УДК 523.985

РАДИОИЗЛУЧЕНИЕ СОЛНЕЧНОЙ ВСПЫШКИ 12.02.2010 г. И РЕЖИМЫ УСКОРЕНИЯ ЭЛЕКТРОНОВ

© 2015 г. Р. В. Горгуца¹, В. А. Ковалев¹, И. Г. Костюченко², А. К. Маркеев¹, Д. Е. Соболев¹, В. В. Фомичев¹

¹Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН), г. Москва, г. Троицк ²Научно-исследовательский физико-химический институт им. Л.Я. Карпова (НИФХИ), г. Москва e-mail: vic.kov@yandex.ru Поступила в редакцию 07.09.2014 г.

При анализе данных наблюдений радиовсплесков, полученных в ИЗМИРАН с помощью спектрографов метрового диапазона и радиометров на фиксированных частотах, использован дифференциальный метод, с помощью которого обнаружено двухступенчатое (быстрое + медленное по сравнению с экспоненциальным законом) поведение потоков радиоизлучения на фазах возрастания и спада. Показано, что наблюдаемый быстрый режим возрастания потока на частоте 3013 МГц, сопровождаемый уменьшением временно́го масштаба, может быть связан с быстрым режимом ускорения электронов, ответственных за магнитотормозное излучение вспышки в микроволновом диапазоне.

DOI: 10.7868/S0016794015030074

1. ВВЕДЕНИЕ

Предложенный ранее дифференциальный метод [Ковалев и Ковалев, 2009] включает расчет логарифмической производной

$$H = \frac{1}{u}\frac{du}{dt} \tag{1}$$

и позволяет обнаружить во временных профилях u(t) быстрые (|H| возрастает) и медленные (|Н| уменьшается) по сравнению с экспоненциальным законом (H = const) режимы. Параметр 1/|Н| является временным масштабом процесса. Этот метод ранее был успешно использован при анализе энерговыделения во время длительных вспышек по наблюдениям в рентгеновском диапазоне [Биленко и Ковалев, 2009]. Показано, что каждый отдельный импульсный всплеск, состоящий из фаз роста и спада, представляет собой последовательность интервалов быстрых и медленных не экспоненциальных режимов, подобным образом проявляющихся в поведении температуры и потоков рентгеновского излучения. Наблюдаемые эффекты были объяснены в рамках уравнения баланса энергии с объемным источником нагрева и диссипацией в виде радиационного охлаждения.

В настоящей работе с помощью обсуждаемого метода проанализированы данные наблюдений радиовсплеска, сопровождавшего вспышку 12.02.2010 г., полученные на комплексе аппаратуры ИЗМИРАН, включающем спектрографы метрового диапазона и радиометры на фиксированных частотах 204, 169 и 3013 МГц с временны́м разрешением 0.1 с. На рис. 1 показаны профили потоков радиоизлучения на частоте 169 МГц, состоящие из серии всплесков, и на частоте 3013 МГц (двойной всплеск).

Общее исследование соответствующей вспышки, во время которой на фоне континуального излучения V типа возникли сложные цепочки радиоволокон, было проведено Черновым, Фомичевым, Горгуцей и др. [2014]. Появление радиоволокон авторы связали с существованием мелких ударных фронтов за передним краем коронального выброса массы.

Цель настоящей работы — анализ быстрых и медленных режимов потоков радиоизлучения.

2. МИКРОВОЛНОВЫЙ ВСПЛЕСК

Центральная часть радиовсплеска на частоте 3013 МГц, представлена на рис. 2*a*. Возрастание потока микроволнового излучения (второй пик) от 200 до 230 s.f.u. за 4 с является двухступенчатым: быстрый режим сменяется медленным. При этом минимальный временной масштаб процесса 1/H, соответствующий максимуму *H*, составляет \approx 20 с.

Рис. 1. Верхняя кривая — поток радиоизлучения на частоте 169 МГц в условных единицах, стрелкой указан пик, для которого проводился анализ; нижняя кривая — поток на частоте 3013 МГц в s.f.u. (1 s.f.u. = 10^{-22} Вт м⁻² Гц⁻¹). Время указано в секундах от начала суток в UT.

Рис. 2. Микроволновый радиовсплеск на 3013 МГц: *а* – поток; *б* – параметр *H*. Время в секундах от начала суток в UT.

