УДК 523.98-77

О ВОЗМОЖНОЙ ПРИЧИНЕ ЧАСТОТНОГО РАСЩЕПЛЕНИЯ ГАРМОНИК СОЛНЕЧНОГО РАДИОВСПЛЕСКА ВТОРОГО ТИПА

© 2015 г. В. Г. Еселевич^{1*}, М. В. Еселевич¹, И. В. Зимовец²

¹Институт солнечно-земной физики Сибирского отделения Российской академии наук, Иркутск, Россия

²Институт космических исследований Российской академии наук, Москва, Россия Поступила в редакцию 14.04.2015 г.; принята в печать 13.05.2015 г.

На основе анализа данных инструмента AIA/SDO (канал 193 Å) впереди коронального выброса массы в лимбовом событии на Солнце 13 июня 2010 г. удалось одновременно зарегистрировать и измерить фронты двух различных ударных волн. Угловой размер каждого из этих фронтов относительно центра коронального выброса массы составил около 20°, а их направления распространения отличались на $\approx\!25^\circ$ (по позиционному углу на $\approx\!4^\circ$). Более быстрый фронт, названный взрывной ударной волной, опережал фронт другой волны, названной поршневой, на $R\approx (0.02-0.03)~(R_\odot-$ радиус Солнца) и имел максимальную начальную скорость $V_B\approx\!850~{\rm km~c^{-1}}$ (у поршневой $V_P\approx\!700~{\rm km~c^{-1}}$). Появление и движение этих ударных волн сопровождалось всплеском радиоизлучения II типа на фундаментальной частоте F и второй гармонике H. Каждая из частот была расщеплена на две близкие частоты f_1 и f_2 , различающиеся на величину $\Delta f = f_2 - f_1 \ll F, H$. На основе проведенного анализа был сделан вывод о том, что наблюдаемое частотное расщепления Δf частот F и H радиоизлучения II типа может быть результатом одновременного распространения поршневой и взрывной ударных волн с различными скоростями в несколько разных направлениях, которые отличаются значениями концентрации корональной плазмы.

DOI: 10.7868/S0004629915110043

1. ВВЕДЕНИЕ

Ударные волны в короне генерируются корональными выбросами массы (КВМ). Они проявляют себя в виде всплесков радиоизлучения II типа на фундаментальной частоте F и ее гармонике $H \approx$ $\approx 2F$ (см., например, [1]). Величина дрейфа F и H во времени от высоких частот к низким связана со скоростью распространения ударного фронта и с градиентом концентрации плазмы в короне. Физическая теория [2] связывает возникновение этих радиовсплесков с наличием потоков энергичных частиц (электронов и ионов) в разреженной плазме, которые могут раскачивать электростатические колебания на плазменной электронной частоте. Затем, в результате рэлеевского и комбинационного рассеяний, эти колебания могут трансформироваться, соответственно, в первую (фундаментальную) F и вторую H гармонику радиоизлучения

Часто наблюдаемый дрейф частоты F (и H тоже) во времени происходит в виде двух узких параллельных полос, частотное расстояние между

которыми $\Delta f = f_2 - f_1 \ll F$. Такое расщепление связывают:

1) с тем, что различные участки фронта ударной волны одновременно распространяются в разных областях фоновой плазмы с отличающимися концентрациями, что приводит к нескольким одновременно возбуждаемым частотам [3];

2) с одновременной генерацией радиоизлучения в двух следующих областях: а) во фронте и непосредственно за ним, б) перед фронтом в области "foreshock"; при этом, согласно [4, 5], частотное расщепление Δf фундаментальной гармоники F (и H) определяется значениям концентрации перед фронтом N_1 и за фронтом N_2 из соотношения $\Delta f/f_1 = (N_2/N_1)^{1/2} - 1$.

Первый вариант, очевидно, может иметь место, однако показать его реализацию в эксперименте чрезвычайно сложно, так как для этого необходима прямая регистрация ударного фронта. Используемые в настоящее время методы определения положения фронта по разностным изображениям в ультрафиолете не позволяют это сделать, поскольку с их помощью невозможно отличить переднюю границу возмущенной зоны перед КВМ от

^{*}E-mail: esel@iszf.irk.ru

ударного фронта. В то же время предложенный и реализованный в работах [6, 7] комплексный метод регистрации и отождествления ударного фронта перед КВМ позволяет это сделать. И мы им воспользуемся в данной работе.

Вторая причина частотного расщепления, несмотря на определенные доводы в ее пользу в работах [4, 5, 8, 9], вызывает определенные сомнения. Они связаны с результатами работ [10, 11], в которых для межпланетных ударных волн, зарегистрированных на орбите Земли, была детально исследована их связь с межпланетными всплесками радиоизлучения ІІ типа. В этих работах было показано отсутствие всплеска ленгмюровских колебаний во фронте волны и за ним, и его наличие непосредственно перед фронтом в области "foreshock". При этом всплеск радиоизлучения ІІ типа авторы однозначно связали с этим всплеском ленгмюровских колебаний в области "foreshock".

В работе [12] была сделана первая попытка использования метода прямой регистрации ударного фронта [6, 7] с одновременным анализом пространственно-разрешенных измерений источников радиовсплесков II типа, выполненных на телескопе Nançay Radioheliograph [13]. В результате в событии 3 ноября 2010 г., для которого наблюдалось расщепление второй гармоники H на две близкие частотные компоненты f_1 и f_2 , в работе [12]:

- 1) впервые удалось одновременно зарегистрировать и измерить фронты поршневой и взрывной ударных волн, вызванных формированием и распространением коронального выброса массы,
- 2) было показано, что каждому из этих двух типов ударных волн соответствует распространяющийся впереди фронта свой всплеск радиоизлучения II типа (соответственно, компоненты f_1 и f_2).
- 3) была предложена качественная картина, согласно которой всплески радиоизлучения происходят в "foreshock" этих ударных волн, которые находятся на стадии формирования.

