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Abstract This publication provides an overview of magnetic fields in the solar
atmosphere with the focus lying on the corona. The solar magnetic field couples
the solar interior with the visible surface of the Sun and with its atmosphere. It is also
responsible for all solar activity in its numerous manifestations. Thus, dynamic phe-
nomena such as coronal mass ejections and flares are magnetically driven. In addition,
the field also plays a crucial role in heating the solar chromosphere and corona as
well as in accelerating the solar wind. Our main emphasis is the magnetic field in the
upper solar atmosphere so that photospheric and chromospheric magnetic structures
are mainly discussed where relevant for higher solar layers. Also, the discussion of
the solar atmosphere and activity is limited to those topics of direct relevance to the
magnetic field. After giving a brief overview about the solar magnetic field in general
and its global structure, we discuss in more detail the magnetic field in active regions,
the quiet Sun and coronal holes.
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1 Introduction

To understand the physical processes in the solar interior, its atmosphere as well as
the interplanetary environment (including “space weather” close to Earth), a detailed
knowledge of the temporal and spatial properties of the magnetic field is essential. This
is because the magnetic field is the link between everything, from the Sun’s interior to
the outer edges of our solar system. The magnetic field is created in the solar interior,
can be measured with highest accuracy on the Sun’s visible surface (the photosphere)
and controls most physical processes in the solar atmosphere. Within this review, we
aim to give an overview of the magnetic coupling from the solar surface to the Sun’s
upper atmosphere, with special emphasis on the structure and evolution of the coronal
magnetic field. Magnetic features in the photosphere are discussed if they cause a
coronal response.
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The techniques and challenges of measuring the magnetic field throughout the
atmosphere are not discussed here, but are covered by earlier reviews (Raouafi 2005;
White 2005; van Driel-Gesztelyi and Culhane 2009; Cargill 2009; Stenflo 2013).
Outside the scope of this paper is the generation of the solar magnetic field by dynamo
processes (for comprehensive reviews see, Ossendrijver 2003; Charbonneau 2010).
For an in-depth discussion of the observational patterns resulting at photospheric
levels from the dynamics in the Sun’s convection zone, we refer to Zwaan (1987)
and Stenflo (1994). We also do not discuss the role of the magnetic field and related
physical processes far away from the Sun (beyond the solar corona) and its transport
to those places. Here, we refer the interested reader to specialized reviews on the solar
wind (Marsch 2006; Ofman 2010; Bruno and Carbone 2013), space weather (Schwenn
2006), and the heliospheric magnetic field (Owens and Forsyth 2013).

We start our review by giving an introduction to the most important magnetic aspects
of the lower solar atmosphere, including the photosphere (Sect. 1.1), chromosphere
(Sect. 1.2) and the corona (Sect. 1.4). The magnetic coupling between these layers
is discussed in Sect. 1.3. An overview on the current most widely used local and
global model approaches to assess the coronal magnetic field is given in Sect. 2. In the
remaining sections, we provide more detailed descriptions of what we know to date
about the coronal magnetic field’s structure in different parts of the Sun’s atmosphere,
starting with the magnetic field on global scales (Sect. 3), in active and quiet-Sun
regions (Sects. 4 and 5, respectively). Finally, we review the magnetic aspects of
coronal holes in Sect. 6 and provide a summary and outlook in Sect. 7.

In most cases, we restrict ourselves to mention whether the discussed results were
obtained from the analysis of directly measured magnetic fields or inferred from mod-
eling. For further reading, we want to draw the reader’s attention to classical overviews
of the theoretical aspects of solar magnetism by Parker (1979) and Priest (1982, 2014),
as well as previous descriptions dedicated to aspects of the magnetic properties of the
Sun’s magnetic field by Solanki et al. (2006). We also refer to Schrijver and Zwaan
(2000) for a comparative work on the magnetic activity of the Sun and other stars.

Abbreviations used throughout this manuscript are defined in Appendix 8.

1.1 Photosphere

The photosphere contains the visible solar surface and vertically spans about 500 km
of the solar atmosphere, where the temperature decreases from about 6,000K at the
bottom of the photosphere to about 4,000K (temperature minimum; Foukal 2004).
In these layers, due to the momentum gained on its journey towards the surface, the
convective material of the Sun’s interior overshoots into the solar atmosphere, which
is stable against thermal convection. Only after passing a distance comparable to
the density scale height does it eventually turns over to form lanes of down flowing
material (see reviews by Nordlund et al. 2009; Stein 2012). As a consequence, the
photosphere reveals a granular pattern comprised of ascending warmer gas in the
centers of the granules and descending cooler gas in the intergranular lanes separating
them. In contrast to the layers below the solar surface, in the atmosphere the energy
is dominantly transported by radiation rather than convection.

123



T. Wiegelmann et al.: The magnetic field in the solar atmosphere Page 5 of 106

1.1.1 Magnetic flux emergence

A significant part of the properties of the photospheric magnetic features is deter-
mined by the amount of magnetic flux carried by the �-loops that rise through the
convection zone towards the solar surface. The largest of these loops may form large
bipolar ARs that harbor sunspots or sunspot groups (Durrant 1988). Large sunspots
and sunspot groups have magnetic fluxes of ≈1021 and 1022 Mx, respectively (Priest
1982, 2014), and are responsible for a great part of the Sun’s activity (see Sect. 4
for details). Much of the flux in ARs that is not in the form of sunspots is orga-
nized in magnetic concentrations (much) smaller than spots, either in the form of
pores or, most commonly, magnetic elements. Magnetic pores, sunspot-like features
that are characterized by the absence of a penumbra, carry fluxes of some 1020 to
1021 Mx (Thomas and Weiss 2004; Sobotka et al. 2012). Magnetic elements within
ARs carry fluxes of 1018 to 1020 Mx (Abramenko and Longcope 2005). Note that
it is unclear, however, whether the larger flux features observed by Abramenko and
Longcope (2005) are indeed bright magnetic elements, or possibly darker features
such as protopores.

Smaller rising �-loops result in the formation of smaller ARs until a lower limit
of roughly 1020 Mx. Below that we generally speak of “ephemeral regions” (1018 to
1020 Mx). Even smaller are the smallest so far resolved bipolar features, the internet-
work magnetic loops (Martínez González et al. 2007; Centeno et al. 2007; Martínez
González and Bellot Rubio 2009; Danilovic et al. 2010a) which emerge throughout
the QS (although preferring a meso-scale pattern). They have fluxes of roughly 1016

to 1017 Mx (Lin and Rimmele 1999) and display in general weak equipartition (that is,
the magnetic energy density is similar to the kinetic energy density of the convective
flows) intrinsic fields. Occasionally, these weak fields may be intensified due to a con-
vective collapse (Parker 1978b; Spruit 1979). The latter amplifies the magnetic field
in intergranular downflow regions due to the combined effect of enhanced cooling of
the intergranular plasma (due to the transport of flux by the horizontal granular flows
into this region) and the super-adiabatic stratification of the ambient plasma. In small
flux concentrations, however, radiative energy exchange may be able to considerably
slow down the cooling of the downflow material so that the collapse is prohibited and
the gross part of this field remains relatively weak (see Venkatakrishnan 1986; Solanki
et al. 1996; Grossmann-Doerth et al. 1998, and Sect. 5 for further details).

It is interesting to note that although each AR typically carries 100 times as much
flux as an ephemeral region, the number of ephemeral regions appearing on the solar
surface over a solar cycle outnumbers that of ARs by a factor of 104, so that the
ephemeral regions bring roughly 100 times more magnetic flux to the solar surface
than ARs. Similarly, ephemeral regions carry roughly 100 times as much flux as a
typical internetwork feature but all internetwork features appearing over a solar cycle
together provide roughly 100 times more magnetic flux (Zirin 1987, and note that this
is partly offset by the much lower lifetime of the smaller magnetic bipolar features).
Altogether, the number of magnetic features with a certain amount of flux follows a
power law distribution with an exponent of −1.85 (Parnell et al. 2009), which is close
to −2.0 found by Harvey and Zwaan (1993). The latter means that, at any given time,
small and large magnetic regions contribute a similar magnetic flux.
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1.1.2 Spatial properties of magnetic features

The different types of bipolar features have rather different properties. The ARs are
largely restricted to the activity belts (i.e., within approximately ±30◦ around the solar
equator; see Hale and Nicholson 1925). Their constituent sunspots are more or less
E–W aligned with a certain tilt, with respect to the exact E–W direction (corresponding
to Joy’s law; see Hale et al. 1919). This tilt increases with increasing latitude (Caligari
et al. 1995; Li and Ulrich 2012) and seems to be inversely correlated to the strength
of the upcoming solar cycle (Dasi-Espuig et al. 2010). Variation of the number of
sunspots with time is often used as a measure of the solar cycle. Lifetimes of sunspots
vary over a range of periods, with the larger ones living for months (Petrovay and
van Driel-Gesztelyi 1997). ARs have been reported to have a tendency to emerge near
existing ARs forming so-called active longitudes (Ivanov 2007), although there has
been controversy regarding their reality (see Sect. 3 for a more detailed discussion).

Despite being preferentially concentrated around the activity belts (Harvey and
Martin 1973; Martin 1988), ephemeral regions appear over a much larger fraction of
the solar surface (Yang and Zhang 2014), indicating that they may be generated by a
local rather than global dynamo process. Without observations of the poles, however,
this claim is not tenable (see Sect. 6.2 for further details). They live for hours to days
and display a tendency to align with the E–W orientation than ARs. They may even not
have such a trend at all (Hagenaar et al. 2003; Yang and Zhang 2014). Their number
varies much less over a solar cycle than that of ARs and there are inconsistent results
regarding whether their number varies in phase or in anti-phase with the solar cycle
(Martin and Harvey 1979; Martin 1988; Hagenaar et al. 2003).

Whereas the location of ARs and ephemeral regions are determined mainly by
the latitudes and longitudes of emergence, the spatial distribution of other magnetic
features, such as the magnetic network, is also influenced by the transport of magnetic
flux at the solar surface by a variety of flows. The properties of the magnetic network
change in the course of the solar cycle: around solar minimum it is weak and consists
mainly of mixed polarities, except near the poles which are essentially unipolar regions
(and with each pole having a different polarity). Around solar maximum, the mixed-
polarity regions are augmented by large unipolar regions up to solar latitudes of about
60◦ which are the decay products of old ARs. Finally, the internetwork fields appear all
over the Sun, including also the interior of ARs. Individual internetwork elements live
only for minutes to hours and they show no preference for any particular orientation
(de Wijn et al. 2009, and references therein). They display no dependence on the solar
cycle to the extent that can be tested so far (Bühler et al. 2013).

1.1.3 Origin of internetwork fields

There has been considerable debate concerning the origin of internetwork fields. One
proposal regarding their origin is that they are either the consequence of recycling of
magnetic flux from ephemeral regions, or are the result of convection acting upon ARs,
tearing flux away and recycling it over time (Ploner et al. 2001). This basically implies
that they are composed of flux produced by the global dynamo being one possibility
and magnetic flux produced by a local dynamo being another (Vögler and Schüssler
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2007; Schüssler and Vögler 2008; Bühler et al. 2013; Stenflo 2012, and for a review see
Martínez Pillet 2013). It is still an open question whether the quiet Sun’s magnetic field
is created mainly by the global dynamo or a local turbulent dynamo. One possibility
to investigate this is the latitude dependence, where the global dynamo would likely
lead to a significantly different distribution of quiet-Sun areas as a function of latitude,
while the action of a local dynamo would not. Another approach is to trace quiet-Sun
regions in time over a solar cycle. While a global dynamo would lead to a significant
change as the cycle progresses, a local dynamo would not. This approach was applied
by Bühler et al. (2013), based on circular and linear polarization signals measured with
Hinode/SOT-SP during about half a solar cycle (during the years 2006 to 2012). No
significant changes, in both linear and circular polarization, were found, in particular
for magnetic features with a LOS magnetic flux of less than 1019 Mx. Thus, their results
are favoring a local turbulent dynamo, at least for the creation of weak internetwork
fields, and supporting what has been suspected in earlier studies (Sánchez Almeida
2003, and references therein and see also Sect. 6.2.2 for the importance of a local
dynamo in the Sun’s polar regions).

1.1.4 Temporal evolution of the magnetic field

The emergence of magnetic flux ropes from below the surface within ARs is usually
followed by the growth and separation of the opposite polarity patches. Most com-
monly, loop footpoints move apart almost linearly with time (Centeno et al. 2007).
But also more complex motions such as circular ones are possible, although only if
the emerging loop possesses a writhe or a twist (Guglielmino et al. 2012). Then, phys-
ical long-term (López Fuentes et al. 2003) and apparent short-term rotational motions
(López Fuentes et al. 2000; Luoni et al. 2011) of the opposite polarity patches are
usually observed. And also apparent shearing and rotational motions have been noted
(Gibson et al. 2004; Liu and Zhang 2006). (Note that whenever we speak of shearing
without any specification, a horizontal motion, i.e., parallel to the solar surface, is
referred to.) Sunspots also can show an apparent rotational motion around their cen-
ter shortly after emergence. The related coronal magnetic loops (which magnetically
connect the rotating sunspots) are often twisted and visible as sigmoid structures in
coronal images (Brown et al. 2003). Coronal structures above rotating sunspots are
also prone to cause flaring activity.

Once the �-loops have emerged, the enhanced magnetic field at their footpoints
(the magnetic patches) interacts with the convection in different ways (Schrijver et al.
1997). At the beginning, the magnetic field is generally approximately in equipartition
with the flows (typically granular flows). At the solar surface, this corresponds to field
strengths of 300 to 500 G. Once the field has emerged, it gets concentrated to form kG
(kilogauss) features by its interaction with convective flows (Parker 1978a; Nagata et
al. 2008; Danilovic et al. 2010b). Recent studies suggest that the concentration of the
field can be followed by a weakening of the field and that this can cycle multiple times
(Requerey et al. 2014). The flows also move the magnetic features around, causing
each to carry out a random walk, although the exact nature of the motion can differ,
depending on the location of the magnetic feature (Abramenko et al. 2011; Jafarzadeh
et al. 2014a).
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Fig. 1 Structure of the magnetic field and the temperature of a relatively symmetric sunspot recorded by
the Hinode/SOT-SP on January 2007 which scanned the sunspot area from 12:36 UT to 13:00 UT. Plotted
are maps of the a temperature, b field strength, c field inclination and d azimuth. The fine-scale structures
of this sunspot have been analyzed by Tiwari et al. (2013) and van Noort et al. (2013)

The random walk of the magnetic patches, imposed by the convective motions,
necessarily leads to the encounter of opposite polarity fields. These, in the case of
smaller flux tubes, often do not correspond to the other footpoint of the original
�-loop, so that in larger ARs, a fair amount of cancelation takes place (Livi et al.
1985). When fields of same polarity meet, larger flux concentrations are (sometimes
only temporarily) formed (Martin 1984). Only if there is enough magnetic flux of
a single polarity present, then part of it coalesces into a sunspot. Proper sunspots
consist of a central umbra and a surrounding penumbra (see Fig. 1). The latter is a
filamentary structure of weaker, more horizontal magnetic field which surrounds the
more vertically oriented stronger umbral magnetic field (Solanki 2003; Borrero and
Ichimoto 2011, for reviews see). Typically, magnetic field strengths of about 1 kG are
found in penumbrae while the maximum umbral field strengths usually range between
2 and 4 kG (Title et al. 1993; Lites et al. 1993; Schad 2013). In extreme cases, values
as large as 6 kG have been reported (Livingston et al. 2006). Only recently, van Noort
et al. (2013) reported ≈7 kG in a sunspot, although surprisingly not in the umbral
area but near the outer edge of the penumbra, in a strong downflow region. Sunspots
have diameters between 3 Mm (megameter) and 60 Mm and live for a few hours to
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months (Bray and Loughhead 1964, and see also the review by Solanki 2003), with
the lifetime being linearly correlated to the maximum area covered (Waldmeier 1955).
Sunspots grow rapidly after their emergence, soon reach a maximum size and decay
slowly afterward.

Sunspots are often preceded, accompanied and followed by “faculae” (called
“plage” at chromospheric levels) which have a spatially averaged field strength of
typically between 100 and 500 G (Title et al. 1992) and are composed of magnetic ele-
ments of a range of sizes, with comparatively field-free or weak-field gas in between.
Faculae tend to surround and generally outlive the sunspots by a significant amount.
Consequently, an old AR is generally composed of faculae only which then decay and
disperse to form enhanced network fields. The flux in ARs that is not in the form of
sunspots is concentrated in either pores or magnetic elements. The properties of pores
include diameters of some Mm and field strengths of 1 to 2 kG (Thomas and Weiss
2004; Sobotka et al. 2012). Magnetic elements have diameters smaller than ≈350 km
and exhibit field strengths of 1 to 2 kG (Stenflo 1973; Rabin 1992; Rüedi et al. 1992).
They are the chief magnetic constituents of faculae, which are bright (i.e., hotter than
their surroundings) particularly in the mid-photosphere and above (see reviews by
Solanki 1993; Solanki et al. 2006) and are present even in the internetwork (Lagg et
al. 2010).

Sooner or later, larger magnetic features (e.g., sunspots) break up and dissolve, their
fragments becoming subject to transport and distortion by the convective flows. The
smallest and most dynamic convective elements in the QS are granules. Granules have
typically diameters of 500 km to 1.5 Mm, a single turnover time of a few minutes and
lifetimes of minutes (Nordlund et al. 2009; Zhou et al. 2010). Roughly, the turnover
time is the time it takes for hot matter to be transported up through the solar surface,
cooled there and transported down again in an intergranular lane, while the lifetime
is the time over which a given granule maintains its identity (e.g., in a series of
images of the solar surface). In the QS, the magnetic field is additionally swept to
the edges of supergranular cells (for a review see Rieutord and Rincon 2010) with
typical diameters of 20 to 30 Mm. This happens on a timescale of several hours and
leads to the formation of a patchy magnetic network outlining the boundaries of the
supergranular cells.

The transport of magnetic flux to the edges of the granular and supergranular cells
leads to an enhancement of magnetic flux if the accumulated flux is of the same polarity.
Only when the magnetic elements of opposite polarity meet, do they (partially) cancel.
In fact, the most significant process of disappearance of magnetic flux appeared to be
the cancelation of magnetic elements of opposite polarity (Livi et al. 1985). Wang et
al. (1988) concluded that the flux cancelation occurs as a consequence of magnetic
reconnection in or above the photosphere, which is likely due to the expansion of the
field, so that the opposite polarities meet mainly in the upper photosphere (Cameron et
al. 2011). However, a recent study of Lamb et al. (2013) suggests that at least in the QS,
flux dispersal is the more common route by which magnetic elements are destroyed,
although the exact physical process of flux removal could not be studied (dissipation
at small spatial scales is likely to play a role). Another explanation for the apparent
disappearance of magnetic flux is that the continuous buffeting of the magnetic flux
concentrations leads to the fragmentation of some of the flux into entities whose lesser
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magnetic flux may then be below the detection threshold of a particular instrument
(Berger and Title 1996).

1.1.5 Relative importance of magnetic forces

Typical values for the particle number density in the solar photosphere are in the
order of n ≈ 1023 m−3 (at the temperature minimum; Foukal 2004). Typical quiet-
Sun and active-region magnetic field strengths cover the range 100 G to 2 kG. As a
consequence, the ratio of the plasma pressure to the magnetic pressure (usually referred
to as plasma-β, or simply denoted by β) is in the order of 1 to 10 (when averaged
over larger regions, Gary 2001). Note that a value of β � 1 implies that the pressure
exerted by the plasma is higher than that exerted by the magnetic field, i.e., that the
plasma motion controls the dynamics (and the photosphere is therefore generally said
to be “non force-free”). Locally, however, due to the evacuation of magnetic features
values of β < 1 are often found. Consequently plasma pressure forces might not be
dominant everywhere in the photosphere. Sunspots and kG magnetic elements (for
instance at supergranular boundaries) likely represent such exceptions (Priest 1982).

Solanki et al. (1993) found that in the layers of sunspots near the bottom of the
photosphere, β is likely above unity everywhere. It was found to drop from higher
values in the umbral center and to reach β ≈ 1 at the umbral boundary, followed by
another increase towards the outer penumbral boundary. In contrast, Mathew et al.
(2004), who used the same spectral lines as Solanki et al. (1993), presented a case
where both, the entire umbra as well as the inner penumbra of a sunspot had a β

slightly below unity. More recently, Tiwari (2012) statistically addressed this topic
using high-resolution magnetic field information for 19 sunspots. He found that in
mid-photospheric layers most of the fine structures over most of the sunspot areas
were nearly force-free with the tendency that umbral fields were less forced, while
penumbral fields were more (see Fig. 2). This combination of large plasma-β in a

Fig. 2 a Map of the vertical tension force (Tz) of an active-region sunspot. Gray and black dashed lines
outline the boundaries of the umbra and penumbra, respectively. Tz has high negative values at most places
over the sunspot. b Histograms of Tz in the umbra (black) and penumbra (blue). The histogram peak for
the umbral field is shifted towards higher negative values, i.e., the umbral field is more force-free than that
in the penumbra. (Adapted from Figure 2 of Tiwari (2012). © AAS. Reproduced with permission)
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spatially averaged sense and small values of β locally has important consequences. A
comparatively low β inside strong-field features helps to explain why they maintain
their identity for often considerable lengths of time. The high average β implies that
magnetic features as a whole, more or less passively, follow convective motions. This
in turn explains that the magnetic field in the corona can become tangled and complex
(see Sect. 4).

The relative importance of magnetic forces in entire ARs was also estimated. Met-
calf et al. (1995) found a value of �0.4 for the net Lorentz force (i.e., the ratio of the
total vertical Lorentz force and magnetic pressure force, integrated over the area of
the considered AR) and concluded that the analyzed AR cannot be validly considered
as to be force-free at a photospheric level. In contrast, Gary et al. (1987) found that
another analyzed AR was indeed force-free, except for some, localized areas (areas
for which flaring activity was noticed). Moon et al. (2002) analyzed the forces within
three flare-productive ARs and found a median of ≈0.1 for the net vertical Lorentz
force and argued that the magnetic field at photospheric levels may not be as far from
being force-free as commonly assumed. (See also Sect. 5.2.5, for a discussion on the
force-freeness of quiet-Sun regions.)

The above compilation shows that the findings, so far, are not entirely conclusive
regarding how close to being force-free the photospheric magnetic field really is, they
rather show that the amount of forcing (by the gas) depends on the situation being
considered. Therefore, special care is required when using photospheric vector mag-
netic field data as input for, e.g., coronal magnetic field models. Such modeling often
relies on routine measurements of the magnetic field, which are to date predominantly
performed at photospheric levels (see Sect. 2).

1.2 Chromosphere

The chromosphere lies on top of the photosphere with a thickness of about 1 to
2 Mm, starting from the temperature minimum in traditional one-dimensional model
atmospheres. In reality, the chromosphere is far more complex and its thickness is
likely to vary strongly from one horizontal location to another. Importantly, it should
be thought of more as a temperature rather than a static height regime, with the tem-
peratures increasing from the temperature minimum to ≈104 K (Stix 2002). Sketches
indicating the rich variety of phenomena in the chromosphere and its complexity have
been presented in reviews by Wedemeyer-Böhm et al. (2009) and Rutten (2012). Just
as the small-scale dynamics of the photosphere are dominated by granular convection,
those of the chromosphere are dominated by waves. In internetwork regions these are
mainly acoustic waves with a three-minute period, produced in the convection zone
(for reviews see Rutten and Uitenbroek 1991; Carlsson and Stein 1997; Wedemeyer
et al. 2004). But there is also mounting evidence of MHD waves in the chromospheric
layers of magnetic structures (Hansteen et al. 2006; De Pontieu et al. 2007).

1.2.1 Characteristic chromospheric magnetic structures

The enhanced magnetic flux concentrations outlining the supergranular cells (the mag-
netic network) in the photosphere coincide with the bright network seen in chro-
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mospheric spectral lines (e.g., of Ca ii). The spatial agreement results from the fact
that the magnetic features are nearly vertical (Martínez Pillet et al. 1997; Jafarzadeh et
al. 2014b), which is the result of the large field strength of the photospheric (≈kG) flux
tubes. Strong fields produce nearly evacuated structures which result in the flux tubes
being buoyant (Parker 1955) and therefore cause a radial (i.e., vertical) orientation of
the field. The vertical orientation is maintained also in the presence of horizontal gran-
ular flows (Schüssler 1984) which bend the magnetic elements (Steiner et al. 1996).
The magnetic elements appear bright in chromospheric radiation and larger in size
than in the photosphere (Gaizauskas 1985). Smaller magnetic features are brighter
than their surroundings in photospheric radiation due to the vertical, evacuated struc-
tures being less opaque than their surroundings. As a consequence, the radiation from
the flux tube’s walls may penetrate deep into the thin flux tube’s interior which then
appears bright (Spruit 1976, and for reviews see Solanki 1993; Steiner 2007). To
explain the enhanced brightness in the chromosphere, however, additional sources of
heating, such as the dissipation of waves propagating along the field lines (Roberts
and Ulmschneider 1997) are necessary.

