@AGUPUBLICATIONS

Journal of Geophysical Research: Space Physics

RESEARCH ARTICLE

10.1002/2014JA019771

Key Points:

- Effect of preceding ICMEs on SEP transport influences SEP peak event intensities
- We provide upper limits of SEP
 peak intensities once CME speeds
 are known
- Results on preconditioning by preceding CMEs revised with low intensity events

Correspondence to:

D. Lario, David.Lario@jhuapl.edu

Citation:

Lario, D., and A. Karelitz (2014), Influence of interplanetary coronal mass ejections on the peak intensity of solar energetic particle events, *J. Geophys. Res. Space Physics*, *119*, 4185–4209, doi:10.1002/2014JA019771.

Received 7 JAN 2014 Accepted 25 MAY 2014 Accepted article online 29 MAY 2014 Published online 24 JUN 2014

Influence of interplanetary coronal mass ejections on the peak intensity of solar energetic particle events

D. Lario¹ and A. Karelitz²

¹ Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland, USA, ²National Institute of Aerospace, Hampton, Virginia, USA

JGR

Abstract We study whether the presence of coronal mass ejections (CMEs) in interplanetary space (ICMEs) affects the maximum intensity of solar energetic particle (SEP) events. We compute the maximum intensity of 175-315 keV electron and 9-15, 15-40, and 40-80 MeV proton fluxes measured during the prompt component of 147 western SEP events observed near Earth throughout solar cycle 23. When using in situ observations to determine the presence and location of preceding ICMEs during SEP events, we find that, over the ensemble of events, those observed either within a preceding ICME or when a preceding ICME is beyond the observer's location have, on average, larger peak intensities than the events observed in absence of ICMEs. The few events observed when an Earth-directed ICME is located between the Sun and the observer tend to have lower 9–15 and 15–40 MeV proton peak intensities than the events without preceding ICMEs; the differences are not significant for 175–315 keV electron peak intensities. When using coronagraph observations to determine the presence of preceding CMEs, we find that, over the ensemble of events, those events (Case P) occurring within 24 h after the launch of a CME from the same active region as the primary CME generating the SEP event tend to have higher peak intensities than those events (Case NP) occurring without a preceding CME. The differences between the average peak intensities of these two event cases (P and NP) are smaller when we exclude events observed when a prior ICME is already located at or beyond Earth.

1. Introduction

Several factors control the variability of intensities measured in solar energetic particle (SEP) events [e.g., *Kahler et al.*, 1999; *Gopalswamy*, 2012]. Among them, the longitude of the parent solar event generating the SEP event [e.g., *Cane et al.*, 1988; *Lario et al.*, 2006] and the speed of the parent coronal mass ejection (CME) associated with the origin of the SEP event [e.g., *Reames*, 2000] are the dominant parameters controlling the peak intensity of the SEP events. Other factors suggested to play a role in the intensity of SEP events include the ambient (or preevent) SEP intensities [e.g., *Kahler et al.*, 1999; *Kahler*, 2001; *Gopalswamy et al.*, 2003], the presence of a preceding CME able to precondition the plasma where the main CME associated with the origin of the SEP event gropagates [*Gopalswamy et al.*, 2004; *Li et al.*, 2012], the Alfvén speed distribution in the ambient medium where the parent or primary CME starts propagating [*Gopalswamy et al.*, 2008a], and the presence of coronal holes near the active region that generates the SEP event [*Gopalswamy*, 2012] (see also *Kahler et al.*, [2012, 2014] for a negative result on the possible effects that coronal holes have on SEP properties).

In this article, we study whether the medium through which SEPs propagate has a significant effect on the measured SEP peak intensities. It is well known that major SEP events are associated with intense episodes of solar activity when one or more active regions on the Sun produce a series of CMEs [e.g., *Jiggens and Gabriel*, 2009; *Ruzmaikin et al.*, 2011]. Therefore, the presence of a preceding CME in interplanetary (IP) space when the injection of SEPs by an unrelated solar event occurs is not an infrequent circumstance. The presence of a preceding CME in space has been suggested as a factor favoring the acceleration of particles by a shock driven by a second fast CME propagating in the wake of the preceding CME [*Gopalswamy et al.*, 2003; *Li et al.*, 2012; *Ding et al.*, 2013]. Both the turbulent enhancement generated downstream of the preceding CME and the presence of a suprathermal particle population accelerated by the shock driven by the preceding CME associated with the origin of the SEP event (also known as the primary CME) [e.g., *Li et al.*, 2012]. The presence of a preceding CME in IP space, however, may also affect the transport of SEPs by

introducing changes in the direction and strength of the magnetic field surrounding it and increasing the level of magnetic turbulence in the IP medium [e.g., *Hundhausen*, 1972; *Vandas et al.*, 1996]. SEPs injected into such a distorted medium must propagate undergoing scattering and mirroring processes produced by the enhanced level of magnetic field compressions, discontinuities, and turbulence created in the wake of the preceding CME [e.g., *Hudson*, 1965; *Vandas et al.*, 1996]. These transport effects may have evident consequences in the measured SEP intensities depending on where the observer is located with respect to the preceding CME [e.g., *Lario et al.*, 2008].

The presence of a CME in the IP medium (hereafter ICME) at the time of the injection of SEPs has been suggested as a factor favoring the observation of the most intense SEP events [*Kallenrode and Cliver*, 2001]. A possible mechanism proposed by *Kallenrode* [2001, 2002] to explain these elevated particle intensities consists in the presence of a magnetic barrier in IP medium (created by a preceding ICME) able to affect the transport of SEPs accelerated by a second fast CME-driven shock by introducing processes of magnetic reflection and trapping. Energetic particles accelerated by the second fast CME-driven shock remain then confined between the magnetic barrier and the second fast CME-driven shock [*Kallenrode*, 2001, 2002]. When this magnetic barrier created by a preceding ICME is located beyond the observer's location, particles injected by the second fast CME-driven shock (i.e., the primary CME) may be reflected and/or scattered back to the observer, resulting in particle intensities higher than the intensities observed in the case when particle injection occurs in a pristine undisturbed solar wind medium [*Lario et al.*, 2008]. In order to efficiently affect the transport of SEPs, the preceding ICME must not only introduce changes in the direction and strength of the magnetic field where particles propagate, but increase the level of magnetic field turbulence to enhance the scattering processes undergone by the particles and thus rearrange the pitch angle distribution of the particles that eventually will be mirrored back toward the observer.

If the preceding ICME is located between the Sun and the observer, one may predict that the IP disturbances produced by the ICME may act as intervening structures for the newly fresh particles injected by the primary CME-driven shock, resulting then in both a delay in the arrival of particles at the observer and an attenuated particle intensity with respect to what the injection of SEPs into a pristine IP medium would have produced [e.g., *Lario et al.*, 2008]. Besides, if the preceding ICME has a magnetic structure consisting of looped field lines rooted to the Sun, the injection of SEPs onto one of these looped field lines (usually characterized by a low level of magnetic field turbulence) results in particles moving back and forth along these looped field lines [*Richardson and Cane*, 1996]. The confinement of particles into such looped structures will then result in elevated particle intensities but only if the observer intercepts such a structure when the SEP injection occurs or when intensities have not decreased significantly due to the expansion of the ICME [e.g., *Lario*, 2006, and references therein].

In this article, we study in a statistical sense whether the presence of prior ICMEs plays a role in the particle intensities measured early in the SEP events. We combine the list of SEP events observed near-Earth during solar cycle 23 compiled by Cane et al. [2010] with the list of near-Earth ICMEs compiled by Richardson and Cane [www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm] and the catalog of CMEs observed by the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar Heliospheric Observatory (SOHO) compiled by S. Yashiro [cdaw.gsfc.nasa.gov/CME_list] to determine whether the SEP events were observed under either disturbed or undisturbed solar wind conditions caused by the presence of prior ICMEs and in the case of disturbed conditions whether the transient structures (i.e., preceding ICMEs) were located either between the Sun and Earth or beyond Earth. Over the ensemble of events, we find that the most intense SEP events are observed when Earth is located within an ICME, followed by events observed in the downstream region of an ICME. By contrast, the injection of SEPs when an ICMEs is located between the Sun and the observer (i.e., when an ICME, unrelated to the origin of the SEP event, is observed after the onset of the SEP event) results in SEP events that tend to have lower averaged proton peak intensities. As described below, the arrival of an ICME near Earth shortly following the onset of a SEP event does not necessarily imply that the propagation of SEPs toward Earth was affected by the presence of this ICME. Therefore, we have studied also the possibility that a preceding CME observed by coronagraphs and ejected from the same source region that generated the SEP event has a significant effect in the acceleration and transport of SEPs and consequently in the observed SEP intensities. We find that the possible effect of this preceding CME impeding the transport of SEPs between the Sun and the observer has a smaller influence in the measured SEP peak intensities than the effects produced by preceding ICMEs located at or beyond the observer, and that

the effects that preceding CMEs from the same active region have in preconditioning the medium for an efficient acceleration of particles by a fast primary CME are still significant with respect to transport effects.

The structure of the article is as follows. In section 2 we describe the data sources and the classification of the SEP events in terms of the presence or absence of prior ICMEs and the presence or absence of preceding coronagraph CMEs. In section 3 we study the possible dependence between particle peak intensities and either the speed of the associated CMEs or the peak intensities of the associated soft X-ray flares. In section 4 we analyze the possible dependence between SEP peak intensities and the conditions of the IP medium (either quiet or perturbed) where the SEP event develops. Finally, in section 5 we present the main conclusions of the work.

2. Data and SEP Event Classification

We use the list of SEP events compiled by *Cane et al.* [2010] who selected proton events observed near Earth at energies above ~25 MeV in the years 1997–2006 with peak proton intensity in the ~20–30 MeV range above 2×10^{-4} particles (cm² sr s MeV)⁻¹ and that were not compromised by data gaps and other events. A total of 280 events were selected by *Cane et al.* [2010] using data from the Goddard Space Flight Center (GSFC) experiment on the Interplanetary Monitoring Platform-J (IMP-8) and the University of Turku Energetic and Relativistic Nuclei and Electron (ERNE) experiment on board SOHO. In a few cases, they also used the GSFC Energetic Particle Acceleration Composition and Transport (EPACT) experiment on Wind. In this work we have considered the same set of events previously identified by *Cane et al.* [2010] but now using hourly averages of 175–315 keV electron intensities measured by the Electron Proton and Alpha Monitor (EPAM) on board the Advanced Composition Explorer (ACE) [*Gold et al.*, 1998] and 9–15, 15–40, 40–80 MeV proton intensities measured by the Energetic Particle Sensor (EPS) on board the Gostationary Operation Environmental Satellites (GOES) [*Sauer*, 1993; *Onsager et al.*, 1996].

In order to minimize the longitudinal dependence of SEP peak intensities [e.g., Lario et al., 2006, 2013] and still having a significant number of events to study, we have chosen, among the SEP events selected by Cane et al. [2010], those generated from longitudes between W10° and W110°. This range of longitudes covers those events generated within ±50° from the footpoint of a nominal Parker spiral magnetic field line connecting Earth with the Sun (assuming a solar wind speed of \sim 400 km s⁻¹). Out of the 280 proton events identified by Cane et al. [2010], we have kept 147 SEP events associated with solar flares in the longitudinal range W10°-W110° for which we have been able to identify the peak intensity of the event in their prompt component, understood as the maximum intensity observed shortly after the onset of the event and several hours or days before the particle enhancement commonly associated with the arrival of interplanetary shocks (if any). The peak intensity in the prompt component is usually reached when the associated CME-driven shock is still close to the Sun and presumably able to accelerate protons and electrons to high energies. For some events, the maximum intensity in the prompt component is observed in the form of a plateau in the time-intensity profile before the local enhancement associated with the passage of shocks [Reames and Ng, 1998]. In these cases, the peak intensity is taken as the maximum value of the intensity plateau. Spacecraft observations for which particle intensity continuously increases until the arrival of the shock (if any) are excluded from our statistical study.

Table 1 provides the list of events selected for our statistical study. Column 1 gives an index that numbers the SEP event. Columns 2 and 3 provide the onset times of the proton intensities to the nearest hour as identified by *Cane et al.* [2010]. The date (and day of year in parenthesis) is that of the associated flare so that if the particle intensities rise on the following day the hour can be >23. Columns 4–6 provide the parameters of the associated flares; i.e., the onset of the soft X-ray emission, H α location and the GOES soft X-ray class (*F*_{SXR}) as identified by *Cane et al.* [2010]. When an event was behind the limb but had an associated soft X-ray event, *Cane et al.* [2010] estimated the longitude from the time since a probably associated active region went over the limb, otherwise a longitude of W120 was assigned. The events for which *Cane et al.* [2010] assigned a longitude >W110° are excluded from our analysis. Columns 7 and 8 provide the first observing time and the sky-plane speed (in km s⁻¹) of the associated parent CME as observed by LASCO as reported in Table 1 of *Cane et al.* [2010] and validated with the Coordinated Data Analysis Workshops (CDAW) CME catalog posted on cdaw.gsfc.nasa.gov/CME_list.

