: 2010, Interaction of ICMEs with the solar wind. In: Maksimovic, M., Issautier, K., Meyer-Vernet, N., Moncuquet, M., Pantellini, F. (eds.) Twelfth International Solar Wind Conference, AIP Conf. Proc. 1216, 329-334. doi 10.1063/1.3395866
Forbes, T.G., Linker, J.A., Chen, J., Cid, C., Kóta, J., Lee, M.A., Mann, G., Mikić, Z., Potgieter, M.S., Schmidt, J.M., Siscoe, G.L., Vainio, R., Antiochos, S.K., Riley, P.: 2006, CME theory and models. Space Sci. Rev. 123, 251 -302. doi 10.1007/s11214-006-9019-8
Gold, T.: 1962, Magnetic storms. Space Sci. Rev. 1, 100-114. doi 10.1007/BF00174637
Gonzalez, W.D., Tsurutani, B.T.: 1987, Criteria of interplanetary parameters causing intense magnetic storms (Dst of less than -100 nT). Planet. Space Sci. 35, 1101-1109. doi 10.1016/0032-0633(87)90015-8
Gopalswamy, N.: 2010, The CME link to geomagnetic storms. In: Kosovichev, A.G., Andrei, A.H., Rozelot, J.-P. (eds.) Solar and Stellar Variability: Impact on Earth and Planets, IAU Symposium 264, 326 - 335. doi $10.1017 /$ S1743921309992870

Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M.L., Howard, R.A.: 2001, Predicting the 1-AU arrival times of coronal mass ejections. J. Geophys. Res. (Space Phys.) 106, 29207-29218. doi 10.1029/2001JA000177.
Gosling, J.T.: 1993, The solar flare myth. J. Geophys. Res. (Space Phys.) 98, 18937-18950. doi 10.1029/93JA01896
Hess, P., Zhang, J.: 2014, Stereoscopic study of the kinematic evolution of a coronal mass ejection and its driven shock from the Sun to the Earth and the prediction of their arrival Times. Astrophys. J. 792, 49. doi 10.1088/0004-637X/792/1/49
Kahler, S.W., Sheeley, N.R. Jr., Liggett, M.: 1989, Coronal mass ejections and associated X-ray flare durations. Astrophys. J. 344, 1026-1033. doi 10.1086/167869
Kilpua, E.K.J., Mierla, M., Rodriguez, L., Zhukov, A.N., Srivastava, N., West, M.J.: 2012, Estimating travel times of coronal mass ejections to 1 AU using multi-spacecraft coronagraph data. Solar Phys. 279, 477-496. doi 10.1007/s11207-012-0005-x
Liu, Y.D., Luhmann, J.G., Lugaz, N., Möstl, C., Davies, J.A., Bale, S.D., Lin, R.P.: 2013, On Sun-to-Earth propagation of coronal mass ejections. Astrophys. J. $769,45$. doi 10.1088/0004-637X/769/1/45.
Maričić, D., Vršnak, B., Stanger, A.L., Veronig, A.M., Temmer, M., Roša, D.: 2007, Acceleration phase of coronal mass ejections: II. Synchronization of the energy release in the associated flare. Solar Phys. 241, 99 - 112. doi 10.1007/s11207-007-0291-x
Mishra, W., Srivastava, N.: 2014, Morphological and kinematic evolution of three interacting coronal mass ejections of 2011 February 13-15. Astrophys. J. 794, 64. doi 10.1088/0004637X/794/1/64.
Moon, Y.-J., Choe, G.S., Wang, H., Park, Y.D., Gopalswamy, N., Yang, G., Yashiro, S.: 2002, A statistical study of two classes of coronal mass ejections. Astrophys. J. 581, 694-702. doi $10.1086 / 344088$
Moon, Y.-J., Choe, G.S., Wang, H., Park, Y.D., Cheng, C.Z.: 2003, Relationship between CME kinematics and flare strength. J. Korean Astron. Soc. 36, 61-66. doi 10.5303/JKAS.2003.36.2.61
Möstl, C., Amla, K., Hall, J.R., Liewer, P.C., De Jong, E.M., Colaninno, R.C., Veronig, A.M., Rollett, T., Temmer, M., Peinhart, V., Davies, J.A., Lugaz, N., Liu, Y.D., Farrugia, C.J., Luhmann, J.G., Vršnak, B., Harrison, R.A., Galvin, A.B.: 2014, Connecting speeds, directions and arrival times of 22 coronal mass ejections from the Sun to 1 AU. Astrophys. J. 787, 119. doi 10.1088/0004-637X/787/2/119
Reeves, K.K., Moats, S.J.: 2010, Relating coronal mass ejection kinematics and thermal energy release to flare emissions using a model of solar eruptions. Astrophys. J. 712, 429-434. doi 10.1088/0004-637X/712/1/429
Rollett, T., Möstl, C., Temmer, M., Frahm, R.A., Davies, J.A., Veronig, A.M., Vršnak, B., Amerstorfer, U.V., Farrugia, C.J., Žic, T., Zhang, T.L.: 2014, Combined multipoint remote and in situ observations of the asymmetric evolution of a fast solar coronal mass ejection. Astrophys. J. Lett. 790, L6. doi 10.1088/2041-8205/790/1/L6.
Rouillard, A.P.: 2011, Relating white light and in situ observations of coronal mass ejections: a review. J. Atmos. Solar-Terr. Phys. 73, 1201-1213. doi 10.1016/j.jastp.2010.08.015
Schrijver, C.J., Aulanier, G., Title, A.M., Pariat, E., Delannée, C.: 2011, The 2011 February 15 X2 flare, ribbons, coronal front, and mass ejection: Interpreting the three-dimensional views from the Solar Dynamics Observatory and STEREO guided by magnetohydrodynamic flux-rope modeling. Astrophys. J. 738, 167. doi 10.1088/0004-637X/738/2/167
Schwenn, R., dal Lago, A., Huttunen, E., Gonzalez, W.D.: 2005, The association of coronal mass ejections with their effects near the Earth. Annales Geophysicae 23, 1033-1059. doi 10.5194/angeo-23-1033-2005
Tandberg-Hanssen, E., Emslie, A.G.: 1988, The physics of solar flares, Cambridge University Press, Cambridge and New York, ch. 9.
Temmer, M., Veronig, A.M., Peinhart, V., Vršnak, B.: 2014, Asymmetry in the CME-CME interaction process for the events from 2011 February 14-15. Astrophys. J. 785, 85. doi 10.1088/0004-637X/785/2/85.
Trottet, G., Samwel, S., Klein, K.-L., Dudok de Wit, T., Miteva, R.: 2015, Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Solar Phys. 290, 819-839. doi 10.1007/s11207-014-0628-1
Tsuneta, S., Acton, L., Bruner, M., Lemen, J., Brown, W., Caravalho, R., Catura, R., Freeland, S., Jurcevich, B., Morrison, M., Ogawara, Y., Hirayama, T., Owens, J.: 1991, The Soft X-ray Telescope for the SOLAR-A mission. Solar Phys. 136, 37-67. doi 10.1007/BF00151694