Целью настоящей работы является развитие подхода, использованного в [12], для анализа других событий и нахождение возможной связи частотного расщепления фундаментальной и второй гармоник на близкие частотные компоненты f_1 и f_2 с процессами распространения двух типов ударных волн, связанных с KBM, на основе детального анализа солнечного события 13 июня 2010 г.

2. ДАННЫЕ И МЕТОД АНАЛИЗА

Для анализа использовались данные инструмента AIA/SDO [14] (EUV-изображения в канале 193 Å). Временное разрешение инструмента составляло ≈ 12 с, угловое разрешение — $\approx 1.5''$ (размер пикселя — $\approx 0.6''$), внешняя граница поля зрения находилась на расстоянии $1.3-1.4~R_{\odot}$ от центра Солнца.

Согласно оценкам в работе [12], канал 193 Å более удобен для регистрации взрывной ударной волны, чем канал 211 Å. Возможной причиной этого является то, что кривая температурной чувствительности канала 193 Å, кроме основного максимума вблизи $T\approx 10^6$ K (близкий к 211 A), имеет еще второй максимум в области $T>10^7$ K [14].

Для исследования динамики возмущенной зоны впереди КВМ и формирования ударной волны во времени и в различных направлениях относительно оси распространения КВМ использовались разностные изображения. EUV-изображения представлялись в виде бегущей разностной яркости $\Delta P = P(t_2) - P(t_1)$, где $P(t_2)$ и $P(t_1)$ — яркости ближайших по времени изображений. В отдельных случаях они также представлялись в виде разностной яркости $\Delta P = P(t) - P(t_0)$ с фиксированным начальным моментом t_0 перед возникновением KBM и $t > t_0$.

Фронтальная структура (FS) KBM обычно имеет вид, близкий к окружности, как это показано, например, на характерной схеме в статье [7, рис. 1b]. Положение этой окружности в каждый момент времени задавалось положением ее центра О, находящимся на расстоянии R_C от центра Солнца в направлении позиционного угла ${\rm PA}_C$ (отсчитывается от северного полюса против часовой стрелки). Для построения профиля и корректного измерения размера ударного фронта по изображениям разностной яркости строились распределения разностной яркости $\Delta P(r)$ под различными углами α относительно оси движения KBM (определяемого углом PA_C) в различные моменты времени (отсчет угла α положительный в направлении против часовой стрелки [7, рис. 1b]. Расстояние r отсчитывается от центра фронтальной структуры О, в отличие от расстояния R, отсчитываемого от центра Солнца. Таким образом, распределения $\Delta P(r)$ направлены примерно по нормали к фронтальной структуре КВМ и к расположенному перед ней фронту ударной волны. Величины R и r связаны соотношением $R = (R_C^2 + r^2 + 2R_C r \cos \alpha)^{1/2}$.

3. АНАЛИЗ ДАННЫХ

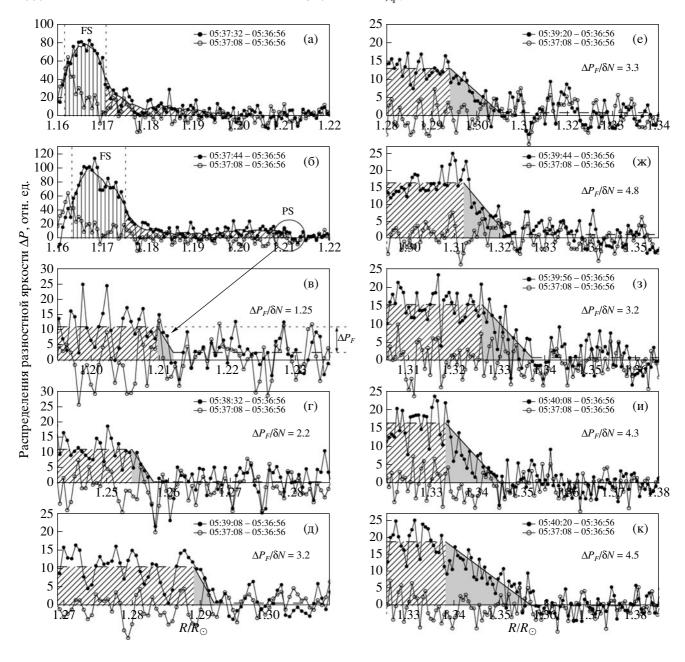
3.1. Динамика поршневой ударной волны

Развитие поршневой ударной волны в событии 13 июня 2010 г. по распределениям разностной яркости $\Delta P(R)$ в канале 211 Å, построенным вдоль направления $\alpha=25^\circ$ относительно направления $PA_C\approx 244.3^\circ$ в последовательные моменты времени при $t_0=05:32:02$ UT, ранее исследовалось в статье [7]. Для регистрации же возможной взрывной ударной волны в этом событии, согласно выводам работы [12], желательно использовать бегущую разностную яркость в канале 193 Å и сравнивать результаты с исследованиями поршневой волны в том же канале 193 Å.