Both in active-region plage and in the network, the kG magnetic field structures
appear more diffuse in the chromosphere than in the photosphere (Jones 1985; Petrie
and Patrikeeva 2009). While the photospheric field is mainly radially oriented, the
chromospheric field expands in all directions forming a magnetic canopy (Giovanelli
1980; Jones and Giovanelli 1982), which is likely to be a natural consequence of
the excess heating inside magnetic elements (Solanki and Steiner 1990). Choudhary
et al. (2001) compared LOS chromospheric magnetic field as observed in the Ca ii
8542 Å spectral line with a current-free magnetic field model. The latter was based
on photospheric LOS magnetic field observations in the Fe i 8686 Å spectral line.
Analyzing 137 ARs, they found that the chromospheric observations were reproduced
best by a current-free model field at a height of ≈800 km above the photosphere, in
agreement with the expected formation height of the Ca ii 8542 Å line. Their results also
suggested a decreasing correlation between the observed and modeled LOS magnetic
field with increasing field strength, which they attributed to change of the spectral line’s
formation height in strong-field regions (although a real deviation from a potential
configuration remains a possibility).

On larger (active-region) scales, often observed as dark elongated features in Hα

6563 Å and He i 10830 Å images are filaments (“prominences” when observed above
the limb; for reviews see Labrosse et al. 2010; Mackay et al. 2010). Filaments straddle
polarity inversion lines and typically exhibit heights of ≈50 Mm, lengths of ≈200 Mm
and a thickness of a few Mm (Stix 2002). They are involved in many eruptive processes
(“eruptive” filaments), but outside of ARs often persists for a long time in the QS
(“quiescent” filaments). As suggested by the name, active-region filaments concen-
trate around the activity belt, while quiescent filaments can be located everywhere
on the Sun. In principle, they are thought to be comparatively cool (T � 104 K)

chromospheric material suspended in the corona, sustained by the geometry of the
magnetic field. Early investigations of large samples of polar prominences (quiescent
as well as eruptive) mainly based on Hanle effect measurements, revealed characteris-
tic longitudinal field strengths in the order of 1 to 10 G (Leroy 1977; Leroy et al. 1983;
Athay et al. 1983). For active-region filaments, the interpretation of the Zeeman effect
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revealed strengths of some 100 G to 1 kG for the vertical as well as horizontal field
(Lites 2005; Kuckein et al. 2012; Xu et al. 2012). Xu et al. (2012) were furthermore
able to trace the photospheric and chromospheric signatures of the same active-region
filament, and detected differing morphologies. This led them to suggest that an emerg-
ing magnetic flux rope may, besides sustaining filament material at low atmospheric
heights (upper photosphere to low chromosphere), at the same time be able to store
plasma at the top part of the flux rope, i.e., at greater (mid chromospheric) heights.

On smaller scales, around sunspots, a radially outward-directed filamentary pattern
is observed, persisting for hours to days, the sum of which is called the (chromospheric)
“super-penumbra” (Hale 1908a). These structures are seen in almost all chromospheric
spectral lines, including Hα 6563 Å, Ca ii 8542 Å and Lyα 1216 Å and, though more
rarely, also in Ca ii H and K (see Pietarila et al. 2009, and references therein). A
common assumption is that these chromospheric “fibrils” outline the direction of
closed magnetic field structures in the upper photosphere and chromosphere, linking
the spot with the surrounding flux of opposite polarity (Nakagawa et al. 1971; Woodard
and Chae 1999), allowing a mass flow away from the spot (Evershed 1909) or into the
spot (“inverse Evershed effect”; St. John 1913, and for a review see Solanki 2003). In
a similar fashion, fibrils (seen, e.g., in Hα) are thought to connect opposite polarity
magnetic flux elements in the QS (Reardon et al. 2011; Beck et al. 2014), although
some fibrils may follow the chromospheric part of magnetic field lines that continue
into the corona (see also Sect. 5). The fibril pattern around sunspots is often observed
to be oriented radially outwards and forming whirls which exhibit rotation patterns
specific to the hemisphere where they are observed (Hale 1908b; Richardson 1941;
Peter 1996). Vecchio et al. (2007) underlined the likeliness of fibril-like structures
seen in Ca ii 8542 Å images to outline the canopy at chromospheric levels. The fibrils
are thought to follow the canopy magnetic field of sunspot super-penumbrae, whose
base rises slowly from the edge of the spots as one moves radially outward alongside
a decreasing magnetic field strength (Giovanelli 1980; Giovanelli and Jones 1982;
Solanki et al. 1994, and see also Sect. 1.3.1).

1.2.2 Indirect tracing of chromospheric fields

Woodard and Chae (1999) investigated the non-potentiality of fibril structures in the
QS. They performed a comparison of field lines from a potential field model with
fibrils observed in Hα 6563 Å. They found, under the assumption that the fibrils trace
magnetic field lines, that the observed fibril structure aligns well with the magnetic
field model in some places, but not in others (see Fig. 3a). They concluded from this
finding that the quiet Sun’s chromospheric magnetic field is far from a potential state
(i.e., it carries currents on small scales). This interpretation has been tested for active-
region fibrils by Jing et al. (2011) who based their study on a potential magnetic field
model starting from chromospheric magnetograms. Again it was found that in some
places the modeled horizontal field agrees well with the segmented fibril orientation
but not in other places (Fig. 3b). It appeared that there is a link between the horizontal
shear of the involved field and the mismatch between model and observation: the
higher the shear of the observed chromospheric magnetic field structures, the lower
the agreement with a potential magnetic field model. Consequently, potential field
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Fig. 3 a Comparison of Hα fibrils (observed at 6563 Å; gray-scale background) with projections of
potential magnetic field lines over-plotted. The FOV spans roughly 300′′ × 300′′. Except for some local
areas denoted as P1 and P2 (upper right and lower middle part of the image, respectively), poor agreement
between filed and the direction of fibrils is recognized in particular around N1, N2, and N3 in the upper
mid to left part of the frame. (Figure 2 of Woodard and Chae 1999. With kind permission from Springer
Science and Business Media.) b Comparison of Hα fibrils (at 6563 Å; black curves) with the chromospheric
potential magnetic field azimuth, counted counter-clockwise from 0◦ at solar west. The white contours
outline magnetic PILs. The FOV is roughly 254′′ × 264′′. Good agreement is found between the potential
field azimuth and the fibril orientation in some places, while a clear deviation of the two direction is seen
in others. (Adapted from Figure 5 of Jing et al. 2011. © AAS. Reproduced with permission)

models, either based on photospheric or chromospheric magnetic field data, can in
general not be assumed to adequately reproduce the (chromospheric) magnetic field,
assuming that fibrils indeed outline the orientation of the chromospheric magnetic
field.

An alternative interpretation of the results of Woodard and Chae (1999) and Jing
et al. (2011) is that fibrils do not outline the orientation of the chromospheric mag-
netic field. This, however, is in direct contrast with the results of recent numerical
simulations which suggested that Hα fibrils are visible manifestations of high-density
ridges aligned with the magnetic field (Leenaarts et al. 2012), thus serving as an
indirect tracer of the vertical-to-horizontal transition of the magnetic field orientation
around magnetic flux concentrations. This was addressed by de la Cruz Rodríguez
and Socas-Navarro (2011) who compared the observed orientation of fibrils in Ca ii
8542 Å images to the chromospheric magnetic field vector, inferred from observed
polarization signals originating from the same spectral line. They found that most of
the fibrils in the surrounding of a penumbral boundary nicely followed the magnetic
field direction but also recorded a significant mismatch for a considerable number of
fibrils (Fig. 4a). They also noted a too rapid decrease of the linear polarization signal
when moving out of the penumbral area, if the fibril pattern indeed was to outline the
super-penumbral field direction. The rapid decrease of the linear polarization signal,
however, may be attributed to the height of the canopy base relative to the formation
height of the spectral line. This was re-addressed recently by Schad et al. (2013) who, in
contrast to de la Cruz Rodríguez and Socas-Navarro (2011), found a clear coincidence
of the projected direction of super-penumbral fibrils and the inferred magnetic field
(to within ±10◦) using He i 10830 Å observations. They detected a notable change of
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Fig. 4 a Comparison of visually determined directions (yellow lines) of Ca ii fibrils (observed at 8542 Å;
gray-scale background) to the magnetic field azimuth compatible with linear polarization signals (orange
cones). While the fibril orientation is picked up by the reconstructed horizontal magnetic field orientation for
a fair number of fibrils (e.g., fibrils 9 to 19), it is only poorly recovered for others (e.g., fibrils 1 to 5). (Figure 1
of de la Cruz Rodríguez and Socas-Navarro 2011. Reproduced with permission from Astronomy and
Astrophysics, © ESO.) b Spatial map of the magnetic field azimuth along selected super-penumbral fibrils,
inferred from He i at 10830 Å observations. The dotted and dot-dashed contours indicate a photospheric
magnetic field inclination of 135◦ and 90◦, respectively. Black dots mark severe deviations between the
inferred and observed fibril orientation. They are restricted to where fibrils turn to their photospheric rooting
points. (Adapted from Figure 10 of Schad et al. 2013. © AAS. Reproduced with permission)

the inclination only close to where the fibrils turn towards their rooting point in the
sunspot (Fig. 4b). Moreover, based on their findings, they explicitly support schemes
which propose the inclusion of the spatial information delivered by chromospheric
fibril observations to increase the success of force-free coronal magnetic field models.
Such proposed schemes use the fibril information to increase the match between the
modeled and observed horizontal field at chromospheric heights (where the magnetic
field vector is not routinely measured; see Wiegelmann et al. 2005a, 2008; Yamamoto
and Kusano 2012).

1.2.3 Plasma-β in the chromosphere

Density and temperature are heavily structured in the highly dynamic chromospheric
environment so that the relative strength of the plasma pressure and magnetic forces
also varies strongly with position, at a given height. The height at which the magnetic
forces start to dominate over others (i.e., where β � 1) is expected to be strongly
corrugated relative to the solar surface. In the QS, that height is expected to vary
between ≈800 km and 1.6 Mm above the photosphere (Rosenthal et al. 2002). In
ARs, this height is likely to be lower, as shown by Metcalf et al. (1995). They used
chromospheric vector magnetic field measurements inferred from observations in the
Na i 5896 Å spectral line to test the relative contribution of the plasma pressure and
magnetic forces in an AR. They found that the atmosphere above that AR could be
considered to be force-free from ≈400 km above the solar surface. Gary (2001) was
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Fig. 5 Distribution of the plasma-β as a function of height above an AR. The shaded area represents the
vertical run of β for open and closed fields originating between a sunspot (represented by the thin solid
line) and a plage region (represented by the thick solid line). β becomes only small (�10−2) at heights
above the upper chromosphere and mid corona. Note that this low-β region is sandwiched between high-β
regions (the photosphere and low to mid chromosphere below as well as the upper corona and solar wind
acceleration region above). (Figure 3 from Gary 2001. With kind permission from Springer Science and
Business Media)

able to confirm that finding by combining a plasma pressure and magnetic field model
to estimate the pattern of interchanging dominance of plasma and magnetic pressure
with height in the solar atmosphere (see Fig. 5). He concluded that the magnetic forces
above sunspots should start to dominate from relatively low heights (�400 km above
the photosphere). Above plage regions, the model results suggest this to be true from
�800 km above a photospheric level upwards. In summary, ARs can be considered
to be force-free in most of the chromosphere (in contrast to quiet-Sun areas; see
Sect. 5.2.5).

1.3 Magnetic coupling from the lower solar atmosphere to the corona

1.3.1 Magnetic canopy

At photospheric levels, only a small fraction of the solar surface is occupied by strong
magnetic field (�5 %). In contrast to that, the coronal magnetic field fills the entire
coronal volume and is distributed relatively uniform in strength (although not in orien-
tation). Consequently, the photospheric field must spread out with increasing height in
the solar atmosphere. The magnetic field expands until it either turns over and returns
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Fig. 6 Sketch of the quiet-Sun magnetic field structure in a vertical cross section through the atmospheric
layers of the Sun. Swept to the edges of supergranular cells by large-scale convective flows (thick, large
arrows at bottom), intense magnetic network elements or sunspots form. Small-scale convective flows
(thin, small arrows below dotted horizontal line representing the photosphere) result in the photospheric
granular pattern. The magnetic field lines (solid lines) expand at chromospheric heights and form the nearly
horizontal magnetic canopy (dashed line). (Adapted from Judge 2006; Wedemeyer-Böhm et al. 2009)

to connect back to the photosphere or it meets the expanding field of the neighbor-
ing flux tubes. It then forms a “magnetic canopy”, i.e., a base almost parallel to the
solar surface and overlying a nearly field-free atmosphere (see Fig. 6). For a com-
prehensive review of the current picture of the magnetic coupling of the photosphere,
chromosphere and transition region to the corona, we refer to Wedemeyer-Böhm et al.
(2009) and restrict ourselves to a brief summary here. Estimates for the merging height
of photospheric flux tubes range from some 100 km for active region to ≈1 Mm for
quiet-Sun magnetic fields (Spruit 1981; Giovanelli and Jones 1982; Roberts 1990).
(Note that these estimates essentially depend on the filling factor, i.e., whether the
considered region exhibits a high or low mean magnetic field strength.)

The expansion of the magnetic field with height is a consequence of the small
gas-pressure scale height (≈100 km in non-magnetic regions; Durrant 1988). From
the lateral pressure balance follows that the field strength must rapidly decrease with
height. (Remember that lateral pressure balance requires the gas pressure inside a flux
tube to be lower than outside it.) With increasing height, the magnetic field strength
drops due to the falloff of the gas pressure and flux conservation implies that the
magnetic field must spread out, i.e., the extension of the magnetic structures must
increase rapidly. Since magnetic features are hotter than their surroundings in the
middle/upper photosphere and chromosphere, the internal gas pressure drops more
slowly with height than the external gas pressure. As a consequence, at certain heights,
the internal pressure force exceeds the external. This removes the lateral confinement of
the magnetic structures and allows the structures to expand unhindered, until it hits field
from another photospheric source. This implies a significant horizontal component of
the field over a large part of the volume (the canopy; Solanki and Steiner 1990; Bray et
al. 1991). The different merging heights thus depend, besides on the distance between
neighboring magnetic features, on the temperature difference between the magnetic
field structures and their surroundings, causing successively lower canopy heights for
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increasing temperature differences (see chapter 5 of Aschwanden 2005). Above this
merging height, the magnetic field becomes increasingly homogeneous. Generally, the
field of a magnetic element is seen to be shaped roughly like a wine glass. The direction
of the field then depends on the structure of the magnetic field in its surroundings and
the connectivity of the field lines on a larger scale (i.e., whether they are closed or
open and where they return to the solar surface).

In plage regions, the flux tubes merge already in the mid to upper photosphere,
so that the atmosphere above is almost fully magnetic (Buente et al. 1993). Model
results suggested that, in the QS and in CHs where magnetic features are further apart,
this base is located somewhere in the lower chromosphere (Gabriel 1976; Jones and
Giovanelli 1982; Solanki and Steiner 1990; Solanki et al. 1991). Quite some time
after the first speculations on the height of canopy-type magnetic fields, observational
evidence for the merging heights in plage of in the order of several hundreds of km has
been delivered (Steiner and Pizzo 1989; Guenther and Mattig 1991; Bruls and Solanki
1995). Rosenthal et al. (2002) performed numerical simulations of the propagation
of waves through a model atmosphere, resembling properties of the chromospheric
network and internetwork, and found the canopy height to vary between ≈800 km
and 1.6 Mm above the base of the photosphere. However, a considerable number of
findings, especially in the QS, led to serious doubts upon the reality of a large-scale,
undisturbed magnetic canopy there (for details see Sect. 5.2.1).

Even though some aspects of the magnetic canopy, especially in the QS are still to
be elaborated further, its basic nature seems clear: it is not a simple, rigid structure
and also not at a constant height in the solar atmosphere. Instead, its shape and height
are different for regions on the Sun with different amounts of magnetic flux and it
also varies with time. Above the canopy, the coronal volume is filled more or less
uniformly with magnetic field.

1.4 Corona

1.4.1 Transition region and coronal base

The corona is to be thought of as a temperature regime, covering a few times 105 K
in open field regions (such as CHs; see Sect. 6), ≈1 to 2 MK (megakelvin) in the
predominantly closed field of the quiet-Sun corona, and up to 2 to 6 MK in ARs (see
chapter 1 of Aschwanden 2005). It even can briefly reach values of 10 to 20 MK
during strong flares. It spans the atmospheric layers between the transition region
(within which the temperatures increase from ≈104 K to ≈1 MK) and the height
where the solar wind is accelerated, i.e., spanning several hundreds of Mm in height
(Gary 2001). The very narrow transition region not only bridges a large difference
in temperature, but also separates the dilute coronal plasma (with number densities
of n � 1012 m−3) from the dense (n � 1016 m−3) chromosphere (see chapter 1 of
Aschwanden 2005). The base of the corona is not to be thought of as a horizontal layer
somewhere above the solar surface. As the thickness of the chromosphere beneath
varies, so does the height of the coronal base above the solar surface (see Sect. 1.3 for
details).
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1.4.2 Morphology of coronal magnetic fields

Two very distinct magnetic configurations are present in the corona. The field is either
arranged in the form of closed loops of enhanced emission, or in the form of open
field lines seemingly not connecting back to the solar surface (Schrijver et al. 1999;
Solanki et al. 2006). Arcades (ensembles) of bright coronal loops connect regions
of opposite magnetic polarity on the solar surface and are often, but not necessarily
always, rooted in an AR. Large-scale loop systems (sometimes exhibiting sigmoidal
shapes) are often found to connect neighboring ARs and/or ARs with their quiet Sun
surrounding (Strong 1994). Following Reale (2010), the observed coronal loop systems
span a wide range of length scales, from a few Mm (bright points) up to giant arches
which may span 1 Gm (gigameter). Several loop arcades neighboring each other are
often found in magnetically complex ARs and often host eruptive processes such as
flares or CMEs (see Sect. 4). Therefore, in the majority of cases, bright coronal loops
(see Sect. 4.1 for more details) are concentrated around the activity belts.

Most of the quiet-Sun magnetic fields (see Sect. 5) that reaches the corona is rooted
in the magnetic network. At greater heights, they fan out to form funnels and to fill
the coronal volume above (Gabriel 1976; Dowdy et al. 1986). Along the open field
structures, plasma is efficiently transported outwards, which allows charged particles
to escape from the solar atmosphere. Especially during solar activity minimum, open
magnetic flux is concentrated around the poles, causing depleted regions which emit
less than their surrounding temperatures above 1 MK and consequently appear dark
in coronal images (therefore termed “coronal holes”; see Sect. 6). At lower latitudes,
the coronal structure is dominated by “helmet streamers” and “pseudo streamers”,
extending out to several solar radii in height (Schwenn 2006). Helmet and pseudo
streamers are visible as enhanced emission in the form of a cusp above the limb,
bridging the space between open fields of opposite and same polarity, respectively
(see Pneuman and Kopp 1971; Wang et al. 2007).

2 Magnetic field modeling

The solar magnetic field is routinely measured mainly in the photosphere, whereas
direct measurements in the higher solar atmosphere are available for individual cases.
If the 3D magnetic field vector in the chromosphere and corona were to be measured
routinely with high accuracy, cadence and resolution, indirect modeling approaches (as
discussed in the following sections) would not be required. Since this is not yet the case
(see Sect. 2.1), modeling approaches of different sophistication have been developed
with the aim of computing the magnetic field in the upper solar atmosphere, generally
starting from measurements made in the lower atmosphere.

One possibility is to use the longitudinal photospheric magnetic field component, or
the measured full magnetic field vector (if available) as boundary condition for force-
free magnetic field reconstruction techniques. This is possible since the solar corona is
almost force-free, because the magnetic pressure is several orders of magnitude higher
than the plasma pressure. This allows neglecting non-magnetic forces to lowest order
and applying such methods (see Sect. 2.2). Because these models are snapshots and
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assume stationarity and stability of the coronal magnetic field configuration, they are
not to be used for modeling of dynamic features (such as CMEs, flares or eruptive
prominences). Moreover, these models do not provide a self-consistent description of
the coronal plasma. Time-dependent simulations are required for these aims, usually
within the MHD approach (see Sect. 2.3). Full MHD models (see Sect. 2.3.1) are both
theoretically and observationally very challenging because plasma and magnetic field
have to be modeled self-consistently.

Complementary to these numerical approaches one can use the fact that the emitting
coronal plasma (as visible in coronal images; see Sect. 4.1) is frozen into the magnetic
field and consequently the coronal loops visible in the images outline magnetic field
structures. Therefore, coronal images can be used to identify the 3D shape of the
magnetic field structures when images from multiple viewpoints exist (e.g., from
the STEREO-spacecrafts, SOHO or SDO). A 3D reconstruction of structures seen
above the solar limb can be performed by stereoscopic and tomographic methods
(see Sects. 2.4.1 and 2.4.2, respectively). Coronal images are also frequently used to
validate the results of coronal magnetic field models. In some cases, time sequences
of coronal images show oscillating coronal loops, which allow estimating the coronal
magnetic field strength by coronal seismology (see Sect. 2.4.3).

The main aim of this section is to give a short overview of the methods for deriving
the 3D magnetic field structure of the upper solar atmosphere (although we start this
section with a short review of direct measurements of chromospheric and coronal
magnetic fields). We refer to specialized reviews and the primary literature for further
details. Outside the scope of the present review are methods of the interaction of the
convection zone with the solar atmosphere by flux emergence (the interested reader
can find a recent review on the theory of flux emergence in Cheung and Isobe 2014).
Methods to analyze the 3D coronal magnetic field topology are described in Sect. 4.2
and also in a review by Longcope (2005).

2.1 Direct coronal magnetic field measurements

Direct measurements of the solar magnetic field are an important tool for understand-
ing the magnetic field in the upper solar atmosphere. Here, we briefly introduce the
most important methods for measuring the chromospheric and coronal magnetic field
directly. The difficulties of performing such measurements are only briefly touched
upon here (for details see Raouafi 2005; White 2005; van Driel-Gesztelyi and Culhane
2009; Cargill 2009). Thanks to instrumentation, e.g., the ground based NSO/DKIST
(planned to become operational in 2019), together with powerful inversion techniques,
coronal field measurements might become a prosperous method in future.

2.1.1 Chromospheric magnetic field measurements in the infrared

Infrared lines have been used to derive the magnetic field vector near the coronal
base in the upper chromosphere. Initial measurements of the LOS magnetic field were
performed by Harvey and Hall (1971), Rüedi et al. (1995) and Penn and Kuhn (1995)
and the first vector magnetic field measurement by Rüedi et al. (1996). Solanki et al.

123



T. Wiegelmann et al.: The magnetic field in the solar atmosphere Page 21 of 106

(2003) applied the same method using the He I 10830 Å line, which is optically thin.
Consequently, the measurements are related to different formation heights, following
the fluctuating height of the coronal base. The authors managed the 3D structure of
the chromospheric loops to be reconstructed by applying the following criteria. If a
randomly selected pixel matches in field strength and direction of the two neighboring
pixels, then the radiation is assumed to originate from the same loop. Because the full
magnetic field vector is inferred, this allows to reconstruct the loop in 3D, with the
additional constraint that the field strength decreases with height. The 3D structure
deduced for the emerging loops was questioned by Judge (2009) but it was later shown
by Merenda et al. (2011) that the proposed geometry provided a better representation
to the data than the flat alternative proposed by Judge (2009). Simultaneously with
these chromospheric measurements, the photospheric field vector was measured as
well, and extrapolated into the chromosphere using force-free modeling techniques
(see Sect. 2.2), where the NLFF model was found to agree best with the chromospheric
observations (for details see Wiegelmann et al. 2005b).

2.1.2 Coronal magnetic field measurements in infrared

Coronal measurements in the infrared are possible from the ground with a coronagraph,
or with instruments from space. An overview on some aspects of the usage of infrared
lines to measure the coronal magnetic field can be found in Penn (2014). This review
also gives a detailed discussion of advantages and disadvantages of using infrared lines
in general (not restricted to coronal magnetic fields). More than ten coronal lines in the
infrared have been identified and some of them are magnetically sensitive. The Fexiii
10750 Å line, for instance, has been used to measure the Stokes vector in the corona,
which in principle would allow determining the magnetic field vector by an inversion.
A general problem with coronal observations is, however, that due to the optically thin
coronal plasma, any recorded radiation form the corona is integrated over the LOS.
This naturally complicates the interpretation of the measurements, so that to derive the
spatially resolved coronal magnetic field vector in 3D, measurements from multiple
viewpoints are necessary. The situation has some similarities with deriving the coronal
density by a tomographic inversion (see Sect. 2.4).