С целью выявления причин поведения параметра H полагаем, что в нашем случае основным механизмом генерации радиовсплеска является магнитотормозное излучение ускоренных изотропно распределенных электронов с кинетическими энергиями E от 10 до 100 кэВ со степенным спектром:

$$N(E) = KE^{-\gamma}, \quad K = N_0(\gamma - 1) = E_{\min}^{\gamma - 1},$$

$$N_0 = \int_{E_{\min}}^{E_{\max}} N(E) dE,$$
(2)

где N_0- концентрация нетепловых электронов;
у-показатель спектра; $E_{\rm min}$ и $E_{\rm max}-$ границы диапазо-

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 55 № 3 2015

на энергий. Используем усредненную по питч-углу испускательную способность электрона на фиксированной частоте *f* поперек магнитного поля. Тогда для наблюдаемого на Земле потока радиоизлучения *F* (необыкновенной волны) от ансамбля $N_{00} = N_0 V$ электронов в случае оптически тонкого источника объемом *V* имеем [Ковалев и Королев, 1976] в единицах Вт м⁻² Гц⁻¹:

$$F \approx 2.8 \times 10^{-44} BN_{00}(\gamma - 1)s^{-1/2} \times (3.7\varepsilon_{\max})^{s} \left(\frac{\varepsilon_{\min}}{\varepsilon_{\max}}\right)^{\gamma - 1}, \qquad (3)$$
$$s \gg \gamma - 1,$$

где $\varepsilon = E/m_0c^2$; $s = f/f_B$, f_B – гирочастота; B – напряженность магнитного поля; $\gamma = 2-3$; $\varepsilon_{\min} = 0.02$; $\varepsilon_{\max} = 0.1-0.2$. При B = 100 Гс частоте 3 ГГц соответствует $s \approx 11$.

Покажем, что введение параметра H позволяет получить дополнительную информацию об ускорении частиц во вспышке. Чтобы выяснить, за счет изменения каких параметров распределения ускоренных частиц может возникнуть двухступенчатый режим, проанализируем выражение (3). Поскольку $F = F(N_0, \gamma, \varepsilon_{max})$, для H имеем:

$$H = \frac{1}{F}\frac{dF}{dt} = \frac{1}{F}\left(\frac{\partial F}{\partial N_{00}}\frac{dN_{00}}{dt} + \frac{\partial F}{\partial \varepsilon_{\max}}\frac{d\varepsilon_{\max}}{dt} + \frac{\partial F}{\partial \gamma}\frac{d\gamma}{dt}\right), (4)$$

$$H \approx H_{N_{00}} + sH\varepsilon_{\max} - \left[(\gamma - 1)\ln\frac{\varepsilon_{\max}}{\varepsilon_{\min}} - 1 \right] H_{\gamma}, \quad (5)$$

где $H_{N_{00}}$, $H\varepsilon_{\text{max}}$, H_{γ} – парциальные вклады:

$$H_{N_{00}} = \frac{1}{N_{00}} \frac{dN_{00}}{dt},$$

$$H\varepsilon_{\max} = \frac{1}{\varepsilon_{\max}} \frac{d\varepsilon_{\max}}{dt}, \quad H_{\gamma} = \frac{1}{\gamma - 1} \frac{d\gamma}{dt}.$$
(6)

Возрастание *H* во время быстрого роста *F* происходит, в основном, за счет возрастания $H_{N_{00}}$ и/или $H\varepsilon_{\text{max}}$, поскольку при увеличении потока излучения эти параметры неотрицательны (≥ 0).

Третье слагаемое в соотношении (5) при положительном значении выражения в квадратных скобках может быть как положительным (в случае $H_{\gamma} < 0$, соответствующим возрастанию жесткости спектра частиц), так и отрицательным (при уменьшении жесткости спектра, $H_{\gamma} > 0$). В последнем случае происходит подавление ("торможение") быстрого роста *F*. Возможно, что двухступенчатый характер возрастания потока связан с двухступенчатым характером ускорения электронов.

Необходимое быстрое возрастание максимальной энергии ускоренных во вспышке электронов $E_{\rm max}$ возможно в магнитной ловушке со

сходящимися пробками ("коллапсирующей" ловушке) в результате механизма ускорения Ферми при сохранении продольного адиабатического инварианта [Somov and Kosugi, 1997]. Соответствующая кинетическая задача формирования степенной функции распределения кинетики рассмотрена в работе Богачева и Сомова [2007].

Отметим, что дополнительный вклад в параметр H может дать не учитываемое в данной статье изменение углового распределения электронов во время вспышки, что может быть проверено численными расчетами.

3. РАДИОИМПУЛЬС МЕТРОВОГО ДИАПАЗОНА

На рисунке За показан фрагмент радиовсплеска на двух частотах метрового диапазона: 204 МГц (III тип) и 169 МГц (III + V тип). Видно, что длительность всплеска на 204 МГц значительно меньше. Возрастание потока радиоизлучения импульса на частоте 169 МГц от 250 до максимального значения 750 усл. ед. за 1.6 с двухступенчатое: быстрое начальное возрастание потока до 320 усл. ед. в начале импульса (26557.6 < t < 26558.0) с сменяется медленным (26558.0 < t < 26559.3) с (рис. 26). Последующий спад потока (t > 26559.3 c) также происходит в два этапа: быстрый (26559.3 < t < < 26560.6) с и медленный (*t* > 26560.6 с). Интервал с экспоненциальным законом роста потока отсутствует. Это возможно, если его длительность мала и не разрешена наблюдениями, или линейная стадия возбуждения плазменной турбулентности отсутствует.

Из рисунка За видно, что профили потоков на двух частотах сильно отличаются: максимум на 169 МГц запаздывает относительно максимума на 204 МГц на 1.2 с; в то же время максимумы параметра *H* и потока на 204 МГц практически совпадают.

Как известно, когерентный механизм генерации радиовсплесков III типа, представляет собой трансформацию плазменных колебаний, возбуждаемых пучками ускоренных электронов [Железняков, 1997]. Из этого следует, что наблюдаемый двухступенчатый характер возрастания радиопотока указывает на двухступенчатый характер возбуждения плазменной турбулентности. Подробное исследование этих вопросов, однако, выходит за рамки данной работы.

4. ФАЗА СПАДА

Обычно спад отдельного импульса (процессов разной природы) аппроксимируют последовательностью экспоненциальных законов. Однако наше исследование показывает, что затухание всплеска имеет существенно не экспоненциаль-

Рис. 3. Выделенный фрагмент вспышки: *а* – потоки радиоизлучения в условных единицах на 204 МГц (III тип) – сплошная линия и 169 МГц (III + V тип) – штрихпунктирная линия; *б* – поведение параметра *H* для частоты 169 МГц близко к поведению потока на частоте 204 МГц.

ный, двух- или трехступенчатый характер. После максимума импульса сначала происходит быстрый (|H| возрастает), а затем медленный (|H| уменьшается) спад. И лишь заключительный длительный процесс затухания можно считать близким к экспоненциальному ($H \sim \text{const}$).

Во время ускоренного спада, имеющего коллапсирующий характер, профиль F(t) выпуклый. В точке максимума импульса dF/dt = 0. В этом случае, очевидно, коллапсирующий характер спада может быть обеспечен увеличением диссипации во времени. Переход к замедленному режиму спада с вогнутым профилем возникает благодаря уменьшению относительного вклада диссипации и указывает на продолжающуюся генерацию радиоизлучения (ускорение электронов).

5. ВЫВОДЫ

С помощью дифференциального метода определена динамика временно́го масштаба потоков радиоизлучения солнечных вспышек. Быстрое по сравнению с экспоненциальным законом изменение потока характеризуется уменьшением временно́го масштаба, медленное — его возрастанием.

Метод использован при анализе радиовсплеска 12.02.2010 г., зарегистрированного на комплексе аппаратуры ИЗМИРАН, включающем спектрографы метрового диапазона и радиометры на фиксированных частотах 3013; 204; 169 МГц с временны́м разрешением 0.1 с.

В поведении потоков радиоизлучения на фазах возрастания и спада на кратковременных интервалах (длительностью <10 с) микроволнового всплеска на частоте 3013 МГц и радиовсплесков метрового диапазона обнаружен двухступенчатый характер; за быстрым возрастанием потока в начальной фазе импульса следует медленное возрастание.

Показано, что наличие быстрого режима возрастания радиопотока на 3013 МГц можно связать в рамках оптически тонкого магнитотормозного источника в микроволновом диапазоне с возрастанием в быстром режиме максимальной энергии ускоренных электронов (10–100) кэВ со степенным спектром ~ $E^{-\gamma}$ и/или их общего числа. Быстрый режим ускорения электронов может быть обеспечен механизмом Ферми в магнитной ловушке со сходящимися пробками.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (грант № 11-02-00757). Авторы благодарны рецензенту за полезные замечания.

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 55 № 3 2015

СПИСОК ЛИТЕРАТУРЫ

- Биленко И.А., Ковалев В.А. О режимах нагрева во время солнечных вспышек // Письма в Астрон. журн. Т. 35. № 11. С. 873–880. 2009.
- Богачев С.А., Сомов Б.В. Формирование степенных спектров электронов в коллапсирующих магнитных ловушках // Письма в Астрон. журн. Т. 33. № 1. С. 62–71. 2007.
- Железняков В.В. Излучение в астрофизической плазме. М.: Янус-К, 528 с. 1997.
- Ковалев В.А., Ковалев И.В. Дифференциальный метод диагностики нелинейных режимов // Нелинейный мир. Т. 7. № 12. С. 918–921. 2009.
- Ковалев В.А., Королев О.С. К вопросу об интерпретации спектров солнечных микроволновых всплесков // Астрон. журн. Т. 53. № 1. С. 130–139. 1976.
- Чернов Г.П., Фомичев В.В., Горгуца Р.В., Маркеев А.К., Соболев Д.Е., Алиссандракис К.Е., Хилларис А. Особенности тонкой структуры радиоизлучения солнечной вспышки 12 февраля 2010 г. // Геомагнетизм и аэрономия. Т. 54. № 4. С. 444–454. 2014.
- Somov B.V., Kosugi T. Collisionless reconnection and high – energy particle acceleration in solar flares // Astrophys. J. V. 485. № 2. P. 859–865. 1997.