На рис. 1 для события 13 июня 2010 г. темными кружками показаны распределения разностной яркости $\Delta P(R)$ в канале 193 Å, вдоль направления $\alpha=25^\circ$ относительно линии ${\rm PA}_C\approx 244.3^\circ$ в последовательные моменты времени при $t_0=05:36:56$ UT. Светлыми кружками даны распределения разностной яркости $\Delta P(R)$ до появления КВМ (т.е. невозмущенные) в момент 05:37:08 UT также в направлении $\alpha=25^\circ$. Каждое из них имеет те же значения R_C и α , что и соответствующий ему возмущенный профиль $\Delta P(R)$. Их значения указаны в подписи к рис. 1. Все профили $\Delta P(R)$ усреднены по углу $\delta \alpha=1^\circ$.

Невозмущенные распределения характеризуются уровнем "шума" δN , который несколько отличается в различных направлениях α . Их регистрация одновременно с основным сигналом дает возможность более надежно выделять скачки разностной яркости в передней части возмущенной зоны, соответствующих ударному фронту.

В момент 05:37:32 UT (рис. 1a) фронтальная структура (ее вершина отмечена надписью FS) имеет минимальный размер: ее ширина на полувысоте (показана вертикальной штриховкой на рис. 1a) составляет $\approx 0.008~R_{\odot}$. Размер возмущенной зоны, разностная яркость которой плавно спадает с расстоянием (наклонная штриховка), составляет $\approx 0.02~R_{\odot}$ (левая граница зоны, отмеченная вертикальной штриховой линией, начинается условно на полувысоте максимальной разностной яркости FS; рис. 1a). Разрыва (или скачка) яркости в передней части возмущенной зоны еще нет. В следующий момент времени 05:37:44 UT на рис. 16 ширина FS сравнительно мало меняется, а размер возмущенной зоны резко возрастает до $\approx 0.035 R_{\odot}$, и в передней части возмущенной зоны появляется разрыв разностной яркости. Он на рис. 1б выделен кругом и отмечен надписью PS, а на растянутой пространственной шкале (рис. 1в) выделен серой заливкой. Согласно исследованиям изображений в канале 211 Å, проведенным в [7], этот разрыв является фронтом поршневой ударной волны.


Для того чтобы более четко выделить разрыв в распределениях $\Delta P(R)$, находились средние значения разностной яркости на двух пространственных интервалах— за разрывом и перед разрывом (на рис. $1\mathrm{B}{-}1\mathrm{K}$ эти средние значения показаны штриховыми горизонтальными прямыми). Возмущенная зона за разрывом показана наклонной штриховкой (рис. $1\mathrm{B}{-}1\mathrm{K}$).

Уровень шума δN (среднеквадратичное отклонение от среднего значения) определялся по распределениям невозмущенной разностной яркости (светлые кружки) для полных участков распределений, показанных на рис. $1\mathrm{B}{-}1\mathrm{K}$.

Скачок яркости на разрыве характеризуется величиной ΔP_F , как показано на рис. 1в. Значение отношения сигнала (скачка яркости) к шуму $\Delta P_F/\delta N$ приведены в правой части рисунка (рис. 1в–1и). Начиная с момента 05:38:32 UT (рис. 1г) величина $\Delta P_F/\delta N>2$, т.е. фронт поршневой волны (разрыв на распределениях разностной яркости) регистрируется достаточно надежно.

На рис. $2\mathrm{a}{-2}$ д даны распределения разностной яркости $\Delta P(R)$ в момент времени 05:39:20 UT ($\mathrm{PA}_C=244.3^\circ,\ R_C\approx1.11\ R_\odot$) для различных направлений $\alpha=-10^\circ-(+40^\circ)$ относительно $\mathrm{PA}_C=244.3^\circ$ при $t_0=05:36:05$ UT. Из графиков видно следующее:

- 1. Диапазон направлений, в которых достаточно устойчиво регистрируется фронт поршневой волны (отмечен надписью PS), составляет $\alpha \approx 10^\circ 30^\circ$ (соответствует PA $\approx 245^\circ 259^\circ$). На рис. 26-2г жирным косым крестиком отмечена средняя точка фронта.
- 2. В направлениях $\alpha < 10^\circ$ и $\alpha > 30^\circ$ в основном регистрируется плавно спадающая с расстоянием возмущенная зона без разрыва (рис. 2a, 2d, наклонная штриховка). Усредняющая кривая получена аппроксимацией измеренного профиля (темные кружки) полиномом 2-ой степени (параболой). В отдельные моменты времени и на различных расстояниях разрыв может возникать и исчезать. Это может свидетельствовать о том, что в этих направлениях (при этих α) он или находится на стадии формирования, или имеет слишком малую амплитуду. Поэтому в направлениях $\alpha > 30^\circ$ и $\alpha < 10^\circ$ существование фронта неустойчиво и сильно зависит от условий в невозмущенном солнечном ветре.
- 3. Наиболее устойчиво разрыв существует в направлении угла $\alpha=25^\circ$ (рис. 2в; см. также рис. 1). Все это согласуется с выводами о свойствах поршневой ударной волны, полученными для данного события в [7] при анализе профилей $\Delta P(R)$ в канале $211~{\rm \AA}$.