2.1.3 Coronal magnetic field measurements at radio wavelengths

Radio signatures emitted from the active-region corona, currently represent the most
widely used direct measure of the magnetic field. Because they are produced only
in specific circumstances when electrons are guided by a magnetic field, they allow
the reconstruction of the magnetic field strength in the corona (White et al. 1991;
Schmelz et al. 1994; White and Kundu 1997; Brosius et al. 1997; Lee et al. 1998,
1999). Note that hard X-ray emission often goes hand in hand with radio emission
since the efficient emission of both requires electron energies of �10 keV (see Fig. 7
and the review by White et al. 2011). Information on the height of the on-disk radio
source in the corona is not accessible through such measurements, except occasionally
for coronal structures at different heights above the solar limb using near infrared
wavelengths (Arnaud 1982a, b; Lin et al. 2000, 2004) or radio observations (Brosius
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Fig. 7 a Full-disk NRH radio emission observed on June 27, 2004 at 432 MHz and b GOES/SXI X-ray
emission. The close relationship between the radio and X-ray emission can be seen in the form of bright
emission around ARs and minimal emission in CHs. (Adapted from Figure 5 of Mercier and Chambe 2012.
Reproduced with permission from Astronomy and Astrophysics, © ESO)

and White 2006). For on-disk measurements, the lacking height information may be
compensated by (force-free) magnetic field modeling of the coronal structure, starting
from photospheric magnetograms (Liu and Lin 2008; Bogod et al. 2012; Kaltman et al.
2012). Furthermore, radio maps can be used also for a stereoscopic 3D reconstruction
(see Sect. 2.4.1).

2.2 Force-free modeling from photospheric measurements

The solar magnetic field vector is measured routinely with high accuracy only in the
photosphere, e.g., by SDO/HMI at a constant resolution of 1′′ over the whole solar
disk. Under reasonable assumptions, we can extrapolate these photospheric measure-
ments into the higher solar atmosphere, where direct magnetic field measurements are
more challenging (see Sect. 2.1). So, which assumptions are reasonable in the solar
atmosphere? A key to answer this question is the comparison of magnetic and non-
magnetic forces and in particular the plasma-β. While the plasma-β is around unity
in the photosphere it becomes very small (about 10−4 to 10−2) in the corona (at least
in ARs; see Fig. 5 and Sect. 1.2.3 for details). Consequently, non-magnetic forces can
be neglected in the low β corona, and the coronal magnetic field can be modeled as a
force-free field (the Lorentz-force vanishes). The electric current density,

j = 1

μ0
∇ × B,

has either to be parallel or anti-parallel to the magnetic field, leading to

∇ × B = α B,

where a positive (negative) value of α means that the electric current flows parallel
(anti-parallel) to the magnetic field.
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While a low plasma-β is a reasonable justification for using force-free models, the
opposite is not true. A high (of order one or more) plasma-β does not exclude force-free
magnetic fields. If the non-magnetic forces compensate each other (e.g., the plasma
pressure gradient is compensated by the gravity force in a magneto-static equilibrium)
then the Lorentz force can still vanish, even if β is not small. In the general high-β
case, however, non-magnetic forces have to be considered self-consistently, e.g., in
a magneto-static or stationary MHD model. We will only summarize some basics
about the possibilities and problems of force-free models and avoid mathematical and
computational details. For a more detailed overview on the methods used to compute
solar force-free fields, see Wiegelmann and Sakurai (2012). Depending on the force-
free parameter (or function), α, one distinguishes between potential (current-free)
fields (α = 0), linear force-free fields (LFF; α is globally constant) and the general
case that α changes in space, i.e., the non-linear force-free (NLFF) approach.

2.2.1 Potential and linear force-free fields

The simplest case, a potential field, requires only the LOS photospheric magnetic
field component as boundary condition. Current-free equilibria are mathematically
simple and represent the lowest possible energy state of a coronal magnetic field. For
computations on a global scale (PFSS models), one assumes that all field lines become
radial at the (“source surface” at about 2.5 solar radii; see Schatten et al. 1969, for
details). Potential field models are popular because they are easy to compute and are
capable of reproducing the basic coronal magnetic field structure. More sophisticated
methods (as discussed in the following) are numerically expensive and often use
a current-free field solution as initial guess for an iteratively sought, non-potential
solution.

To employ a LFF magnetic field model, only the photospheric LOS magnetic field
component is required as well, but such models contain one additional free parameter
(α). The value of α (constant in space) can be inferred from additional observations,
e.g., in the form of an average value of the entire photospheric distribution of α = (∇×
B)z/Bz . Note that α is the ratio of the vertical (LOS) current density and the vertical
(LOS) magnetic field magnitude, and that the vertical (LOS) current density can be
derived from the horizontal (transverse) magnetic field. (In that case, the knowledge of
all three vector components of the magnetic field is required.) Alternatively, α can be
deduced and/or optimized by the comparison of model magnetic field lines and coronal
observations (either directly with coronal loops seen in EUV images, or coronal loops
extracted from such images; and see also Sect. 2.4.1).

On global scales, LFF models are mathematically and computationally possible, but
are not frequently employed, mainly for two reasons. Firstly, the maximum allowed
value of α scales with the inverse of the length scale of the computational domain.
Consequently very small values of α are possible but they are so small that they have
no significant effect (i.e., the resulting magnetic field is almost similar to a potential
field configurations). Secondly, observations show that both signs of α can be present
in different regions on the Sun, at the same time. This is a contradiction to the LFF
assumption, namely that α is constant (i.e., has the same value for different regions
on the Sun).
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On smaller scales (in particular to analyze ARs), however, LFF models were used,
though more frequently before the time when vector magnetograms started to became
routinely available (as provided to date by, e.g., SDO/HMI). On these smaller scales, the
maximum value of α can be significantly larger than on global scales and consequently
active-region LFF fields can be very different from potential ones, e.g., the associated
field lines can be sheared. Also for LFF models employed on active-region scales,
however, the observation of different values of α in different portions of the same AR
contradicts the basic assumption of a single value of α being representative for the
entire AR under consideration.

2.2.2 Non-linear force-free fields

Given the limitations of potential and LFF approaches (as discussed above) for a
meaningful and self-consistent modeling of coronal magnetic fields, one has to take
into account that α is a function of position. This spatial dependence is accounted
for in NLFF models, which are much more challenging, both mathematically (one
has to solve non-linear equations) and observationally (mostly photospheric vector
magnetograms are required as input, instead of just the longitudinal (vertical) field
component). Measurement inaccuracies in photospheric vector magnetograms (e.g.,
due to noisy Stokes profiles and instrumental effects) affect the quality of NLFF
coronal magnetic field models. The modeled coronal field, however, is less sensitive
to these measurement errors than the photospheric field vector itself (Wiegelmann
et al. 2010b). A review on methods for computing NLFF fields has been given by
Wiegelmann (2008). The corresponding numerical implementations have been inten-
sively reviewed, and repeatedly evaluated and improved within the last decade (see
Schrijver et al. 2006; Metcalf et al. 2008; Schrijver et al. 2008; De Rosa et al. 2009).
The numerical schemes have been implemented in cartesian and spherical geometry to
perform active region and global magnetic field modeling, respectively. As boundary
condition, either the magnetic field vector at the bottom boundary of the computa-
tional domain or, alternatively, the vertical magnetic field and vertical electric current
density is usually required.

A difficulty arises from the fact that the plasma in the corona is a low-β plasma,
but that of the photosphere is not. In the photosphere, β is on average of the order
of unity or more (Gary 2001), although locally considerable smaller values may be
found (e.g., in the interiors of magnetic elements; see Zayer et al. 1990; Rüedi et
al. 1992). Note that a non-vanishing plasma-β does not exclude the existence of a
force-free field, but one has to be careful when using photospheric measurements as
boundary condition for NLFF computations. Because then it cannot be guaranteed that
the photospheric magnetic field vector is consistent with the assumption of a force-free
field in the corona. One can find out whether the vector magnetic field measurements
are consistent by writing the force-free equations as the divergence of the Maxwell
stress tensor, integration over the entire computational volume and applying Gauss’
law. For force-free consistency, the value of the resulting surface integrals has to vanish
(see Aly 1989, for details), or in practice must then be sufficiently small. Theoretically,
the surface integrals need to be evaluated over the entire boundary of the computational
domain, but in practice this is only possible for the bottom (photospheric) boundary,
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where the field is measured. This is justified for ARs that are surrounded by weak
(quiet Sun) fields where the gross part of the magnetic flux closes within the AR (i.e.,
on the bottom boundary) and the contribution of the other boundaries can be neglected.

Only exceptionally, however, active-region vector magnetograms fulfill the force-
free criteria (for such an example see Wiegelmann et al. 2012). In the majority of cases,
they are not force-free, simply because the photosphere is a non-force-free environ-
ment. Additionally, polarization signals are often affected by the temperature in the
sampled magnetic features and introduce biases between, e.g., sunspots and magnetic
elements forming plage regions (Grossmann-Doerth et al. 1987; Solanki 1993). To
circumvent this problem, a procedure-dubbed “preprocessing” has been developed.
The method uses (force-free inconsistent) photospheric vector field measurements as
input and provides a force-free consistent vector field as output (see Wiegelmann et
al. 2006, for details). An alternative is to measure the magnetic field vector higher in
the solar atmosphere, e.g., in the low-β chromosphere (exclusively, or in addition to
photospheric measurements).

To our knowledge, the first and so far only NLFF extrapolation from vector mag-
netograms observed simultaneously at multiple heights (at a photospheric and chro-
mospheric level) has been performed by Yelles Chaouche et al. (2012), to study the
structure of an AR filament. One difficulty in combining and comparing two such data
sets is that the exact height in the atmosphere of the chromospheric measurement is
unknown. As a reasonable approximation, the authors assumed that the chromospheric
measurements refer to the height of best agreement with the NLFF reconstruction based
on the photospheric vector field (about 2 Mm above the solar surface).

Despite the difficulties discussed above, NLFF extrapolations are a powerful tool for
deriving the 3D coronal magnetic field above ARs. On the other hand, the applicability
of force-free models to quiet-Sun magnetic fields is questionable because it is very
likely neither force-free nor quasi-steady (see Schrijver and van Ballegooijen 2005,
and Sect. 5.2.5 for details).

2.3 MHD models

2.3.1 MHD models of the coronal magnetic field

A full understanding of the physical processes in the upper solar atmosphere requires
the knowledge of the plasma that populates the investigated magnetic structures. Deriv-
ing these properties in the outer solar atmosphere, however, remains a challenging task.
Most commonly used models for a self-consistent description of the plasma and mag-
netic field are based on the MHD approximation. Interestingly, even though the MHD
approximation is strictly valid only in collisional plasmas, the collision-free coronal
plasma is often modeled using such an approach. More sophisticated, collisionless
kinetic models cannot be applied to model large-scale structures in the solar corona
since the considered scales are several orders of magnitude larger than the relevant
(microscopic) scales which have to be resolved in kinetic simulations (e.g., the gyro-
radius or Debye-length). This approach, however, is frequently applied to model the
solar wind plasma (see review by Marsch 2006).
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One approach to derive plasma quantities, which can then be compared to observa-
tions, is forward modeling aided by time-dependent MHD simulations (see Peter et al.
2006). As an initial state, a potential field is computed from the measured photospheric
(LOS or vertical) magnetic field component. (Note that for MHD simulations, the mag-
netic field data have usually to be scaled to a lower spatial resolution.) A strength of the
forward MHD modeling technique is that the resulting plasma quantities can be used
to compute synthetic spectra, which can be compared with observed chromospheric
and coronal images/spectra (e.g.Peter et al. 2006, using SOHO/SUMER EUV data).

2.3.2 MHS models

A simpler approach, when refraining from performing numerically expensive time-
dependent MHD simulations is to use a reduced set of equations, e.g., MHS or station-
ary MHD. This allows a self-consistent modeling of magnetic field and plasma e.g., in
the high-β regimes containing the photosphere and lower chromosphere, and beyond
the source surface in global simulations. Generally, these equilibria require the com-
putation of non-linear equations, which are numerically even more challenging (and
slower converging) than the set of NLFF equations, in particular, in a mixed-β plasma
(see Wiegelmann and Neukirch 2006; Wiegelmann et al. 2007, for an implementation
in cartesian and spherical geometry, respectively).

Mathematically simpler, and computationally much faster, is the subclass of MS
models, which are based on the assumption that electric currents flow on spheri-
cal shells perpendicular to gravity (resulting in horizontal,i.e., parallel to the lower
boundary, currents in cartesian geometry). This approach allows linearizing the MS
equations and solving them with a separation ansatz (see Low 1991; Bogdan and Low
1986; Neukirch 1995, for one cartesian and two spherical approaches, respectively).
Because of the linearity of the underlying equations, a field-parallel electric current
can be superposed (for a constant value of α). The final current distribution consists of
two parts: a LFF one and another one that compensates non-magnetic forces such as
pressure gradients and gravity. These classes of MS equilibria require only LOS photo-
spheric magnetograms as boundary conditions, which are relatively easy to implement
and allow the specification of two free parameters (the force-free parameter α and addi-
tionally a parameter which controls the non-magnetic forces). The limitations on α

are similar to those discussed for LFF modeling approaches (see Sect. 2.2). In these
models, plasma pressure and density are computed self-consistently to compensate
the Lorentz-force. Above a certain height the corresponding configurations become
almost force-free, which in principle allow it to model a forced photosphere and chro-
mosphere, together with a force-free corona above. A limitation of MS equilibria is
that the two free parameters are globally constant and the method does not guarantee
a positive plasma pressure and density. To ensure positive values of these quantities,
one either has to add a sufficiently large background atmosphere (which may lead to
unrealistically high values of the plasma-β), or is limited to small values of the para-
meter controlling the non-magnetic forces. Note that, as force-free approaches, MS
models are only snapshots of the coronal field and the temporal evolution of such con-
figurations can only occur as a series of equilibria, in response to temporally changing
boundary conditions.
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2.3.3 Flux transport models

So far (for the aim of coronal magnetic field modeling), we have discussed only the
coronal response to photospheric changes, but did not try to understand the evolution of
the photospheric field itself. This can be done on a large (global) scale with the help of
flux transport models (Leighton 1964, and for recent reviews see chapter 2 in Mackay
and Yeates 2012 as well as Jiang et al. 2014). The aim of magnetic flux transport models
is to simulate how (newly emerged) flux is transported horizontally on the solar surface,
i.e., in the photosphere. The magnetic field is assumed to be radially oriented. The main
contributing flows and velocities on large scales are differential rotation and meridional
flows. On smaller scales, convective processes on granular and supergranular scales
become important too, where the granular scales are generally ignored.

A natural application of flux transport models is to compute the evolution of active
region or global coronal fields (see Sheeley et al. 1987; Baumann et al. 2004), as well
as to investigate the development, structure and decay of polar CHs (see Sheeley et
al. 1989), and to estimate the Sun’s open magnetic flux. Flux transport computations
performed in recent times often start from observed magnetograms, e.g., full disk
(Schrijver and De Rosa 2003) or synoptic (Durrant and McCloughan 2004) LOS
magnetograms from SOHO/MDI. As a welcome side product, fluxes are obtained
also for regions where no LOS measurements can be performed or where they are not
reliable (i.e., at the far side and around the poles of the Sun, respectively). Additionally,
such computations can be used to compensate gaps in the original full-disk or synoptic
LOS data. To our knowledge, current flux transport models provide only the radial
component of the photospheric field (i.e., not the full field vector), however.

For the aim of coronal magnetic field modeling, the resulting (synthetic) magnetic
flux maps can be used in a similar fashion as LOS magnetogram data. Most popular
for combined models of photospheric flux transport and coronal field models are
global potential field models. A more sophisticated approach is to combine the flux
transport model with a NLFF approach, based on a magneto-frictional MHD relaxation
code (see van Ballegooijen et al. 2000; Mackay and van Ballegooijen 2006; Mackay
and Yeates 2012). In contrast to the NLFF extrapolation technique based on vector
magnetograms, this evolutionary method requires only the radial photospheric field
component. Both, the photospheric and coronal magnetic field is evolved in time by a
combined approach: the photospheric field by the flux transport model and the coronal
field by the magneto-frictional code.

2.4 Coronal stereoscopy, tomography and seismology

Rather than measuring or modeling the magnetic field itself, we can get insights into
the structure and shape (but not the field strength) of magnetic field lines by analyzing
images of the emitting coronal plasma. This is possible because of, owing to the high
conductivity, the coronal plasma is frozen into the field and thus serves as tracer of
it. Special techniques (coronal stereoscopy and tomography) have been developed to
reconstruct the 3D coronal structure from sets of simultaneously observed 2D images
(see Aschwanden 2011, for a recent review). Here we briefly summarize the techniques
relevant to magnetic field structures.
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2.4.1 Stereoscopy and magnetic stereoscopy

Stereoscopy is classically carried out with two (or more) images obtained from differ-
ent vantage points. It is preferably done with clear solid edges, which are, however,
not available for optically thin coronal structures (such as loops or plumes). While
some early work on solar stereoscopy has been done from a single viewing direction
(and using the rotation of the Sun to mimic multiple vantage points; see Berton and
Sakurai 1985, for details), the application of both techniques got a big boost with the
launch of the STEREO spacecrafts.

A natural approach is to compare and combine the results of coronal stereoscopy
and magnetic field extrapolations from the photosphere (called magnetic stereoscopy;
Wiegelmann and Inhester 2006 and for a review see Wiegelmann et al. 2009). In
early applications, before vector magnetograms from SDO/HMI became routinely
available, magnetic stereoscopy has been mainly performed with the help of LFF
fields (based on LOS magnetograms). The method was designed to automatically
find the optimal force-free parameter α of the LFF model (see Feng et al. 2007, for
the first application of this method to STEREO/SECCHI images and SOHO/MDI
magnetograms). Stereoscopy and magnetic field extrapolations have complementary
strengths and weaknesses and it is by no means clear whether the reconstructed 3D
loops validly represent the actual coronal loops (see De Rosa et al. 2009, for a compar-
ison of force-free field modeling and stereoscopy). Nevertheless, a comparison of the
result of both approaches at least serves as a consistency check and allows to approx-
imate related uncertainties. Recently, some attempts have been made to use coronal
information (either stereoscopically reconstructed 3D loops or 2D projections of loops
extracted from coronal images) to constrain NLFF fields in addition to photospheric
measurements (Malanushenko et al. 2014; Aschwanden et al. 2014; Chifu et al.2014,
Astron. Astrophys., submitted).

Maps of optically thin radio emission (see Sect. 2.1.3.) can be treated basically
similarly to EUV and SXR images. This is different for observations of optically
thick sources, which have a similar opacity as a solid 3D body. Consequently for a
given 3D magnetic field structure, one finds different (see section 3.5 in Aschwanden
2011, for details) gyroresonance layers that are visible as equi-contours in 2D images,
dependent on frequency and harmonic. For slowly evolving magnetic fields, which
remain almost static for a few days, the solar rotation can be used for a stereoscopic 3D
reconstruction of the magnetic field structure. Here, the structures have a high opacity,
making stereoscopy more straightforward compared to using images of optically thin
sources. A comparison of this method with force-free magnetic field reconstruction
methods based on photospheric data revealed that a potential field model failed to
reconstruct a corresponding structure, whereas a NLFF approach showed a reasonable
agreement (see Lee et al. 1999, for details).

2.4.2 Tomography and vector tomography

A complementary approach, which is specifically tuned to optically thin structures, is
solar tomography. To our knowledge, this was first proposed by Davila (1994). This
method uses LOS-integrated coronal images, preferably from multiple viewpoints, as
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input. Unfortunately, a large number of viewpoints are not available for solar obser-
vations and we are currently limited to a maximum of viewpoints (STEREO-A and B,
plus either SDO or SOHO). In future, Solar Orbiter will provide a fourth viewpoint.
In principle, one can extend the number of viewpoints by taking images sequentially
one after the other, while the Sun rotates. Because the vector tomographic inversion
requires data from multiple viewpoints, one would need to observe the rotating Sun
for several days if only one viewpoint, e.g. from Earth, is available. Then, the analysis
is limited to static or slowly evolving structures.

Fortunately for the aim of coronal magnetic field investigation, the large-scale mag-
netic field structure changes more slowly compared with the plasma (which exhibits
flows and reacts to, e.g., heating and cooling). Sources for a tomographic inversion are
EUV images, white light images in which the radiation is dominated by Thompson
scattering, and radio maps. Consequently, the physical conditions for both stereoscopy
and tomography of the Sun are not ideal as compared with the stereoscopy of solid
objects on Earth and one has to find suitable ways of combining different techniques
to obtain the best scientific insight from available observations.

The inversion of magnetic field-related polarization signals is more challenging than
inferring the plasma density, because the magnetic field is a vector. The correspond-
ing vector tomography methods (Kramar et al. 2006, 2013) require, as in ordinary
scalar tomography, an assumption for a regularization (in addition to LOS-integrated
magnetic field measurements of magnetically sensitive coronal lines). This may be,
e.g., the assumption of a solenoidal magnetic field. The corresponding regularization
integrals require a boundary condition, which can be derived from photospheric mag-
netic field measurements, be they LOS or radial components. As a consequence, the
vector tomographic inversion is not independent from photospheric measurements. In
principle, there is a large potential of combining methods of NLFF coronal magnetic
field models with vector tomographic inversions. Models for both approaches can
be derived from optimization principles, which make a combination mathematically
straightforward. The computational implementation, however, remains challenging.

2.4.3 Coronal seismology

While the stereoscopic reconstruction from coronal images provides only the 3D shape
of coronal loops, but not their field strength, we can get insights into the coronal mag-
netic field strength by analyzing loop oscillations, which are often visible in time series
of coronal images or spectra. The principle has been well known for several decades:
the properties of waves traveling through a magnetized medium react to the magnetic
field strength (for global seismology see Uchida 1970, and for local coronal seismology
see Roberts et al. 1984). It is outside the scope of our article to review the rich history
of coronal seismology, but the reader can find an overview of solar coronal waves
and oscillations, including an introduction to coronal seismology in Nakariakov and
Verwichte (2005). The basics for seismology are the analysis of waves, here within the
limit of an MHD approach. MHD waves (slow and fast magneto-acoustic waves, and
Alfvén waves) are sensitive to the magnetic field of the medium through which they
travel. In principle, the method has similarities with using acoustic waves for helio-
seismology of the Sun’s interior. Coronal images and spectra of high spatial resolution
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and time cadence (for example from TRACE, SDO/AIA and SOHO/SUMER, Hin-
ode/EIS, respectively), allow a reliable application of coronal seismology to compute
the magnetic field strength (see Van Doorsselaere et al. 2008).

3 Global coronal magnetic fields

3.1 Magnetic field topology

The structure of the solar corona is dominated by magnetic fields that emerge from
below the solar surface and expand into the atmosphere. The plasma confined in these
fields is visible in coronal images, and outlines open and closed coronal magnetic
fields. Most of today’s knowledge on the nature of the coronal magnetic field, however,
was gained from coronal magnetic field models (see Sect. 2) and their comparison
with observations of the radiation emitted by coronal plasma. Such a combination of
modeling and observations is necessary due to the lack of routine direct measurements
of the 3D magnetic field vector in the upper solar atmosphere (see review by Cargill
2009).

3.1.1 Performance of PFSS models

Platten et al. (2014) recently presented a detailed topological picture of the global solar
corona based on PFSS modeling (see Sect. 2.2). Even during times of minimal solar
activity, a quite complex picture of the coronal magnetic field is revealed (see Fig. 8).
These authors summarized the building blocks of the coronal topology to include the
neutral line at the source surface, separatrix surfaces which physically separate closed
and open fields (“separatrix curtains”), and various types of smaller separatrix surfaces
closing below the source surface. The coronal neutral line separates the large-scale
opposite polarity regimes of the coronal magnetic field. Above the source surface (a
regime not modeled within the PFSS approach) the neutral line is used as a proxy for
the base of the heliospheric current sheet (for details on topological considerations
of solar magnetic fields and the associated terminology see Longcope 2005, and see
Sect. 4.2 for its representation on active-region scales).

PFSS models are widely used to picture the structure of the Sun’s global magnetic
field, basically owing to their mathematical simplicity and because only LOS photo-
spheric magnetograms are required as boundary condition. The ability of such models
to adequately reflect some of the observed structures, however, seems to be limited
or at least dependent on the case studied and/or the specific analysis that is carried
out. Thus, Wang et al. (2007) used a PFSS model to show that the magnetic structure
of pseudo-streamers, as seen in SOHO/LASCO white light images, is rooted between
open fields emanating from photospheric regions of the same polarity. Using the same
model approach, Zhukov et al. (2008) investigated mid-latitude coronal streamers.
During periods of high solar activity, however, they found no satisfactoring agreement
of number and positions of the streamers, especially of those originating from polar
regions.
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Fig. 8 Illustration of the basic elements of the global coronal magnetic-field topology, which is character-
istic for the solar minimum period and was calculated from a PFSS model. The gray-scale sphere reflects
the SOLIS/VSM radial component of the synoptic photospheric magnetic field. a The thick green line marks
the neutral line on the source surface, which is the base of the heliospheric current sheet. Blue and red dots
mark null points in the corona, i.e., places where the magnetic field vanishes. Yellow thick lines represent
separators, i.e., field lines that mark the intersection of two separatrix surfaces from opposite polarity null
points. b Separatrix surfaces (pink and blue lines) and spine field lines associated with the null points
(orange and purple lines) are plotted on top of the features shown in a. c Superimposed on the features
depicted in b is the “heliospheric current sheet curtain” (green thin lines) which separates closed from open
fields. (Adapted from Figure 6 of Platten et al. 2014. Reproduced with permission from Astronomy and
Astrophysics, © ESO)

One has to keep in mind that during times of high solar activity, large parts of the
solar atmosphere are filled with non-potential magnetic fields, in particular, in ARs.
A PFSS approach will then be limited in its success of reproducing the corresponding
coronal magnetic field structure (Nitta and De Rosa 2008). Rust et al. (2008) esti-
mated that, at best, in only about 50 % of the cases, a PFSS model might be capable
of reproducing the locations of open magnetic field structures associated to flaring
ARs. More recently, Kramar et al. (2014) highlighted the limited success of PFSS
models in reproducing coronal streamers even during periods of minimal solar activ-
ity. Depending on the height of the source surface, they found that the PFSS models
could not or could only partly render the positions of coronal streamers and CHs seen
in STEREO/EUVI 195 Å images.

One reason for the partial mismatch between PFSS model results and observed
coronal structures is their current-free nature. A very likely other reason is the use of
synoptic maps as photospheric boundary condition. Synoptic maps are usually created
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by combining the data near the central meridian of full disk, LOS magnetograms that
are acquired daily over one Carrington rotation. They are thus representative for the
activity near disk center in the course of one Carrington rotation, with the extreme
longitudes on the map having been recorded 27 days apart. To model the locations of
streamers and CH boundaries at a certain instance, however, real-time knowledge of
the far-side magnetic field configuration needs to be available as well. Schrijver and
De Rosa (2003) have shown that the lack of knowing the instantaneous magnetic field
distribution on the far side of the Sun can be compensated. They used acoustic far-side
imaging to forecast strong magnetic field concentrations before they appeared on the
east solar limb. After including this information in the PFSS model, the CH boundaries
as observed in SXR and He i synoptic maps matched quite well. This, and the above
compilation of case studies involving PFSS modeling, implies that one needs to judge,
by comparing with observations, the quality of PFSS model results in each case.

3.1.2 Achievements of global MHD models

In PFSS models, the effect of the solar wind is taken into account only by the assump-
tion that all field lines become radial at the source surface. This is not sufficient to
investigate wind properties themselves, because they require the application of mod-
els that include plasma flows, such as global MHD models. Such approaches are
mathematically more complex and incorporate more physics than PFSS models. They
consequently suffer from requiring also longer computation times (Riley et al. 2006;
for a review see Mackay and Yeates 2012, see also Sect. 2.3).

If employed, they deliver properties beyond the coronal magnetic field, normally
the density and temperature of the coronal structures. Riley et al. (2011) showed that
such models have the ability to quantitatively reproduce the signatures seen in coronal
images, provided additional assumptions on the coronal heating function are included
(see Fig. 9). The north polar CH extends well down into the southern hemisphere
and its shape is well recovered within the MHD model result. The location of the AR
south of the solar equator is reproduced as well, but appears too bright compared to
the observed EUV emission. Small-scale features as well as plasma emission from
open field lines anchored in polar regions have not been recovered. Advanced MHD
techniques have been used to successfully model the variation of the solar wind speed
Hu et al. 2008; Nakamizo et al. 2009; Yang et al. 2007. This includes the fast and
slow solar wind, the sector structure of the interplanetary magnetic field as well as the
shape and location of CHs (see Sect. 6).

3.2 Cross-equatorial fields

Global observations often show loop structures extending across the solar equator,
thereby connecting the two hemispheres of the Sun (“trans-equatorial loops”; TELs).
These are systems of magnetic field lines bridging the solar equator that connects
active and/or quiet-Sun regions. The TELs become sheared above the solar surface
due to their line-tied footpoints being subject to differential rotation (in the long term),
or vortex motions and/or the rotation of sunspots (on shorter time scales). This may
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Fig. 9 Synoptic maps of the coronal EUV emission at a 171 Å, b 195 Å and c 284 Å for Carrington rotation
1913 (covering the period August 22 to September 18, 1996 at zero longitude), recorded by SOHO/EIT. A
large CH (seen dark with respect to the quiet-Sun emission) extends from the north pole into the southern
hemisphere. Synthetic d 171 Å, e 195 Å and f 284 Å spectroheliograms, computed from the densities and
temperatures obtained with a global MHD model are shown below. Importantly, the overall brightness of
the images compares. In addition, several features, including the cross-equatorial extension of the northern
polar CH and the position of the AR south of the equator are well recovered. (Adapted from Figure 6 of
Riley et al. 2011. With kind permission from Springer Science and Business Media)

also cause the constituent field lines of the TELs to become twisted around a common
axis (Bao et al. 2002), which may then be observed in the form of a sigmoid in coronal
images. Consequently, an observed sigmoidal structure does not necessarily imply
that the underlying non-potential field geometry was already present when the fields
emerged (Pevtsov et al. 1997).

3.2.1 Creation of transequatorial loops

The creation of TELs is still far from being understood, mainly because the most
frequently employed 2D dynamo models cannot account for their intrinsic 3D nature
and formation process (Jiang et al. 2007). 3D models aspiring to resolve the problem
are still in their infancy (see Yeates and Muñoz-Jaramillo 2013; Miesch and Dikpati
2014, for recent applications).

Active-region magnetic fields that connect across the solar equator and form sig-
moidal loop systems have been described by, Svestka et al. (1977) and Tsuneta
(1996). They observed newly created loops, connecting across the Sun’s equator in
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Yohkoh/SXT images and thus that the number of such newly brightened connections
increased with time. Yokoyama and Masuda (2010) addressed the question how TELs,
appearing bright in Yohkoh/SXT images, can connect very distant regions on the solar
surface. In their picture, a series of reconnection processes between equator-bridging
weak magnetic fields and their neighboring strong active-region fields reconfigures
the magnetic connectivity such that strong equator-bridging fields develop. Besides,
they pictured how this process may result in simultaneous chromospheric evaporation
signatures at both footpoints of the TEL system (which had been reported observa-
tionally by Harra et al. 2003). Liu et al. (2010, 2011a) analyzed a coronal current
sheet which appeared bright in SOHO/EIT 195 Å images above a cusp-shaped flaring
loop that connected locations on either side of the solar equator. They presented the
first comprehensive set of observations, providing support for the standard picture
of flare/CME events (usually referred to as the “CHSKP model” Carmichael 1964;
Hirayama 1974; Sturrock 1996; Kopp and Pneuman 1976, and see also Sect. 4.3).
These included the convergence in the legs of the TEL system in the area where the
formation of a cusp-shaped flare loop was formed later on, co-temporal radio signa-
tures, as well as an expanding post-flare arcade and coronal dimming in the atmosphere
above it.

3.2.2 Properties of transequatorial loops

More frequently global NLFF modeling techniques are being used to investigate the
magnetic connectivity between ARs located on either side of the solar equator (see
Fig. 10). For instance, Tadesse et al. (2014) found that TELs carry only weak elec-
tric currents. The departure from a potential state, however, stresses the importance of
using magnetic field models that allow departures from a current-free state. At the same
time, global force-free magnetic field modeling can strongly depend on the bound-
ary conditions supplied. Measurement errors are particularly high in the transverse
component of weak quiet-Sun fields. Photospheric vector field measurements with
different instrumentation can differ from each other and influence the corresponding
coronal field models. Tadesse et al. (2013) performed a comparison of global NLFF
models based on full-disk vector magnetograms from SOLIS/VSM and SDO/HMI. In
this work, some of the TELs clearly observed in coronal images were reproduced with
the help of NLFF modeling based on SOLIS/VSM data, but not from the modeling
based on SDO/HMI data.

Pevtsov (2000) tested the importance of the chirality (handedness) of active-region
magnetic fields for the formation of TEL systems. The results suggested that in roughly
two-thirds of the cases the connected active-region fields were of the same handedness.
Recently, Chen et al. (2010) examined the twist of a larger number of TELs (a subset
of the samples analyzed by Chen et al. 2006). They found that the ones that linked ARs
displayed an obvious sigmoidal shape and were related to a flaring activity stronger
than C-class (i.e., peak SXR fluxes of >106 W m−2). They calculated the ratio L̃/D,
where L̃ is the apparent length of the TEL system and D is the apparent distance
between the locations where the TEL system seems rooted at the solar surface. L̃ was
measured by tracing the length of the coronal loops at the outer edges of the sigmoidal
loop system, where they are well distinguished from the faint emission from the
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Fig. 10 Model magnetic field configurations connecting strong magnetic fields on either side of the solar
equator. Selected field lines are calculated from a global a potential field and b a NLFF model connecting
AR 11339 and AR 11338. Potential and NLFF model field lines connecting two ARs (11342 and 11341) to
strong magnetic patches are shown in c and d, respectively. Red and green line colors indicate closed and
open magnetic field lines, respectively. The gray-scale background reflects the measured radial SDO/HMI
magnetic field. It can be seen that the non-potential TELs deviate only little from a potential configuration.
(Adapted from Figure 5 of Tadesse et al. 2014. With kind permission from Springer Science and Business
Media)

(quiet Sun) background. Higher values of that ratio L̃/D indicate a more pronounced
sigmoidal shape and thus imply a stronger twisting of the associated field lines. They
found that most of the TELs possess only weak sigmoidal shapes, indicating a low
degree of non-potentiality. It appears that flares above C-class preferentially originate
from structures of a specific amount of twist (L̃/D ≈ 1.4). It is an important future task
to model the associated cross-equatorial 3D coronal magnetic field and its evolution
with the help of global force-free and time-dependent MHD models to reveal the
importance for eruptions to occur (see also Sect. 4.4).

3.3 Spatio-temporal aspects of activity

3.3.1 Cyclic changes of the coronal magnetic field

As the coronal field responds to photospheric changes, it also changes on global scales
with an approximately decade-long periodicity. Bright loop systems appear at higher
latitudes (�30◦) at the beginning of a solar cycle and the activity belts progressively
move closer to the equator as the cycle progresses.

Coronal holes vary in shape and position with the solar cycle as well (see review by
Cranmer 2009, and Sect. 6). While polar CHs, if present at all, are found to cover only
small areas around the poles during solar maximum, they tend to reach their largest
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extents around solar minimum and then occasionally extend to latitudes as low as
≈60◦. Low-latitude CHs emerge preferentially around solar maximum and near the
activity belts due to the occasional accumulation of unipolar flux during the emergence
of ARs. If a sufficient amount of unipolar flux emerges and clusters together to form
extended patches, the associated fields may be open. As a consequence, the open flux
on global scales varies in the course of the solar cycle (its long-term variation was
computed by Solanki et al. 2000, 2002; Schrijver et al. 2002; Jiang et al. 2011). Since
the interplanetary magnetic field is fed by the magnetically open regions on the Sun,
a similar modulation over the course of a solar cycle was expected too. Thus, it was
surprising that the magnitude of the radial interplanetary magnetic field strength does
not show a strong dependence on the activity level. Wang et al. (2000b) and Wang et
al. (2000a) investigated why this is so and argued that the reduced area occupied by
open fields around solar maximum is compensated by their, on average, higher field
strengths. As a consequence, the open solar flux is nearly maintained throughout the
solar cycle.

During solar activity maximum strongly emitting (bright) loop systems occupy a
considerably larger volume within the corona. Associated active features, including
flares (Bai 2003; Zhang et al. 2011) and coronal streamers (Li 2011) as well as super-
ARs (i.e., ARs associated to repeated flaring and mass ejections, cf., Tian et al. 2002)
were found to be distributed inhomogeneously in solar longitude. They seemingly
relate to “active nests” or “active longitudes”, which had originally been postulated
based on similar trends seen in surface magnetic field observations. Chidambara Aiyar
(1932), for instance, found sunspots to preferentially emerge at particular longitudes
on the solar disk, which has been almost immediately attributed to projection effects
and/or selection criteria by Carroll (1933). Follow-up studies concerning the pre-
ferred locations (longitudes) of sunspot formation delivered inconsistent and partly
contradictory results. Even today, the possible number, migration, life times, long-
term behavior and the particular method to track them remain a subject of debate (see
Berdyugina and Usoskin 2003; Usoskin et al. 2005; Pelt et al. 2006; Usoskin et al.
2007; Weber et al. 2013; Gyenge et al. 2014).

3.3.2 Association to dynamic events

Mass ejecta cause severe changes of the coronal magnetic field, leaving it behind in a
massively reconfigured configuration. Changes in the coronal magnetic field configu-
ration, owing to magnetic reconnection of non-potential closed magnetic fields below
coronal streamers, for example, are in fact thought to be the building blocks of the
basic mechanism of coronal mass ejecta (for reviews see Forbes 2000; Chen 2011).
Liu et al. (2009b), for instance, presented observations of short lived as well as of last-
ing deformations in association with an observed CME. The transient modifications
were seen in the form of structures, neighboring the ejection site, pushed aside and
bouncing back. Lasting distortions were observed in the form of displacements of the
associated helmet streamer and the shrinkage of coronal holes (see Fig. 11).

On the other hand, it has also been reported that, in a considerable number of cases,
the coronal environment barely responded to or appeared insensitive to the occurrence
of mass ejections. This viewpoint has been championed by Sime (1989), who argued
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Fig. 11 Composite STEREO/SECCHI EUVI 195 Å (Sun at the center of each image) and COR1 (sur-
rounding disk) images a before, b immediately after and c 27 days after a CME. The white arrow in b
indicates a streamer-like structure behind the CME which was interpreted as the current sheet in its wake,
also because it did not exist before (compare a), nor about a month after the ejection (compare with c).
The blue lines represent magnetic field lines calculated from a global PFSS model and projected onto the
STEREO/SECCHI images. In a similar manner, the white line displays the source surface neutral line. It
can be seen that, as a consequence of the CME, the coronal streamer migrated southwards (compare the
position of the coronal streamer above the south-east limb of the Sun in a and b) but survived and persisted
for more than one additional solar rotation (note the location of the streamer in c). (Figure 3 of Liu et al.
2009b. © AAS. Reproduced with permission)

that the global evolution of the coronal magnetic field gives rise to CMEs but is not
really influenced by them. In other words, the ejecta may be associated to the streamer
belt but may not have a lasting effect on it. This was supported by the observation
that the streamer belt appeared to reestablish itself within a few days after ejections
(Zhao and Hoeksema 1996). Although, it is certain that CMEs are associated with the
belt of coronal streamers (Hundhausen 1993), the disruption (or disappearance) of an
associated streamer was observed in only ≈15 % of the cases observed (Subramanian
et al. 1999; Floyd et al. 2014). In summary, whether mass ejections are only a response
to or a contributing factor to the coronal restructuring is not yet clear (Liu et al. 2009b).

It is generally agreed, however, that only mass ejections (which inevitably drag
the embedded magnetic field along) are capable of physically reducing the coronal
magnetic helicity, which is tightly related to the structural properties of the magnetic
field (Moffatt 1969). We discuss this in the following.

3.4 Magnetic helicity budget

3.4.1 Helicity dissipation and helicity transport

Magnetic helicity is dissipated on significantly longer scales than the magnetic field
and consequently the dissipation time in the corona is too long to relevantly reduce
the helicity (Berger 1984). For the helicity budget of ARs and quiet-Sun regions
see Sects. 4.6 and 5.2.6, respectively. Since magnetic helicity cannot be efficiently
dissipated, it is approximately conserved in the absence of ejecta, i.e., the magnetic
helicity in the solar corona will continuously buildup. This has important consequences
for the magnetic field relaxation towards a lower energy state. It implies that in the
course of a flare, but lacking a mass expulsion, a non-potential field can only relax
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to another, lower-energy configuration of the same helicity content (i.e., a constant-α
field; see Taylor 1974; Heyvaerts and Priest 1984; Taylor 1986). However, the coronal
magnetic field may never entirely relax to this constant-α (conserved-helicity) state,
because the required “complete” reconnection is not expected to occur due to the line-
tying of the coronal magnetic field structures at photospheric levels. This also inhibits
the simultaneous formation of numerous current sheets (see Antiochos and DeVore
1999, and references therein).

The majority of ejecta, including CMEs associated with disappearing filaments
(Yurchyshyn et al. 2001; Cho et al. 2013) or eruptive X-ray loops (Mandrini et al.
2005; Zheng et al. 2011), propagate away from the Sun in the form of magnetic
clouds (MCs) and hence actively carry helicity away. MCs are force-free regions
of enhanced magnetic field strength, with the field vector monotonically rotating as
they journey with the solar wind. There are the moving large-scale helical structures
described by Burlaga et al. (1981), Burlaga (1988). They are a subset of interplanetary
CMEs that consist of plasma and magnetic field, expanding behind a shock wave into
interplanetary space. Gopalswamy et al. (1998) suggested that MCs originate from
the structure overlying an eruptive prominence and its associated CME and include
the coronal cavity and a bright frontal structure. A typical MC may carry a magnetic
helicity of some 1041 to 1043 Mx2 (Cho et al. 2013). This, and considerations based
on surface magnetic field measurements, permit to estimate the amount of helicity
transported away on a global scale during one solar cycle as ≈1045 to 1046 Mx2 (Bieber
and Rust 1995; Rust 1997; DeVore 2000; Berger and Ruzmaikin 2000; Georgoulis et
al. 2009; Zhang and Yang 2013).

3.4.2 Hemispheric trends

When estimating the global helicity budget, it is of importance to take the Sun’s
differential rotation into account. DeVore (2000) estimated the effect which the Sun’s
differential rotation has on the shearing of an active-region magnetic field. He estimated
an accumulated helicity as ≈1043 Mx2 during a characteristic active-region lifetime
of ≈120 days. However, the differential rotation cannot represent the only source of
helicity supply to the corona Démoulin et al. (2002). Georgoulis et al. (2009) suspected
that the contribution of differential rotation to the total amount of injected magnetic
helicity amounts only to about 20 %. The dominant source of injection, they argued,
must be due to the plasma flows within ARs (see Sect. 4.6.1). This agrees with earlier
results which stated that the amount of helicity injected by differential rotation in
ARs may comprise roughly 10 to 50 % of that injected by motions within the ARs
themselves (Démoulin and Pariat 2009, and references therein).

The injection of magnetic helicity does not appear to display any periodicity, indi-
cating it to be a rather unforeseeable process (Georgoulis et al. 2009). Although tem-
poral periodic patterns have not been found, some systematics regarding the spatial
distribution of helical features on a global scale are known. Several observational
features indicating the handedness of structures, such as sunspot whorls (Hale 1925;
Richardson 1941, and references therein), chirality of filaments (Rust 1967; Pevtsov
and Balasubramaniam 2003; Bernasconi et al. 2005) and S-shaped coronal X-ray
brightening (Rust and Kumar 1996; Canfield et al. 1999) revealed a dominant pos-
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itive helicity pattern in the northern solar hemisphere and a dominant negative one
south of the solar equator. The associated magnetic fields in the northern and southern
hemisphere are dominated by right- and left-handedness, respectively (Seehafer 1990;
Pevtsov et al. 1995). Interestingly, these patterns do not change from one activity cycle
to the next.

This tendency, however, was found to be less pronounced for active-region filaments
than for filaments in the QS (Pevtsov and Balasubramaniam 2003). Bao et al. (2002)
gave a hint why there is a weaker hemispheric trend of active-region magnetic fields.
They argued that the chirality introduced by the same mechanism acting on a rising flux
tube throughout the convection zone, or acting on the flux tube after emergence through
the photosphere may be opposite. The dominant contribution would then determine the
chirality of an AR which would not necessarily follow the hemispheric trend. Using a
magneto-frictional model, Yeates et al. (2008) were able to reproduce the skew of more
than 90 % of considered filaments (observed in Hα images) correctly, even including
exceptions from the hemispheric trend. Yeates and Mackay (2012) recently presented
the first long-term simulation of the chirality of high-latitude filaments and were able
to recover the hemispheric trend. According to them, the apparent handedness depends
on which of the two effects, creation of helicity by differential rotation or its transport
from active latitudes, is stronger. They found that the latter is generally stronger,
except during the early years of a solar cycle. Further evidence for the dependence of
the chirality of features in the solar atmosphere on the phase of the solar cycle comes
from SXR loops (Zhang et al. 2010b) and active-region magnetic fields (Zhang et al.
2010a).

Having started on magnetic fields on active-region scales, we continue to discuss
their magnetic and helicity properties in the next section.

4 Coronal active-region magnetic fields

4.1 Coronal loops

The frozen-in condition for the coronal plasma and magnetic field is valid in most
of the coronal environment. The sole exceptions are the small diffusion regions in
strong current concentrations, the so-called “current sheets” (see Sect. 4.2). Much of
the plasma in the corona is confined by the magnetic field in the form of thin closed
flux tubes. The loop plasma may be heated by a number of possible mechanisms (for
a review see Reale 2010). As a consequence, pressure and density of the gas within
the magnetic loops are enhanced compared to the values reached by the surrounding
gas and the coronal loops appear bright in coronal radiation. This property is of great
advantage for the investigation of the dynamics in the corona: the bright structures
serve as an indirect tracer of the coronal magnetic field.

Owing to its high temperature the coronal plasma emits radiation predominantly
at X-ray, EUV and radio wavelengths. The bulk of the coronal loops hosts plasma of
temperatures of ≈105 K to ≈10 MK. The lower and upper limits are representative
of cool and flaring loops, respectively (Reale 2010). Coronal loops often fan out from
relatively compact footpoints at the solar surface, arranging themselves in dome-
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like structures with multiple layers. The individual loops are thought to have a very
narrow distribution of temperatures within the loops themselves—neglecting their
footpoints—though the loops within an AR may have very different temperatures (Del
Zanna and Mason 2003; Aschwanden and Boerner 2011). In the corona, where the
field fans out with height, thin constituent strands are discernible. At present, several
spectral EUV channels are used to observe and study coronal loop fine structures
since they appear well defined around the wavelengths 171 and 193 Å. At the highest
spatial resolution presently achievable, in the form of Hi-C data, the density and
temperature structure across the observed thin strands varies on a spatial scale of
roughly 0.′′1; alternatively, one may state that a diameter of 0.′′1 represents an upper
limit for the strands which make up an observed loop (Cirtain et al. 2013; Peter et al.
2013).

It has long been puzzling why especially the loops seen in coronal images do not
show a significant variation of their width with height in the atmosphere. Given mag-
netic flux tubes expand with height in the solar atmosphere, one would naturally expect
this to be reflected in form of a clear height dependence of the emission observed from
the thin threads which compose the flux tubes (DeForest 2007). Instead, an apparently
constant cross section and more or less constant brightness along the loops, but no
significant expansion was observed at the two wavelengths mentioned above. This is
the result of the analysis of coronal loops seen in Yohkoh/SXT images (Klimchuk et al.
1992), and EUV observations with TRACE (DeForest 2007) as well as with SDO/AIA
(Aschwanden and Boerner 2011). It has been argued that this might just reflect the fact
that the coronal loops are entities of a constant diameter (Klimchuk 2000), although
force-free magnetic field models do not support such an interpretation.

Physical reasons for the geometric distribution of the observed coronal loop emis-
sion are now beginning to come from numerical experiments. Peter and Bingert (2012)
used an MHD model to investigate the temporal evolution of the corresponding syn-
thesized coronal emission. They were able to show how emission of seemingly con-
stant width may arise from an expanding flux tube. They argued that the plasma
indeed fills the fanning-out magnetic field structure, but that it does not equally con-
tribute to the emission perpendicular to the plasma loops’ axis. The radiation from
the plasma at the outer edges, i.e., the “envelope” of the expanding magnetic field is
emitted from plasma at a lower temperature. Consequently, this radiation is missed
in images showing the bulk of the emission at, say, 171 Å and resulting in coronal
images showing loops of nearly constant cross section. Peter and Bingert (2012) also
pointed out that the appearance of the coronal loops may even be caused by the spe-
cific perspective at which the coronal loops are seen (see also Mok et al. 2008).
Similar results have been found recently by Malanushenko and Schrijver (2013),
who investigated a large sample of flux tubes that were based on a potential field
model. They were able to assign well-known observed features to both, projection
effects as well as the deviation of the flux tubes’ cross section from a circle along
its length. These include the enhanced brightness of loops which seemingly do not
expand much in the plane of sky, compared to neighboring loops which seem to do
so, and the characteristic elongated bright emission where loops turn towards the LOS
(see Fig. 12).
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Fig. 12 a Coronal emission simulated from flux tubes (calculated from a potential magnetic field model)
filled with hydrostatic, isothermal plasma. The gray scale reflects the squared column emission in arbitrary
units. Rectangular areas labeled as #1 and #2 highlight areas where loops do not notably expand with respect
to their neighbors and where loops turn towards the observer, respectively. Close-ups of these regions are
shown in panels b and c, respectively. d EUV emission from active-region loops as seen above the solar
limb in an SDO/AIA 171 Å image. The numerically synthesized brightness variations are well visible in
the observed corona: the emission of loops with less varying apparent cross section is enhanced (compare
panel b) and horizontally elongated where loops turn towards the LOS (compare panel c). (Adapted from
Figures 17 and 18 of Malanushenko and Schrijver 2013. © AAS. Reproduced with permission)
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Fig. 13 Sketch of a 3D magnetic skeleton. Circles with red and black filling represent magnetic sources
(P, p) and sinks (N , n), respectively, i.e., positive and negative flux concentrations. Black (dashed) and red
(dash-dotted) curves represent sample field lines which close within the domain bounded by the positive and
negative separatrix surfaces (thick red dash-dotted and thick black dashed outlined domes, respectively).
The separator field line (black solid curve) runs where the positive and negative separatrix surfaces intersect,
connecting two null points (black circles). It also marks the intersection of at least four distinct flux domains.
Pink solid curves represent field lines that connect p and n, which must close below the separator. Note that
P and N can only be connected by field lines running outside of both separatrix surfaces, i.e., they have to
bridge the separator. (Adapted from Priest and Forbes 2002)

4.2 Local field topology

The bright coronal loops within ARs connect photospheric locations of enhanced
magnetic flux of opposite polarity. On a global scale, as discussed in Sect. 3, such
loops are observed only within certain latitude bands, the activity belts. The active-
region fields are often composed of strong sunspot fields surrounded by plage regions
of weaker field strengths. Prominent ensembles of active-region loops preferentially
connect locations of strong magnetic flux inside an AR (i.e., sunspots and/or plage
regions), or they have one footpoint located in an AR and the other in the enhanced
flux of the surrounding network (Schrijver et al. 1999).