Vršnak, B., Sudar, D., Ruždjak, D.: 2005, The CME-flare relationship: Are there really two types of CMEs? Astron. Astrophys. 435, 1149-1157. doi 10.1051/0004-6361:20042166
Vršnak, B., Žic, T., Falkenberg, T.V., Möstl, C., Vennerstrom, S., Vrbanec, D.: 2010, The role of aerodynamic drag in propagation of interplanetary coronal mass ejections. Astron. Astrophys. 512, A43. doi 10.1051/0004-6361/200913482
Wall, J.V., Jenkins, C.R.: 2012, Practical Statistics for Astronomers, Cambridge University Press, Cambridge and New York, ch. 6.6.
Wood, B.E., Wu, C.-C., Howard, R.A., Socker, D.G., Rouillard, A.P.: 2011, Empirical reconstruction and numerical modeling of the first geoeffective coronal mass ejection of solar cycle 24. Astrophys. J. 729, 70. doi 10.1088/0004-637X/729/1/70
Yashiro, S., Gopalswamy, N.: 2009, Statistical relationship between solar flares and coronal mass ejections. In: Gopalswamy, N., Webb, D.F. (eds.) Universal Heliophysical Processes, IAU Symposium 257, 233-243. doi 10.1017/S1743921309029342
Zhang, J., Dere, K.P., Howard, R.A., Kundu, M.R., White, S.M.: 2001, On the temporal relationship between coronal mass ejections and flares. Astrophys. J. 559, 452-462. doi 10.1086/322405
Zhang, J., Dere, K.P., Howard, R.A., Vourlidas, A.: 2004, A study of the kinematic evolution of coronal mass ejections. Astrophys. J. 604, 420-432. doi $10.1086 / 381725$
Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, A.N.: 2007, Solar and interplanetary sources of major geomagnetic storms (Dst $<=-100 \mathrm{nT}$) during 1996-2005. J. Geophys. Res. (Space Phys.) 112, 10102. doi 10.1029/2007JA012321

[^0]: ${ }^{1}$ LESIA-UMR 8109- Observatoire de Paris, CNRS, Univ. Paris 6 \& 7, 92190 Meudon, France
 email: carolina.salas@obspm.fr email: ludwig.klein@obspm.fr
 ${ }^{2}$ Second affiliation, Space Research Center, University of
 Costa Rica email: carolina.salas@cinespa.ucr.ac.cr

[^1]: ${ }^{1}$ http://cdaw.gsfc.nasa.gov/CME_list/
 ${ }^{2}$ National Geophysical Data Center http://www.ngdc.noaa.gov

[^2]: ${ }^{3}$ http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm