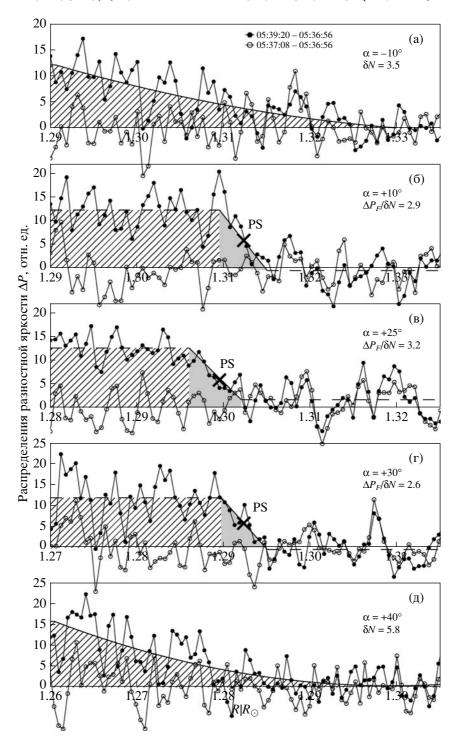
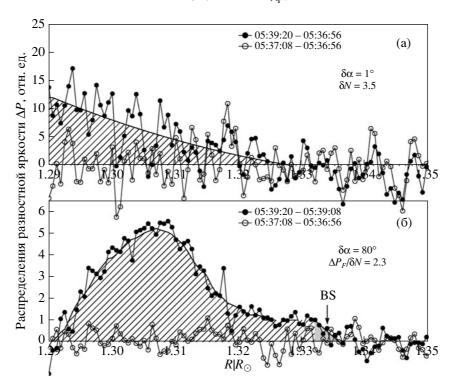
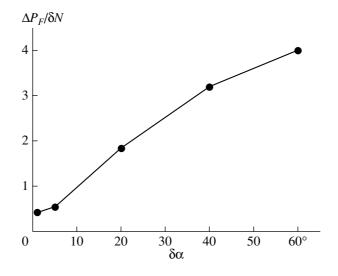


Рис. 1. Профили разностной яркости $\Delta P(R)$ в зависимости от расстояния $R=(R_C^2+r^2+2R_Cr\cos\alpha)^{1/2}$ относительно центра Солнца, построенные по измеренным профилям $\Delta P(r)$ относительно центра О ($\mathrm{PA}_C=244.3^\circ$) фронтальной структуры КВМ в направлении угла $\alpha=25^\circ$ в последовательные моменты времени при $\delta\alpha=1^\circ$: (a–г) — $R_C\approx1.07~R_\odot$, (π –ж) — $R_C\approx1.11~R_\odot$, (π –к) — π –кс π –1.14 π –1. Отношение сигнал/шум (π –к), для интервала за фронтом указано справа на графиках (π –к). КВМ 13 июня 2010 г. Данные SDO/AIA, канал 193 Å.

3.2. Динамика взрывной ударной волны

Возможность существования в рассматриваемом событии взрывной ударной волны связана с тем, что: 1) процесс возникновения КВМ происходит взрывообразным образом, 2) КВМ сопровождается вспышкой (рентгеновский балл М1.0). Каждый из этих процессов в принципе может быть источником взрывной ударной волны, которая


предположительно должна сформироваться раньше и двигаться впереди поршневой ударной волны. В работе [12] была предпринята первая попытка регистрации одновременно с поршневой также и взрывной ударной волны. Используя метод этой работы, попытаемся зарегистрировать взрывную ударную волну и исследовать ее свойства в данном событии 13 июня 2010 г. Этот метод основывает-


Рис. 2. Профили разностной яркости $\Delta P(R)$ в зависимости от расстояния R относительно центра Солнца, построенные по измеренным профилям $\Delta P(r)$ относительно центра О ($\mathrm{PA}_C=244.3^\circ$, $R_C\approx 1.11~R_\odot$) фронтальной структуры КВМ для различных углов $\alpha=-10^\circ\div +40^\circ$ в момент времени t=05:39:20 UT при $\delta\alpha=1^\circ$. Отношение сигнал/шум ($\Delta P_F/\delta N$) для интервала за фронтом указано справа на графиках (δ -г); уровень шума δN указан на графиках (δ , д). КВМ 13 июня 2010 г. Данные SDO/AIA, канал 193 Å.

ся на предположении о том, что взрывная волна должна распространяться впереди поршневой волны, где существует довольно высокий уровень шу-

ма, сравнимый или превышающий скачок ΔP_F на ударном фронте. Поэтому для увеличения отношения сигнал/шум $\delta P_F/\delta N$ в области фронта взрыв-

Рис. 3. Сравнение профилей для одного момента времени при $PA_C = 244.3^\circ$, $R_C \approx 1.11~R_\odot$, $\alpha = -10^\circ$: (a) — разностной яркости $\Delta P(R)$ с малым углом усреднения $\delta \alpha = 1^\circ$, (б) — бегущей разностной яркости $\Delta P(R)$ с большим углом усреднения $\delta \alpha = 80^\circ$. КВМ 13 июня 2010 г. Данные SDO/AIA, канал 193 Å.

Рис. 4. Зависимость от угла усреднения $\delta\alpha$ отношения сигнал/шум $\Delta P_F/\delta N$ для скачка на фронте взрывной волны (BS) на профиле бегущей разностной яркости в момент $t_2-t_1=05$:40:08–05:39:44 UT при $PA_C=244.3^\circ,\ R_C\approx 1.14\ R_\odot,\ \alpha=-10^\circ.$ КВМ 13 июня 2010 г. Данные SDO/AIA, канал 193 Å.