4.2.1 Magnetic skeleton

The building blocks of the coronal magnetic field include the locations of a vanishing
magnetic field (“null points”), field lines which separate topologically distinct regions
of space (forming “separatrix surfaces”), as well as special field lines at the inter-
section of such surfaces which connect two null points (“separators”). The sum of
all these special locations, field lines and surfaces is called the “magnetic skeleton”
(see Longcope 2005; Priest 2007, and Fig. 13). Separatrix surfaces and separators are
places where the magnetic field is discontinuous, i.e., the field lines with footpoints
on either side connect to rather different positions on the Sun. Consider, for instance,
a field line which originates from the vicinity of the positive polarity P (indicated by
the red, dashed-dotted lines) in Fig. 13. If the positive polarity footpoint of the field
line is located within the separatrix surface associated to P (black dashed dome), the
field line can only close down in the vicinity of the neighboring negative polarity n. If
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the footpoint, however, is shifted to a location just outside of the associated separatrix
surface, the field line can no longer connect to n, because field lines do not cross sep-
aratrix surfaces or separators. Instead, it may connect to another neighboring negative
polarity N by running all along outside of the separatrix surfaces associated to P and
N (red dash-dotted dome).

4.2.2 Association to current-sheets and magnetic reconnection

When a magnetic configuration evolves quasi-statically or dynamically, different flux
domains develop as pictured above. It is possible to trace the different magnetic flux
domains in the corona and their footprint on the solar surface, given that the 3D mag-
netic field configuration is known (Priest and Démoulin 1995; Démoulin et al. 1997;
Démoulin 2006; Titov et al. 2002). One can determine the position of the conjugate
polarity footpoint of a certain field line. Applying a horizontal shift to the location of
the footpoint from which the field line calculation is started, the places of strongest
variations regarding the location of the opposite polarity footpoint are detected, indi-
cating the location of “quasi-separatrix layers” (QSLs; Priest and Démoulin 1995;
Démoulin et al. 1997; Titov et al. 2002). There, the magnetic connectivity is not dis-
continuous but has steep gradients. This leads to the formation of current sheets (Titov
2007) in which electric currents may be efficiently dissipated (Aulanier et al. 2005;
Bellan 2006; Pariat et al. 2009). Note that this implies that current sheets preferentially
form where QSLs border each other (Schrijver et al. 2010).

Current sheets are regions in space where the magnetic field strength, and thus the
magnetic energy density, is locally enhanced. In the collisionless environment of the
solar corona, current sheets are transient features which diffuse away but, as long as
they exist, they have important consequences for the field and plasma they contain.
Most importantly, the resistivity within a current sheet is locally enhanced and as a
consequence, unlike in the coronal surroundings of the current sheet, the plasma is—in
contrary to the surrounding corona—not frozen into the field. Thus, they are favorable
locations for changes of the magnetic topology to happen, i.e., where the magnetic
field may change direction and/or magnitude (see chapter 2 in Priest (1982), Priest
and Forbes (2007), chapter 6 in Priest (2014), and also Sect. 4.5.3).

As pointed out by Parnell et al. (2008), knowledge about the magnetic skeleton is
necessary if one aims to determine the location, type, rate and frequency of recon-
nection events. Therefore, the magnetic skeleton has been investigated for complex
magnetic field configurations also with the help of MHD experiments satisfying solar-
like parameters. Maclean et al. (2009) performed MHD simulations, using a potential
field based on SOHO/MDI observations as an initial equilibrium. They investigated the
evolution of the magnetic field around an EUV bright point observed in TRACE 171 Å
images. They simulated the effect of the observed rotation of one of the main pho-
tospheric magnetic sources of a bright point. They could also show that the resulting
buildup of electric currents may have enabled magnetic reconnection at the separa-
trix surfaces associated with the rotated magnetic source. They commented that more
research must be undertaken to determine which parts of the separatrix surfaces host
strong electric currents. This was partly addressed by Parnell et al. (2010), who studied
the magnetic skeleton in the course of magnetic flux emergence into a pre-existing
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magnetic field. Their results indicated that locations along separators are favorable
locations for magnetic reconnection to occur.

4.2.3 Relation to dynamic phenomena

Because the trigger for magnetic reconnection has often been suspected around an
existing coronal null point or within a QSL, studies have been undertaken to relate
flare-associated features to the magnetic topology of the corona (Luoni et al. 2007;
Baker et al. 2009; van Driel-Gesztelyi et al. 2012; Sun et al. 2012a). Aulanier et
al. (2000) inferred the location of a coronal null point and separatrix surfaces from
a potential field reconstruction and highlighted that, a current-free model cannot be
expected to reproduce the observations in detail—especially in the presence of strong
shear. Nevertheless, it can be expected that it should be capable of recovering the
basic, underlying coronal magnetic field topology. A similar finding was presented by
Su et al. (2009), who employed, besides a potential field model, also a NLFF field
model with an artificially inserted flux rope, forced to emerge into the force-free model
corona. Their work revealed a line of coronal null points not only in the NLFF but
also in the potential field representation. This supported the idea that a potential field
model may indeed be sufficient to gain information on the basic coronal magnetic field
topology. A less supportive conclusion was reached by Sun et al. (2012a), who found
that the number and location of coronal null points were not the same for NLFF and
current-free field models. Specifically, the position of a coronal null, as inferred from
an NLFF field solution was clearly displaced from the location calculated from the
associated potential field model. This mismatch, they argued, might have been caused
by the high non-potentiality of the investigated active-region field which made the
current-free model fail to realistically account for its structure.

Aulanier et al. (2000) and Su et al. (2009) found the shape of observed flare rib-
bons to be closely associated to the intersection of separatrix surfaces with the lower
atmosphere. The spatial proximity between flare ribbons and QSLs agrees with the
picture of confined flares (for reviews see Priest and Forbes 2002; Shibata and Magara
2011), which relates flare ribbon emissions to particles that are accelerated at the coro-
nal reconnection site and that follow the separatrix field lines downward. Eventually
encountering the denser layers of the lower atmosphere, they lose their energy due to
collisions, but increase the radiation emitted at these locations by heating the surround-
ing plasma. Also using a potential field model, Masson et al. (2009) explained the flare
ribbons observed in association with a small flare by the photospheric intersections of
field lines that passed the vicinity of a coronal null point (similar to what was found
by Chandra et al. 2009, see Fig. 14). They found that these field lines formed a surface
which enclosed the flux domain of a “parasitic polarity” (that is a patch of a certain
magnetic polarity surrounded by fields of opposite polarity) and that the geometry
agreed closely with the theory of confined flares.

Note that magnetic field lines are fictitious constructs, meant to outline the direc-
tion of forcing by the magnetic field. Thus, they are often related to physical coronal
structures, since charged particles in the corona feel the force exerted by the magnetic
field (Lorentz force). As a consequence, for instance, heat conduction is most efficient
along the magnetic field. Similarly, density enhancements and small localized distur-
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Fig. 14 a Magnetic topology of AR 10365 on 27 May 2003, estimated from a current-free field model. The
white arrow in a indicates the possible location of a coronal null point, based on the associated current-free
field configuration. Selected field lines that outline the basic magnetic field configuration are displayed on
top of a near-in-time Hα image taken at the Solar Observatory Tower Meudon. Strongest emission in a
outlines the location of flare ribbons (that is, where newly reconnected field lines are line-tied to the low
atmosphere). b The same model configuration, shown on top of the SOHO/MDI LOS magnetogram (gray
scale, where positive/negative polarity corresponds to white/black areas). Sample magnetic field lines,
connecting the AR and its periphery are shown in yellow. Green, light and dark blue, as well as red field
lines connect the observed flare ribbons to other regions within the AR. (Adapted from Figure 8 of Chandra
et al. 2009. With kind permission from Springer Science and Business Media.) c TRACE 1,600 Å emission
(bright ribbon and kernels) associated to a C-class flare on 11 November 2002, overlaid on a SOHO/MDI
photospheric LOS magnetic field (gray-scale background; white/black represents positive/negative polarity)
of AR 10191. d Sample field lines outlining the potential field reconstruction of the associated coronal field.
The red, yellow and blue lines indicate a coronal null-point topology. (Adapted from Figures 2 and 3 of
Masson et al. 2009. © AAS. Reproduced with permission)

bances propagate along field lines, and plasma flows are mechanically confined by the
field (Longcope 2005). Such flows persist on time scales similar to that of the slow
quasi-static evolution of the magnetic field, i.e., of the order of hours, and have indeed
been found near QSLs. Early on, Marsch et al. (2004) were able to show the quasi-
static nature of active-region flows and their close connection to the coronal magnetic
field structure. Using a LFF field model, they were able to associate sharp changes
in the Doppler velocity (inferred from SOHO/SUMER Dopplergrams) to the border
between topologically different field configurations (open and closed). Furthermore,
there seems to be a connection between the strength of the flows and the underlying
magnetic field: the strongest flows seem to be associated to that portion of QSLs which
are situated above strong magnetic fields (Baker et al. 2009).
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4.3 Temporal evolution of active-region magnetic fields

The active-region corona that spans from the coronal base until about 100 Mm above
the solar surface, is a low-β environment (see Gary 2001, and Sect. 1.2.3). This implies
that the evolution of the magnetic field dictates the mass, momentum and energy flow.
This is because the dynamic pressure exerted by the solar wind within the Alfvén
radius, i.e., the range within which any escaping material is forced to rotate rigidly
with the Sun, is small compared to the magnetic pressure, the latter also well exceeding
the gas pressure there (see chapter 9 in Stix 2002). The shuffling around the magnetic
field lines at photospheric levels by the convective motions at (sub-)photospheric levels
determines the temporal evolution of the coronal field above. Thanks to the high Alfvén
velocity (≈103 km s−1), the coronal plasma can quasi-statically adjust to the driving
(sub-)surface convective motions (with characteristic speeds of a few km s−1; see
chapter 6 in Stix 2002). This, together with the underlying field topology determines
the fate of coronal active-region magnetic fields. In most cases the evolution of the
corona is a slow transition between neighboring equilibrium states.

A slow, quasi-static evolution means that the coronal magnetic fields adjust to
the random or systematic motion of their line-tied photospheric footpoints without
a sudden energy release, i.e., without a major eruption. Note that the condition of
the magnetic field being frozen in the plasma and its more or less passive advection
by photospheric flows is referred to as line-tying (see Longcope 2005). This does,
however, not preclude the presence of dynamic phenomena. For instance, at the edges
of ARs, outflows have often been observed with velocities of tens of km s−1. This
has actually been proposed to be important for the solar wind Brekke et al. (1997),
Winebarger et al. (2001), Sakao et al. (2007). Such flows might arise from the recon-
nection between small-scale emerging fields and larger-scale open field lines of ARs
(Liu and Su 2014). Also SXR jets are sometimes observed at the boundaries of ARs
(Shimizu et al. 1994), often associated with parasitic polarities (Schmieder et al. 2013).
But despite such small-scale events, for most of the time, the magnetic field of an AR
evolves slowly and can be considered to be in equilibrium. At typical coronal con-
ditions, the magnetic energy density—which is a measure for the magnitude of the
associated pressure—is at least three orders of magnitude larger than the gravitational,
thermal or kinetic energy density (Forbes 2000). Under equilibrium conditions, this
implies that the Lorentz force vanishes and that the field can be considered to be force-
free (see Sect. 2.2). Once equilibrium is lost, however, this might no longer be true and
dynamic forces come into play that compensate the non-vanishing magnetic forces.

4.3.1 Dynamic evolution: eruptive phenomena

Forced away from its equilibrium position, or, more precisely, from a quasi-static oscil-
lation around its equilibrium position, a configuration of the coronal field may develop
in two ways. Either it reaches a metastable state or a non-equilibrium state (Priest and
Forbes 2002). A metastable configuration is stable with respect to small perturba-
tions because it involves a stabilizing element. A corresponding coronal configuration
would be in the form of, e.g., a twisted flux rope bridged by a loop arcade, where the
latter holds the configuration steady (Sturrock et al. 2001). A non-equilibrium state,
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on the other hand, is unstable against any further perturbation and its evolution is then
determined by the evolutionary path of that initially small perturbation. We are facing
different types of evolution, in the form of a growth of the perturbation, an oscillation,
or eventually a damping out. Given the appropriate trigger, a meta- or non-stable state
may evolve further to a state where mass and/or energy is released due to an associated
change of the field topology. Examples of force-free equilibria with stable and unsta-
ble configurations (dependent on model parameters) have been constructed by Titov
and Démoulin (1999). Unstable configurations have been investigated with numeri-
cal MHD simulations by Török and Kliem (2005). Importantly, the morphology and
dynamic evolution of a modeled erupting flux rope (an eruption triggered by an ideal
kink instability) were found to be in agreement with an observed eruptive flare.

Associate releases of mass and/or energy are called flares, eruptive prominences
and CMEs, depending on the emission and dynamics observed (for reviews see, Benz
2008; Fletcher et al. 2011; Mackay et al. 2010; Parenti 2014; Hudson et al. 2006;
Webb and Howard 2012). Flares involve sudden enhancements of electromagnetic
radiation, caused by accelerated particles and excessive heating of the coronal plasma.
During an eruptive prominence, the material initially trapped inside is partially or
completely expelled from the Sun. CMEs involve the expulsion of huge masses of
coronal plasma into interplanetary space, spanning the range of roughly ≈1012 kg
to ≈1016 kg (see Vourlidas et al. 2010, 2011, for a comprehensive analysis of CME
masses during a full solar cycle). Many attempts have been made to develop models to
describe the features associated with a loss of equilibrium, including the pre-eruptive
coronal magnetic field structure, the triggering mechanism and the temporal evolution
of the eruption itself. It is outside the scope of this review to summarize all existing
models of eruptive processes in the solar atmosphere. Instead, we refer here to the
comprehensive reviews on flare (Forbes et al. 2006; Chen 2011) and CME models
(Forbes 2000; Shibata and Magara 2011).

4.4 Favorable conditions for eruptions

To find the conditions under which the magnetic field of a (part of an) ARs is likely to
erupt, one has to analyze the corona as well as the underlying parts of the atmosphere
before an eruption occurs (for reviews see Schrijver 2009; Chen 2011). Favorable con-
ditions for eruptions include strongly twisted or sheared magnetic structures embedded
in a less-sheared magnetic system (Hao et al. 2012), the rapid emergence/evolution of
strong magnetic flux concentrations (Wang et al. 2004a; Sun et al. 2012b), and/or a
complex magnetic field topology (Sun et al. 2012a).

4.4.1 Magnetic flux emergence and complex magnetic field structure

A complex magnetic field structure may include parasitic polarities, highly sheared
fields, strong gradients and long PILs, not necessarily all at the same time or in the
same event (van Driel-Gesztelyi and Culhane 2009). For magnetically complex ARs
a tendency to be more CME productive has indeed been found (Chen et al. 2011).
Large flares mainly originate from ARs with a complex photospheric magnetic field
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configuration, the largest ones from δ-configurations (see review by Benz 2008, and
references therein). Note that a δ-configuration denotes umbrae of opposite polarity
existing within a single penumbra. Only rarely are spotless regions reported to be
the source of major flares (Ruzdjak et al. 1989; Sersen and Valnicek 1993; Li et al.
1995). M- and X-class flares are considered to be “major” flares in this context with
SXR peak fluxes in the order of 10−5 and 10−4 W m−2, respectively. Ruzdjak et al.
(1989), however, mentioned an enhanced occurrence rate of a specific type of eruption
in spotless regions, namely two-ribbon flares, involving two progressively spreading
bands of chromospheric emission.

As noted by Schrijver (2009), an eruption might not be triggered per se due to flux
emergence but only if a sufficient amount of magnetic flux emerged. The imbalance
of the emerging magnetic flux does not seem to be crucial for an eruption to occur,
although it might play a role. Choudhary et al. (2002) noted that only roughly one-third
of their analyzed cases showed a flux asymmetry of more than 10 %. A super-AR,
however, was found to exhibit a flux imbalance of ≈40 % which, they admitted, could
have partly been caused by instrumental effects. It is worth noting that, such analyses
often suffer the problem of projection effects which is noticeable in the degree of flux
imbalance systematically increasing with distance from the disk center (Green et al.
2003). Chen and Wang (2012) recently revisited the importance of flux imbalance for
the eruptive nature of ARs; they only considered ARs that fulfilled certain selection
criteria, including being observed within ±30◦ from the central meridian and being
associated to major flaring activity. They analyzed 14 ARs and found a significant
imbalance of magnetic flux: more than half of the ARs showed a flux imbalance of
�20 % (see also Tian et al. 2002; Romano and Zuccarello 2007). However, thermal
effects on the photospheric line profiles can influence the determination of magnetic
flux. This can lead to a seeming imbalance between the two polarities of an AR if,
e.g., one polarity of the AR is composed more of sunspots, while the other polarity
has more plage. Consequently, this topic needs further study.

4.4.2 Magnetic shear and twist

An eruption may also be triggered if, owing to the motion of its photospheric footpoints,
a coronal loop arcade is sheared too much (Priest and Forbes 2002). It has long
been known that the combination of strong fields and strong shear seem an essential
ingredient to, for example, ribbon flares (Hagyard and Rabin 1986). Strong shear may
develop due to sunspot motions, converging giant convection cells, as well as due
to the emergence, cancelation and submergence of magnetic flux (see Hagyard et al.
1984a, and references therein; see also Wang 1994). Note, however, that it might not
always be possible to judge whether horizontal flows caused the observed shear or if an
arcade already emerged as a sheared configuration (Wiegelmann et al. 2005b). Krall
et al. (1982) compared the evolution of the transverse magnetic field component to the
motions within a flare-productive AR observed in white light. They found that over
a period of several days the observed shearing motion resulted in an ever increasing
field alignment with the PIL and was associated to the onset and increase of flaring
activity, and which has been supported by the MHD model results of Wu et al. (1984).
Force-free modeling results have initiated the search for a possible critical amount of
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shear which, once reached, would inevitably trigger an eruption (Low 1977a, b), but
for which observational support seems sparse.

Hagyard et al. (1984b) estimated the critical shear to lie in the range 80◦ � θ � 85◦.
They defined the shear angle, θ , as the angular difference between the orientation of
the transverse field component and the direction perpendicular with respect to the
PIL. Consequently, θ = 0◦ implies a field with no shear and θ = 90◦ would account
for a transverse field parallel to the PIL. Sivaraman et al. (1992) followed a different
approach: they used Hα observations to determine the orientation of the major axis of
filaments (as an indication for the direction of the PIL) with respect to an approximation
to the orientation of the potential field azimuth. The latter has been defined by the
direction perpendicular to a straight connection between the two main spots of the
associated bipolar sunspot group. Their study revealed that flares occurred only when
the angle between the principal filament direction (i.e., the PIL) and the direction of
the potential field azimuth exceeded ≈85◦ (using the same notation for the shear angle
as above).

Another source of instability is the amount of twist of a coronal structure, as induced
by systematic motions of the photospheric footpoints of the field. For instance, an equi-
librium coronal loop becomes unstable if its length is stretched beyond a critical value,
or if it is twisted by photospheric motions (Priest 1978). For twisted magnetic field
configurations, different critical thresholds were found within numerical experiments,
including uniformly twisted toroidal or periodic, line-tied cylindrically symmetric
configurations (Hood and Priest 1981; Baty and Heyvaerts 1996) and locally twisted
configurations (Baty and Heyvaerts 1996; Mikić et al. 1990; Fan and Gibson 2003;
Török and Kliem 2003). Note, the results of all of these model experiments agree
fairly well on the critical amount of twist: the field lines must perform more than one
full turn (T > 2π) about the center of the flux tube for it to become kink unstable,
which would be observed as an eruption under coronal conditions. These numerical
considerations also revealed that the critical twist, tends to rise with increasing aspect
ratio, that is the ratio of the loop length to its cross-sectional diameter (Einaudi and
van Hoven 1983; Török et al. 2004). On the other hand it is smallest for loops of a
strong magnetic field, for given temperature and density values (Priest 1978).

4.5 Magnetic energy budget

4.5.1 Energy buildup and storage

Magnetic flux continuously emerges from where it is generated through the photo-
spheric layers and punches into the pre-existing coronal magnetic field. At the same
time, small- and large-scale convective motions in the photospheric layers, shuffle
around bundles of frozen-in magnetic field lines. The energy required to perform the
work of moving magnetic structures against the ambient magnetic field contributes
to the magnetic energy content of the coronal field (Parker 1987). The two major
contributions to the transport of magnetic energy to the corona are the emergence
of material through the photosphere from below, dragging magnetic field along, and
horizontal motions of the photospheric material that increase the shear of the mag-
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netic field above (Wang 1995). The footpoint motions of coronal loops result in an
energy flux of ≈104 W m−2 and ≈106 W m−2, for typical photospheric quiet-Sun and
active-region conditions, respectively, to the corona. This is at least ten times larger
than the corresponding radiative and conductive losses in chromosphere and corona
(Bellan 2006; Parnell and De Moortel 2012).

The random displacements of the line-tied footpoints of the coronal field-lines nat-
urally lead to “braided” magnetic fields (van Ballegooijen et al. 2014). Such braiding
is a measure of how often different field lines cross each other in space Berger and
Asgari-Targhi 2009 and is supported by MHD models (Gudiksen and Nordlund 2005;
Rappazzo et al. 2008; van Ballegooijen et al. 2011). These braided small-scale field
structures efficiently heat the coronal environment by the dissipation of electric cur-
rents, where oppositely directed magnetic fields are found in close vicinity to each
other (Parker 1983, see also Cirtain et al. 2013; Thalmann et al. 2014). The sub-surface
dynamics controlling the temporal evolution of the coronal magnetic field, also launch
waves propagating upwards. Currently, from all of the excited types of waves, only
Alfvén waves may be capable of actually reaching coronal heights, whereas other
types of waves are efficiently damped already in the low atmosphere and thus do not
contribute to the heating of the coronal plasma to the observed temperatures see the
recent review by Parnell and De Moortel (2012). A discussion about the correspond-
ing coronal heating processes is outside the scope of our review and interested readers
might consult also the in-depth discussion by Klimchuk (2006) and dedicated chapters
in Cranmer (2009) and Reale (2010).

The time scale on which magnetic energy is transported through the photosphere
is much larger than that of the transport through the corona itself. For typical coronal
conditions, the travel time over a characteristic coronal length scale is in the order of
minutes. For typical photospheric values, on the other hand, one finds characteristic
travel times of hours. This implies that the time span during which substantial amounts
of magnetic energy are stored in the corona can be long, because sufficiently intense
current distributions need to develop.

4.5.2 Relation to flare productivity

Depending on the magnetic field topology and its temporal evolution, very different
amounts of magnetic energy are stored in time intervals of various lengths. Force-free
modeling suggests energy storage rates of a few 1023 J h−1 to a few 1025 J h−1 (Thal-
mann and Wiegelmann 2008; Sun et al. 2012b; Malanushenko et al. 2014; He et al.
2014, and see also Fig. 15a). Besides, such modeling suggests that magnetic energy is
stored mainly in the low solar atmosphere, possibly only a few Mm above photospheric
levels (Thalmann and Wiegelmann 2008; Sun et al. 2012b, also cf. Fig. 15b).