Table 1. SEP Events (Sep 1997-Dec 2006)

Event	Onset Proton	Event ^a		Flare Event ^b		CN	1E ^c	Event	t _{max}	Peak ^f	Peak ^f	Peak ^f	Peak ^f	Prec.
#	Day of Year	Hour	Onset	Site	F _{SXR}	Time	VCMF	Class ^d	DE4 ^e	DE4	P3	P4	P5	CME ^g
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
							1997							
1	3 Nov (307)	11	1018	17°S, 22°W	M4.2	1111	352	0,0,-,-	307/2100	5.95E1	3.52E-2	-	-	Р
2	4 Nov (308)	07	0552	14°S, 33°W	X2.1	0610	785	0,0,0,0	308/0900	4.12E3	3.85E0	1.51E0	2.24E-1	Р
3	6 Nov (310)	12	1149	18°S, 63°W	X9.4	1210	1556	1,2,2,1	310/1700	3.41E4	2.73E1	1.31E1	2.34E0	NP ^h
4	13 Nov (317)	23	?	N, 110°W	?	2225	546	0,0,0,0	317/2300	8.25E2	1.64E-1	5.12E-2	4.37E-3	_
				.,			1008	-,-,-,-						
5	26 Jan (026)	23	2219	17° S. 55° W	C5.4	2327	399	1.1.1	027/0000	2.57F2	4.88F-2	9.82F-3	_	NP
6	20 Apr (110)	12	0938	S 90°W	M1 4	1007	1863	0000	110/1300	5.81F3	1.65F1	1 27F1	1 09F-1	NP ^{h,i}
7	2 May (122)	14	1331	15°S 15°W	X1 1	1406	938	2 2 2 2 2	122/1600	9 35E3	6.63E0	3.95E0	4.84F_1	P
, 8	6 May (122)	08	0758	11°S 65°W	X27	0829	1099	3,3,3,3 3 3 3 3	126/0800	3 13F4	1 35E1	7.60E0	3.85F_1	P
9	9 May (129)	05	0304	S 100°W	M7 7	0335	2331	ΔΔΔΔ	129/1200	7.68E2	3 50F_1	1.63E_1	1.58E_2	-
10	27 May (122)	15	1313	21°S 83°W	C7 5	1345	878	0	147/1600	5.84F2	5.502 1	-	-	NP
11	6 Sen(249)	07	0454	21°S 36°W	C1 3	da	da	0,,,,	249/0800	1.09E2	9.24F_2	2 30F_2	2 79F_3	da
12	9 Sep(27)	06	0452	21°S, 30°W	M2.8	da	da	0,0,0,0	252/0600	1.00L2	5.24L-2	2.37L-2 1.73E-2	2.7 72-5	da
12	27 Sop(232)	00	0906	21 3,73 W	C26	da	da	0,0,0, 1 1 1-	270/0000	1.2012	8.01E_2	6.07E_3		da
17	27 Sep (270) 30 Sep (273)	1/	1304	21 N, 40 W	M2.8	da	da		270/0900	1.70L3	1.00E2	2 00E1	1 28E0	da
14	5 Nov (309)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1000	26°N 18°W	MQ /	2044	1110	1 1 1 -	2/3/2200	1.9504	1.0002	2.99L1	1.2010	D
15	22 Nov (226)	<u>_</u> 22	0620	20 N, 10 W	V2 7	2044 da	da	0,0,0,0	276/0900	0.02E1	1.60L0	0.70L-2	1 205 2	da
10	22 NOV (320)	00	0030	27 3, 82 W	X3.7 V1.0	0220	1709	0,0,0,0	220/0800	0.02ET	1.50E-1	0.JTE-2	1.30E-2	da
17	24 NOV (328) 17 Dec (251)	11	0207	3, 100 W	M2 2	0230	202	0,0,0,0	251/1000	2.02E2	1.03E-1	3.90E-Z	0.946-3	ND
10	17 Dec (331)		0740	27 3,40 W	1013.2	0650	502	0,-,-,-	331/1000	7.1921	-	-	-	INF
10	2 lan (002)	10	1440	2206 4001	66.2	ما مر	1999 dar	1 1	002/2000		4 (05)			بم ام
19	3 Jan (003)	10	1449	23 5, 49 VV	C0.2	ag	ag	I,I,-,- 4	003/2000	3.05ET	4.60E-2	_	_	ag
20	6 Jan (006)	25	2354	5, 95° W	C8.0	ag	ag	4,-,-,-	007/0100	4.0/EI		-	-	ag
21	16 Feb (047)	06	1752	23° 5, 14° W	1013.2	ug	ag	,-,- ,-,-	047/0600	3.90ET	3.05E-2	-	-	ag
22	9 May (129)	19	1/53	N, 95°W	IVI7.6	1827	015	0,0,0,0	129/1800	1.96E2	1.94E-1	4.50E-2	3.61E-2	-
23	4 Jun (155)	08	0052	17" N, 69" W	1013.9	0726	2221	4,4,4,4	155/0900	5.13E3	0.30EU	1.11EU	3.05E-2	NP D
24	27 Jun (178)	11	1752	22°N, 26°W	MIT.0	1906	903	2,2,2,-	1/8/1300	1.49E2	2.42E-2	4./6E-3	-	P
25	28 Aug (240)	20	1/52	26°5, 14°W		1826	462	0,-,-,-	240/1900	2./5EI	-	-	-	P
26	28 Dec (362)	02	0039	20° N, 56° W	M4.5	0054	672	4,4,4,-	362/0500	1.12E3	2./3E-2	1.03E-2	-	Р
							2000							_
27	12 Feb (043)	05	0351	26°N, 24°W	M1./	0431	1107	2,2,2,2	043/0600	8.80E1	1.99E-1	3.86E-2	2.3/E-3	P
28	2 Mar (062)	09	0820	14°S, 52°W	X1.1	0854	//6	4,4,4,4	062/1000	2.44E2	2.8/E-2	1.51E-2	2.29E-3	NP
29	3 Mar (063)	03	0208	15°S, 60°W	M3.8	0230	841	4,4,4,4	063/0300	2.32E2	3.15E-2	8.33E-3	2.23E-3	P
30	22 Mar (082)	20	1834	14°N, 57°W	X1.1	1931	478	0,0,0,-	082/2200	7.23E1	1.70E-1	1.58E-2	-	NP
31	24 Mar (084)	10	0741	15°N, 82°W	X1.8	dg	dg	0,-,-,-	084/2300	4.51E1		-	_	dg
32	4 Apr (095)	16	1512	16°N, 66°W	C9.7	1632	1188	0,0,0,0	095/1600	6.23E2	1.17E1	5.55E-1	5.96E-3	NP
33	27 Apr (118)	16	1404	N, 95°W	B9.8	1430	1110	0,0,0,-	118/1900	1.87E1	4.28E-2	5.50E-3	-	_
34	1 May (122)	11	1016	20°N, 54°W	M1.1	1054	1360	1,-,1,-	122/1000	6.61E2	-	1.31E-2	-	NP
35	4 May (125)	12	1057	20°S, 90°W	M6.8	1126	1404	3,-,-,-	125/1600	4.58E2	_	_	-	Р
36	15 May (136)	18	1546	22°S, 68°W	C7.8	1626	1212	5,3,3,-	136/1800	5.94e2	1.90E-1	2.52E-2	-	NP
37	23 May (144)	22	2048	23°N, 41°W	C9.5	2130	475	5,5,-,-	144/2300	2.94E2	3.08E-2	-	-	NP
38	10 Jun (162)	18	1640	22°N, 40°W	M5.2	1708	1108	5,5,5,5	162/1700	3.31E3	3.51E0	1.15E0	1.44E-1	NP
39	15 Jun (167)	21	1938	20°N, 62°W	M1.8	1950	1081	4,-,-,-	167/2100	2.88E2	-	-	-	NP
40	17 Jun (169)	05	0225	22°N, 72°W	M3.5	0328	927	5,5,5,-	169/0500	8.13E2	8.17E-2	1.85E-2	-	NP
41	18 Jun (170)	26	0152	23°N, 85°W	X1.0	0210	629	1,1,1,1	170/0300	6.44E2	4.12E-1	6.24E-2	3.35E-3	Р
42	23 Jun (175)	16	1418	23°N, 72°W	M3.0	1454	847	2,2,2,2	175/1500	1.55E3	1.55E–1	2.93E-2	2.22E-3	Р
43	25 Jun (177)	12	0717	16°N, 55°W	M1.9	0754	1617	3,3,3,-	177/1300	5.47E1	1.58E-1	2.33E-2	-	NP
44	28 Jun (180)	20	1848	N, 95°W?	C3.7	1931	1198	4,4,-,-	180/2000	4.31E1	3.10E-2	-	-	-
45	22 Jul (204)	12	1117	14°N, 56°W	M3.7	1154	1230	5,5,5,5	204/1200	1.19E3	1.29E0	4.49E-1	4.82E-2	NP
46	12 Aug (225)	11	0945	17°S, 79°W	M1.1	1035	662	3,3,3,-	225/1600	2.84E2	1.80E-1	1.78E-2	-	NP
47	7 Sep (251)	21	2032	06°N, 47°W	C7.2	2130	422	-,1,1,-	252/0400 ^k	-	3.97E-2	6.12E-3	-	NP
48	9 Sep (253)	10	0828	07°N, 67°W	M1.6	0856	554	3,3,3,-	253/1100	7.07E1	4.86E-2	1.31E-2	-	Р
49	19 Sep (263)	11	0806	14°N, 46°W	M5.1	0850	766	3,3,3,-	263/1300	2.62E4	9.35E-2	1.51E-2	-	Р
50	9 Oct (283)	<30	2319	01°N, 14°W	C6.7	2350	798	0,0,0,-	285/1200	2.20E1	4.85E-2	1.01E-2	-	Р
51	16 Oct (290)	07	0640	N, 95°W	M2.5	0727	1336	4,4,4,4	290/0900	4.83E2	1.30E0	3.98E-1	4.67E-2	-
52	8 Nov (313)	23	2242	10°N, 75°W	M7.4	2306	1738	3,3,3,3	314/0100	3.00E5	4.43E2	3.97E2	6.65E1	NP ^{h,i}

Table 1. (continued).

Event	Onset Proton	Event ^a		Flare Event ^b		CN	1E ^c	Event	t _{max}	Peak ^f	Peak ^f	Peak ^f	Peak ^f	Prec.
#	Day of Year	Hour	Onset	Site	F _{SXR}	Time	VCMF	Class ^d	DE4 ^e	DE4	P3	P4	P5	CME ^g
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
							2001							
53	26 Jan (026)	14	1150	27°S. 57°W	C1.6	1206	928	4.4.4	026/1400	4.80E1	7.38E-2	8.23E-3	_	NP
54	28 Jan (028)	17	1540	04°S, 59°W	M1.5	1554	916	4.4.4.4	028/1900	1.60F3	6.03F0	5.70F-1	6.66F-2	Р
55	11 Feb (042)	03	0057	24°N, 57°W	C6.5	0131	1183	0.0.0	042/1100	1.01E2	7.47E-2	1.37E-2	_	NP
56	10 Mar (069)	08	0400	27°N, 42°W	M6.7	0426	819	0	069/0900	2.77F2	_	_	_	NP
57	29 Mar (088)	12	0957	16°N, 12°W	X1.7	1026	942	3,3,3,3	088/1600	3.31F3	3.74F0	8.62F-1	4.05F-2	P
58	2 Apr (092)	13	1058	16°N, 62°W	X1.1	1126	992	3.3.3.3	092/1700	9.80F2	2.81F-1	9.06F-2	8.10F-3	NP
59	2 Apr (092)	23	2132	17°N, 72°W	X20	2206	2505	3.3.3.3	093/0400	2.41E4	4.64E1	2.09E1	1.91E0	Р
60	12 Apr (102)	12	0939	, 20°S, 42°W	X2.0	1031	1184	3.3.3.3	102/1300	6.03E3	3.07E0	1.27E0	1.48E-1	Р
61	14 Apr (104)	18	1715	17°S. 71°W	M1.0	1754	830	5.5	104/1800	3.11E3	2.08E-1	_	_	P
62	15 Apr (105)	14	1319	20°S, 84°W	X14	1406	1199	5.3.3.3	105/1600	5.43E4	5.42E1	2.76E1	3.52E0	P
63	26 Apr (116)	<22	1126	17°N. 31°W	M7.8	1230	1006	0.8.8	116/1500	5.86F1	-8.88F8	-8.88F8	_	P
64	20 May (140)	08	0600	17°S. 91°W	M6.5	0626	546	0.0.0.0	140/0900	5.64E2	3.53E-1	1.94E-1	3.07E-2	-
65	4 Jun (155)	17	1611	22°N, 60°W	(3.2	1630	464	0.0.0.0	155/1700	8.40F1	2.33E-1	4.74F-2	3.24F-3	NP
66	11 Jun (162)	<14	0533	16°S. 34°W?	C7.1	0606	326	0.0	162/2300	5.59E1	3.57E-2	_	_	NP
67	18 Jun (169)	27	2150	10°S. 23°W	C4.7	2246	1301	0.0.0.0	170/0600	1.50E2	4.79F-2	1.02F-2	4.20F-3	NP
68	19 Jul (200)	11	0952	12°S, 62°W	M1.8	1030	1668	0,-,-,-	200/1400	1.83E2	_	_	_	NP
69	14 Aug (226)	18	1130	110°W	(2.3	1601	618	1.1.1	227/0000	5.51F1	8.45F-2	1.25E-2	_	_
70	12 Sep (255)	23	7	16°S. 62°W?	C9.6	2206	668	1.1	255/1600	9.66F1	3.39F-2	_	_	NP
71	15 Sep (258)	12	1104	27°S. 53°W	M1.5	1154	478	4.4.4.4	258/1300	2.07E2	1.11E0	2.23E-1	8.31E-3	NP
72	1 Oct (274)	<12	0441	S. 95°W	M9.1	0530	1405	8.3.3.3	274/2200 ^k	-8.88F8	4.50F1	1.72F1	7.76F-1	_
73	5 Oct (278)	<17	?	S. 110°W	C2.0	1030	1537	4,4,4,4	279/0900	7.35E2	8.31E-1	1.63E-1	3.96E-3	_
74	19 Oct (292)	01	0047	16°N, 18°W	X1.8	0127	558	0.0.0.0	292/0500	2.59F2	5.42F-1	1.45E-1	1.43E-2	Р
75	19 Oct (292)	16	1613	15°N, 29°W	X1.6	1650	901	0.0.0.0	292/1800	4.53E2	9.89E-1	2.56E-1	2.69E-2	P
76	22 Oct (295)	04	0022	17°N, 57°W	M1.0	0050	772	3	295/0500	8.96E1	_	_	_	NP
77	4 Nov (308)	17	1603	06°N, 18°W	X1.0	1635	1810	5.5.5.5	309/0300	9.35E4	1.26E2	1.01E2	1.44E1	NP ^j
78	26 Dec (360)	06	0432	08°N, 54°W	M7.1	0530	1446	0,0,0,0	360/0700	2.31e4	4.77E1	2.16E1	4.42E0	NP ^h
				, -			2002	.,.,.,.						
79	14 Jan (014)	<08	0529	S, 100°W	M4.4	0540	1492	0,0,0,0	015/2000	1.67E3	2.01E0	3.32E-1	1.35E-2	_
80	20 Feb (051)	06	0552	12°N, 72°W	M5.1	0630	952	0,0,0,0	051/0600	3.33E3	8.82E-1	2.96E-1	1.18E-2	NP
81	22 Mar (081)	12	1012	S, 90°W	M1.6	1106	1750	5,5,5,-	081/1400	9.50E1	3.23E0	8.61E-2	_	NP
82	11 Apr (101)	16	1616	15°S, 33°W	C9.2	1650	540	1,1,1,-	101/1800	1.26E2	1.30E-1	2.09E-2	_	NP
83	14 Apr (104)	12	0728	19°N, 57°W	C9.6	0750	757	4,-,-,-	104/1400	3.91E1	-	-	-	NP
84	15 Apr (105)	03	0246	19°N, 79°W	C9.8	0306	674	4,-,-,-	105/0300	1.82E2	_	_	_	Р
85	17 Apr (107)	08	0746	14°S, 34°W	M2.6	0826	1240	2,3,3,3	107/1200	5.57E3	1.59E0	2.98E-1	7.96E-3	NP
86	21 Apr (111)	00	0043	14°S, 84°W	X1.5	0127	2393	3,4,3,3	111/1300	3.50E4	2.33E2	7.66E1	9.21E0	NP ⁱ
87	22 May (142)	06	0318	22°S, 53°W	C5.0	0350	1557	4,4,4,4	142/0900	1.36E2	5.20E-1	1.06E-1	3.04E-3	Р
88	30 May (150)	03	0424	N, 100°W	M1.3	0506	1625	0,-,-,-	150/0800	1.02E2	-	-	-	-
89	7 Jul (188)	12	1115	S, 95°W	M1.0	1130	1423	0,0,0,0	188/1600	3.27E3	1.79E0	5.98E-1	2.31E-2	_
90	3 Aug (215)	19	1859	16°S, 76°W	X1.0	1932	1150	3,4,4,-	216/0100	3.02E2	3.79E-2	8.24E-3	-	NP
91	5 Aug (217)	07	?	07°S, 45°W?	C2.0	0732	689	4,-,-,-	217/0800	4.13E2	_	_	_	Р
92	14 Aug (226)	03	0147	09°N, 54°W	M2.3	0230	1309	0,0,0,0	226/0200	2.37E3	5.57E0	1.93E-1	3.80E-3	NP
93	16 Aug (228)	07	0546	06°N, 83°W	M2.9	0606	1378	0,0,0,0	228/0800	5.63E2	4.57E-2	1.43E-2	3.05E-3	Р
94	18 Aug (230)	20	2112	12°S, 19°W	M2.2	2154	682	2,2,2,2	230/2200	1.10E3	5.10E-1	7.11E-2	4.75E-3	NP
95	19 Aug (231)	10	1028	12°S, 25°W	M2.0	1106	549	2,-,-,-	231/1100	4.36E3	-	-	-	Р
96	20 Aug (232)	08	0822	10°S, 38°W	M3.4	0854	1099	3,3,3,3	232/0900	1.19E4	1.95E-1	5.03E-2	5.03E-3	Р
97	22 Aug (234)	02	0147	07°S, 62°W	M5.4	0206	998	4,4,4,4	234/0400	1.77E3	2.42E0	8.72E-1	1.23E-1	Р
98	24 Aug (236)	00	0049	02°S, 81°W	X3.1	0127	1913	4,4,4,4	236/0200	1.02E4	3.04E1	9.12E0	1.64E0	Р
99	27 Sep (270)	02	0118	S, 95°W	C5.0	0154	1502	0,0,0,-	270/0200	5.17E2	2.82E-2	6.11E-3	-	-
100	20 Oct (293)	14	1410	13°S, 63°W	C6.6	1430	1011	0,-,-,-	293/1400	2.75E2	-	-	-	NP
101	9 Nov (313)	15	1308	12°S, 29°W	M4.6	1331	1838	0,0,0,0	314/0400	1.28E4	4.62E1	7.01E0	8.16E-2	Р