ной ударной волны необходимо провести усреднение не по углу $\delta \alpha = 1^\circ$, а по значительно большему углу, который для различных моментов времени может составить величину $\delta \alpha = 60^\circ - 100^\circ$. При

этом для более четкой регистрации взрывной волны при усреднении по большим $\delta \alpha$, согласно [12], следует использовать профили бегущей разностной яркости $\Delta P = \Delta P(t_2) - \Delta P(t_1)$. В то же время

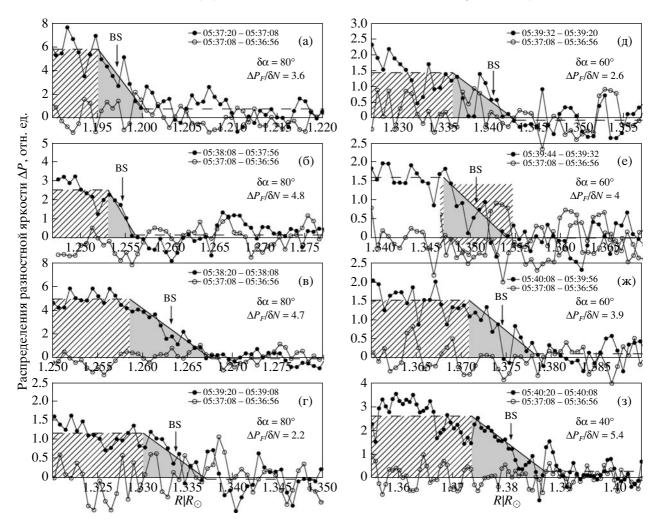
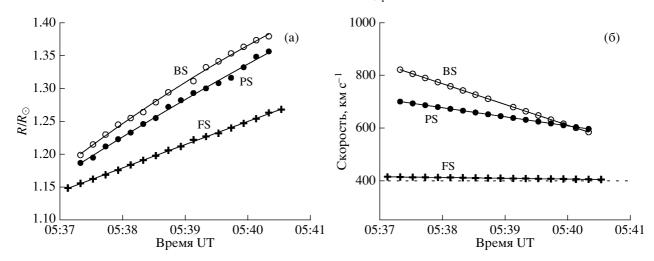


Рис. 5. Профили бегущей разностной яркости $\Delta P(R)$ относительно центра Солнца, построенные по измеренным профилям $\Delta P(r)$ относительно центра О ($PA_C=244.3^\circ$) фронтальной структуры КВМ в направлении угла $\alpha=-10^\circ$ в последовательные моменты времени при $\delta\alpha=40^\circ-80^\circ$: (a-д) $-R_C\approx1.07~R_\odot$, (e) $-R_C\approx1.11~R_\odot$; (ж, з) $-R_C\approx1.14~R_\odot$. Величина отношения сигнал/шум ($\Delta P_F/\delta N$) для интервала за фронтом и значение $\delta\alpha$ указаны справа на каждом из графиков. КВМ 13 июня 2010 г. Данные SDO/AIA, канал 193 Å.

для регистрации поршневой ударной волны (PS на рис. 1 и 2) можно использовать профили разностной яркости с фиксированным начальным моментом времени $\Delta P = \Delta P(t) - \Delta P(t_0)$.


На рис. З для события 13 июня 2010 г. показано сравнение следующих профилей для одного момента времени при ${\rm PA}_C=244.3^\circ,\,R_C\approx 1.11~R_\odot$ и $\alpha=-10^\circ$:

а) разностной яркости $\Delta P(R)$ для $t_2-t_0=05:39:20-05:36:56$ UT (темные кружки) и $t_2-t_0=05:37:08-05:36:56$ UT (светлые кружки) с малым углом усреднения — $\delta \alpha=1^\circ$;

б) бегущей разностной яркости $\Delta P(R)$) для $t_2-t_1=05:39:20-05:39:08$ UT (темные кружки) и $t_2-t_1=05:37:08-05:36:56$ UT (светлые кружки) с большим углом усреднения — $\delta \alpha=80^\circ$.

Из рис. За видно, что при $\delta\alpha=1^\circ$ в направлении $\alpha=-10^\circ$ регистрируется усредненный по колебаниям плавно спадающий профиль возмущенной зоны (наклонная штриховка), а фронт поршневой волны отсутствует, что согласуется с рис. 2а для того же момента времени. Уровень шума составляет $\delta N \approx 3.5$. При усреднении по углу $\delta \alpha = 80^\circ$ уровень шума становится существенно меньше, и наблюдаемая картина кардинально меняется (рис. 3б): в передней части возмущенной зоны регистрируется новый фронт — предположительно фронт взрывной ударной волны (показан серой заливкой и обозначен BS).

Возможность зарегистрировать новый фронт BS при усреднении по большому углу становится понятной из рассмотрения рис. 4. На нем

Рис. 6. (а) — Зависимости от времени расстояния R от центра Солнца (для $PA_C=244.3^\circ$) для: темные кружки — фронта поршневой волны (PS) в направлении угла $\alpha=25^\circ$, $\delta\alpha=1^\circ$ (построено по данным рис. 1), светлые кружки — фронта взрывной волны (BS) в направлении $\alpha=-10^\circ$, $\delta\alpha=40^\circ-80^\circ$ (построено по данным рис. 5), крестики — максимума яркости фронтальной структуры KBM (FS) в направлении $\alpha=0^\circ$, $\delta\alpha=5^\circ$. Аппроксимирующие кривые — полином 2-й степени. (б) — Скорости фронтов PS, BS и FS (первые производные аппроксимирующих кривых, показанных на графике (а) слева).

представлена зависимость отношения сигнал/шум $\Delta P_F/\delta N$ от величины угла усреднения $\delta \alpha$ для скачка на фронте BS, регистрируемого на профиле разностной яркости в моменты $t_2 - t_1 =$ = 05.40.08-05.39.44 UT (PA_C = 244.3° , R_C = $= 1.14~R_{\odot},~\alpha = 10^{\circ}$). Видно, что при $\delta \alpha < 10^{\circ}$ величина $\Delta P_F/\delta N < 1$, т.е. скачок на фронте практически не виден на фоне шума. С ростом α величина $\Delta P_F/\delta N$ становится больше единицы, достигая максимальных значений при $\delta lpha \approx$ $pprox 60^{\circ} - 100^{\circ}$. Скачок на фронте ΔP_F достаточно надежно регистрируется уже при $\delta \alpha \geq 20^{\circ}$, когда $\Delta P_F/\delta N > 2$. Зависимости, аналогичные приведенной на рис. 4, для других моментов времени (и других расстояний R), имеют подобный вид, хотя несколько отличаются по значениям $\Delta P_F/\delta N$.