The size and frequency of eruptive events appears to be related to the portion of the
previously stored magnetic energy that is actually available for release at a given time
(Choe and Cheng 2000; Jing et al. 2010; Tziotziou et al. 2012). This so-called “free
magnetic energy” is the energy difference between a NLFF and a current-free field.
One generally finds a higher free energy content prior to larger eruptive events and a
small amount of free energy (�1023 J) prior to the weakest flaring activity (Gilchrist
et al. 2012), where “weakest” activity refers to smaller than C-class events. A free
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Fig. 15 a Temporal evolution of the total (pink solid line; estimated from a NLFF model) and potential
(green solid line) magnetic energy stored in the coronal volume above AR 11158 during 5 days. The inset
shows the evolution of the free magnetic energy (that is the excess energy over a current-free field) around
the time of an X-class flare (indicated by the vertical dotted line). One can clearly see the more or less
continuous increase in magnetic energy, predominately caused by an emerging flux rope (≈1026 J during
≈48 h). b Height profile of the associated average free magnetic energy. The white curve shows a sample
altitude profile of the average free energy on 15 February at 00:00 UT. The course of each profile over time
and over height is visualized by the color code shown. Black, more or less horizontally running, dotted lines
indicate the iso-contours of 50 and 75 % of the total free energy. c Measured full-Sun GOES 5-min SXR
flux in the 1 to 8 Å channel for the same time range. The vertical, white-dashed lines in b as well as the
gray-shaded area in a and c mark the duration of an X2.2 flare. The peak time of the flare, on 15 February
at 01:56 UT, is indicated by vertical dotted lines. (Adapted from Figure 4 of Sun et al. 2012b. © AAS.
Reproduced with permission)

energy of ≈1024 J to ≈1025 J has been reported prior to weak flaring activity (Bleybel
et al. 2002; Régnier and Priest 2007; Thalmann et al. 2008; Sun et al. 2012a), where
“weak” means C-class flares. Moderate to strong (M- to X-class) events tend to occur
only when free energies of some 1025 J to some 1026 J are present (Régnier et al.
2005; Metcalf et al. 2005; Thalmann and Wiegelmann 2008; Jing et al. 2009; Sun et
al. 2012a; Feng et al. 2013). Note, however, that the buildup of a sufficient amount of
energy on its own does not guarantee the occurrence of a subsequent eruption and the
release of part of this energy (Gilchrist et al. 2012).

4.5.3 Energy release

The release of magnetic energy is believed to take place in current sheets, very lim-
ited regions where magnetic field and plasma are locally decoupled. This allows the
magnetic field to diffuse and change its topology by means of magnetic reconnection
(see Sect. 4.2.2). It has been contended by Moore et al. (1995) and Lin et al. (2009)
that the width of these regions is ≈0.1 to 1 Mm. Narrower current sheets, as proposed
by Wood and Neukirch (2005), would result in even smaller diffusion time scales.
Clearly, unlike the global magnetic diffusion time-scale of several months, the diffu-
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sion time scale in currents sheets is very small (τd ≈ 1 s to 10 min). In other words,
the presence of current sheets in the corona, permits the efficient release of magnetic
energy on active-region scales, in contrast to the non-efficient magnetic diffusion on
global scales. Due to the rarity of vector magnetic field measurements in the corona,
direct observational detections of current sheets are restricted basically to the upper
chromosphere. From observations, only an upper limit of roughly 1 Mm can be given
on the width of current sheets (Solanki et al. 2003).

Force-free models of ARs indicate that the height where the gross part of the mag-
netic energy is released is located �20 Mm above the photospheric level (Thalmann
and Wiegelmann 2008; Sun et al. 2012b). Only a fraction of the released free energy
goes into the acceleration of particles. Heated and/or accelerated, particles propagate
from the reconnection site, near the apex of the coronal loop, downwards along the
legs of the loop to the chromosphere, where they lose their energy due to collisions
with the denser chromospheric material. This, in turn, is heated and convected upwards
and fills the newly reconnected field lines with chromospheric and transition region
plasma heated to coronal temperatures, emitting in SXRs (Neupert 1968).

Just as the free energy content prior to observed eruption is related to the flare class,
one would expect that the actually released amount of free energy relates to the flare
class too. Recent studies, however, do not show a clear tendency, i.e., no clear trend
of more energetic events consuming more of the previously stored energy. So far, the
estimated upper limits for the decrease of free magnetic energy range from 5 to 50 %
(Thalmann and Wiegelmann 2008; Thalmann et al. 2008; Jing et al. 2009; Sun et
al. 2012b; Feng et al. 2013). Cases were also reported without a clear decrease (Sun
et al. 2012a) or even an increasing free energy (Metcalf et al. 2005, and references
therein). However, there have been doubts about the reliability of the latter owing
to very uncertain estimates. Often also a decrease of the free energy occurs already
before the time of the peak SXR flux of a flare, and in other cases this has been seen
even before the flare onset (Jing et al. 2009; He et al. 2014).

Recently, Feng et al. (2013) investigated the partition of magnetic energy during an
X-class and CME event. The radiative energy release estimated from the recorded flare
emission was found to be at least one order of magnitude lower than the upper limit of
available free magnetic energy; this also held for the kinetic and potential energy of
the associated CME and confirmed the general consensus that by far not all of the free
energy is released even during the most energetic events, but that a considerable portion
remains available to power successive eruptions (see also Fig. 19). As discussed for
the helicity budget on a global scale (see Sect. 3.4), a non-potential magnetic field is
never found to relax to a corresponding current-free configuration, in the course of an
eruption. Despite expected in terms of helicity conservation, a non-potential coronal
field may never entirely relax to a corresponding constant-alpha (preserved helicity)
state due to the line-tied nature of the coronal structures (Antiochos and DeVore 1999).
Besides, newly emerging flux also permanently disturbs the relaxation process.

4.5.4 Coronal implosion and photospheric response

The release of magnetic energy naturally leads to a deviation from the previous bal-
ance of the magnetic forces in an AR. The magnetic pressure is directed towards
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Fig. 16 NLFF magnetic field model of the active-region field above NOAA AR 10540 a before and b after
a large M-class flare. Iso-surfaces of a absolute magnetic field strength of 200 G are shown. The iso-surfaces
give an impression of the magnetic pressure, sustaining different parts of the AR. It is evident that various
areas within the AR react with different sensitivity to the flare, i.e., show differently strong signatures of
implosion. (Adapted from Figure 3.7 of Thalmann 2010. Reproduced with permission)

weaker magnetic fields, i.e., generally pointing upwards towards higher altitudes and
competes with the magnetic tension that tries to reduce the curvature of the magnetic
field lines. The rapid release of energy during an eruption may cause a reduction of
magnetic pressure, accompanied by a deflation of the magnetic field, termed “coronal
implosion” (Hudson 2000, and see Fig. 16). Model calculations by Janse and Low
(2007) confirmed that if the post-eruption thermal pressure cannot compensate for the
eruption-related magnetic pressure reduction, a magnetic system will implode.

Frequently, observational evidence for such implosions is found in the form of the
contraction of observed coronal loops (Liu et al. 2009a; Liu and Wang 2009; Sun
et al. 2012b; Gosain 2012; Simões et al. 2013). Liu et al. (2012) claimed that the
apparent loop contraction is not just a projection effect. This conclusion, they argued,
was possible due to their observation of the contracted coronal loops to reside at lower
heights than those of the pre-flare system (see Fig. 17 and also Liu and Wang 2010).
Importantly, the magnetic field lines after an eruption never regained their pre-flare
heights. Almost all of the studied eruptions showed both contracting overlying large-
scale loops that are observable in cooler EUV channels, and expanding components
underlying, newly reconnected field lines, preferentially visible in warm/hot EUV
channels. However, even before the conventional large-scale expanding motions could
be seen for particular flares, contracting motions during the impulsive phase of flares
were observed in the form of descending motions of loop-top sources (Krucker et al.
2003; Joshi et al. 2009) and EUV flaring loops (Li and Gan 2006; Liu et al. 2009a),
along with converging Hα ribbons or HXR footpoints. Ji et al. (2007) explained the
observational aspects related to the initial contraction in terms of the relaxation of a
modeled highly sheared core field. They formed new field lines, still highly sheared
and containing much of the non-potential energy. The dissipation of free energy causes
the sheared field to relax and contract; their effect is much stronger than the expansion
effect by reconnecting arcade field lines during the initial phase.

The deflation of coronal loops, caused by the release of magnetic energy, is often also
accompanied by changes of the shear of the horizontal component of the photospheric
magnetic field. The sign of this change remains inconclusive, however, since both, an
increase of the shear (Wang 1992; Chen et al. 1994; Wang et al. 1994, 2012a, b; Liu et
al. 2005; Petrie 2012), as well as a decrease has been found during flares (Wang 2006).
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Fig. 17 a SDO/AIA image of the 171 Å emission of NOAA AR 11429 on 9 March 2012. The blue/red
contours resemble the co-temporal negative/positive LOS component of the photospheric magnetic field
measured with SDO/HMI. The green line marks the PIL. The white line indicates the slit along which the
motion of four well-defined bundles of coronal loops (L1 to L4) is investigated. b Time-position diagram
during the impulsive phase of an M6.4 flare. Shown is the projected speed of the coronal loop bundles which
contract with different apparent speeds. A delay of the implosion onset with height is clearly visible and
indicated by the inclined black straight line. (Adapted from Figures 1 and 2 of Simões et al. 2013. © AAS.
Reproduced with permission)

To explain such contradictory results, Dun et al. (2007) proposed that the measures
for the non-potentiality of a magnetic field may take on different values from one
portion of an AR to another. Findings may then depend on the specific choice of
the analyzed photospheric area. Moreover, projection effects due to the location of
the investigated area on the solar disk might also result in changes of the observed
longitudinal field, similar to that expected for flare-related reconfigurations (Wilkinson
et al. 1989; Venkatakrishnan et al. 1989; Spirock et al. 2002). We also point out the
need to check carefully to what extent the determined magnetic field configuration
is affected by the thermal and velocity structure of the atmosphere (see review by
Solanki 1993) by weak blends in the employed spectral lines, or by instrumental
effects. Finally, as recently speculated, the magnetic field may behave differently at
different altitudes with varying domains of increasing and decreasing shear (Jing et al.
2008; Sun et al. 2012b). No unique mechanism accounting for all of these observed
aspects of magnetic shear has so far been identified.

4.6 Magnetic helicity budget

The storage of magnetic energy in the coronal volume above ARs is accompanied
by an accumulation of magnetic helicity (see Sect. 3.4 for the Sun’s global helicity
budget and Sect. 5.2.6 for a corresponding discussion on quiet-Sun fields). Often,
also the current helicity is investigated, this quantifies how much the fields are locally
twisted (Démoulin 2007). In contrast to magnetic helicity, the current helicity is not
a conserved quantity; the general relationship between the two is not known (van
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Driel-Gesztelyi et al. 2003). Within this work, we restrict ourselves to the discussion
of magnetic helicity.

4.6.1 Helicity buildup and storage

Any magnetic helicity gained by a dynamo action somewhere within the convection
zone during the generation of magnetic field is transported into the solar atmosphere
by the emergence of helical magnetic flux tubes in the photosphere (Seehafer 1990).
The flux of magnetic helicity at photospheric levels is the result of the combined effect
of the motions of magnetic structures due to convective plasma flows and the subse-
quent advection of these helicity-carrying structures. For a review on observations
and modeling of the helicity at photospheric levels, see Démoulin and Pariat (2009).
The photospheric motions that twist and/or shear the magnetic flux tubes result in the
coronal magnetic field to gain even more helicity.

Investigating the helicity injection rate in ARs by shearing motions only requires the
knowledge of the normal component of the magnetic field and the horizontal velocity
of the magnetic elements within an AR (Berger 1984; Démoulin and Berger 2003;
Chae et al. 2004). The resulting estimate is thus a mixture of the enhancement of the
helicity content by shearing motions and the portion of helicity emerging from below
the photosphere. Magara and Longcope (2003) proposed that the helicity contribution
from the vertical flows might only dominate early phases of flux emergence, followed
by a dominant contribution from the shearing flows in the later stages of an evolving
AR. This is in the opposite of what has been presented recently by Liu et al. (2014)
who analyzed the ARs during their emergence phases and found that shearing motions
contribute the most to the ARs’ helicity content.

And also other contributions to the helicity budget within an AR were detected,
including the rotational motion of sunspots around their own axis, which results in
enhanced magnetic twist. The rotation of the center of one polarity around the center
of the reversed polarity center also adds to the writhe of a magnetic flux tube’s axis
(Tian and Alexander 2006; Tian et al. 2008; Kumar et al. 2013). Liu and Zhang (2006)
estimated the accumulation of helicity associated to the rotation of a pair of bipolar
sunspots (during about 31 h) to be ≈2 × 1042 Mx2. They noted another increase of
≈3 × 1043 Mx2 during a following period of ≈96 h, while strong shearing motions
were observed. Zhang et al. (2008) estimated the helicity injected by the rotational
motion of sunspots around their centers within an AR to be ≈1043 Mx2, which was on
the same order as the combined contribution by shearing motions and flux emergence.

The above discussion underlines that further detailed research on evolving ARs is
needed to disentangle the contribution of emerging, shearing and rotational motions
and to assess their importance for the total helicity content of ARs. Importantly,
Vemareddy et al. (2012b) showed that such estimates depend on the time interval
between successive magnetic vector maps and the window size within which the hor-
izontal footpoint velocities are tracked. Correspondingly, they guessed the general
uncertainty of calculated helicity injection rates and total helicity accumulations to be
≈10 %. Vemareddy et al. (2012a) found evidence that individual portions of an AR
contributed differently to the total helicity content. While in one part an accumulation
of negative helicity was recorded, an injection of positive helicity was found in another
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Fig. 18 Time-averaged a net helicity flux, Ḣnet , b absolute magnetic helicity flux, Ḣabs, and c unsigned
magnetic flux, 	, as a function of the SXR flux, FSXR, of seven ARs. The SXR flux is estimated from
the measured intensity Yohkoh/SFD images by integration over the area used for helicity calculations and
corresponds to the Yohkoh data number (DN) per second, where 1 DN corresponds to 100 electrons in
the CCD detector. Time averages are taken over 24 h. Values corresponding to NOAA ARs 8100, 8143,
8179, 8636, 8948, 9026, and 9077 are represented by blue, red, yellow, green, orange, magenta, and pink
dots, respectively. The dashed line represents a regression line, obtained from a least-squares method. One
can see that the absolute helicity flux correlates better with the SXR flux than does the net helicity flux
for the individual ARs. Note that for all ARs except 8143 and 8636 repeated flaring activity (C-, M- or
X-class) has been reported. (Adapted from Figures 3 and 8 of Maeshiro et al. 2005. © AAS. Reproduced
with permission)

part. Vemareddy et al. (2012b) recognized that major flaring activity only occurred at
times when helicity was injected in the AR with a sign opposite to the dominant sign of
the AR (see also Kusano et al. 2002). Similar findings have been presented for CME-
(Wang et al. 2004) and MC-productive (Chandra et al. 2010) ARs. For these too, the
sign of the helicity inherent to the newly emerging magnetic flux systems may well
be opposite to that of the dominant helicity in the pre-existing active-region magnetic
field.

4.6.2 Relation to flare productivity

The rates of injected magnetic flux and helicity are necessarily related to each other
(LaBonte et al. 2007; Tian and Alexander 2008; Park et al. 2008; Chandra et al. 2009;
Tziotziou et al. 2012). The flare productivity, however, may be more closely related
to magnetic helicity injection than to the amount of injected magnetic flux (or stored
magnetic energy). More precisely, if positive and negative helicity is injected at the
same time at approximately the same rate in flare-productive ARs, the absolute helicity
flux (transported into the atmosphere by emerging motions) correlates well with the
SXR flux (Maeshiro et al. 2005 and see Fig. 18). Park et al. (2010) based on a similar
conclusion on the observation that for flaring ARs with a large unsigned magnetic
flux, the average helicity injection rate was twice that of non-flaring regions. In fact, a
systematic study by LaBonte et al. (2007) on the helicity injection in ARs showed that
all X-class flares were associated to peak helicity fluxes greater than 6×1036 Mx2 s−1

and consequently proposed a causal link of the peak helicity flux to the ability of an
AR to produce an X-class flare.

This proposal raises the question whether or not there is a “critical” amount of
helicity which, once reached, favors the onset of an eruptive process. Park et al. (2008)
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found a nearly constantly increasing coronal helicity, preceding all of the considered 11
X-class flares. Importantly, they suspected an individual critical limit of accumulated
helicity for each of the eruptive ARs, since they could not identify a common threshold
for all events. Park et al. (2010) compared the magnetic properties and flaring activity
for a sample of 378 ARs. They note that prior to all flares with a peak SXR flux
of more than 5 × 10−5 W m−2, a significant amount of helicity (1042 to 1043 Mx2)
was monotonically accumulated during 12 h to 48 h. Analyzing more than 150 ARs,
Tziotziou et al. (2013) found that a relative helicity of ≈1042 Mx2 and ≈1043 Mx2

is accumulated prior to M- and X-class flaring, respectively. Note that whenever we
speak of “relative” helicity, the helicity of a non-potential field with respect to that of
the corresponding potential field is meant. Earlier already Tziotziou et al. (2012) had
estimated the instantaneous magnetic energy and helicity budgets of ARs and found
that those with a free energy of �4 × 1024 J and a relative helicity of �2 × 1042 Mx2

were not flare productive. Also, the flare class of the observed events was successively
smaller (X- to C-class) for ARs with successively less free energy and relative helicity
budgets. Early estimates of the helicity budget of flare and CME-productive ARs,
based on force-free field models, range from ≈1034 Mx2 to ≈1043 Mx2, with the
general tendency that ARs with a higher helicity content are more flare productive
(Régnier et al. 2002; Régnier and Canfield 2006; Régnier and Priest 2007).

In recent years, considerable effort has been invested into developing methods that
infer the coronal helicity budget based on the reconstructed NLFF coronal magnetic
field. This is far from trivial, since it often involves the computation of the magnetic
vector potential that has to satisfy specific gauge properties (Rudenko and Myshyakov
2011; Thalmann et al. 2011; Valori et al. 2012a; Yang et al. 2013). So far, these models
have not been applied to real solar cases, but have been tested by the use of semi-
analytic force-free magnetic field solutions. Only Valori et al. (2012b) investigated
the helicity content of an AR during flux emergence and found a relative helicity of
≈1042 Mx2 prior to background, i.e., B-level flaring activity. The hesitation to apply the
developed methods certainly arises from the strong influence the choice of a particular
gauge as well as its numerical implementation may have on the model outcome,
especially when applied to real data. Only when the reliability of such methods has
been assessed, will it become clear, whether summing over the helicity injected at
a photospheric level, i.e., estimated from routine direct photospheric magnetic field
measurements, represents the safest estimate of the coronal helicity content (Démoulin
and Pariat 2009).

4.6.3 Helicity dissipation and transport

In contrast to dissipating magnetic energy, magnetic reconnection is a very inefficient
process for removing magnetic helicity. This was shown by Berger (1984), who had
tested the magnetic helicity decay in a coronal loop, by assuming classical anomalous
conductivity in a circular loop with a length of 100 Mm, a radius of 10 Mm, and an
uniform temperature of 1 MK. He found a diffusion time scale of ≈109 to 1013 s, which
is far too long to be relevant for time scales of impulsive (eruptive) processes such as
flares, where typical time scales are ≈103 s. Instead, during magnetic reconnection,
and on time scales relevant for it, the magnetic helicity is approximately conserved.
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Only its source, the mutual linking of different flux systems or the internal twist
of a magnetic structure, is transformed (Hornig and Rastätter 1997). This provides
a constraint on the relaxation of a current-carrying magnetic-field configuration by
energy dissipation: it can only relax to another lower-energy, still current-carrying
state but not to a current-free one (Woltjer 1958; Taylor 1974; Bellan 1999, 2006).
Importantly, the decrease of both magnetic helicity and of magnetic energy due to
an eruption is often temporary and sets in before the onset of the eruptive event, as
defined by the impulsive rise of SXR emission (Jing et al. 2009; Tziotziou et al. 2013).
Both are often found to return to, or even exceed the pre-eruptive level within hours,
thus allowing for subsequent flaring activity (see Fig. 19).

As a consequence of the conservation properties of magnetic helicity, a change of
the coronal magnetic helicity content can only be caused by an expulsion of a magnetic
structure and its inherent helicity, such as a CME to interplanetary space. A typical
CME contains a magnetic helicity in the order of 1042 Mx2, as this is also a the typical
magnetic helicity content of a MC (DeVore 2000; Georgoulis et al. 2009, and see
also Sect. 3.4). These estimates agree very well with the helicity budget of ARs prior
to major eruptions (�2 × 1042 Mx2; see Tziotziou et al. 2012, and see Sect. 4.6.1).
MCs often show the same chirality as their source region, as inferred from the twist
of the flux tubes they originate from (Rust 1994; Mandrini et al. 2004). But events
have also been reported where this has not been the case. For instance, Chandra et
al. (2010) investigated a case in which observed features (sunspot whorls and flare
ribbons) as well as a corresponding LFF magnetic field suggested a predominantly
negative helicity within an AR. In contrast, the associated MC was attested a positive
helicity, which contradicted helicity conservation. Only a very accurate analysis of the
helicity injection revealed that a strong, local injection of positive helicity served as
the source for the observed positive helicity of the MC.

Note that already Kusano et al. (2004) outlined the importance of neighboring flux
systems of helicity with opposite signs within a single AR for its flare productivity, and
Leamon et al. (2004) attested only models invoking magnetic reconnection between
the small-scale active-region magnetic fields and their overlying large-scale envelope
field, where the latter ejected an MC, the ability to relate their helicity aspects correctly.

5 Quiet-Sun magnetic fields

Traditionally the “quiet-Sun” regions got their name because they were assumed to
lack activity. However, while large-scale eruptions are mainly associated with ARs (see
Sect. 4), the QS is not quiet either. Dynamic processes that occur on smaller scales
had simply not been resolved by early missions and instruments. Already Labonte
(1979) pointed out that the total magnetic flux of the QS exceeds the flux contained
in ARs by far and that it drives activity, such as spicules. These were first observed
in Hα and described as “small spices of chromospheric material” (Roberts 1945).
Ephemeral ARs (see Sect. 1.1.1) were also found to be centers of activity Harvey and
Martin (1973). As in their active-region counterparts, the photospheric magnetic field
in the ephemeral regions drives activity, such as X-ray bright points, (Golub et al.
1974, 1977; Priest 1994) in the upper solar atmosphere.
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Fig. 19 Relative helicity (green curves) and free magnetic energy (orange curves) of AR 11158 in February
2011, around the times of four large eruptive events (with values are averaged over 72 min): a an X2.2
flare of 15 February, b an M6.6 flare on 13 February, c an M2.2 flare on 14 February, and d an M1.6
flare of 16 February. The flare onset, peak and end times (defined by the GOES SXR flux) are indicated
by dotted, solid and dashed vertical lines, respectively. The color-coded background resembles the co-
temporal WIND/WAVES frequency-time radio spectra. It can well be seen that a decrease of the magnetic
energy and relative helicity magnitude starts before the onset of the flares and displays a gradual, rather
than instantaneous character. (Figure 11 of Tziotziou et al. 2013. © AAS. Reproduced with permission)

5.1 3D magnetic field structure in the quiet Sun

Because of the often mixed magnetic polarities on smaller scales in the QS, we mainly
find magnetic loops which are very short and hardly reach into higher layers of the
solar atmosphere. With modern high-resolution measurements, however, we can use
magnetic field modeling techniques to model the 3D structure in the QS, similar to
those described in Sect. 2.2 and which are routinely applied to the active Sun (see
Sect. 4). Nevertheless, some care has to be taken, as is discussed in Sect. 5.2.5.
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Because of their easier computational load and because only photospheric LOS
measurement are required as boundary condition, the topology of the quiet Sun’s outer
atmosphere and its temporal evolution is usually investigated by use of potential field
models. However, one has to keep in mind that any static-model approach provides
only a snapshot of the, in reality dynamic, magnetic carpet. Schrijver and Title (2003)
modeled the fraction of magnetic flux that connects from network elements into the
upper solar atmosphere and found it to scale with the flux density of the underlying
internetwork field. For relatively strong internetwork flux densities, in the order of
5 × 10−3 Wb m−2, only about 30 to 40 % of the flux connects to the corona while the
greater part connects back down in the form of closed loops.

5.1.1 Photospheric quiet-Sun loops

The structure and dynamics of the quiet-Sun magnetic field can be investigated with
spectro-polarimetric measurements. Martínez González et al. (2007), using data from
VTT, found low-lying photospheric magnetic loops connecting about 10 to 20 % of
the visible magnetic flux of opposite polarity. Note that emerging small-scale loops
are observed in the form of newly detected horizontal fields well before vertical flux is
detected (see Centeno et al. 2007, for a corresponding study based on Hinode/SOT-SP
data). In subsequent studies, Martínez González and Bellot Rubio (2009) and Martínez
González et al. (2010) presented observations of emerging �-loops by combining
magnetic and imaging data from Hinode/SOT and DOT. With an even higher resolu-
tion, based on the balloon-borne Sunrise/IMaX instrument, Danilovic et al. (2010a)
investigated a large number of transverse photospheric features. The high-resolution
IMaX data revealed that 97 % of these features are smaller than the mean size of such
structures (≈1.′′0 squared) found in earlier studies.

Already Isobe et al. (2008) had detected emerging �-shaped loops. They showed
that such structures, after emergence, reach the chromosphere and reconnect with the
mainly vertical fields there. Thus they contribute to the heating of the chromospheric
plasma there and to generating coronal MHD waves. These high-frequency waves may
then contribute to coronal heating and the acceleration of the solar wind particles. For a
description of the kinetic processes involved in coronal heating, we refer to specialized
reviews such as that by Marsch (2006).