Table 1. (continued).

Event	Onset Proton	Event ^a		Flare Event ^b		CN	ЛЕ ^с	Event	t _{max}	Peak ^f	Peak ^f	Peak ^f	Peak ^f	Prec.
#	Day of Year	Hour	Onset	Site	F _{SXR}	Time	VCME	Class ^d	DE4 ^e	DE4	P3	P4	P5	CME ^g
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
							2003							
102	17 Mar (076)	19	1850	14°S, 39°W	X1.5	1954	1020	0,0,-,-	076/2000	4.17E2	7.90E-2	_	-	Y
103	18 Mar (077)	14	1157	09°S, 46°W	X1.5	1354	1601	1,1,1,-	077/1300	2.65E3	5.36E-2	1.33E-2	_	Р
104	7 Apr (097)	<08	0925	10°S, 88°W	B7.3	0950	719	0.0.0	097/1400	5.17E2	1.23E-1	8.82E-3	_	Р
105	23 Apr (113)	00	0045	22°N, 25°W	M5.1	0127	916	0.0.0	113/0200	9.80E	4.20E-2	1.67E-2	_	Р
106	24 Apr (114)	12	1245	21°N, 39°W	M3.3	1327	609	0.0.0	114/1300	6.60E1	7.99E-2	2.57E-2	_	Р
107	28 May (148)	00	0017	06°S, 20°W	X3.6	0050	1366	0.8.8.0	148/1000 ^k	1.57E3	-8.88E8	-8.88E8	1.19E-2	Р
108	31 May (151)	03	0213	07°S, 65°W	M9.3	0230	1835	3.3.3.3	151/0500	9.37F3	2.00F0	6.44F-1	7.38F-2	da
109	10 Jul (191)	14	1354	13°N, 91°W	M3.6	<1633	877	0	191/1800	3.83F1		_	-	da
110	19 Aug (231)	03	0738	12°S 64°W	M2 0	0830	412	33	231/0900	3 23F2	4 14F-2	_	_	Y
111	26 Oct (299)	18	1703	02°N, 38°W	X1.2	1754	1537	5.3.3.5	299/1900	1.04F4	4.28F1	1.03F1	4.00F-1	P
112	2 Nov (306)	18	1703	14°S 56°W	X8.0	1730	2598	4444	306/1800	3 57F4	8 13F1	4 55E1	5 20E0	P
113	4 Nov (308)	21	1929	19°S 83°W	X28	1954	2657	4000	308/2300	6 35F3	2.60F1	8 77F0	6 35F-1	P
114	7 Nov (311)	16	1500	S 110°W	R4 7	1554	2237	000-	311/1800	1 26F3	7.84F_1	2 07F-1	_	_
115	20 Nov (324)	07	0735	03°N 12°W	M9.6	0806	669	2333	324/1000	2.46F3	5.84F-1	1.04F-1	6 10F-3	Р
116	2 Dec (336)	12	1000	S 95°W	(72	1050	1393	000-	336/1200	1 51F2	1 50F1	1 88F0	-	-
117	31 Dec (365)	18	7	799°W	M1.0	da	da	0	365/1900	6.86F2	-	-	_	_
117	51 Dec (505)	10	•		1011.0	ug	2004	0, , ,	565/1966	0.0012				
110	4 Eab (025)	11	1110	07°6 40°W	<u> </u>	1154	2004	0	025/1200	0.0551				ND
110	4 FED (055)	05	0254	07 5,49 W	C9.9	0420	704 1675	0,-,-,-	102/0000	9.05ET	- 5 3450	4 5 2 5 1	- 1 22E 2	
119	12 Jul (102)	05	0554	10 5, 40 W	C9.0	0450	1045	0,0,0,0	102/0900	1.3353	5.24EU	4.55E-1	1.52E-2	
120	15 Jul (195)	16	1410	14 IN, 39 W	IVIO.7	1454	409	0,0,0,- = > > > >	195/0200	0.3/EI 3.44E2	9.00E-2	2.25E-2	- 1.40E - 2	
121	25 Jul (207)	10	0516		CO 4	1454	1333	2,2,2,2 1	207/1900	3.44E3	3.30E0	0.00E-1	1.496-2	Р
122	3 Jul (2 3)	<2/	1646	3, 95 VV	C0.4	0554	1192	-,-,- 	213/1000	1.40EZ		1 2250	1 0 2 5 1	_
123	19 Sep (203)	18	1040	U3 IN, 58 W	M1.9	ag ocra	ag	3,3,3,3	263/1900	0.02E3	4.46EU	1.32EU	1.03E-1	ag
124	30 Oct (304)	12	1120	15 N, 22 W	1V14.2	1220	422	0,6,0,0	304/0800	9.10EZ	-0.00E0	2.1/E-2	5.//E-5	P D
125	30 Oct (304)	15	1610	12 N, 20 W	X1.2	1230	427	0,0,8,-	304/1300	3.38E3	1.50E-1	-8.8868	_	P
120	30 OCL (304)	17	1010	15 N, 20 W	ND.9	1054	1750	0,0,0,-	304/1800	4.1053	2.01E-1	4.05E-2	-	r D
127	7 NOV (312)	17	1542	09 N, 17 W	X2.0	1004	1/59	2,3,3,3	312/2100	4.42E3	5.30ET	8.91E0	1.96E-1	
120	9 NOV (514)	19	0150	07 N, 51 W	100.9 V 2 F	0226	2000	2,2,2,2 2 2 2 2 2	314/2000	4.21ES	9.25EU	1.49E0	5.01E-2	
129	10 1007 (315)	03	0159	09° N, 49° W	X2.5	0226	2000	3,3,3,3	315/0900	5.90E3	2.22E1	7.70E0	4.50E-1	Р
130	17 Jan (017)	10	0659	15°N 25°W	X3.8	0954	2005	4444	017/1700	1 81F5	1 96F2	1 16F2	1 73F1	Р
131	20 Jan (020)	06	0636	14°N 61°W	X7 1	0654	~2500	4444	020/0900	1 39E5	5 26F1	3 55F1	1 56E1	P
132	6 May (126)	03	0305	04°S 71°W	(93	0330	1120	000-	126/0400	9.17F2	2 10F-1	2 33F-2	-	P
132	6 May (126)	12	1111	04°S 76°W	M1 3	1154	1144	000-	126/1200	8.65F2	3 20F-1	2.60F-2	_	P
134	11 May (120)	20	1922	10°S 55°W	M1.1	2013	550	0,0,0,-	131/2100	7 50F1	5.49E-2	1.11F-2	_	P
135	31 May (151)	16	1433	12°N 22°W	C2 4	1532	313	3	151/1800	2.85F1	-		_	NP
136	14 Jun (165)	06	0654	10°N 48°W	C4 2	0724	701	2	165/1900	5.03E1	_	_	_	NP
130	14 Jun (167)	20	2001	09°N 85°W	M4.0	da da	da	2222	167/2300	5.73F3	2 04F0	1 16F0	2 35F_1	da
132	9 Jul (190)	20	2001	11°N 27°W	M2.8	2230	1540	2,2,2,3 2 2 2 2 2	101/0300	5.51E2	1.07F_1	3 54E_2	3.60F_3	NP
130	12 Jul (193)	10	1547	11°N 67°W	M1 5	1654	523	ΔΔ	193/1800	1.35E2	3.05E-2	J.J+L-2	J.00L-J	D
140	13 Jul (193)	05	0235	18°N 82°M	M1.5	0306	759	4	194/0700	1.35LZ	J.0JL-2	_	_	P
140	13 Jul (194)	14	1401	11°N 78°\//	M5.0	1430	1423	4,-,-,- A A A A	194/1600	2.26E3	1 43E0	2 48F_1	- 7 72F_3	P
142	14 Jul (195)	11	1016	08°N 89°M	X1 2	1030	2115	т,т,т,т А А А А	195/2200	5.80F3	1.45E0	2.40L-1	1.72L-J	P
142	22 Aug (234)	01	0044	09°5 48°\	M2.6	0131	110/	0000	234/0300	1 3353	7 19F_1	1.41F_1	6 14F_3	P
144	22 Aug(234)	19	1646	12°5 60°\	M5.6	1720	2379	1 1 1 1	234/2200	1 2054	3 80E1	8 3650	2 525 1	P
144	22 Aug (234)	10	1040	12 3,00 W	0.01	1750	2370	1,1,1,1	234/2300	1.2964	3.00E1	0.30EU	2.326-1	г

Table 1. (continued).

Event	Onset Proton	Event ^a		Flare Event ^b		CN	1E ^c	Event	t _{max}	Peak ^f	Peak ^f	Peak ^f	Peak ^f	Prec.
#	Day of Year	Hour	Onset	Site	F _{SXR}	Time	V _{CME}	Class ^d	DE4 ^e	DE4	P3	P4	P5	CME ^g
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
							2006							
145	6 Jul (187)	09	0813	11°S, 32°W	M2.5	0854	911	0,0,0,0	187/1300	5.97E1	1.33E-1	4.98E-2	7.72E-3	Р
146	13 Dec (347)	02	0214	06°S, 23°W	X3.4	0254	1774	0,0,0,0	347/0500	4.78E4	2.43E1	2.01E1	5.83E0	NP ^h
147	14 Dec (348)	22	2107	07°S, 46°W	X1.5	2230	1042	3,3,3,3	348/2300	2.35E3	1.35E1	4.68E0	3.71E-1	NP ^h

^aOnset time of proton event as identified by *Cane et al.* [2010]. If the time is > 23 h then the time is the following day. Times preceded by < indicate that the event had a slow rise.

^bFlare associated with the solar origin of the SEP event as identified by *Cane et al.* [2010], including the onset of the soft X-ray emission, the H α site, and the X-ray GOES class. A question mark indicates that no soft X-ray flare was observed.

^cPrimary CME associated with the origin of the SEP event, including the time of the first observation in LASCO coronagraphs and the plane-of-sky CME speed.

^dEvent class according to the criteria described in section 2.1 for the energy channels DE4 (175–315 keV electrons), P3 (9–15 MeV protons), P4 (15–40 MeV protons), and P5 (40–80 MeV protons). The symbol "–" indicates that no intensity enhancement is observed in that energy channel, and "8" that no peak intensity in the prompt component of the event has been identified.

^eTime when the peak intensity in the prompt component of the event in the DE4 175–315 keV electron channel of ACE/EPAM was observed, in units of day of year/nearest hour.

^fPeak intensity in the indicated energy channel (DE4 for 175–315 keV electrons, P3 for 9–15 MeV protons, P4 for 15–40 MeV protons, and P5 for 40–80 MeV protons) in units of particles cm⁻² s⁻¹ sr⁻¹ MeV⁻¹. The value –8.88E8 indicates that no peak intensity in the prompt component of the SEP event was identifiable.

^gEvent classification based on the criteria described in section 2.2. P indicates events with a preceding CME, NP without a CME listed in the CDAW catalog, and dg event occurring during a LASCO data gap.

^hDing et al. [2013] identified a preceding CME with a width $< 60^{\circ}$ within 9 h of the primary CME.

ⁱGopalswamy et al. [2004] determined that a major preceding eruption occurred from the same active region as the primary CME, but the primary CME followed so closely that would have overtaken the preceding CME within the occulting disk of LASCO.

^jDing et al. [2013] identified a wide (> 60°) preceding CME using the CACTuS database of CMEs but not listed in CDAW.

^kThe indicated time of maximum does not refer to the energy channel DE4 but to the lowest proton energy with an identifiable peak intensity.