На рис. 5 для события 13 июня 2010 г. темными кружками показаны профили бегущей разностной яркости $\Delta P(R)$ канала 193 Å вдоль угла $\alpha=-10^\circ$ относительно направления $\mathrm{PA}_C=244.3^\circ$ в последовательные моменты времени t_2-t_1 , указанные на графиках, при больших угловых усреднениях $\delta \alpha=40^\circ-80^\circ$. Также как на рис. 1 и 2, определялись средние значения ΔP на двух участках профиля разностной яркости: за разрывом BS и передним. Эти средние значения показаны на рис. 5 горизонтальными штриховыми прямыми. Профиль фронта BS усреднен наклонной прямой и отмечен серой заливкой, участок за разрывом (соответствует ударно-нагретой плазме) показан наклонной штриховкой (рис. 5).

Первый момент, когда надежно регистрируется фронт BS, это 05:37:20 UT (рис. 5a). По мере движения скорость фронта BS падает. На рис. 6a светлыми кружками показана зависимость от времени расстояния R(t) для фронта BS, построенная по профилям на рис. 5 для $\alpha = -10^{\circ}$. Для сравнения на том же графике темными кружками показана зависимость R(t) для фронта поршневой ударной волны (PS), построенная по профилям на рис. 1 в направлении угла $\alpha=25^\circ$. Для обеих зависимостей на рис. 6а линиями проведены аппроксимации кривой 2-го порядка (параболой). На рис. 6б нанесены производные от этих кривых, т.е. скорости взрывной (BS) и поршневой (PS) ударных волн. Видно, что фронт ВЅ опережает фронт РЅ на pprox 0.01 - 0.02 R_{\odot} , а его максимальная начальная скорость $V_B \approx 850$ км с $^{-1}$ превышает соответствующую скорость фронта PS, составляющую $V_{\rm P} \approx$ $\approx 700 \; {\rm km} \; {\rm c}^{-1}$. По мере движения скорость фронтов BS и PS падает. При этом торможение фронта поршневой волны можно связать с постепенным замедлением его магнитного поршня - фронтальной структуры (FS) KBM (крестики на рис. 66 относительно горизонтальной штриховой прямой). Согласно каталогу SOHO LASCO CME (http:// cdaw.gsfc.nasa.gov/CME_list/) на расстояниях $R>2.5~R_{\odot}$ скорость FS уменьшается до значения $V_{\rm KBM} \approx 300 \ {\rm km \ c^{-1}}$ и далее мало меняется с расстоянием.

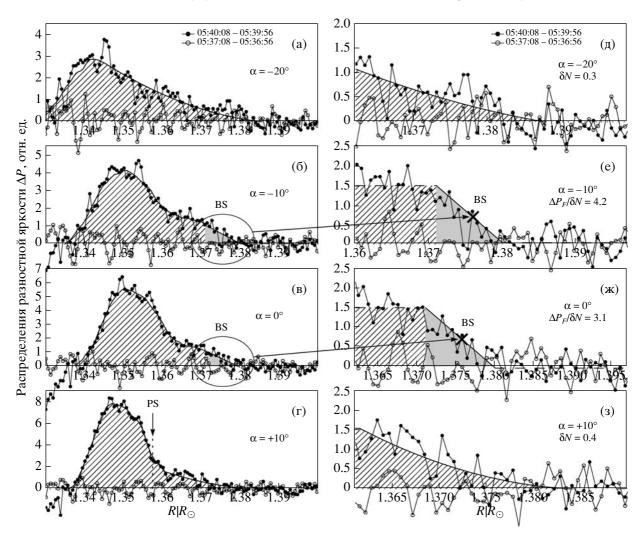
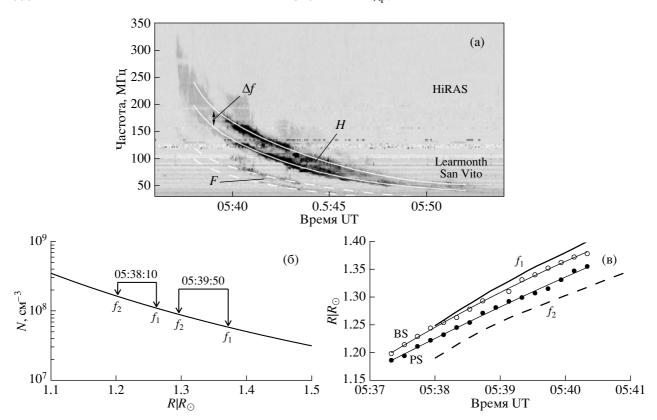



Рис. 7. Профили бегущей разностной яркости $\Delta P(R)$ относительно центра Солнца, построенные по измеренным профилям $\Delta P(r)$ относительно центра О ($\mathrm{PA}_C=244.3^\circ$, $R_C\approx1.14~R_\odot$) фронтальной структуры КВМ для четырех различных углов $\alpha=-20^\circ-10^\circ$ в момент времени t=05:40:08 UT при $\delta\alpha=60^\circ$: (a–r) — на обычной пространственной шкале, (д−3) — на растянутой пространственной шкале в области фронта BS. Величина отношения сигнал/шум ($\Delta P_F/\delta N$) для интервала за фронтом указана справа на графиках (e) и (ж), уровень шума δN — справа на графиках (д) и (з). КВМ 13 июня 2010 г. Данные SDO/AIA, канал 193 Å.