5.2 Associated photospheric fields and the response on the upper atmosphere

QS structures are quite dynamic, as new magnetic flux permanently emerges, usually
in bipolar form. The corresponding loops connecting the two polarities emerge into
the solar atmosphere, while the loop footpoints move apart due to the shape of the
rising loop. The footpoints also undergo displacement due to horizontal photospheric
motions. The opposite polarity footpoints keep separating until eventually one or both
cancel with older photospheric magnetic flux (Martin et al. 1985). As a consequence,
the magnetic flux in the quiet-Sun photosphere is replaced every ≈14 h (Hagenaar
2001). An important question is, how the corona responds to these changes in the
photospheric field and how we can get insight into the quiet-Sun field in the upper
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solar atmosphere. This was addressed by Close et al. (2004, 2005) using potential
field modeling based on photospheric SOHO/MDI LOS magnetograms. They found
that the coronal magnetic field becomes redistributed even faster, with a typical time
of 1.4 h.

5.2.1 Doubts about the concept of a magnetic canopy

The concept of a magnetic canopy (Gabriel 1976, and see Sect. 1.3.1), in the sense
of a horizontal magnetic field that fills the upper chromosphere and overlies a most
field-free atmosphere, is still a subject of debate. One problem is that there are multiple
definitions of a canopy. One is that it is nearly horizontal field overlying largely field-
free regions. Another is that it is a horizontal boundary between the β > 1 and β < 1
field. Instead of vertically more or less well-divided domains of high or low β, such
domains may well be mixed up, even “islands” may exist (Rosenthal et al. 2002).

A number of comparative studies of magnetic field structures and/or bright emission
from photospheric levels, and corresponding signatures from higher atmospheric lay-
ers, revealed no obvious expansion of the magnetic network with height (see Sect. 1.3).
Zhang and Zhang (2000a, b), for instance, compared quiet-Sun magnetic signatures
inferred from Fe i 5324 Å (photosphere) and Hβ 4861 Å (chromosphere) observa-
tions and found no significant change of the magnetic configuration over a height
of ≈1.5 Mm. They emphasized, however, that the Hβ line exhibits high noise lev-
els so that the expansion of the magnetic features might simply be hidden by the
noise. Peter (2002), among others, presented SOHO/SUMER C i continuum (chro-
mosphere) and Ovi 1037 Å (transition region) brightness observations which revealed
network elements of nearly the same size. This observation can be construed to con-
tradict the concept of a nearly horizontal canopy at a height of ≈1 Mm above the
photosphere, or alternatively, it implies that the brightness structures may expand less
rapidly with height than the magnetic field. Using TRACE 171 Å observations, already
Zhang et al. (1999) had found that the width of the emission associated to fibrils was
nearly the same at different heights: at their photospheric root as well as ≈30 Mm
higher up in the atmosphere. It was speculated as a possible explanation that, either
the observed emission might not be sensitive to the detection of the desired canopy
structure—as recently supported by Peter and Bingert (2012), see Sect. 1.4.2 for
details—or that network fields in the QS could, by some mechanism, be prevented
from fanning out (Zhang 2005). These claims would imply that the need for an extra
force, at least as strong as the horizontal pressure gradients, that prevents the magnetic
field from expanding with height. At least in photospheric layers, magnetic structures
and the bright points associated with them are seen to expand with height (Briand and
Solanki 1995; Bühler et al.2014, Astron. Astrophys., submitted).

Schrijver and van Ballegooijen (2005) modeled the quiet-Sun network magnetic
field at heights of �20 Mm above chromospheric levels. They found an average
plasma-β close to unity in the entire simulation domain, indicating that the quiet-
Sun corona is not force-free, i.e., that the magnetic field there is not unaffected by
the plasma. A magnetic canopy also suffers at the hands of atmospheric flows. Thus,
Pietarila et al. (2011) demonstrated on the basis of 3D radiation MHD models that
in particular downflows pull U-loops out of a magnetic canopy into the lower lying
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Fig. 20 a Continuum image, b Ca ii K intensity and c longitudinal magnetic flux (ranging from −800 G
to 1 kG) on 9 August 2007, covering a plage region and the QS seen as bright and dark areas in b,
respectively. The continuum image displays a clear pattern of dark intergranular lanes, often exhibiting
emission from more or less tightly packed bright photospheric filigree. Comparison with the Ca ii K image
shows that many of the observed thin chromospheric fibrils originate from the locations populated with
filigree. Longer fibrils, originating near the boundary between the bright plage and surrounding (darker)
QS areas indicate a canopy-like magnetic connection between areas of stronger, i.e., plage, and weak, i.e.,
QS, magnetic fluxes. (Figure 8 from Pietarila et al. 2009. Reproduced with permission, © ESO)

atmosphere, giving rise to some of the horizontal fields seen in the quiet photosphere.
With time the canopy loses its clear identity due to this process.

The canopy separates the fields originating from the network and supposedly open-
ing into the atmosphere from closed fields, originating and closing in the weak inter-
network. In a numerical experiment, Schrijver and Title (2003) showed that strong
internetwork fields allow flux densities capable of considerably modifying the dynamic
geometry of the magnetic coupling between the photosphere and outer layers. They
argue that bunches of field lines likely connect from strong internetwork regions well
up to the corona while field lines from the network close back onto internetwork fields.
They estimated that the magnetic flux which originates from internetwork fields and
connect to the corona to be ≈50 % of the total flux of the quiet-Sun coronal magnetic
fields. It may well be that in the mixed-polarity QS, canopies play a less important
role than in the more unipolar environment of CHs (see Fig. 27 in Sect. 6.2.2), which
is where they are generally placed in theoretical studies.

5.2.2 Network and internetwork magnetic loops

Wiegelmann et al. (2010a) used a potential and LFF magnetic field model and found
that the majority of the model field lines connect strong internetwork features below
equipartition field strength with network elements. They were also able to show that
for most of the field lines reaching chromospheric and coronal heights, one of the foot-
points is located in the strong internetwork fields. In other words, while the idea of a
canopy, formed by horizontal fields above activity centers, seems well established it
is more controversial for the atmosphere above quiet-Sun regions. However, observa-
tional evidence was found by Pietarila et al. (2009) that chromospheric fibrils formed
a canopy over parts of a plage region and the quiet-Sun network (see Fig. 20). They
point out that this might not even contradict the finding of Schrijver and Title (2003)—
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Fig. 21 Illustration of the magnetic carpet, computed from a potential field model, when viewed a from the
side and b from top. The plot depicts a photospheric magnetic flux concentration with a flux of 3×108 Wb,
surrounded by a small-scale mixed-polarity field (marked by squares and crosses for opposite polarities).
The FOV reaches halfway to the neighboring network sources. Field lines with one footpoint in the central
flux concentration (closed field lines shown as black and open field lines shown as gray curves) suggest that
a collar of field lines that emanates from the network and closes back onto the internetwork field within
several Mm, implying that most of the coronal field is likely anchored in the internetwork field, rather than
in the network. (Adapted from Figure 1 of Schrijver and Title 2003. © AAS. Reproduced with permission)

namely, that internetwork fields disable the formation of a large-scale canopy—but
instead, that the apex of small-scale loops of the internetwork may not always reach a
height in the atmosphere where a canopy might exist. And indeed, potential and force-
free magnetic field extrapolations carried out by Wiegelmann et al. (2010a) showed
that the number of short field lines (with apex heights of �500 km) outnumber the field
lines reaching the corona (with apex heights �2.5 Mm). It has to be noted, however,
that a rather small portion of the solar atmosphere was investigated in this study (based
on the limited Sunrise/IMaX FOV), so that a possible bias cannot be ruled out.

5.2.3 Magnetic carpet

The dynamics of the QS is quite complex since the atmosphere above the magnetic
network is permanently and everywhere filled with small-scale magnetic flux in the
form of magnetic loops emerging from below. This small-scale magnetic mesh is usu-
ally referred to as “magnetic carpet” (Title and Schrijver 1998, and see Fig. 21). The
structure of this mixed-polarity network is driven by processes such as magnetic flux
emergence, flux cancelation as well the coalescence and fragmentation of magnetic ele-
ments (Parnell 2001). Widely used for the statistical analysis of the properties of mag-
netic features associated with the magnetic carpet are potential and LFF field models
(see Sect. 2.2.1). Both methods are based on the observed LOS photospheric magnetic
field and deliver similar results concerning the length of field lines, the height of their
apex in the atmosphere and the approximate field strength (Wiegelmann et al. 2010a).

Therefore, although the evidence for a common canopy-like field (nearly horizontal
field overlying a nearly field-free region) is relatively strong, the criticisms of the
canopy as a boundary between open and closed field lines as well as between high and
low-beta plasma are better found. Therefore, such views of the canopy do need revising.
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5.2.4 Role of magnetic fields in coronal and chromospheric heating

The fact that the plasma temperature in the solar corona is a factor of ≈103 higher
than in the photosphere motivates the search for plausible mechanisms yielding the
needed amount of energy involved. Throughout the last decade, a number of authors,
including Walsh and Ireland (2003), Aschwanden (2005), McIntosh et al. (2011),
Wedemeyer-Böhm et al. (2012), Winebarger et al. (2013), demonstrated that one of
the several mechanisms, involving small-scale X-ray jets, bright points, micro- and
nanoflares as well as Alfvén and MHD turbulence and waves, are able to provide
partial explanations for the extreme heating of coronal plasma. Mass and energy-
transport between the lower atmosphere (photosphere and chromosphere) and the
outer atmosphere (corona) is, in general, a challenging concern. Not only because
of the complicated and highly dynamic structure of these layers, but also because of
the highly non-linear physical processes involved. Nevertheless, some progress was
made already during the Skylab-era (see Withbroe and Noyes 1977, for a review).
The discussion of coronal and chromospheric heating is well outside the scope of the
present paper, however, and we therefore refer the interested reader to the specialized
review by Klimchuk (2006).

Numerical experiments, carried out by Schrijver and Title (2002) showed that low-
lying chromospheric fields are well outlined by the magnetic connection between
magnetic elements observable, e.g., in the form of Hα fibrils. Although a complex
magnetic field structure was found, which contained multiple null points representing a
potential source for reconnection, they were found to reside in the low atmosphere only
and thus were not likely to significantly contribute to coronal heating. Régnier et al.
(2008) used a potential magnetic field model based on Hinode/SOT-SP magnetograms
to investigate the relation of coronal and photospheric null points and confirmed a
shortage at coronal heights. In particular, they found that 98 % of the null points present
in the model were located at photospheric or chromospheric heights, and only 2 %
were found to be situated at coronal heights (see Fig. 22). Thus, they confirmed earlier
findings based on numerical experiments which stated that magnetic reconnection at
coronal null points is unlikely to be the source for coronal heating.

Wiegelmann et al. (2013) investigated a 22-minute time series of potential field
equilibria extrapolated from Sunrise/IMaX data and found that the magnetic connec-
tivity in the upper solar atmosphere changes rapidly, with a recycling time of ≈3 min –
a short time compared to ≈14 min in the photosphere. An estimation of the upper limit
for the free magnetic energy, which might be converted to heat by magnetic reconnec-
tion was still somewhat too small to be the dominant source for chromospheric and
coronal heating in the QS. The same conclusion was reached by Chitta et al. (2014),
based on a magneto-resistive computation starting from series of SDO/HMI and from
Sunrise/IMAX magnetograms.

5.2.5 Force-freeness of quiet-Sun magnetic fields

Going beyond the potential field approach and applying force-free extrapolation meth-
ods (see Sect. 2.2), to picture the magnetic field in the outer solar atmosphere above
quiet-Sun regions, are tempting. This is, however, challenging, since force-free mod-
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Fig. 22 Spacial distribution of
the projected location of
magnetic null points, computed
from a potential field model.
Blue, yellow and red circles
mark the locations of
photospheric, chromospheric,
and coronal nulls, respectively.
The quantity of coronal nulls is
outnumbered by that of the
photospheric and chromospheric
nulls. Photospheric magnetic
field in a quiet-Sun area
observed with Hinode/SOT on
24 June 2007 at 22:09 UT. The
gray-scale background depicts
the LOS magnetic field
component, in the range ±50 G.
Black/white represents
negative/positive polarity.
(Figure 1 of Régnier et al. 2008.
Reproduced with permission,
© ESO)

els are based on the magnetic field measurements at low atmospheric heights, i.e.,
routinely at photospheric, or occasionally at low chromospheric heights. Addition-
ally, in the QS one has to deal with a poor signal-to-noise ratio of the transverse
magnetic field measurements. Nevertheless, Zhao et al. (2009) aimed to compare the
measured horizontal field of Hinode/SOT-SP vector magnetograms with the horizon-
tal field component of an associated potential field model. They confirmed that the
quiet Sun’s magnetic field is non-potential, that it carries significant electric currents,
and that it is sheared, on average by about 40◦ with respect to a potential field. A
different approach is to employ the magneto-resistive method of van Ballegooijen,
which returns force-free fields without the need of making use of the measurements
of horizontal photospheric magnetic field components. This approach has been taken
by Chitta et al. (2014).

The difficulty in modeling QS-related coronal magnetic fields using different NLFF
methods has recently been demonstrated by Liu et al. (2011b): the results gained
from the different modeling techniques deviated considerably. The problems may
run deeper, since even the assumption that the magnetic field in the QS is force-free
is questionable. Following, Schrijver and van Ballegooijen (2005) it is unlikely that
the quiet Sun’s coronal magnetic field is force-free or even quasi-steady. One of the
necessary conditions a force-free environment has to meet is that, at a given height, the
surface integral

∫
S B2

vertical − B2
horizontaldS vanishes (see Aly 1989, for details). This

condition cannot be fulfilled if, on average, the (unsigned) horizontal field is much
larger than the vertical one.

This means that a predominantly horizontal field cannot exist at the base of a force-
free environment, and if the horizontal flux is on average about a factor of five higher
(as claimed by Lites et al. 2008) the quiet-Sun photosphere is even farther away from
a force-free state than photospheric active-region fields are. It should be mentioned
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Fig. 23 Free magnetic energy (Ec; horizontal axis) in relation to the magnitude of the relative magnetic
helicity (Hm ; y-axis). The yellow stars in the upper right part of the graph correspond to the values calculated
for a number of ARs by Tziotziou et al. (2012). Blue/red plot symbols correspond to a positive/negative
total helicity budget of solar quiet regions, respectively. Asterisks and diamonds mark regions centered
within ±30◦ heliographic latitude and higher latitudes than that, respectively. The dashed and dotted lines
represent least-squares fits to the values calculated for the quiet-Sun and active-region areas, respectively.
(Figure 6 of Tziotziou et al. 2014. Reproduced with permission © ESO)

though, that Danilovic et al. (2010b) found that a ratio closer to 1 is also compatible
with observations. Obviously, Aly’s condition is not fulfilled in the internetwork pho-
tosphere where the horizontal field is on average much stronger than the vertical field,
which has important implications for the reliability of force-free magnetic field recon-
structions in the QS. The fact that these fields are definitely far from being force-free
in the photosphere and that most of the weak (nearly) horizontal fields are the tops of
very short and low-lying loops (Martínez González et al. 2007; Centeno et al. 2007;
Martínez González and Bellot Rubio 2009; Danilovic et al. 2010a) which do not reach
up to layers where the field is closer to being force-free, the impact of the plasma on
the field cannot be neglected.

5.2.6 Magnetic energy and helicity budget

Despite the difficulties and limitations of applying force-free models to quiet-Sun areas
(see Sect. 5.2.5), NLFF models have recently been applied to investigate the magnetic
energy and helicity budget in the QS. Tziotziou et al. (2014) performed a statistical
study with a large number of quiet-Sun vector magnetograms from Hinode/SOT-SP.
They found that the QS has no dominant sense of helicity (in contrast to ARs) and that
both the free magnetic energy and the relative magnetic helicity are correlated with
the area occupied with network elements. Consequently, the free magnetic energy and
the relative helicity are correlated as well (see blue/red stars and diamonds in Fig. 23,
respectively). In an earlier work, Tziotziou et al. (2012) investigated these quantities
for ARs (shown as yellow stars in Fig. 23, for comparison). Both energy and helicity
are much lower in the QS, compared to ARs, which is naturally caused by the lower
magnetic flux they contain. The authors also noted that the investigated quiet-Sun
areas are closer to a potential field than the ARs, which is another reason for a lower
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free energy in the QS. See also Sects. 3.4 and 4.6 for magnetic helicity investigations
on global scales and in ARs, respectively.

5.3 Small-scale dynamics

The observations of the coronal magnetic field show numerous dynamic phenomena
on small as well as larger (active region) scales. In particular, we now know that the
term “quiet Sun” is not really adequate to describe the coronal field even outside of
ARs, since numerous dynamic phenomena on small scales are known to occur there
(Schadee et al. 1983; Parker 1988; Shibata et al. 1992).

Chesny et al. (2013) found the first evidence for sigmoidal (i.e., S shaped) loops
in the QS using SDO/AIA data. These were interpreted as a clear indicator for non-
potential magnetic fields. So far S-shaped loops had been observed to connect within
ARs or to connect ARs on either side of the solar equator (i.e., in the form of TELs)
only. S-shaped loops in the QS indicate that similar dynamic phenomena as in ARs
might occur here, but on smaller scales. In fact, events similar to small versions of
flares and CMEs are found in the QS (Innes et al. 2009, 2010), which mostly attract
less attention than their impressive, and sometimes globally disturbing, active-region
counterparts. In fact, outside of ARs the Sun displays a broad range of smaller-scale,
transient phenomena which involve only a fraction of the energy that is involved in
the dynamics associated to the predominant large-scale activity sites.

5.3.1 Jets

Already in the 80s of the last century, Brueckner and Bartoe (1983) reported observa-
tions of high-energy supersonic jets in quiet-Sun areas. They found that the associated
shock waves reached to heights of about 4 to 16 Mm. The authors applied a cloud
model for the solar wind and assumed that the entire kinetic energy of the wind is
provided at the Sun’s surface. This involves the presence of emerging flux and a field
strength of 15 G and a flux emergence of 1.3 × 1015 Mx is required to power the
corresponding high speed jets. In their opinion, magnetic forces are the most likely
cause for the jets and a correlation to active areas in the QS was found. Moreover,
the influence of the individual jets was discernible as fine structures in the solar wind
flow at a distance of one AU. Later, X-ray jets were observed by Shibata et al. (1992,
1994), although not necessarily in quiet-Sun regions.

Yokoyama and Shibata (1995) carried out 2D resistive MHD simulations includ-
ing a simplified convection zone, photosphere, chromosphere and corona. They found
that magnetic reconnection plays an important role for activity in the upper solar
atmosphere and can be a common cause of both hot X-ray jets, as well as cooler loop
brightening that become visible in Hα. In the former case, plasma is heated up to
temperatures between 4 and 10 MK and is accelerated to the Alfvén speed of about
100 km s−1. In the latter case, cool (≈104 K) chromospheric material is accelerated
almost without plasma heating. The authors concluded that the combined energy of
cool-loop brightening and hot-jet acceleration might be significantly larger than previ-
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Fig. 24 Schematic view on the
reconnection occurring in the
solar corona upon emerging
magnetic flux from the center of
a supergranule below with a
pre-existing magnetic field. Near
the reconnection X-point, the
temperature is enhanced and
outflows are observed
presumably as EUV/X-ray jets
in the corona and Hα/Ca surges
in the chromosphere. (Adapted
from Figure 10 of Jiang et al.
2012. © AAS. Reproduced with
permission)

ously thought. Also the energy in loop brightenings might have been underestimated
from previous observations.

The role of magnetic reconnection for heating and dynamics of the solar corona
was revisited by Shibata et al. (2007), this time observationally with Ca ii H data
from Hinode/SOT. So-called “anemone jets” were found both in the corona and in the
chromosphere. The authors interpreted the frequently observed small chromospheric
anemone jets as a manifestation of ubiquitous magnetic reconnection. The coexis-
tence of cooler chromospheric material, that becomes visible in Hα and the hot jets
expected from numerical experiments by Yokoyama and Shibata (1995) was observa-
tionally confirmed. The combined energy of these events was more than two orders of
magnitude too small to explain the heating the active corona. Nonetheless, the authors
pointed out that the jets observed by Hinode/SOT are only the largest events and a
great number of smaller jets might have gone undetected, but may also contribute to
the heating.

Recently Jiang et al. (2012) presented 2.5D MHD simulations of the processes
involved in canopy-type magnetic configurations triggered by newly emerging mag-
netic flux into a pre-existing field configuration at the boundary of a supergranule. They
found hot (≈106 K) and cold (≈104 K) jets originating from coronal microflares and
associated them to what is usually observed in coronal and chromospheric images as
EUV or HXR jets and Hα/Ca surges, respectively (Fig. 24). This magnetic reconnec-
tion between newly emerging magnetic flux and the ambient field plays a major role
for jets has been confirmed in numerical experiments recently by Moreno-Insertis and
Galsgaard (2013). For a recent review on small-scale, jet-like events at chromospheric
levels, we refer to Tsiropoula et al. (2012), as well as to Sect. 6.2.4 for polar jets.

6 Coronal holes

CHs are regions of strongly reduced emissivity at coronal temperatures and, conse-
quently seen as dark features in coronal images (which is why they are called “holes”;
see Fig. 25). The magnetic field of CHs is mainly open, i.e., organized in magnetic
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Fig. 25 A large coronal hole observed with SDO/AIA at 193 Å on 13 March 2012. It can easily be
distinguished from its quiet Sun surrounding as the region of lowest EUV emission, while ARs exhibit
strongest emission. Source http://phys.org/news/2012-03-huge-coronal-hole-solar.html

funnels having their footpoints in the network. Along open fields, charged particles
can escape the outer solar atmosphere, leaving behind plasma of strongly reduced den-
sity and slightly reduce temperature, if compared to the quiet Sun’s corona. The main
motivation for the research of CHs since the 1970s was to understand the role of CHs
in terms of the mass and energy flow between the Sun’s surface and the heliosphere.
For a recent overview we refer to Cranmer (2009). One distinguishes between polar
CHs (PCHs) and equatorial CHs (ECHs; see Del Zanna and Bromage 1999).

For techniques used to analyze observations of CHs, it makes a difference whether
the holes are observed on the disk or above the solar limb. Discussing the corresponding
challenges and issues, however, lies outside the scope of this work and we refer to the
review by Cranmer (2009). Here, we focus on the magnetic field structure in CHs. As
other magnetic structures on the Sun, CHs and the corresponding solar wind streams
change over the solar cycle (Harvey and Sheeley 1979). For changes of the magnetic
structure of CHs in the course of the solar cycle see Sect. 3.3.

6.1 Properties of coronal holes

6.1.1 Properties of photospheric fields associated with coronal holes

Almost continuous observations of CHs and measurements of the associated photo-
spheric magnetic fields are available since the Skylab era in the 1970s. To our knowl-
edge, a first review on observations of CHs and the underlying solar magnetic field was
presented by Harvey and Sheeley (1979). Somewhat larger CH-averaged values, rang-
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ing from 0.8 to 17 G, with an average value of nearly 8 G, were found by Wiegelmann
and Solanki (2004). Conclusions on the magnetic structure of CHs were at that time
mainly based on the photospheric LOS magnetic field observations (e.g., from KPNO).
Unfortunately, at that time, the magnetic field data were subject to major uncertainties
owing to systematic errors (a factor of �2). Nevertheless, it already became clear
that the photospheric field in which CHs are rooted is dominated by fields of a single
polarity, i.e., either positive or negative. In ECHs, for instance, the main polarity of the
holes dominated in the range of 58 to 95 % and, on average, 77 ± 14 % (Wiegelmann
and Solanki 2004). Equatorial quiet-Sun regions were approximately flux balanced in
the range of 2 to 29 % and, on average, 9 ± 9 %. The magnetic field strength of these
photospheric fields, averaged over the whole CH, was found to lie in the range 0.5 to
7 G (Harvey and Sheeley 1979, and references therein). It is noteworthy that there is
some scatter in the values found, depending on the observations used for analysis.

As in ARs and in the QS, reliable magnetic field measurements are mainly available
at photospheric levels. Because of the poor signal-to-noise ratio in weak-field regions, it
is difficult to measure the weak transverse field with high accuracy. As a consequence,
observational studies and coronal magnetic field models are often based on LOS
magnetic field measurements. An additional problem arises for the observation of
CHs in polar regions, where foreshortening effects cannot be neglected (since the
spatial resolution in the direction to the limb decreases) and where limb darkening can
also become an issue.

6.1.2 Modeling of coronal-hole magnetic fields

Similar to the QS and global magnetic fields, potential field models based on photo-
spheric field measurements are used as a first approximation of the magnetic field in
CHs. Note, however, that also when applied to model the magnetic field in coronal-
hole areas potential field models have their limitations (see Sect. 5.2.5 for details). The
magnetic field structure of CHs is often also studied with the help of PFSS models
(see Sects. 2.2.1 and 3.1). In their output, coronal-hole areas are easily identified by
their open magnetic fields (i.e., field lines connecting the photosphere with the source
surface). A powerful tool for CH-investigations is the combination of flux-transport
models in the photosphere and coronal field modeling with PFSS (see Sect. 2.3.3 for
a description of the method and Sect. 6.3.1 for an application to ECHs).