2.1. SEP Event Classification Based on In Situ Observations of ICMEs

We propose a first classification scheme for the SEP events based on the presence or absence of ICMEs as determined from in situ observations of ICMEs. In order to determine the absence or presence of an ICME, we rely on the list of near-Earth ICMEs compiled by Richardson and Cane and posted on www.srl.caltech. edu/ACE/ASC/DATA/level3/icmetable2.htm. The criteria and parameters used by Richardson and Cane to identify the passage of near-Earth ICMEs are described in *Cane and Richardson* [2003] and *Richardson and Cane* [2010].

Figure 1. Schematic representation of the interplanetary environment where SEP events occur for Classes 0 to 4. The big solid black dot identifies the location of the observer when the peak intensity of the prompt component of the SEP event is observed. (a) Class 0 events occur under undisturbed solar wind conditions represented here by a nominal Parker spiral interplanetary magnetic field. If the peak intensity of the prompt component of the event is observed when (b) a prior ICME is located between the Sun and the observer, the SEP event is classified as Class 1; (c) when the observer is in the sheath region of a prior ICME, the SEP event is Class 2, (d) when the observer is within a prior ICME, the SEP event is Class 3, and (e) when the ICME is located beyond the spacecraft, the SEP event is Class 4. Class 5 events (not plotted) occur when two or more ICMEs are present in the interplanetary medium with one ICME located beyond the observer and another ICME between the Sun and the observer. The schematic Figures 1b–1e have been adapted from *Cane and Lario* [2006].

Figure 2. Examples of SEP events showing their classification according to the presence/absence of ICMEs in the IP medium. From top to bottom each panel shows hourly averages of the solar wind speed, magnetic field magnitude, magnetic field azimuth, and elevation angles in the RTN coordinate system, 175–315 keV electron intensities, and 9–15 MeV proton (P3, blue), 15–40 MeV proton (P4, orange) and 40–80 MeV proton (P5, red) intensities. The gray bars indicate the passage of ICMEs and the thin vertical solid lines the passage of IP shocks. The green horizontal arrows indicate, for those ICME that have an associated LASCO CME, the time spent by the CME-driven shocks to travel from Sun to 1 AU.

Figure 1 is a schematic representation of the IP environment assumed for each class of event. The large solid black dot in Figure 1 identifies the location of the observer at the time when the maximum intensity of the prompt component of the SEP events is observed. Although in our study the observer is always located near Earth at ~1 AU from the Sun, for illustration purposes, its location with respect to the presence of the ICME in the IP medium has been displaced in Figure 1.

A SEP event is classified as Class 0 when it is observed in absence of ICMEs. We have arbitrarily considered that no ICME is present during the development of a SEP event when no ICME is listed for a period of 72 h prior to and after the observation of the peak intensity in the prompt component of the event. Note that we exclude the observation of the ICME associated with the parent CME that generated the SEP event which usually occurs late in the event (i.e., well after the prompt component of the SEP event is measured) and

Figure 3. The same as Figure 2 for five additional SEP events listed in Table 1. The purple numbers indicate the class of the SEP events for the DE4 175–315 keV electron channel.

only in the case of events associated with Earth-directed CMEs. The assumption is that a Class 0 SEP event (Figure 1a) occurs under undisturbed solar wind conditions, i.e., without the presence of any preceding ICME either between the Sun and Earth or beyond Earth.

Class 1 events (Figure 1b) are those SEP events in which an ICME is present between the Sun and Earth at the time when the peak intensity of the prompt component of the SEP event is observed. In these events, the ICME arrives at Earth shortly after the maximum intensity of the SEP is observed and the ICME is not associated with the parent CME that originated the SEP event. Class 2 events (Figure 1c) are those SEP events in which the maximum particle intensity happens to occur between the passage of a preceding shock and the ICME that presumably was responsible for the origin of the shock previously observed. In other words, Class 2 events is when the peak intensity is observed in the sheath formed between the shock and the ICME of a preceding event. If the preceding ICME did not drive a shock, the SEP event is then classified as Class 1.

Class 3 events (Figure 1d) are those SEP events with peak intensities observed when Earth is immersed within a preceding ICME. Class 4 events (Figure 1e) are those SEP events observed after the passage of an ICME. We have arbitrarily considered an upper limit of 72 h between the passage of the rear edge of the preceding ICME and the observation of the peak intensity in the prompt component of the SEP event (an ICME moving at 600 km s⁻¹ would move ~1 AU in these 72 h). Finally, we added a Class 5 to include those SEP events in which ICMEs are observed before and after the peak intensity of the prompt component of the peak intensity of the prompt component is observed when Earth is immersed in an ICME, but other ICMEs are observed before and after, we have prioritized the fact that the peak of the event occurs inside an ICME and classified the event as Class 3.

Figures 2 and 3 show several examples of SEP events in each group. Each panel shows, from top to bottom, solar wind speed, magnetic field magnitude, and magnetic field orientation in the RTN coordinate system, as measured by the ACE spacecraft, the 175–315 keV electron intensities measured by the ACE/EPAM DE4 electron channel and the proton intensities in the differential energy channels P3 (9–15 MeV), P4 (15–40 MeV), and P5 (40–80 MeV) of GOES/EPS. The vertical gray bars indicate the passage of ICMEs identified by Richardson and Cane and the thin solid vertical lines the passage of interplanetary shocks. For some of these ICMEs, Richardson and Cane identify their most probable solar origin as seen by LASCO. The green horizontal arrows in the solar wind and proton flux panels identify the time interval spent by the CME-driven shock to travel from Sun to ACE according to the identification made by Richardson and Cane. That allows

Figure 4. Distribution of the particle peak intensities for the different energy channels (from left to right DE4, P3, P4, and P5) and (a) for all the events regardless of their class association (top row) and (b–g) for the events in Classes 0, 1, 2, 3, 4 and 5 (from top to bottom). The dashed vertical line indicates the mean peak intensity *M*, and *n* the number of events in each distribution.

us to distinguish whether the observed ICME resulted from the CME at the Sun associated with the onset of the SEP event.

Figure 2 (top, left) shows the SEP event on day 140 of 2001 (event #64 in Table 1). This SEP event was observed under a relatively steady solar wind magnetic field without the presence of ICMEs before or after the event; therefore, we have classified this event as Class 0. Figure 2 (top, right) shows the event on day 101 of 2002 (event #82 in Table 1). Just a few hours after the peak of the event, an ICME without any clear parent coronagraph CME associated with it was observed early on day 102. The solar wind speed observed in this ICME implies that, at the time when the peak intensity of the event was observed, the ICME was located between the Sun and Earth; therefore, this ICME was an intervening structure for the SEPs, and we classify this event as Class 1. Figure 2 (bottom, left) shows the event on day 290 of 2000 (event #51 in Table 1) with

peak intensity observed 1.5 days after the passage of an ICME; therefore, this ICME was beyond Earth when the peak intensity was observed and we classify this event as Class 4.

Figure 2 (bottom, right) shows two SEP events with onsets early on day 347 and late on day 348 of 2006, respectively (events #146 and #147 in Table 1). No preceding ICME was observed before the first SEP event; therefore, we classify the event on day 347 as Class 0. The maximum intensity of the SEP event on day 348 was observed during the passage of an ICME (note that this ICME was the interplanetary counterpart of the CME associated with the origin of the SEP event #146 as indicated by the green horizontal arrow). Although the following ICME observed on day 350 acted as an intervening structure for the event on day 348, we prioritize the fact that the peak intensity occurred inside an ICME and classify this event as Class 3.

Figure 3 (left) shows two SEP events with onsets on day 175 and 177 of 2000 (note that the event with onset on day 174 was not included in the list of *Cane et al.* [2010], and therefore, it is not considered in our study). The peak intensity of the event on day 175 (event #42 in Table 1) occurred between the passage of an IP shock and an ICME, therefore, we classify this event as Class 2. The peak intensity of the prompt component of the SEP event with onset on day 177 (event #43 in Table 1) occurred within the passage of an ICME, therefore, we classify this event #43 in Table 1) occurred within the passage of an ICME, therefore, we class 3.

Finally, Figure 3 (right) shows a sequence of three SEP events in November 1997. The first two events with onsets on days 307 and 308 (events #1 and #2) are Class 0 because no ICME was observed prior to or after the peak intensity of these events. The peak intensity of the event with onset on day 310 (event #3 in Table 1) was observed before the passage of the shock on day 310 in the energy channels DE4 and P5; however, the peak intensity in the energy channels P3 and P4 was observed in the sheath region of the following ICME (this ICME was the interplanetary counterpart of the CME that generated the SEP event with onset on day 308 as indicated by the green horizontal arrow). Since our classification of the events is based on the conditions at the time of the peak intensity, the class assigned to each event may depend on the selected energy channel. Therefore, the event on day 310 of 1997 is Class 1 for the channels DE4 and P5, but Class 2 for the energy channels P3 and P4.

Column 9 of Table 1 provides the classification of the SEP events according to the scheme above described. We list from left to right and separated by commas the class of the event for the DE4 (175-315 keV) electron channel, the P3 (9–15 MeV), P4 (15–40 MeV), and the P5 (40–80 MeV) proton channels. We have indicated by "-" when the event does not show any particle increase above the preevent background intensity in the corresponding energy channel and by "8" when the event does not show a peak intensity in its prompt component. For most of the events, the same Class applies to all energy channels, however, when the peak of the event is observed near the passage of a preceding ICME, different classes may apply to the different energy channels owing to the observation of the peak intensity on different side of the preceding IP structures. Note that we use 1 h resolution data for both particle peak intensity and ICME boundary identification. Slight differences in the event classification may appear when considering the use of higher time resolution data and the delay for the IP structures to travel from L1 to GOES. Column 10 of Table 1 lists the time where we have identified the maximum peak intensity in the 175–315 keV electron channel. Columns 11–14 provide the maximum intensity of the prompt component of the events in the DE4 175–315 keV electron channel, and the P3 9–15 MeV, P4 15–40 MeV, and P5 40–80 MeV proton channels, respectively. When the SEP event does not show a peak intensity in their prompt component, we have either neglected the event or indicated by -8.88E8 in Table 1 the energy channel where no peak intensity was identifiable.

Figure 4a (top row) shows the peak intensity distributions for all events listed in Table 1 for the energy channels DE4, P3, P4, and P5 (from left to right) regardless of their associated class. Figures 4b–4g show the distribution of the peak intensities for each energy channel (from left to right, DE4, P3, P4, and P5) and for the events, from top to bottom, in Classes 0, 1, 2, 3, 4, and 5. We have indicated in each panel the number of events *n* and the mean value of the logarithms of the peak intensities *M* together with their standard error. We note the low statistics in Classes 1, 2, and 5. The general trend is that the distributions of Class 0 events peak at low intensities, whereas the distributions of Class 3 and Class 4 events extend over a broad range of intensities with larger mean values than Class 0 events. The high-intensity events within Classes 3 and 4 contribute to extend the high-intensity tail in the distributions of all events (top row). The two-sample Kolmogorov-Smirnov test applied to the distribution of events Class 0 and Class 3 indicates that the probability that both distributions are drawn from a single parent distribution is less than 1%. The probability that the distributions of events in Class 0 and Class 4 are derived from the same parent distribution is less than

Table 2. Properties of the Primary and Preceding CMEs for the SEP Events Classified as P and NP* ^a