Однако самое интересное, на наш взгляд, отличие BS от PS следует из рис. 7. На нем представлены профили бегущей разностной яркости $\Delta P(R)$ при большом угле усреднения $\delta \alpha = 60^\circ$ для момента $t_2 - t_1 = 05:40:08-05:39:44$ UT, при $\mathrm{PA}_C = 244.3^\circ$, $R_C \approx 1.14$ R_\odot для четырех углов α : -20° (рис. 7а, 7д), -10° (рис. 76, 7е), 0° (рис.7в, 7ж), 10° (рис. 7г, 7з). В левой колонке графиков (рис. 7а–7г) профили $\Delta P(R)$ даны на обычной пространственной шкале, а в правой (рис. 7д–7з) — на более растянутой пространственной шкале и ограниченном участке в области фронта BS (он выделен кружком на рис. 7б и 7в). Из рисунка видно, что ударный фронт

с $\Delta P_F/\delta N>2$, показанный штриховой линией, формируется преимущественно при углах $\alpha=-10^\circ$ и 0° . А при $\alpha<-10^\circ$ и $\alpha>10^\circ$ отношение $\Delta P_F/\delta N$ становится \sim 1, т.е. фронт практически неразличим на фоне шума. Таким образом, среднее направление распространения фронта BS соответствует $\alpha\approx-5^\circ$. В то же время фронт PS, как следует из рис. 2, устойчиво регистрируется при $10^\circ \leq \alpha \leq 30^\circ$, и среднее направление распространения соответствует $\alpha\approx20^\circ$. Это означает, что направления распространения фронтов BS и PS отличаются (разница позиционных углов $\Delta PA_C \approx 4^\circ$). Положение фронта PS в момент

Рис. 8. (а) — Всплеск радиоизлучения II типа 13 июня 2010 г. на фундаментальной частоте F и второй гармонике H по данным радиоспектрографов HIRAS, Learmonth, San Vito. Каждая из частот расщеплена на две близкие частоты, различающиеся на величину $\Delta f = f_2 - f_1 \ll F, H$. (б) — Распределение N(R) из [15]. Стрелками отмечены рассчитанные значения концентрации, соответствующие измеренным компонентам расщепления f_1 и f_2 второй гармоники H для двух последовательных моментов времени 05:38:10 UT и 05:39:50 UT. (в) — Измеренные положения фронтов BS и PS (светлые и темные кружки) в зависимости от времени (из рис. 6а). Жирная сплошная и штриховая кривые — рассчитанные по распределению концентрации из [15] зависимости f(R) для частот f_1 и f_2 расщепления второй гармоники H.

05:40:08 UT показано на рис. 7г. вертикальной штриховой линией.

4. СВЯЗЬ ВЗРЫВНОЙ И ПОРШНЕВОЙ УДАРНЫХ ВОЛН СО ВСПЛЕСКОМ РАДИОИЗЛУЧЕНИЯ II ТИПА

На радиоспектрографах регистрируется всплеск радиоизлучения II типа — дрейф излучения от частоты $\approx 250~M$ Гц до частоты $\approx 50~M$ Гц на интервале времени 15~ мин (05:37~ Т-05:52~ UT). Наблюдается излучение на основной частоте F и вторая гармоника H (рис. 8a). Излучение на H существенно интенсивнее излучения на F. Обе гармоники показывают расщепление на две компоненты f_1 и f_2 с отношением частот $f_2/f_1 \approx \approx 1.26 \pm 0.03$.

Используя графики радиоизлучения для второй гармоники H и соотношение между плазменной

частотой и концентрацией $N[cm^{-3}] = (f[M\Gamma \iota]/9 \times$ $\times 10^{-3}$)², можно построить зависимость f(R), полагая, что N(R) удовлетворяет распределению из [15] в виде $N=N_0 imes 10^{4.32\,R_\odot/r}$, где $N_0=4.2 imes$ \times 10⁴ см⁻³. График распределения N(R) приведен на рис. 8б, где стрелками отмечены рассчитанные значения концентрации, соответствующие измеренным компонентам расщепления f_2 и f_1 второй гармоники H для двух последовательных моментов времени 05:38:10 UT и 05:39:50 UT. Непосредственно рассчитанные зависимости f(R)для второй гармоники H показаны на рис. 8в жирной сплошной (компонента f_1) и штриховой (компонента f_2) кривыми. Измеренные положения фронтов BS и PS, показанные на рис. 6а, нанесены на рис. 8в соответственно светлыми и темными кружками.

Можно предположить, что наблюдаемое расщепление радиоизлучения связано с двумя близко расположенными фронтами BS и PS, двигающимися с примерно равными скоростями. Такое различие в N вполне может быть обеспечено небольшим отличием в направлениях распространения фронтов BS и PS, которое, как уже упоминалось выше, составляет около $\Delta PA_C \approx 4^\circ$. Это связано с тем, что распространение фронтов BS и PS происходит вблизи пояса стримеров, т.е. квазистационарного "медленного" солнечного ветра [16]. Указанная неоднородность концентрации пояса стримеров вдоль позиционного угла PA (долготы) является вполне типичной вследствие существования лучевой структуры [17].

В заключение следует отметить, что нельзя полностью исключить возможность того, что наблюдаемые фронты PS и BS являются различными частями единой ударной волны, которые распространяются в направлениях с различными значениями концентрации. Однако в пользу версии того, что это, скорее, взрывная и поршневая ударные волны могут свидетельствовать следующие аргументы:

- а) взрывная волна должна распространяться впереди поршневой волны, имея на начальном этапе бо́льшую скорость, как это и наблюдается в наблюдениях;
- б) оба типа наблюдаемых ударных волн имеют по широте ограниченный фронт ($\sim\!20^\circ$ по углу α); при этом направления их распространения несколько отличаются (по позиционному углу на $\Delta \mathrm{PA}_C \approx 4^\circ$), вследствие чего их фронты если и перекрываются по позиционному углу, то лишь частично.