Wang (2009) pointed out that coronal-hole areas can be reasonably well reproduced
over the entire solar cycle when assuming the source surface of a PFSS model to
be located at a constant height of 2.5 solar radii (i.e., ≈1.74 × 109 m) above the
photosphere. The main contribution to the open flux in PFSS models arises from
the dipole and quadrupole moment of the Sun’s global magnetic field—the latter,
especially around solar maximum. Higher-order multipoles decrease too rapidly with
height to contribute significantly at the source surface. Note that taking the quadrupolar
field into account does not substantially change the resulting rotational properties of the
coronal-hole associated magnetic field: the photospheric field (represented by the high-
order multipole moments) rotates differently while the coronal field (characterized by
the low-order multipoles) rotates almost rigidly.
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6.2 Polar coronal holes

During solar activity minimum, large CHs occur in the polar regions as a consequence
of the dominating dipolar moment of the Sun. One has to keep in mind, however, that
all measurements concerning near-polar areas, are carried out from the ecliptic, i.e.,
from a highly inclined viewpoint with respect to the target region. With the launch of
the Solar Orbiter mission, scheduled for 2017, this drawback will finally be overcome.

6.2.1 Magnetic flux in polar coronal holes

Hinode/SOT-SP provided the capability of studying the full photospheric magnetic-
field vector around the Sun’s south polar region (Tsuneta et al. 2008a). Unipolar,
vertical flux tubes with kG fields, scattered all over the PCH (ranging from 70◦ to 90◦
solar latitude) and ubiquitous horizontal fields were found. The strong (kG) vertical
spots are unipolar, while the average field strength of the entire FOV is only about 10 G,
depending on the filling factor. In total, Tsuneta et al. (2008a) found the horizontal
magnetic flux in the polar region, around solar minimum, to be almost twice the vertical
flux, namely 4.0 × 1021 and 2.2 × 1021 Mx, respectively.

Jin and Wang (2011) revisited Hinode/SOT-SP vector magnetic field measurements
in a PCH and compared it to measurements of quiet-Sun areas close to the solar
limb and the disk center, as well as with low-latitude CHs. They also uncovered an
imbalance of vertical and horizontal field in the polar region, given an average vertical
and horizontal flux density of ≈100 G and ≈1 kG, respectively. They estimated that
such patches of strong vertical field occupy ≈7 % of the CH area investigated in
their study. The authors also revealed a significant amount of magnetic flux with a
polarity opposite to the dominant polarity. This implied that only about one-third of
the magnetic flux in the analyzed polar region could be assigned to be actually open
magnetic flux. They also found that the ratio of dominant to minor flux for low-latitude
and PCHs is similar, but that the total vertical magnetic field strength in polar holes is
about 60 % higher.

In general, we expect that as an increasingly larger fraction of the magnetic flux
within CHs is detected, the percentage of open flux relative to the total flux in a CH
will continue to decrease. However, we also expect that much of the hidden flux is
weak and ordered on very small spatial scales. Consequently, much of this flux is
expected to be restricted to very low-lying loops that do not reach into the corona, as
found by Wiegelmann et al. (2010a) in the quiet Sun.

6.2.2 Comparison to the quiet-Sun magnetic field

Using Hinode/SOT measurements, Ito et al. (2010) compared a polar CH region with
a quiet-Sun region near the East limb at an epoch close to solar activity minimum
(Fig. 26). The total magnetic flux and area covered by kG-fields was found to be larger
in the north-polar region than in the QS near the East limb. Also, while the vertical
magnetic field was found to be nearly balanced in the considered quiet Sun, near-limb
area, one polarity clearly dominated the polar regions. In particular, around 90 % of
the features with a magnetic field magnitude of more than 500 G were of the same
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Fig. 26 Maps of the signed strength of the a vertical and b horizontal components of the magnetic field
vector on 25 September 2007, converted to a view from above the north pole of the Sun. East/west is to the
left/right. The pixel size is 0.′′16. Black areas mark locations where the magnetic field strength has not been
obtained, because the associated polarization signal did not exceed a given threshold above the noise level.
The color code in a represents the signed strength of the vertical magnetic field, with red/blue representing
negative/positive polarity. Many of the horizontal field concentrations in b are co-located with the vertical
field patches in a. (Figure 4 from Ito et al. 2010. © AAS. Reproduced with permission)

polarity. A PFSS model revealed mainly open magnetic fields in the north-polar CH
and predominantly closed structures in a quiet-Sun region near the East limb (see (a)
and (b) in Fig. 27, respectively). Because of one dominating polarity in the hole, the
opposite flux cancels out by low-lying loops and above a certain height all field lines
are open. Note that this is a general property of CHs which has also been found for
ECHs (see Sect. 6.3.2). The authors also found that the horizontal fields are similar in
the QS and at the poles and interpreted this as evidence for a local dynamo. A global
dynamo would create different fields in polar and equatorial regions, they argued; see
also Sect. 1.1.3.
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Fig. 27 Selected field lines, calculated from a PFSS model, outlining the coronal magnetic field structure
associated to a CH a around the north pole of the Sun and b in a quiet-Sun area near the East limb. It
can be seen that the majority of field lines that originate in kG-features fan out just above the photosphere
(in a canopy-like fashion) and that they are open. The color-coded surface indicates the vertical magnetic
field, where blue/red represents negative/positive polarity. It is evident that the polar region is dominated
by a specific (negative, in this case) polarity, while the QS represents an environment of mixed polarity.
(Figure 11 from Ito et al. 2010. © AAS. Reproduced with permission)

6.2.3 Polar plumes

Polar plumes are visible in the form of thin streamers above the solar limb in the
polar regions. They have been studied intensively, e.g., by a coordinated observing
campaign (SOHO and several of other space-borne and ground-based instruments; see
DeForest et al. 1997). A comprehensive review was given by Wilhelm et al. (2011),
including discussion of the 3D structure of polar plumes, details of their generation
and of their interaction with the solar wind. Here, we concentrate on the magnetic field
structure of polar plumes.

Supported by potential field models, polar plumes are associated to open fields on
large scales (Suess 1982). While the source region of these plumes is usually not visible
in coronal EUV images, stereoscopic reconstructions by Feng et al. (2009) showed that
they connected to photospheric magnetic patches. Wang and Sheeley (1995) and Wang
(1998) proposed that plumes are produced by the reconnection of emerging mixed-
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polarity fields with previously existing unipolar fields. Raouafi et al. (2008) reported
that most of the studied coronal jets in polar regions are generally followed by plumes.
The authors pointed out the common feature shared by plumes and jets: a mixed-
polarity field area where their footpoints are located. In their picture, flux emergence
and subsequent opening of previously closed loops by magnetic reconnection provide
the energy for jet acceleration and eventually produce the open (plume) field geometry.
For 70 % of the observed polar jets, a plume was found to form within minutes to hours
after the appearance of the jet. Such an association is plausible, given that the formation
mechanism of jets is also thought to be the reconnection of emerging flux with previ-
ously present unipolar field (e.g., Yokoyama and Shibata 1995; Canfield et al. 1996).

6.2.4 Polar jets

Jets are ubiquitous dynamical features which occur in CHs, ARs and the QS. (For
a discussion of jets occurring in the QS, see Sect. 5.3.1.) For example, Cirtain et
al. (2007) detected about 10 fast jets per hour in a PCH. Detailed analysis revealed
that at least a subset of jets is characterized by two distinct velocities: one close to
the sound speed (≈200 km s−1) and another one in the order of the Alfvén speed
(≈1,000 km s−1). This might be explained with the following scenario. Initially, the
outflow triggered by reconnection has a velocity close to the Alfvén speed. Due to
the transit of a reconnected magnetic field line to a relaxed configuration, Alfvén
waves become excited, which might also contribute to the acceleration of the fast
solar wind. The reconnection process also has the effect of heating the coronal plasma
by converting magnetic to thermal energy. As a consequence, the plasma expands,
which also leads to a plasma outflow. Its speed, however, is significantly lower (sound
speed) than the outflow component caused by magnetic reconnection.

Using spectroscopic data from SOHO/SUMER and Hinode/EIS, Kamio et al.
(2009) investigated the formation of jets in the transition region and coronal envi-
ronment of CHs. They deduced that the open magnetic fields associated with the
jets were rooted in kG vertical fields at photospheric levels. They also found that
both explosive phenomena and cool up-flows were caused by magnetic reconnec-
tion with low-lying loops in the transition region, confirming and extending earlier
results. Yang et al. (2011b) investigated the boundaries of the equatorial extension of
a PCH using co-observations of the photospheric magnetic field from SDO/HMI and
the coronal plasma EUV emission with SDO/AIA. A number of jets were recognized
in the EUV images and interpreted as signatures of magnetic reconnection. The latter
was supported by co-temporal emergence and cancelation of magnetic flux seen in
the photospheric magnetic field data. The coexistence of open and closed fields at
CH boundaries naturally results in energy deposition by multiple reconnection events,
those thought to produce jets.

6.2.5 Contribution to the solar wind

Tian et al. (2011) observed high-speed outflows of ≈120 km s−1 in plume-like struc-
tures in polar and ECHs, as well as quiet-Sun regions in SDO/AIA images. Compari-
son with a potential coronal magnetic field model based on SDO/HMI measurements
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led the authors to conclude that plume-related jets do not necessarily contribute to
the solar wind. This confirmed what was found earlier by Feng et al. (2009), using
STEREO/SECCHI data, namely that the contribution of polar plumes to the fast solar
wind is insignificant. Note, however, that studies of outflows in polar plumes and
inter-plume-regions are contradictory. For instance, Gabriel et al. (2003) claimed that
about half of the fast solar wind at a distance of 1.1 solar radii originates from plumes.
A corresponding discussion is beyond the scope of this work and we refer to section 4
of Wilhelm et al. (2011) for a detailed review of the relevant literature.

6.3 Equatorial coronal holes

During cycle phases of higher solar activity, CHs are present at all latitudes. ECHs
are smaller and persist for a shorter time than PCHs. Nevertheless, they persist over
several solar rotations. Many low-latitude holes are located close to the edges of ARs.
This helps to understand the changes of CHs in the course of the solar cycle: because
ARs tend to emerge closer and closer to the solar equator, CHs exhibit a similar trend.
In some cases, ARs appear even within these CHs (see section 3 in Cranmer 2009, for
details). As a consequence of the emerging AR, the CH decreases in size.

6.3.1 Formation and evolution

In contrast to the differential character of the solar rotation in the sub-surface layers
of the Sun, ECHs at coronal heights rotate more rigidly (Timothy et al. 1975), but still
with a differential character (Insley et al. 1995). Glencross (1974) suggested “magnetic
merging”, or more precisely magnetic reconnection, of oppositely directed magnetic
arches could possibly form CHs and also explain their more rigid rotation.

Associated numerical experiments have been carried out by Wang et al. (1996)
and as a possible origin of ECHs, the interaction of bipolar ARs has been identified,
which is able to explain the imbalance of magnetic flux that is characteristic for
CHs. Modeling a bipolar magnetic region superposed on an axis symmetric dipole
global field, Wang et al. (1996) found that both, the local photospheric field as well as
the overlying global coronal field, determine the location of open field regions. The
rotation of the CH, however, is then controlled by the bipolar magnetic region with
which it co-rotates (see Fig. 28). During this process, the coronal magnetic field has
to change its topology by magnetic reconnection from closed to open, and vice versa
when entering and leaving the CH. By definition, magnetic reconnection is prohibited
in potential field models, as is the breaking down of the frozen-in condition of the
high-conductivity coronal plasma.

Therefore, physically more advanced approaches, able to investigate the nature of
the magnetic reconnection involved in the development of CHs, were carried out by
Lionello et al. (2005). They found that while the magnetic structure of a CH might
be relatively stable, magnetic flux may permanently move in or out of the region
covered by the CH, causing reconnection to happen. The transitions from closed to
open magnetic fields at the boundaries of CHs were suspected to be the origin of the
slow (with velocities of �450 km s−1) solar wind (Wang et al. 1996). Interchanging
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Fig. 28 Examples for idealized open magnetic field regions: Panel a shows an axisymmetric dipole, panel
b a bipolar magnetic region (BMR) and panel c a superposition of dipole and BMR. Orange and green
field lines originate in positive and negative flux regions, respectively. The color coding on the solar surface
corresponds to different regions: white and black to positive and negative polarities in ARs, yellow and
light blue to positive and negative polarities in CHs, red and dark blue to positive and negative background
fields. (Adapted from Figure 4 of Wang et al. 1996. Reprinted with permission from AAAS)

reconnection between open and closed fields at the boundary of CHs is thought to be
responsible for, or at least related to coronal jets and polar plumes.

Recently, Petrie and Haislmaier (2013) used synoptic magnetograms from GONG to
approximate the corona with a potential-field model and compared it to synoptic EUV
maps from STEREO. They investigated the relationship between decaying ARs and
CHs at low latitudes. Newly emerging ARs generally result in significant changes of the
global coronal magnetic field structure and cause the re-shaping of the streamer belt.
Decaying ARs which were found to evolve steadily and gradually, however, would not
yield a considerable change of the global field, even though they left behind a consider-
able flux imbalance. The authors argued that some of the imbalanced flux, nevertheless
needs to (re)connect elsewhere and thus to form the streamer belt or the open fields.

6.3.2 Comparison with quiet-Sun magnetic fields

The local, small-scale magnetic field structure of ECHs in the upper solar atmosphere
has been investigated by Wiegelmann and Solanki (2004) under the presumption that
electromagnetic radiation from coronal plasma mainly originates from closed mag-
netic loops, while open field lines remain almost invisible owing to their strongly
reduced plasma density. A statistical study, using a potential field model based on
SOHO/MDI magnetograms, revealed that only small closed magnetic loops exist
within the CH. The apex of these loops does not reach coronal heights. Above a
certain height, all field lines were found to be open since the minority flux has been
canceled out. In contrast, quiet-Sun areas are more or less flux balanced and thus
contain field lines of various apex heights, including numerous field lines reaching up
into the corona (see Fig. 29). For corresponding investigations of PCHs see Sect. 6.2.2
and Fig. 27. Yang et al. (2011a) compared the magnetic field vector field in two ECHs
and the QS using Hinode/SOT-SP data. They found that horizontal magnetic fields,
inclination angels as well as the current density and current helicity are stronger in
CHs than in the QS. The authors also concluded that the magnetic field in both QS
and CH is non-potential (see also Sect. 5.2.5).

123



T. Wiegelmann et al.: The magnetic field in the solar atmosphere Page 77 of 106

Fig. 29 a SOHO/MDI magnetogram and overlaid closed magnetic field lines (black) obtained from a
potential field model. Only closed field lines with a field strength of ≥20 G are shown. One can see that
outside of the CH boundary, the number of closed loops is significantly higher and that these loops are also
longer. b Co-spatial EUV image from SOHO/EIT at 195 Å. The boundary of an ECH is outlined by a white
contour in both images. The CH area is seen as a region of reduced emissivity. (Adapted from Figure 3 of
Wiegelmann and Solanki 2004. With kind permission from Springer Science and Business Media)

Fig. 30 The linear force-free coronal magnetic field model shows open (black) and closed (red) field
lines. Because of the decreasing magnetic field strength, the inserted magnetic maps at 0, 4 and 20.6 Mm
correspond to a different color bar. At the 4 and 20.6 Mm level the authors made a correlation analysis of
the extrapolated magnetic field Bz and Doppler maps from SOHO/SUMER. The shaded area at 20.6 Mm
corresponds to a detected outflow faster than 7 km s−1. (Figure 5 of Tu et al. 2005. Reprinted with permission
from AAAS)

6.3.3 Contribution to the solar wind

Hassler et al. (1999), using Doppler maps from SOHO/SUMER, investigated the rela-
tionship between the chromospheric magnetic network and plasma outflows. They
showed that the solar wind is rooted at the boundaries of the cells of the magnetic
network. Tu et al. (2005) went a step further and combined data from the same instru-
ment with a potential coronal magnetic field model based on SOHO/MDI data. A
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correlation analysis of the modeled field structure, of observed Doppler-velocity and
radiance maps revealed an acceleration of the solar wind at heights between five and
20 Mm above the Sun’s surface, and originating from coronal funnels (Fig. 30). Jin and
Wang (2011), using Hinode/SOT-SP data were able to support the scenario described
by Tu et al. (2005), namely that the solar wind streams along magnetic funnels and
the magnetic reconnection of open and closed fields might provide energy for the
acceleration of the particles.

7 Conclusion and outlook

Within this paper, we aimed to review our current understanding of the role of mag-
netic fields for the physics of the solar atmosphere, in particular the corona. In the
past years, ground-based and space-borne instruments have delivered data of unprece-
dented spatial and temporal resolution. Together with the ever increasing sophistica-
tion of numerical techniques, this led to new insights into the nature and the dynamic
evolution of the coronal magnetic field. A broad range of spatial scales is involved
in coronal processes: from very small scales, at which magnetic reconnection may
locally reconfigure the magnetic field, to very large scales, at which the long-term
recycling of the global magnetic field takes place.

There are a number of techniques available for the measurement of the coronal
magnetic field, but none has found widespread and regular use. Observations at radio
wavelengths have provided by far the most direct measurements of coronal magnetic
fields, augmented by polarization measurements in coronal lines in the infrared for a
relatively small number of cases. More frequent are observations using magnetically
sensitive chromospheric lines in the infrared, which can sample layers close to the coro-
nal base. Current limitations on the spatial and temporal resolution at radio frequencies
are expected to be partly lifted once FASR starts operating. More regular observations
of the coronal magnetic field vector are also envisaged with the NSO/DKIST tele-
scope. A more indirect approach is taken by coronal seismology, which permits the
magnetic field strength to be derived from the analysis of oscillating loops.

Nevertheless, by far the most accurate routine measurements are of the magnetic
field in the photosphere, ranging from global scales with SDO to high-resolution
measurements with Sunrise.

The instabilities that might trigger magnetic reconnection are still only accessible
through 3D numerical MHD models. This is also because even the present imaging
and spectropolarimetric instrumentation with the highest spatial resolution (e.g., Sun-
rise and Hi-C), might still be far from resolving the relevant spatial scales. Besides,
high spatial resolution often comes with a restricted FOV. Such restrictions are less
severe for the analysis of processes observed on larger active-region scales. Coronal
imaging data of sufficiently high spatial resolution and temporal cadence, in the form
of SDO/AIA images, have allowed detailed analysis of the coronal dynamics in recent
years. The interpretation of these observations has been increasingly aided by static
force-free magnetic field models which, at the same time, were validated by the match
with structures seen in the same coronal images. The force-free modeling approach is
well justified in the corona above an active region owing to the low plasma β there,
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but less suitable to model the quiet Sun, where β is not low and non-magnetic forces
have to be taken into account, e.g., with magneto-static and MHD-models.

For studying the evolution of coronal magnetic fields a strong tool is the combination
of flux-transport models and extrapolation techniques. Complementary stereoscopic
and tomographic methods significantly improved the ability to reconstruct the 3D
structure of coronal loops using simultaneously observed 2D images from a number
of vantage points, such as SOHO/EIT, the STEREO spacecrafts, SDO/AIA, and in the
future also Solar Orbiter.

A promising approach is to combine extrapolations from photospheric fields and
stereoscopy within one model. Such attempts are still in their infancy though and
currently non-linear force-free extrapolations of the photospheric field vector into the
corona are the state-of-the-art. The maturing of such modeling tools for the inter-
pretation of coronal dynamics has mainly become possible due to the development
and operation of advanced instruments, such as SOLIS/VSM, Hinode/SOT-SP and
SDO/HMI that deliver vector magnetic field maps regularly for the entire solar disk
and active-region scans with both high time cadence and high spatial resolution. In
addition, forward MHS and MHD modeling techniques proved their strength in the
ability to compute synthetic spectra characteristic of ARs which quantitatively repro-
duced spectra recorded with, e.g., SOHO/SUMER. Recent milestones using one or the
other tools individually, or combination with each other, were discussed throughout
this review. Besides having shed light on some of the hidden dynamics of the magnetic
field, indirectly accessible to us only by the analysis of coronal images, the scientific
outcome in recent years naturally also changed the course of the field and uncovered
and/or strengthened the importance of answering still open questions.

On small granulation scales, the permanent restructuring of line-tied, braided and/or
twisted active-region magnetic fields has been a strong contender for providing a
contribution to the heating of the coronal plasma to the observed temperatures. Its
contribution to the release of parts of the vast amount of energy stored in the coronal
active-region magnetic fields, however, is still to be determined in detail. On active-
region scales, dynamic phenomena such as flares and CMEs received great attention
and have revealed some of their secrets. We are increasingly able to relate observed
flare-associated energetics to specific magnetic field structures, both in space and
in time. The ability to predict eruptive phenomena, however, is still in its infancy.
Detailed analysis of the eruption-associated magnetic field topology and its evolution is
highlighting the complex interplay between photospheric driver and coronal response,
underlining that the task of attempting any forecasting is a challenging one. Similarly
demanding is the prediction of the long-term behavior of activity and even more so
since the importance of local eruptive processes for the cyclic global restructuring
remains unclear.

Finally, the findings of recent years showed us that the magnetic structure of the solar
corona, even during times of low solar activity when the global magnetic field is thought
to be best represented by a “simple” dipole field, is rather complex. Consequently,
much work is still needed to unravel the nature of the Sun’s magnetic field, on local
as well as on global scales, the latter being important to understand its contribution to
the solar wind and its effects on our interplanetary environment.
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8 Abbreviations

AR(s) Active Region(s)
CH(s) Coronal Hole(s)
CME(s) Coronal Mass Ejection(s)
ECH(s) Equatorial Coronal Hole(s)
EUV Extreme Ultraviolet)
FOV Field-Of-View
FASR Frequency Agile Solar Radiotelescope (Gary and Keller 2005)
GOES Geostationary Operational Environmental Satellite

(http://www.goes.noaa.gov/)
Hi-C High-resolution Coronal Imager (Golub et al. 2006; Cirtain

et al. 2013)
Hinode Solar-B (Ichimoto and Solar-B Team 2005)
Hinode/EIS Hinode EUV Imaging Spectrometer (Culhane et al. 2007)
Hinode/SOT Hinode Solar Optical Telescope (Suematsu et al. 2008)
Hinode/SOT-SP Hinode SOT Spectro-Polarimeter (Tsuneta et al. 2008b; Lites

et al. 2013)
KPNO Kitt Peak National Observatory (http://www.noao.edu/kpno/)
LFF Linear Force-Free
LOS Line-Of-Sight
MC(s) Magnetic Cloud(s)
MHD Magneto-Hydro-Dynamic
M(H)S Magneto-(Hydro-)Static
NSO National Solar Observatory (http://www.nso.edu/)
NSO/DIKST NSO Daniel K. Inouye Solar Telescope (http://atst.nso.edu/)
NLFF Non-linear Force-Free
PCH(s) Polar Coronal Hole(s)
PIL(s) Polarity Inversion Line(s)
PFSS Potential Field Source Surface
QSL(s) Quasi-Separatrix Layer(s)
QS Quiet Sun
SDO Solar Dynamics Observatory (Pesnell et al. 2012)
SDO/AIA SDO Atmospheric Imaging Assembly (Lemen et al. 2012)
SDO/HMI SDO Helioseismic and Magnetic Imager (Schou et al. 2012)
SOHO Solar and Heliospheric Observatory (Scherrer et al. 1995)
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SOHO/EIT SOHO Extreme ultraviolet Imaging Telescope
(Delaboudinière et al. 1995)

SOHO/LASCO SOHO Large Angle and Spectrometric Coronagraph
(Brueckner et al. 1995)

SOHO/MDI SOHO Michelson Doppler Imager (Scherrer et al. 1995)
SOHO/SUMER SOHO Solar Ultraviolet Measurements of Emitted Radiation

(Wilhelm et al. 1995)
SOLIS Solar Optical Long-term Investigations of the Sun (Keller

et al. 2003a)
SOLIS/VSM SOLIS Vector SpectroMagnetograph (Keller et al. 2003b)
Solar Orbiter (Müller et al. 2013)
STEREO Solar-TErrestrial RElations Observatory (Kaiser et al. 2008)
STEREO/SECCHI STEREO Sun Earth Connection Coronal and Heliospheric

Investigation (Howard et al. 2002)
STEREO/SECCHI-

COR1(2)
STEREO/SECCHI inner (outer) CORonagraph (Liu et al.
2009b)

STEREO/SECCHI-
EUVI

STEREO/SECCHI Extreme UltraViolet Imager (Wuelser et al.
2004)

Sunrise Solar-C (Solanki et al. 2010; Barthol et al. 2011)
SXR(s) Soft X-ray(s)
Sunrise/IMaX Sunrise Imaging Magnetograph eXperiment (Martínez Pillet

et al. 2011)
TEL(s) Trans-Equatorial Loop(s)
TRACE Transition Region and Coronal Explorer (Handy et al. 1999)
VTT Vacuum Tower Telescope (http://www.kis.uni-freiburg.de/)
WIND/WAVES Bougeret et al. (1995)
Yohkoh Solar-A (Tsuneta et al. 1991)
Yohkoh/SXT Yohkoh Soft X-ray Telescope (Tsuneta et al. 1991)
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