Event			Prima	ary CME					Preced	ing CME		
# (1)	Date (2)	Time (3)	PA (4)	W (5)	V _{CME} (6)	Flare ^b (7)	Date (8)	Time (9)	PA (10)	W (11)	V _{CME} (12)	Flare ^c (13)
001	1997/11/3	11:11	233	122	0352	S17° W022°	1997/11/03	09:53	238	071	0338	S20° W015°
002	1997/11/4	06:10	Halo	360	0785	S14° W033°	1997/11/03	11:11	233	122	0352	S17° W022°
003	1997/11/6	12:11	Halo	360	1556	S18° W063°	1997/11/06	04:20	263	059	0307 ^d	S15° W056°
006	1998/4/20	10:07	284	243	1863	S W090°	1998/04/20	03:16	237	043	0316 ^d	-
007	1998/5/2	14:06	Halo	360	0938	S15° W015°	1998/05/02	05:32	Halo	360	0542	S20° W007°
008	1998/5/6	08:29	309	190	1099	S11° W065°	1998/05/06	00:02	274	110	0786	S16° W060°
015	1998/11/5	20:44	Halo	360	1118	N26° W018°	1998/11/05	02:03	Halo	360	0380	N19° W013°
024	1999/6/27	09:06	349	086	0903	N22° W026°	1999/06/26	19:54	Halo	360	0364	-
025	1999/8/28	18:26	120	245	0462	S26° W014°	1999/08/27	20:26	069	153	0769	-
026	1999/12/28	00:54	293	082	0672	N20° W056°	1999/12/27	12:30	292	061	0302	N22° W042°
027	2000/2/12	04:31	Halo	360	1107	N26° W024°	2000/02/11	21:08	277	173	0498	N26° W020°
029	2000/3/3	02:30	233	098	0841	S15° W060°	2000/03/02	13:54	235	076	0835	S20° W058°
035	2000/5/4	11:26	235	>170	1404	S20° W090°	2000/05/04	04:50	239	062	1064	S14° W090°
041	2000/6/18	02:10	307	132	0629	N23° W085°	2000/06/17	04:40	293	098	0659	N22° W072°
042	2000/6/23	14:54	282	>198	0847	N23° W072°	2000/06/23	05:54	311	078	0535	N21° W069°
048	2000/9/9	08:57	271	180	0554	N07° W067°	2000/09/09	01:59	282	112	0508	N07° W060°
049	2000/9/19	08:50	283	076	0766	N14° W046°	2000/09/18	23:50	268	120	0359	N15° W038°
050	2000/10/9	23:50	Halo	360	0798	N01° W014°	2000/10/09	14:06	262	193	0383	N00° W017°
052	2000/11/08	23:06	271	>170	1738	N10° W075°	2000/11/08	17:06	252	042	0391ª	N11° W079°
054	2001/1/28	15:54	Halo	360	0916	S04° W059°	2001/01/28	09:30	270	079	0638	-
057	2001/3/29	10:26	Halo	360	0942	N16° W012°	2001/03/28	19:27	135	059	0258	N14° W005°
059	2001/4/2	22:06	261	244	2505	N17° W072°	2001/04/02	12:50	257	155	0731	N15° W060°
060	2001/4/12	10:31	Halo	360	1184	S20° W042°	2001/04/11	13:32	Halo	360	1103	S22° W027°
061	2001/4/14	17:54	263	113	0830	S17° W071°	2001/04/14	09:30	264	103	0310	S18° W067°
062	2001/4/15	14:06	245	167	1199	S20° W084°	2001/04/14	17:54	263	113	0830	S16° W071°
063	2001/4/26	12:30	Halo	360	1006	N17° W031°	2001/04/26	08:30	332	091	0740	N24° W027°
074	2001/10/19	01:27	Halo	360	0558	N16° W018°	2001/10/18	16:26	236	065	0325	N16° W013°
075	2001/10/19	16:50	Halo	360	0901	N15° W029°	2001/10/19	01:27	Halo	360	0558	N16° W018°
077	2001/11/4	16:35	Halo	360	1810	N06° W018°	2001/11/04	14:10	302	110	0844 ⁴	-
0/8	2001/12/26	05:30	281	>212	1446	N08° W054°	2001/12/26	02:06	283	021	08004	-
084	2002/4/15	03:06	308	055	0674	N19° W079°	2002/04/14	07:50	323	0/6	0/5/	N19° W057°
087	2002/5/22	03:50		300	1557	522° W053°	2002/05/22	00:06	230	180	1240	-
091	2002/8/5	07:32	2/3	162	1270	507° W045°	2002/08/04	21:30	201	083	0010	-
093	2002/8/10	11.00	293	102	13/8		2002/08/15	22:30	301	140	0602	- 6129 W0109
095	2002/0/19	00.54	221	102	1000	512 WU25	2002/06/16	21:54	205	140	0062	512 W019
090	2002/6/20	00:54	237 Halo	260	0009	S10 W050	2002/08/20	01:54	244	077	0901	511 W055 511° W047°
097	2002/8/22	02.00	Halo	360	1013	507 W002 507° W081°	2002/08/21	12.27	240	103	0321	SU10 MO42
101	2002/8/24	12.27	Halo	360	1915	502 W001 \$12° W020°	2002/08/23	12.27	106	062	0321	507 W082 \$12° W010°
101	2002/11/9	12.52	Halo	360	1030	512 W029 500° W046°	2002/11/08	12.30	263	2002	1601	S12 W019
103	2003/3/10	00.50	272	060	0710	509 W040 \$10° W088°	2003/03/18	03.50	203	209	0217	515 0040
104	2003/4/7	09.50	272	248	0916	N22° W025°	2003/04/07	21.04	275	095	0217	- N20º W014º
105	2003/4/23	13.27	317	240	0609	N21° W025	2003/04/22	16.50	343	105	0505	N20° W077°
100	2003/5/28	00.50	Halo	360	1366	S06° W020°	2003/04/23	23.50	Halo	360	0964	S07° W017°
111	2003/3/20	17.54	270	×171	1537	N02° W020	2003/05/27	05.30	267	086	0504	-
112	2003/10/20	17.34	Halo	360	2598	S14° W056°	2003/10/20	23.07	254	000	0899	\$12° W060°
112	2003/11/2	19.54	Halo	360	2657	S19° W083°	2003/11/04	12.54	263	072	0605	-
115	2003/11/20	08.06	Halo	360	0669	N03° W012°	2003/11/20	02.50	203	063	0364	N03° W008°
121	2003/11/20	14.54	Halo	360	1333	N04° W033°	2003/11/20	23.50	217	078	0555	N03° W026°
124	2004/10/30	06.54	Halo	360	0422	N13° W022°	2004/10/30	03.54	321	060	0138	N13° W020°
125	2004/10/30	12:30	Halo	360	0427	N12° W026°	2004/10/30	09:54	265	074	0552	N14° W024°
126	2004/10/30	16:54	Halo	360	0690	N13° W028°	2004/10/30	12:30	Halo	360	0427	N12° W026°
127	2004/11/7	16:54	Halo	360	1759	N09° W017°	2004/11/07	14:30	286	100	0226	N08° W014°
129	2004/11/10	02:26	Halo	360	2000	N09° W049°	2004/11/09	17:26	Halo	360	2000	N07° W051°
130	2005/1/17	09:54	Halo	360	2547	N15° W025°	2005/01/17	09:30	Halo	360	2094	N13° W023°
131	2005/1/20	06:54	Halo	360	2500	N14° W061°	2005/01/19	08:30	Halo	360	2020	N15° W051°
132	2005/5/6	03:30	280	109	1120	S04° W071°	2005/05/05	20:30	Halo	360	1180	S04° W067°
133	2005/5/6	11:54	277	129	1144	S04° W076°	2005/05/06	03:30	280	109	1120	S04° W071°
134	2005/5/11	20:13	Halo	360	0550	S10° W055°	2005/05/11	07:32	236	095	0305	S11° W045°
139	2005/7/12	16:54	Halo	360	0523	N11° W067°	2005/07/11	17:30	275	069	0462	N14° W056°

Table 2.	(continued).											
F urnet			Primar	y CME					Preced	ing CME		
#	Date	Time	PA	W	VCMF	Flare ^b	Date	Time	PA	W	V _{CMF}	Flare ^c
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
140	2005/7/13	03:06	288	054	0759	N18° W082°	2005/07/12	16:54	Halo	360	0523	N11° W064°
141	2005/7/13	14:30	Halo	360	1423	N11° W078°	2005/07/12	16:54	Halo	360	0523	N11° W067°
142	2005/7/14	10:54	Halo	360	2115	N08° W089°	2005/07/14	07:54	266	103	0752	N11° W073°
143	2005/8/22	01:32	Halo	360	1194	S09° W048°	2005/08/21	12:06	267	061	0287	S09° W042°
144	2005/8/22	17:30	Halo	360	2378	S12° W060°	2005/08/22	01:32	Halo	360	1194	S11°W054°
145	2006/7/6	08:54	Halo	360	0911	S11° W032°	2006/07/06	01:32	219	110	0250	_
146	2006/12/13	02:54	Halo	360	1774	S06° W023°	2006/12/12	20:28	193	050	0474 ^d	-
147	2006/12/14	22:30	Halo	360	1042	S07° W046°	2006/12/14	20:30	237	016	0316 ^d	-

^aAs listed in cdaw.gsfc.nasa.gov/CME_list where Time indicates the first observation time of the CME in LASCO images on the indicated day, PA is the position angle (in degrees), W is the CME width (in degrees) and V_{CME} the plane-of-sky speed (in km s⁻¹). Note that the properties of the preceding CME for event on day 111 of 2002 classified as NP* [or Other by *Gopalswamy et al.*, 2004] do not exist. Dates are formatted as year/month/day.

^bFlare location as listed in Table 1 of *Cane et al.* [2010].

^cFlare location based on either the occurrence of a solar flare listed in www.swpc.noaa.gov or the observation of an EIT eruption.

^dFor some of the most intense SEP events, *Ding et al.* [2013] identified a $< 60^{\circ}$ CME preceding the primary CME.

30% for energy channels P3 and P4, 48% for P5 and 66% for DE4. We conclude that significant differences exist between the peak intensity distributions of Class 0 and Class 3 events, whereas for Class 4 these differences are more significant in Channels P3 and P4 than in P5 and DE4. For the other classes, the uncertainties associated with the low statistics of each group do not allow us to draw firm conclusions.

2.2. SEP Event Classification Based on Coronagraph CME Observations

The use of near-Earth in situ ICME observations to determine the properties of the interplanetary medium where SEPs propagate is very limited, especially for those events classified as Class 1 for which we inferred the presence of an ICME located between the Sun and the observer. Figure 5 of Richardson and Cane [2010] shows that ICMEs detected at Earth can originate from longitudes ranging from E50° to W50° with a clear predominance of CMEs launched from longitudes close to the Sun-Earth line (64% of ICMEs observed near Earth originate from a range of longitudes $\pm 20^{\circ}$ from central meridian). The prompt observation of SEPs requires the injection of particles onto a field line connecting with the observer which usually resides at the west of the Sun-Earth line (~W60° for slow solar wind conditions). For SEP events in Classes 2 and 4, we can be certain that the observation of an ICME or a shock prior to the peak intensity of the SEP event implies that such IP structures were located beyond Earth at the time when the bulk of SEPs reached the observer, and that most likely these structures, because of their angular extent, might have had a real effect in reflecting SEPs back to the observer. For SEP events in Class 3, we can also be certain that the in situ observation of an ICME during the maximum of the SEP event implies that the bulk of particles propagated within the ICME to reach the observer and that most likely their transport was controlled by such structure. However, for SEP events in Class 1, the observation of a preceding ICME after the onset of the SEP event does not imply that the transport of SEPs has been affected by the presence of this ICME. For example, it is easy to envision the launch of a preceding CME from an active region in a longitude close to the Sun-Earth line followed by the occurrence of a western flare from an unrelated active region located close to the root of the IMF line connecting the observer with the Sun. Depending on the time elapsed between the launch of the preceding CME and the injection of SEPs by the primary CME, it is possible that the SEP propagation toward the observer is not affected by the preceding CME. For this reason, we have added an alternative criterion to determine whether a preceding ICME was present between the Sun and Earth when the injection of SEPs from the primary CME took place.

In order to identify whether an ICME was present in IP space before the occurrence of the main CME and that most likely this preceding ICME affected the transport of the SEPs injected at the time of the primary CME, we have applied the same criteria used by *Gopalswamy et al.* [2004]. We have searched for preceding CMEs ejected from the same source region as the primary CMEs satisfying the following two criteria: (1) the preceding CME should have been launched within 24 h ahead of the onset time of the primary CME and (2) the preceding CME must be wider than 60°.

The selection of 24 h as a time window to determine the precedence of a CME comprises a wide range of heliocentric distances where the preceding CME might have been located at the time of the SEP injection,

Figure 5. SEP peak intensities versus sky-plane speed of the associated primary CMEs. The dashed straight lines $(j \propto v^{\alpha})$ are visual indications of the upper limit of the SEP peak intensities. The letters S, C, O, and R indicate the type of CME according to the scheme proposed by *Evans et al.* [2013].

but mostly within 1 AU and thus located between the Sun and Earth. For example, a preceding CME moving at 400 km s⁻¹ would be located at ~0.23 AU from the Sun in these 24 h whereas a preceding CME at 1500 km s⁻¹ would be at ~0.87 AU. For shorter elapsed times between the preceding and the primary CMEs, the preceding CME will be closer to the Sun at the time when the primary CME is ejected.

The condition that the preceding CME originates from the same active region as the primary CME implies that SEPs injected at the time of the primary CME must propagate through field lines distorted by the preceding CME. The condition that the preceding CME must be wider than >60° increases the probability that a wide region of the interplanetary medium was affected. The use of wide CMEs also responds to the technical difficulty of detecting narrow CMEs from close to the disk center using coronagraph observations.

We have based our study on the catalog of CMEs observed by LASCO posted on cdaw.gsfc. nasa.gov/CME_list/ and described in Yashiro et al. [2004]. The identification of the solar origin of the preceding CMEs was based on either prior reports [e.g., Gopalswamy et al., 2004; Ding et al., 2013] or inspection of images from the Extreme-ultraviolet Imaging Telescope (EIT) on board SOHO. Owing to the uncertainties in the origin of the events occurring behind the limb, we have classified only those events with identifiable origin on the visible side of the Sun (as seen from Earth). We have indicated in Column 15 of Table 1 whether a preceding CME fulfilling the above criteria was identified in the catalog (P) or not (NP). For a few events, a CME fulfilling the criteria of width and time, and moving the same direction as the primary CME, was observed but we could not identify its origin (indicated by Y in Column 15 of Table 1). A few events with data limitations (indicated by dg in Column 15 of Table 1) did not allow us to determine if a preceding CME was present. Out of the 147 SEP events of Table 1, 126 events were associated with solar activity in the visible solar disk, 11 occurred during LASCO data gaps, two events were classified as Y, 61 as P, and 52 as NP.

Among the most intense SEP events classified as NP, we distinguish also those that either *Ding et al.* [2013] identified the occurrence of a preceding CME not listed in the CDAW catalog, or *Gopalswamy et al.* [2004] identified the occurrence of a preceding eruption not registered in the LASCO catalog of CMEs because the primary CME followed so closely that it overtook the preceding CME within the occulting disk of LASCO. These latter SEP events are part of the group classified as "Other" by *Gopalswamy et al.* [2004]. We indicate in column 15 of Table 1 a total of eight events by NP* (where * indicates this particularity described in the

Figure 6. SEP peak intensities versus the soft X-ray solar flare peak flux. The dashed straight lines follow a law $j \propto (F_{SXR})^{1.59}$ inferred by *Cliver et al.* [2012].

footnotes of Table 1). Note that Column 15 of Table 1 does not constitute a complete list of this type of events since we have only indicated this possibility for the most intense SEP events where a preceding ICME was not listed in the CDAW catalog but other works identified some preceding activity.

Table 2 lists the properties of the primary and the preceding CMEs for those events classified as P or NP* in Table 1. Column 1 of Table 2 lists the event number as listed in Column 1 of Table 1. Columns 2-6 of Table 2 give the characteristics of the primary CME, including the date and first observing time, its position angle (PA) measured counterclockwise in the plane of sky from Solar North (in degrees), the angular width of the CME (W) and the CME speed (V_{CME}) estimated from linear time-position fits. Column 7 of Table 2 determines the location of the flare site associated with the primary CME. Both CME parameters and flare associations are based on Table 1 of Cane et al. [2010] and have been checked with the catalog of LASCO CMEs at cdaw.gsfc.nasa.gov/CME_list/. Columns 8–13 give the same parameters for the preceding CME. Note that if there were more than one preceding CME satisfying the above criteria, Table 2 lists the CME closest in time to the primary CME.

3. Relationship Between SEP Peak Intensities, CME Speed Type and Soft X-ray Flare Class

Figure 5 shows the SEP peak intensities listed in columns 11–14 of Table 1 versus the plane-of-sky speeds of the associated CMEs (listed in column 8 of Table 1). We have indicated in Figure 5 (bottom) the type of the CME according to the SCORE Scale proposed by *Evans et al.* [2013] based on the plane-of-sky CME speed (S for slow CMEs with speeds less than 500 km s⁻¹, C for common CMEs with speeds between 500 and 999 km s⁻¹, O for

occasional CMEs with speeds between 1000 and 1999 km s⁻¹, and R for rare CMEs with speeds between 2000 and 2999 km s⁻¹). The most common CME type associated with the selected SEP events is the O type. Figure 5 shows that the peak intensity versus the CME speed follows, in a good approximation, a triangular distribution. Prior attempts to find correlations between the logarithms of the SEP peak intensities and the logarithms of the CME speeds have indicated the large spread of peak intensities over several orders of magnitude for similar values of CME speeds [e.g., *Kahler*, 2001]. For a given CME speed, the range in associated SEP peak intensities extends over 3 or 4 orders of magnitude, making a possible prediction of peak intensities virtually impossible. Rather than trying to find a correlation between SEP peak intensity and CME speed (see, for example, *Gopalswamy et al.* [2004] and *Miteva et al.* [2013] for a discussion of the quality of correlations for different types or classes of events), we consider more appropriate the use of these triangular distributions as a method to provide upper limits to the particle intensity that can be observed in

Figure 7. The 9–15 MeV proton peak intensities versus sky-plane speed of the associated primary CME distinguishing the events in each class according to the presence/absence of ICMEs. The dotted vertical lines and the letters S, C, O, and R indicate the type of associated CME according to their sky-plane speed. The dashed lines indicate the slope $j \propto v^{4.90}$ plotted in the panel P3 9–15 MeV proton channel of Figure 5.

the prompt component of the SEP events. The dashed straight lines in each panel of Figure 5 provide, for a given CME speed and with the exception of a few events (see below), the upper limit of peak intensity to be observed in the prompt component of the associated SEP event.