5. ВЫВОДЫ

- 1. В событии 13 июня 2010 г. на основе анализа данных инструмента AIA/SDO (канал 193 Å) удалось одновременно зарегистрировать и измерить фронты двух различных ударных волн. Угловой размер каждого из этих фронтов вдоль долготы относительно центра KBM составил около 20° , а направления их распространения отличались по позиционному углу на $\approx 4^{\circ}$.
- 2. Более быстрый фронт, названный взрывной ударной волной, опережал фронт другой, названной поршневой ударной волной, на $\Delta R \approx (0.02-0.03)~R_{\odot}$ и имел максимальную начальную скорость $V_B \approx 850~$ км $~{\rm c}^{-1}~$ (у поршневой $V_{\rm P} \approx 700~$ км $~{\rm c}^{-1}$).
- 3. Появление и движение этих ударных волн сопровождалось всплеском радиоизлучения II типа на фундаментальной частоте F и второй гармонике H. Каждая из частот была расщеплена на две близкие частоты f_1 и f_2 , различающиеся на величину $\Delta f = f_2 f_1 \ll F, H$.

4. На основе проведенного анализа был сделан вывод о том, что наблюдаемое частотное расщепления Δf радиоизлучения II типа может быть результатом одновременного распространения поршневой и взрывной ударных волн с различными скоростями в несколько разных направлениях, которые отличаются значениями концентрации корональной плазмы примерно в 1.2 раза.

Работа поддержана Российским фондом фундаментальных исследований (проект 13-02-00202-а). Авторы благодарят команды всех инструментов (AIA/SDO, радиоспектрографы HIRAS, Learmonth и San Vito), данные которых использовались в этой работе.

СПИСОК ЛИТЕРАТУРЫ

- 1. N. Gopalswamy, W. T. Thompson, J. M. Davila, M. L. Kaiser, S. Yashiro, P. Mäkelä, G. Michalek, J.-L. Bougeret, and R. A. Howard, Solar Phys. **259**, 277 (2009).
- 2. Z. Kuncic, I. H. Cairns, S. Knock, and P. A. Robinson, Geophys. Res. Lett. **29(8)**, 2-1-4 (2002).
- 3. D. J. McLean, Proc. Astron. Soc. Austral. 1, 47 (1967).
- 4. G. T. Mann, H.-T. Clafien, and H. Aurafi, Astron. and Astrophys. **295**, 775 (1994).
- 5. B. Vrsnak, H. Aurass, J. Magdalenic, and N. Gopalswamy, Astron. and Astrophys. **377**, 321 (2001).
- 6. M. V. Eselevich and V. G. Eselevich, Geophys. Res. Lett. 35, L22105 2008.
- 7. V. G. Eselevich and M. V. Eselevich, Astrophys. J. **761**, 68 (2012).
- 8. I. Zimovets, N. Vilmer, A. C.-L. Chian, I. Sharykin, and A. Struminsky Astron. and Astrophys. **547**, A6 (2012).
- 9. P. Zucca, M. Pick, P. Demoulin, A. Kerdraon, A. Lecacheux, and P. T. Gallagher, Astrophys. J. **795**, 68 (2014).
- 10. S. D. Bale, M. J. Reiner, J. -L. Bougeret, M. L. Kaiser, S. Krucker, D. E. Larson, and R. P. Lin, Geophys. Res. Lett. **26**, 1573 (1999).
- 11. M. Pulupa and S. D. Bale, Astrophys. J. **676**, 1330 (2008).
- 12. В. Г. Еселевич, М. В. Еселевич, И. В. Зимовец Астрон. журн. **90**, 166 (2013).
- A. Kerdraon and J.-M. Delouis, in: Coronal Physics from Radio and Space Observations, Proc. CESRA Workshop, Nouan le Fuzelier, France, 3–7 June 1996, ed. G. Trottet (Berlin: Springer, 1997), p. 192.

- J. R. Lemen, J. R. Lemen, A. M. Title, D. J. Akin, P. F. Boerner, C. Chou, J. F. Drake, D. W. Duncan, Ch. G. Edwards, F. M. Friedlaender, G. F. Heyman, N. E. Hurlburt, N. L. Katz, G. D. Kushner, M. Levay, R. W. Lindgren, D. P. Mathur, E. L. McFeaters, S. Mitchell, R. A. Rehse, C. J. Schrijver, L. A. Springer, R. A. Stern, Th. D. Tarbell, J.-P. Wuelser, C. J. Wolfson, C. Yanari, J. A. Bookbinder, P. N. Cheimets, D. Caldwell, E. E. Deluca, R. Gates, L. Golub, S. Park, W. A. Podgorski, R. I. Bush, Ph. H. Scherrer,
- M. A. Gummin, P. Smith, G. Auker, P. Jerram, P. Pool, R. Soufli, D. L. Windt, S. Beardsley, M. Clapp, J. Lang, and N. Waltham, Solar Phys. **275**, 17 (2012).
- 15. G. Newkirk, Jr., Astrophys. J. 133, 983 (1961).
- 16. V. G. Eselevich, in: *Exploring the Solar Wind*, ed. M. Lazar, (Croatia: INTECH, 2012), p. 3.
- 17. M. Eselevich and V. Eselevich, Solar Phys. **235**, 331 (2006).