The empty upper left triangles in the different panels of Figure 5 indicate that the most intense SEP events are associated with the fastest CMEs. On the other hand, Figure 5 also shows an empty lower right corner in the distributions indicating that the fastest CMEs do not produce low intensity SEP events. In other words, the type R CMEs are most likely to produce intense SEP events. *Gopalswamy et al.* [2008a] found that for western CMEs, the SEP association rate increases linearly from ~30% for 800 km s⁻¹ to 100% for >1800 km s⁻¹. However, it is worthwhile to indicate that some narrow fast CMEs have not been associated with SEP particle enhancements [e.g., *Kahler and Reames*, 2003; *Gopalswamy et al.*, 2008b].

Figure 6 shows the scatter plot of SEP peak intensities versus the associated flare soft X-ray peak 1–8 Å flux (F_{SXR}). Dependence between F_{SXR} and SEP peak intensities have been previously found with discreet correlation coefficients [e.g., *Gopalswamy et al.*, 2003; *Garcia*, 2004; *Park et al.*, 2010; *Cliver et al.*, 2012; *Miteva et al.*, 2013]. Although it is always possible to find a sufficiently high upper limit to the peak intensities of the SEP events, it is clear that such distributions are not so clearly defined as the distributions shown in Figure 5. The dotted lines in Figure 6 follow a law $j \propto (F_{SXR})^{1.59}$ that is the linear regression obtained by *Cliver et al.* [2012] using 58 >10 MeV proton SEP events but slid in both directions to determine a possible upper limit for the peak intensities as done in Figure 5. The largest peak intensity was associated with a M7.4 flare (event #52 on 2000/11/8), and there is a trend for the peak intensity distributions to flatten for flare classes above X10.

Energy	, see generating the second	CN	ИE			Flare		All
Channel	S	С	0	R	С	М	Х	Events ^b
DE4 all events	1.40E2 (14)	3.83E2 (48)	1.27E3 (60)	1.30E4 (11)	1.53E2 (33)	7.86E2 (72)	3.23E3 (36)	7.51E2 (145)
DE4 Class 0 (clean)	1.26E2 (9)	2.80E2 (18)	7.43E2 (25)	1.26E3 (1)	1.98E2 (14)	5.50E2 (29)	4.63E2 (12)	4.02E2 (59)
DE4 Class 1 (inter)	2.57E2 (1)	1.44E2 (4)	1.10E3 (5)	1.29E4 (1)	9.49E0 (6)	1.18E3 (3)	3.88E3 (3)	4.50E2 (12)
DE4 Class 2 (sheath)	- (0)	7.18E2 (6)	1.04E3 (4)	- (0)	5.03E1 (1)	9.62E2 (8)	4.42E3 (1)	8.34E2 (10)
DE4 Class 3 (inside)	9.60E1 (2)	1.05E3 (7)	3.86E3 (11)	2.90E4 (2)	2.85E1 (1)	1.80E3 (13)	5.38E3 (10)	2.39E3 (24)
DE4 Class 4 (after)	2.07E2 (1)	2.63E2 (11)	5.42E2 (7)	1.44E4 (7)	1.54E2 (9)	6.17E2 (12)	1.35E4 (7)	8.55E2 (28)
DE4 Class 5 (multi)	2.94E2 (1)	1.59E3 (2)	3.76E3 (8)	- (0)	4.18E2 (2)	7.45E2 (7)	3.75e4 (3)	1.80E3 (12)
P3 all events	8.63E-2 (11)	1.97E-1 (37)	1.85E0 (52)	1.99E1 (11)	1.47E-1 (24)	6.59E-1 (59)	4.84E0 (48)	7.69E-1 (120)
P3 Class 0 (clean)	9.47E-2 (6)	2.19E-1 (14)	1.01E0 (20)	4.51E0 (2)	2.76E-1 (11)	6.24E-1 (21)	7.30E-1 (10)	4.72E-1 (46)
P3 Class 1 (inter)	4.40E-2 (2)	1.11E–1 (4)	3.10E-1 (2)	3.80E1 (1)	5.66E-2 (6)	8.26E0 (2)	1.49E0 (2)	1.86E-1 (10)
P3 Class 2 (sheath)	- (0)	1.24E-1 (3)	8.35E-1 (3)	- (0)	- (0)	1.32E-1 (5)	2.73E1 (1)	3.22E-1 (6)
P3 Class 3 (inside)	4.14E-2 (1)	4.43E-1 (7)	6.75E0 (16)	4.64E1 (1)	1.90E-1 (1)	1.18E–1 (15)	1.16E1 (11)	2.79E0 (27)
P3 Class 4 (after)	1.11E0 (1)	1.35E-1 (7)	6.02E-1 (7)	2.45E1 (7)	1.51E-1 (5)	5.30E-1 (10)	9.73E0 (8)	1.11E0 (23)
P3 Class 5 (multi)	3.08E-2 (1)	1.30E-1 (2)	6.54E0 (4)	- (0)	3.08E-2 (1)	4.43E-1 (6)	1.26E2 (1)	6.43E-1 (8)
P4 all events	2.42E-2 (7)	5.13E-2 (34)	4.42E-1 (51)	7.33E0 (11)	3.21E-2 (19)	1.74E-1 (56)	1.86E0 (31)	2.37E-1 (110)
P4 Class 0 (clean)	2.45E-2 (4)	5.99E–2 (14)	2.12E-1 (19)	1.35E0 (2)	5.05E-2 (10)	1.60E-1 (21)	3.89E-1 (8)	1.22E-1 (43)
P4 Class 1 (inter)	7.75E–3 (2)	2.54E-2 (3)	2.27E-2 (3)	8.36E0 (1)	1.12E-2 (4)	1.95E-1 (3)	2.88E-2 (2)	3.58E-2 (9)
P4 Class 2 (sheath)	- (0)	2.15E-2 (3)	2.61E-1 (3)	- (0)	- (0)	2.67E-2 (5)	1.31E1 (1)	7.49E-2 (6)
P4 Class 3 (inside)	- (0)	1.02E-1 (7)	1.94E0 (16)	4.00E1 (2)	2.52E-2 (1)	3.73E-1 (14)	5.25E0 (12)	1.09E0 (27)
P4 Class 4 (after)	2.23E-2 (1)	4.18E-2 (6)	2.24E-1 (6)	7.15E0 (6)	3.15E-2 (4)	1.77E-1 (9)	2.62E0 (7)	3.22E-1 (20)
P4 Class 5 (multi)	- (0)	1.85E-2 (1)	1.46E0 (4)	- (0)	- (0)	1.69E-1 (4)	1.01E2 (1)	6.08E-1 (5)
P5 all events	4.66E-3 (3)	1.39E-2 (19)	6.87E-2 (39)	8.78E-1 (10)	4.48E-3 (7)	2.95E-2 (39)	2.88E-1 (29)	5.77E-2 (76)
P5 Class 0 (clean)	3.49E-3 (2)	1.58E-2 (8)	2.74E-2 (14)	6.35E-1 (1)	4.95E-3 (5)	2.52E-2 (14)	6.56E-2 (8)	2.33E-2 (28)
P5 Class 1 (inter)	- (0)	3.35E–3 (1)	2.34E0 (1)	2.52E-1 (1)	- (0)	2.52E-1 (1)	8.85E-2 (2)	1.25E-1 (3)
P5 Class 2 (sheath)	- (0)	3.25E-3 (2)	2.92E-3 (2)	- (0)	- (0)	3.08E-3 (4)	- (0)	3.08E-3 (4)
P5 Class 3 (inside)	- (0)	3.14E-2 (4)	1.94E-1 (13)	4.20E0 (2)	- (0)	8.10E-2 (10)	3.71E-1 (11)	1.80E-1 (21)
P5 Class 4 (after)	8.31E-3 (1)	1.43E-2 (4)	2.35E-2 (5)	6.77E-1 (6)	3.47E-3 (2)	2.01E-2 (8)	9.54E-1 (6)	6.86E-2 (16)
P5 Class 5 (multi)	- (0)	- (0)	4.47E-1 (4)	- (0)	- (0)	8.32E-2 (2)	2.40E0 (2)	4.47E-1 (4)

Table 3. Peak Intensity Averages for Each Energy Channel and Class of SEP Event^a

^aAverages computed using the logarithm of the peak intensities in each CME speed type (S, C, O, and R) and each soft X-ray flare class (C, M, and X) for the energy channels DE4 (175–315 keV electrons), P3 (9–15 MeV protons), P4 (15–40 MeV protons) and P5 (40–80 MeV protons). ^bRegardless of the type of CME or X-ray flare class associated with.

4. Peak Intensity Averages

Figure 7 shows the proton peak intensity measured in channel P3 (9–15 MeV) as a function of the CME speed for each class of event following the scheme described in section 2.1 to identify the presence or absence of ICMEs. The dashed straight lines are the same as shown for this energy in Figure 5 (e.g., $j \propto v^{4.90}$). With the exception of Class 0, the rest of the classes include events occurring in a disturbed IP medium. Note that the few events above the dashed straight lines correspond to events in Classes 3 and 4. It is well known that most of the fastest CMEs usually occur in series [*Ruzmaikin et al.*, 2011]. Therefore, it is not surprising that most of the events associated with R-type CMEs are in Class 4 and that only 25% of the events associated with CMEs of speeds >1500 km s⁻¹ are Class 0. Similarly, the most intense events with P3 peak intensity above 10² protons (cm² s sr MeV)⁻¹ occur only in Classes 3, 4, and 5. On the other hand, there is a general lack of intense events in Class 1, with only one event above 10¹ protons (cm² s sr MeV)⁻¹ or two events above 10⁰ protons (cm² s sr MeV)⁻¹.

For each type of the associated CME (S, C, O, and R) we have computed the number of events in each class and the average of the logarithms of their peak intensities. Table 3 lists, for each energy channel and each class of event, both the number of events (in parentheses) and the average of the logarithms of the peak intensities, observed in each CME speed type and each X-ray flare class. The limited number of events in some of these subgroups implies that comparisons of the averaged peak intensities of events associated with CMEs of similar speed or flares in the same X-ray class should be cautiously considered because of both poor statistics and the weight that the most intense SEP events have in computing the averaged peak intensity. The most populated classes of events associated with CMEs of similar speed are Class 3 and Class 0 associated with O-type CMEs. With the exception of events associated with S-type CMEs and C-class flares (where the number of Class 3 events is very low), Class 3 events always show, on average, higher peak

Figure 8. Average values of the peak intensities of the prompt component of the SEP events (black symbols) regardless of the associated CME speed or X-ray flare class and (gray symbols) associated with CMEs of speed $>1000 \text{ km s}^{-1}$, for SEP events of Classes 0 to 4 (from left to right) and the energy channels (from top to bottom) DE4, P3, P4, and P5. The numbers indicate the number of events in each class. The vertical bars indicate the standard errors obtained from the average of the logarithms of the peak intensities.

intensities than those of Class 0. For the rest of the classes, the number of events in each group should be carefully examined before comparison.

The last column of Table 3 shows the total number of events for which we were able to determine a peak intensity in their prompt component in each event class and for each energy channel regardless of the CME speed type or the X-ray flare class. Figure 8 shows the average values of the peak intensities for Classes 0 to 4 for all events regardless of the associated CME speed or X-ray flare (black symbols; i.e., the values listed in the last column of Table 3) and for those events associated with CMEs of speeds >1000 km s⁻¹ (gray symbols; i.e., adding the events associated with CME speed types O and R). Figure 8 shows that the events observed inside an ICME (Class 3) have, on average, higher peak intensities than the other classes of events, followed by events in Class 4 (i.e., observed when an ICME is beyond the observer). Differences in the averaged peak intensities among the different classes of events are more evident when the whole group of events regardless of the CME speed is considered (black symbols in Figure 8). Among the different energies and species analyzed, 175-315 keV electrons and low-energy protons show differences more accentuated among the averaged peak intensities in the different classes of events, whereas the differences are less apparent for P5 40-80 MeV proton intensities.

Figure 8 also shows that, when statistics are significant, the events with intervening ICMEs (i.e., Class 1 events) tend to have, on average and over the ensemble of events, low intensities, especially for 9–15 and 15–40 MeV protons. For 40–80 MeV protons the number of Class 1 events is very limited, whereas for 175–315 keV electrons, there is no significant difference between average peak intensities of Class 0 and Class 1 events. The difference between the average peak intensities of Class 0 and Class 1 events in the P3, P4, and DE4 energy channels is smaller that the difference between the average peak intensity of either Class 3 or Class 4 events and that of the Class 0 events. When con-

sidering only events associated with >1000 km s⁻¹ CMEs (gray symbols), the number of Class 1 events is not statistically significant to establish a firm comparison with the other classes.

As described in section 2.2, the use of near-Earth in situ ICME observations to determine the presence of an ICME between the Sun and Earth affecting the transport of SEPs may be limited. Therefore, we study here the dependence of the peak intensity for those SEP events associated with or without a preceding LASCO CME fulfilling the criteria described in section 2.2. Figure 9 shows, with the same format as Figure 5, the peak intensity of the SEP events as a function of the primary CME speed. The panels on the left column of Figure 9 consider all events classified in column 15 of Table 1 as P (red open circles), NP* (green solid symbols), and NP (blue crosses). In order to exclude the effects that preceding ICMEs located at or beyond 1 AU may have

Figure 9. SEP peak intensities versus sky-plane speed of the associated CMEs, distinguishing events with a preceding CME (open red symbols for events indicated by P in Column 15 of Table 1), and without a preceding CME (blue crosses for events indicated NP in Column 15 of Table 1 and green solid circles for events indicated NP* in Column 15 of Table 1). Left panels contain all events associated with flares on the frontside of the Sun and regardless of their class based on the in situ observation of ICMEs. Right panels contain only Class 0 and Class 1 events.

on the SEP peak intensities, we have considered, in Figure 9 (right), only those events that were classified as Class 0 or Class 1 according to the criteria described in section 2.1 (i.e., we have excluded events in Classes 2, 3, 4, and 5).

When considering all the possible classes of events (Figure 9, left), we see that there is a considerable overlap between the peak intensities of P and NP events; however, for the most intense SEP events, there is a preponderance of P and NP* events over the NP events. In spite of the overlap, for a given CME speed, Figure 9 (left) shows that the events without any preceding CME (blue crosses) tend to have lower intensities than the events with a preceding CME (red open and green solid symbols), corroborating the results of *Gopalswamy et al.* [2004]. We also see that most of the events associated with fast CMEs (type R) were preceded by a CME from the same source region because fast CMEs tend to occur in a sequence [e.g., *Ruzmaikin et al.*, 2011]. When considering only those events in Class 0 and 1 (Figure 9, right), the distributions become less populated with a deficit of intense events. There is also a significant deficit of NP events (blue crosses) in the proton energy channels associated with C-type speed CMEs. With the exception of six P and NP* events

Energy			U	ME			Flare		All
Channel		S	υ	0	R	υ	X	×	Events ^b
DE4 NP ^c	All Classes	9.60E1 (9)	2.32E2 (15)	1.63E3 (25)	1.34E4 (2)	1.49E2 (18)	9.05E2 (24)	3.43E3 (9)	6.05E2 (51)
	Only Class 0 and Class 1	8.58E1 (6)	2.90E2 (6)	1.57E3 (12)	- (0)	1.93E2 (12)	8.18E2 (9)	4.91E3 (3)	4.97E2 (24)
DE4 NP (excluding NP*) ^d	All Classes	9.60E1 (9)	2.32E2 (15)	5.37E2 (18)	5.13E3 (1)	1.49E2 (18)	5.38E2 (21)	2.69E2 (4)	2.94E2 (43)
	Only Class 0 and Class 1	8.58E1 (6)	2.90E2 (6)	4.21E2 (8)	- (0)	1.93E2 (12)	3.83E2 (7)	7.23E1 (1)	2.34E2 (20)
DE4 P	All Classes	2.67E2 (4)	5.73E2 (28)	2.02E3 (22)	2.70E4 (7)	1.83E2 (5)	6.92E2 (31)	5.45E3 (23)	1.34E3 (61)
	Only Class 0 and Class 1	2.67E2 (4)	2.64E2 (11)	8.92E2 (9)	1.29E4 (1)	1.42E2 (2)	4.32E2 (14)	7.68E2 (8)	4.79E2 (25)
og NPc	All Classes	9.87E-2 (8)	1.37E–1 (9)	3.02E0 (21)	3.85E1 (2)	1.38E-1 (13)	1.78E0 (18)	2.87E0 (9)	8.64E-1 (40)
	Only Class 0 and Class 1	8.01E-2 (6)	1.57E-1 (3)	3.52E0 (8)	(0) -	1.65E—1 (10)	3.27E0 (5)	2.03E0 (2)	5.35E-1 (17)
o3 NP (excluding NP*) ^d	All Classes	9.87E-2 (8)	1.37E–1 (9)	7.82E-1 (14)	6.36E1 (1)	1.38E-1 (13)	8.52E-1 (15)	8.48E-2 (4)	3.05E-1 (32)
	Only Class 0 and Class 1	8.01E-2 (6)	1.57E-1 (3)	1.04E0 (5)	(0) -	1.65E—1 (10)	7.80E-1 (3)	1.70E-1 (1)	2.31E-1 (14)
03 P	All Classes	7.27E-2 (2)	2.30E-1 (24)	2.21E0 (19)	4.66E1 (7)	1.74E—1 (3)	2.77E-1 (27)	7.92E0 (21)	1.03E0 (52)
	Only Class 0 and Class 1	7.27E-2 (2)	2.04E-1 (11)	5.17E—1 (7)	3.14E1 (2)	1.01E—1 (2)	3.66E—1 (12)	7.81E—1 (7)	3.94E—1 (22)
o4 NPc	All Classes	2.46E-2 (6)	3.36E-2 (8)	5.69E-1 (22)	9.23E0 (2)	2.91E-2 (10)	3.06E-1 (19)	1.06E0 (9)	2.21E-1 (38)
	Only Class 0 and Class 1	1.59E—2 (5)	7.88E—2 (2)	4.29E—1 (9)	(0) -	3.47E-2 (8)	4.08eE—1 (6)	5.63E-1 (2)	1.24E—1 (16)
24 NP (excluding NP*) ^d	All Classes	2.46E-2 (6)	3.36E-2 (8)	9.23E-2 (15)	1.11E0 (1)	2.91E-2 (10)	1.19E–1 (16)	2.05E-2 (4)	5.88E-2 (30)
	Only Class 0 and Class 1	1.59E—2 (5)	7.88E—2 (2)	6.68E—2 (6)	(0) -	3.47E—2 (4)	6.40E-2 (4)	1.58E—2 (1)	3.94E-2 (13)
24 P	All Classes	2.17E-2 (1)	6.04E-2 (22)	4.68E-1 (19)	1.96E1 (7)	2.92E–2 (3)	6.54E-2 (25)	3.38E0 (20)	2.99E-1 (49)
	Only Class 0 and Class 1	2.17E-2 (1)	4.87E-2 (11)	6.93E—2 (7)	8.56E0 (2)	1.53E—2 (2)	7.82E—2 (12)	2.72E-1 (6)	8.62E-2 (21)
o5 NPc	All Classes	5.19E–3 (2)	5.68E-3 (4)	1.40E-1 (16)	5.30E-1 (2)	5.72E—3 (4)	5.01E-2 (13)	5.34E-1 (7)	6.95E-2 (24)
	Only Class 0 and Class 1	3.24E—3 (1)	1.18E–2 (1)	9.76E—2 (8)	(0) -	5.72E—3 (4)	6.83E-2 (4)	3.69E0 (2)	5.62E-2 (10)
³⁵ NP (excluding NP*) ^d	All Classes	5.19E–3 (2)	5.68E-3 (4)	1.28E–2 (9)	3.05E-2 (1)	5.72E—3 (4)	1.44E—2 (10)	4.31E-3 (2)	9.84E-3 (16)
	Only Class 0 and Class 1	3.24E—3 (1)	1.18E–2 (1)	5.95E—3 (4)	(0) -	5.72E—3 (4)	6.71E-3 (2)	(0) -	6.03E–3 (6)
5 P	All Classes	3.77E–3 (1)	2.17E-2 (12)	4.83E-2 (16)	1.80E0 (7)	3.04E—3 (1)	1.09E–2 (15)	3.27E-1 (20)	6.96E-2 (36)
	Only Class 0 and Class 1	3.77E–3 (1)	1.86E–2 (5)	1.16E—2 (4)	4.00E-1 (2)	- (0)	1.50E-2 (6)	3.60E-2 (6)	2.32E-2 (12)

observation of ICMEs, whereas the second raw (in italics) considers only events of Class 0 and Class 1.

³Regardless of flare or CME association.

^c All events listed as NP in Column 15 of Table 1. ^d All events listed as NP in Column 15 of Table 1 but excluding those events listed as NP^{*}.

Figure 10. Average values of the peak intensities of the prompt component of the SEP events (black symbols) regardless of the associated CME speed or X-ray flare class and (gray symbols) associated with CMEs of speed >1000 km s⁻¹, from left to right, classified as NP in column 15 of Table 1, classified as NP but excluding the events with NP*, and the events classified as P, for the energy channels, from top to bottom, DE4, P3, P4, and P5. Left panels contain all events associated with flares on the frontside of the Sun and regardless of their class based on the in situ observation of ICMEs. Right panels contain only Class 0 and Class 1 events. The numbers indicate the number of events in each group NP, pure NP, and P. The vertical bars indicate the standard errors obtained from the average of the logarithms of the peak intensities.

in the top right corner of Figure 9 (right) (associated with the fastest CMEs) and the C-type CME speed bin (where P events are more abundant), the preponderance of P events (red open circles) over NP events (blue crosses) at high intensities is not so clear as when we consider all classes of events. Note that we have not distinguished NP* events among the less intense NP events, and some of the blue crosses in Figure 9 may become green solid symbols.

We have listed in Table 4 the averages of the peak intensities for each energy channel, in each event group (P, NP, and NP excluding the NP* events), for each CME speed type and for each soft X-ray flare class. We have distinguished the averages obtained when considering all events regardless of their class (i.e., the events shown in Figure 9 (left) and listed in the first row of each event group in Table 4) from the averages obtained when considering only Class 0 and Class 1 events (i.e., the events shown in Figure 9 (right) and listed in the second row of each group in Table 4 using italic font). Figure 10 (left column) shows, with the same format as Figure 8, the averages of the SEP peak intensities for those events plotted in Figure 9 (left column), for each energy channel (from top to bottom) and, from left to right, the events classified as NP, classified as NP but excluding NP*, and classified as P (from left to right). The distinction between the averaged peak intensities of the P and NP events is only obtained when NP* events are excluded. Figure 10 (right column) shows the same averages but considering only Class 0 and Class 1 SEP events (i.e., the events plotted in Figure 9, right). Although the average peak intensity of P events is larger than that of the pure NP events (i.e., events NP excluding events NP*), the distinction is less clear than when all the events (regardless of their class) are considered. Note that we have not distinguished, among the NP events, those that can be classified as NP* for the whole range of intensities, which may modify this result. Table 4 also shows that the distinction between average peak intensities in different groups is more ambiguous when comparing events associated with similar X-ray flares rather than similar CME speed.

5. Conclusions

We have analyzed the peak intensity measured in the prompt component of western SEP events observed throughout solar cycle 23 near Earth. With a considerable degree of scatter, there is a trend for intense SEP events to be associated with fast CMEs. However, rather than suggesting possible correlations between the logarithm of the SEP peak intensities and the logarithm of the CME speeds [e.g., *Gopalswamy et al.*, 2004; *Park et al.*, 2012; *Miteva et al.*, 2013], we propose the use of triangular distributions (Figure 5) that provide, for a given CME speed, an upper limit of the peak intensity measured in the prompt component of the SEP events. When we include all SEP events regardless of their longitudinal solar origin (not shown here), the triangular distributions maintain their basic shape, with the only effect of being more populated than those shown in Figure 5. The distributions of the prompt component peak intensities versus the soft X-ray peak flux of the associated flares do not follow clear log-log correlations (Figure 6). Correlations between SEP peak intensities and soft X-ray flare classes only improve when intense flares, western flares, long-duration flares or average values in certain flare sizes, and SEP intensity bins are used [e.g., *Park et al.*, 2010; *Wang*, 2006; *Belov et al.*, 2005].

We have classified the SEP events according to the presence or absence of ICMEs in the IP medium at the time when the peak intensity of the prompt component of the SEP event is observed. In situ observations of ICMEs near Earth have been used to determine the presence and location of prior ICMEs. We have divided the SEP events into the following categories: (0) the event is observed under undisturbed nominal solar wind conditions (i.e., in absence of ICMEs); (1) the event occurs when an ICME is located between Earth and Sun; (2) the peak intensity of the prompt component of the SEP event is observed in the sheath region of a preceding ICME; (3) the peak intensity of the prompt component of the SEP event is observed within an ICME; (4) the peak intensity of the prompt component of the SEP event is observed when an ICME is located beyond Earth; and (5) multiple scenarios with ICMEs located beyond the observer and between the Sun and Earth. The statistical analysis of SEP peak intensities in the prompt component of the SEP events shows that, over the ensemble of events, the highest peak intensities, on average, are observed when the spacecraft is inside an ICME followed by the events observed when an ICME is beyond Earth. By contrast, the few events observed when an Earth-directed ICME is located between the Sun and Earth show, on average, lower peak intensities than those of the events observed under undisturbed solar wind conditions, especially for 9–15 and 15-40 MeV proton intensities. The difference is not significant for 175-315 keV electron peak intensities (Figures 4 and 8).

A similar study was performed by Miteva et al. [2013] who considered SEP events in solar cycle 23 associated with M class or X class solar flares occurring on the western hemisphere of the Sun (W0°-W90°). Rather than considering the IP conditions when the peak intensity in the prompt component of the event was observed, Miteva et al. [2013] classified the events according to the IP conditions at the time of the onset of the event. Miteva et al. [2013] categorized a total of 104 SEP events as (1) observed within an ICME, (2) observed in the standard solar wind when the onset of the SEP event occurred at least 1 day after the end of a previous ICME at Earth and at least 1 day before the start of the next ICME, and (3) the remaining events with uncertain magnetic field configurations including the vicinity of shocks, sheath regions, or disturbed field lines behind ICMEs. Location of ICMEs was based on in situ plasma and magnetic field observations. The different criteria used here together with the use of particle data with different time resolution and different time intervals to determine the presence or absence of ICMEs lead to slight discrepancies among the class assigned to each event. However, most of the events that Miteva et al. [2013] classified as observed within an ICME are in our Class 3. Most of the events that Miteva et al. [2013] classified as observed in the standard solar wind are in our Class 0 for the common energy channels analyzed in both works. Events that Miteva et al. [2013] classified as observed in the vicinity of ICMEs are mostly divided among our Classes 2-4. Miteva et al. [2013] stated that the differences in the peak intensity distributions of those events observed within an ICME and of the events observed in the standard solar wind were not statistically significant, although there was a preponderance for higher peak intensities in the events observed inside an ICME (see their Figure 1). The results presented in our work, including the distinction between events observed before or after the passage of an ICME and longer time intervals to determine the presence of ICMEs, show that the peak intensity distribution of events observed within an ICME differ from those observed in undisturbed solar wind (Figure 4). The events observed within an ICME have, on average, higher intensities than those events observed outside of ICMEs (Figures 4 and 8 and Table 3). The events observed after the passage of an ICME are typically associated with fast CMEs (Figure 7), and hence, their averaged peak intensities are higher than those of the events observed when the passage of preceding ICMEs occurs after the onset the SEP event (i.e., higher than Class 1 events).

The fact that SEP events observed within ICMEs or after the passage of an ICME have, on average, higher peak intensities than events observed in undisturbed solar wind (Figure 8) may be interpreted as follows. Both (1) the magnetic topology of the ICMEs and (2) the interplanetary perturbations associated with the ICMEs located beyond 1 AU provide the magnetic structures necessary to reflect SEPs back toward the observer leading to the observation of elevated SEP intensities at 1 AU. The fact that fast CMEs tend to occur in series [*Ruzmaikin et al.*, 2011] implies also that the most intense SEP events usually occur under the presence of ICME structures in the IP medium which may modify the nominal transport of SEPs. For example, *Miteva et al.* [2013] found that the fraction of SEP events detected within an ICME increases with the associated flare size, indicating that the more energetic the solar event associated with the origin of the SEP event, the greater the likelihood to detect the SEP event within or in the vicinity of an ICME. Both the frequent association with fast CMEs and the possible effect that preceding ICMEs have on the transport of SEPs contribute to the higher intensities observed in events of Classes 3 and 4.

On the other hand, one may also expect that when a SEP event occurs with a preceding ICME located between the Sun and the observer, the effect that this intervening structure has on the SEP transport may lead to an attenuation of the observed SEP intensities with respect to the intensities observed in the case of an event occurring in an undisturbed solar wind. Our results based on in situ observation of ICMEs show that (1) the number of events with ICME located between the Sun and Earth was low and (2) the average peak intensity of the Class 1 events is slightly lower than that of the other Classes for 9–15 and 15–40 MeV protons, but for 175–315 keV electrons does not differ significantly from those events observed under undisturbed solar wind conditions (cf. Figures 4 and 8). The fact that ICMEs located between the Sun and Earth may a greater impact on the observed SEP peak intensities than the ICMEs located between the Sun and Earth may result from the fact that particles propagating close to the Sun tend to focus along the magnetic field. The diverging magnetic field close to the Sun focus the particles along the magnetic field with small pitch angles which make them able to easily overcome magnetic field enhancements. At larger heliocentric distances (particularly when the magnetic field begins to fall off as 1/r where r is the heliocentric distance), scattering and mirroring processes are more efficient reflecting particles back to 1 AU. Hence, ICMEs located beyond 1 AU have a larger effect on the transport of SEPs than ICMEs close to the Sun.

The limitations of using in situ observations of ICMEs to determine the presence of an intervening ICME affecting the transport of SEPs led us to use LASCO observations to determine the presence of an ICME launched from the same source region as the CME origin of the SEP event and within 24 h of the primary CME. This is the same criteria used by *Gopalswamy et al.* [2004] to conclude that the preconditioning of the medium by the preceding CME favors the efficient acceleration of particles by the shock driven by the primary CME, and hence the higher peak intensities in P events. When considering all events regardless of their class, we duplicate the results of *Gopalswamy et al.* [2004] but now including events with lower intensities than those considered by *Gopalswamy et al.* [2004] (Figures 9 (left) and 10 (left)). However, when we exclude those events affected by the presence of a preceding ICME at or beyond 1 AU, the difference between the average peak intensities of events P and pure NP (i.e., NP events excluding NP*) becomes smaller (Figures 9 (right) and 10 (right)). Therefore, we conclude that the preconditioning of the medium produced by a preceding CME may lead to an efficient acceleration of particles, but other factors such as those produced by interplanetary structures by preceding ICMEs located at or beyond the observer need to be considered when studying the variability of the measured SEP intensities.

References

Belov, A., H. Garcia, V. Kurt, H. Mavromichalaki, and M. Gerontidou (2005), Proton enhancements and their relation to X-ray flares during the last three solar cycles, Sol. Phys., 229, 135–159.

Cane, H. V., and D. Lario (2006), An introduction to CMEs and energetic particles, Space Sci. Rev., 123, 45-56.

Cane, H. V., and I. G. Richardson (2003), Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002, J. Geophys. Res., 108, 1156, doi:10.1029/2002JA009817.

Cane, H. V., D. V. Reames, and T. T. von Rosenvinge (1988), The role of interplanetary shocks in the longitude distribution of solar energetic particles, J. Geophys. Res., 93, 9555–9567, doi:10.1029/JA093iA09p09555.

Cane, H. V., I. G. Richardson, and T. T. von Rosenvinge (2010), A study of solar energetic particle events of 1997–2006: Their composition and associations, J. Geophys. Res., 115, A08101, doi:10.1029/2009JA014848.

Cliver, E. W., A. G. Ling, A. Belov, and S. Yashiro (2012), Size distributions of solar flares and solar energetic particle events, Astrophys. J., 756(2), L29, doi:10.1088/2041-8205/756/2/L29.

Ding, L., Y. Jiang, L. Zhao, and G. Li (2013), The "twin-CME" scenario and large solar energetic particle events in solar cycle 23, Astrophys. J., 763, 30, doi:10.1088/0004-637X/763/1/30.

Evans, R. M., A. A. Pulkkinen, Y. Zheng, M. Leila Mays, A. Taktakishvili, M. M. Kuznetsova, and M. Hesse (2013), The SCORE scale: A coronal mass ejection typification system based on speed, *Space Weather*, *11*, 333–334, doi:10.1002/swe.20058.

- Garcia, H. A. (2004), Forecasting methods for occurrence and magnitude of proton storms with solar soft X-rays, *Space Weather*, *2*, S02002, doi:10.1029/2003SW000001.
- Gold, R. E., S. M. Krimigis, S. E. Hawkins III, D. K. Haggerty, D. A. Lohr, E. Fiore, T. P. Arm-strong, G. Holland, and L. J. Lanzerotti (1998), Electron, proton, and alpha monitor on the Advanced Composition Explorer spacecraft, *Space Sci. Rev.*, 86, 541–562, doi:10.1023/A:1005088115759.
- Gopalswamy, N. (2012), Factors affecting the intensity of solar energetic particle events, in *Physics of the Heliosphere: A 10 Year Retrospective*, vol. 1436, pp. 247–252, 10th Annual International Astrophysics Conference (AIAC), Maui, Haw., Am. Inst. Phys., Melville, N. Y.
- Gopalswamy, N., S. Yashiro, A. Lara, M. L. Kaiser, B. J. Thompson, P. T. Gallagher, and R. A. Howard (2003), Large solar energetic particle events of cycle 23: A global view, *Geophys. Res. Lett.*, *30*(12), 8015, doi:10.1029/2002GL016435.
- Gopalswamy, N., S. Yashiro, S. Krucker, G. Stenborg, and R. A. Howard (2004), Intensity variation of large solar energetic particle events associated with coronal mass ejections, *J. Geophys. Res.*, *109*, A12105, doi:10.1029/2004JA010602.
- Gopalswamy, N., S. Yashiro, S. Akiyama, P. Mäkelä, H. Xie, M. L. Kaiser, R. A. Howard, and J. L. Bougeret (2008a), Coronal mass ejections, type II radio bursts, and solar energetic particle events in the SOHO era, Ann. Geophys., 21, 3033–3047.
- Gopalswamy, N., S. Yashiro, H. Xie, S. Akiyama, E. Aguilar-Rodriguez, M. L. Kaiser, R. A. Howard, and J.-L. Bougeret (2008b), Radio-quiet fast and wide coronal mass ejections, *Astrophys. J.*, 674, 560–569, doi:10.1086/524765.

Hudson, P. D. (1965), Reflection of charged particles by plasma shocks, Mon. Not. R. Astron. Soc., 131, 23-49.

Hundhausen, A. J. (1972), Coronal Expansion and Solar Wind, Phys. Chem. Space, vol. 5, Springer-Verlag, Berlin Heidelberg, New York. Jiggens, P. T. A., and S. B. Gabriel (2009), Time distributions of solar energetic particle events: Are SEPEs really random?, J. Geophys. Res., 114, A10105, doi:10.1029/2000JA014291.

Kahler, S. W. (2001), The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: Effects of ambient particle intensities and energy spectra, J. Geophys. Res., 106, 20,947–20,955, doi:10.1029/2000JA002231.

- Kahler, S. W., and D. V. Reames (2003), Solar energetic particle production by coronal mass ejection-driven shocks in solar fast-wind regions, *Astrophys. J.*, 584(2), 1063–1070.
- Kahler, S. W., J. T. Burkepile, and D. V. Reames (1999), Coronal/interplanetary factors contributing to the intensities of E > 20 MeV gradual solar energetic particle events, in *Proceedings of the 26th International Cosmic Ray Conference*, vol. 6, edited by D. Kieda, M. Salamon, and B. Dingus, pp. 248–251, Int. Union of Pure and Appl. Phys. (IUPAP), Utah.

Kahler, S. W., S. Akiyama, and N. Gopalswamy (2012), Deflections of fast coronal mass ejections and the properties of associated solar energetic particle events, *Astrophys. J.*, 754, 100, doi:10.1088/0004-637X/754/2/100.

Kahler, S. W., C. N. Arge, S. Akiyama, and N. Gopalswamy (2014), Do solar coronal holes affect the properties of solar energetic particle events?, Sol. Phys., 289, 657–673, doi:10.1007/s11207-013-0427-0.

- Kallenrode, M.-B. (2001), The influence of magnetic clouds on the propagation of energetic charged particles in interplanetary space, Proc. 27th Int. Cosmic Ray Conf., pp. 3273–3276, Hamburg, Germany.
- Kallenrode, M.-B. (2002), Magnetic clouds and interplanetary particle transport: A numerical model, J. Atmos. Sol. Terr. Phys., 64(18), 1973–1978, doi:10.1016/S1364-6826(02)00185-5.

Kallenrode, M.-B., and E. W. Cliver (2001), Rogue SEP events: Observational aspects, *Proc. 27th Int. Cosmic Ray Conf.*, pp. 3314–3317, Hamburg, Germany.

Acknowledgments

We acknowledge the use of the CDAW CME catalog generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. We acknowledge the use of the near-Earth interplanetary coronal mass ejection list compiled by I.G. Richardson and H.V. Cane. SOHO is a project of international cooperation between ESA and NASA. We acknowledge the support from NASA under grants NNX09AG30G, NNX11A083G, the ACE grant NNX10AT75G, and the Solar Probe Plus NASA contract NNN06AA01C. A.K. acknowledges the support received from the Summer Internship Program of JHU/APL. D.L. wants to acknowledge the International Space Science Institute (ISSI) working team "Exploration of the inner heliosphere-What we have learned from Helios and what we want to study with Solar Orbiter" for stimulating discussions and the support received from ISSI. We thank both referees for helpful suggestions.

Yuming Wang thanks lan G. Richardson and Stephen Kahler for their assistance in evaluating this paper. Lario, D. (2006), Radial and longitudinal variations of the energetic particle response to ICMEs, Solar Eruptions and Energetic Particles, Geophys. Monogr. Ser., vol. 165, pp. 309–319, AGU, Washington, D. C., doi:10.1029/165GM29.

Lario, D., M.-B. Kallenrode, R. B. Decker, E. C. Roelof, S. M. Krimigis, A. Aran, and B. Sanahuja (2006), Radial and longitudinal dependence of solar 4–13 MeV and 27–37 MeV proton peak intensities and fluences: Helios and IMP-8 observations, Astrophys. J., 653(2), 1531–1544.

Lario, D., R. B. Decker, and A. Aran (2008), Solar energetic particle intensities above the streaming limit, in *Particle Acceleration* and Transport in the Heliosphere and Beyond: 7th Annual International Astrophysics Conference, vol. 1039, pp. 156–161, AIP Conf. Proc.

Lario, D., A. Aran, R. Gómez-Herrero, N. Dresing, B. Heber, G. C. Ho, R. B. Decker, and E. C. Roelof (2013), Longitudinal and radial dependence of solar energetic particle peak intensities: Stereo, ace, soho, goes, and messenger observations, Astrophys. J., 767(1), 41, doi:10.1088/0004-637X/767/1/41.

Li, G., R. Moore, R. A. Mewaldt, L. Zhao, and A. W. Labrador (2012), A twin-CME scenario for ground level enhancement events, *Space Sci. Rev.*, *171*, 141–160, doi:10.1007/s11214-011-9823-7.

Miteva, R., K.-L. Klein, O. Malandraki, and G. Dorrian (2013), Solar energetic particle events in the 23rd solar cycle: Interplanetary magnetic field configuration and statistical relationship with flares and CMEs, Sol. Phys., 282, 579–613.

Onsager, T., R. Grubb, J. Kunches, L. Matheson, D. Speich, R. W. Zwickl, and H. Sauer (1996), Operational uses of the GOES energetic particle detectors, in *GOES-8 and Beyond*, vol. 2812, edited by E. R. Washwell, pp. 281–290, Proc. SPIE, Bellingham, Wash.

Park, J., Y.-J. Moon, D. H. Lee, and S. Youn (2010), Dependence of solar proton events on their associated activities: Flare parameters, J. Geophys. Res., 115, A10105, doi:10.1029/2010JA015330.

Park, J., Y.-J. Moon, and N. Gopalswamy (2012), Dependence of solar proton events on their associated activities: Coronal mass ejection parameters, J. Geophys. Res., 117, A08108, doi:10.1029/2011JA017477.

Reames, D. V. (2000), Particle acceleration by CME-driven shock waves, in 26th Int. Cosmic Ray Conf.: ICRC XXVI, Invited, Rapporteur, and Highlight Papers, vol. 516, pp. 289–300, AIP Conf. Proc.

Reames, D. V., and C. K. Ng (1998), Streaming-limited intensities of solar energetic particles, Astrophys. J., 504, 1002–1005, doi:10.1086/306124.

Richardson, I. G., and H. V. Cane (1996), Particle flows observed in ejecta during solar event onsets and their implication for the magnetic field topology, J. Geophys. Res., 101, 27,521–27,532, doi:10.1029/96JA02643.

Richardson, I. G., and H. V. Cane (2010), Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): Catalog and summary of properties, *Sol. Phys., 264*, 189–237, doi:10.1007/s11207-010-9568-6.

Ruzmaikin, A., J. Feynman, and S. A. Stoev (2011), Distribution and clustering of fast coronal mass ejections, J. Geophys. Res., 116, A04220, doi:10.1029/2010JA016247.

Sauer, H. H. (1993), GOES observations of energetic protons to E > 685 MeV: Description and data comparison, Proc. 23rd Int. Cosmic Ray Conf., 250–253.

Vandas, M., S. Fischer, A. Geranios, M. Dryer, Z. Smith, and T. Detman (1996), Magnetic traps in the interplanetary medium associated with magnetic clouds, J. Geophys. Res., 101, 21,589–21,596, doi:10.1029/96JA01640.

Wang, R. (2006), Statistical characteristics of solar energetic proton events from January 1997 to June 2005, Astroparticle Phys., 26, 202–208, doi:10.1016/j.astropartphys.2006.06.003.

Yashiro, S., N. Gopalswamy, G. Michalek, O. C. St. Cyr, S. P. Plunkett, N. B. Rich, and R. A. Howard (2004), A catalog of white light coronal mass ejections observed by the SOHO spacecraft, J. Geophys. Res., 109, A07105, doi:10.1029/2003JA010282.