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Abstract 
This chapter discusses the dynamical properties of eruptive prominences in relation to coro-

nal mass ejections (CMEs). The fact that eruptive prominences are a part of CMEs is empha-
sized in terms of their physical association and kinematics.  The continued propagation of 
prominence material into the heliosphere is illustrated using in-situ observations. The solar-
cycle variation of eruptive prominence locations is discussed with a particular emphasis on the 
rush-to-the-pole (RTTP) phenomenon. One of the consequences of the RTTP phenomenon is 
polar CMEs, which are shown to be similar to the low-latitude CMEs. This similarity is im-
portant because it provides important clues to the mechanism by which CMEs erupt.  The non-
radial motion of CMEs is discussed, including the deflection by coronal holes that have im-
portant space weather consequences.  Finally, the implications of the presented observations 
for the modeling CME modeling are outlined. 

 
 
1. Introduction 
 
Prominence eruptions (PEs) describe the process by which a previously quasi-stationary 

prominence erupts and partly or wholly leaves the Sun. When the eruption happens on the 
disk, it is referred to as a filament eruption. The prominence visible in an instrument’s field of 
view (FOV) in its moving phase is known as an eruptive prominence (EP). We also use the 
term prominence eruption (PE) as a synonym for EP akin to the usage of coronal mass ejec-
tion (CME) to denote the ejected material. The disappearance of a solar filament (DSF) from 
the observing pass band (usually in H-alpha) is also referred to as disparition brusque (DB). 
Filaments may also disappear due to local heating, but this chapter does not concern with 
such thermal DBs.  Prominence eruptions have been known for a long time (see e.g. Kleczek 
1964; Martin 1973; Engvold 1980). Kleczek (1964) published a catalog of eruptive promi-
nences occurring between 1938 and 1961. Engvold (1980) provided a detailed discussion on 
the kinematics, occurrence rates, and source regions of eruptive prominences.  Promi-
nence/filament observations exist for more than a century, so there is extensive literature cov-
ering PEs. On the other hand, complete CME observations are available only for the past few 
decades. Therefore we focus only on those aspects PEs that involve CMEs because we now 
know that PEs are an integral part of CMEs (see e.g., Hildner et al. 1975; Schmahl and 
Hildner, 1977; Gosling et al. 1976; Hundhausen 1993; Gilbert et al. 2000; Hori and Culhane 
2002; Gopalswamy et al. 2003a; Schrijver et al. 2008; Liu et al. 2012; Parenti 2014). Other 
chapters in this volume by Gibson (2014), Lugaz (2014), Webb (2014), and Fan (2014) pro-
vide complementary information on various aspects of eruptive prominences.  

 
2. Prominence Eruptions, CMEs, and Flares 

 
Historically, flares and PEs have been known since the nineteenth century. When CMEs 

were discovered, it was natural to compare PEs with flares and CMEs. In this section we would 
like to point out that the three processes can hardly be separated. In order to show the intercon-
nection, we start with an example. Figure 1 shows a long east-west filament erupting from the 
northwest quadrant resulting in a two-ribbon flare and an extended post-eruption arcade (PEA). 
The eruption was observed by the Extreme-ultraviolet Imaging Telescope (EIT) on board the 
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Solar and Heliospheric Observatory (SOHO) mission. When the filament reached the field of 
view of the Large Angle and Spectrometric Coronagraph (LASCO) on board SOHO, it was 
found to be in the interior of a large CME. The angular width of the CME in the sky plane was 
~90o and the speed was relatively high (~890 km/s). These values are above average for CMEs 
observed by most coronagraphs (see e.g. Gopalswamy, 2004 and references therein). The 
GOES soft X-ray flare size was only B5.0, which means that the flare was rather weak but can 
be seen clearly above the background as a gradual event for ~6h (the flare size is denoted by 
the letters A, B, C, M, and X in the increasing order of peak soft X-ray flux by an order of 
magnitude: A1.0 = 1.0 x 10-8 Wm-2).  In EUV images, the PEA remained above background 
for many hours. There was no active region in the vicinity of the flare, so this is purely a qui-
escent filament. Yet, it was associated with both a solar flare and a significant CME. 

 
 
Figure 1. (left) A SOHO/MDI magnetogram (2003 February 18 00:03:00 UT) showing the large-scale 
bipolar magnetic region and a EUV filament (F) overlying the polarity inversion line (00:12:11 UT). 
(middle) The filament erupts (02:00:16) accompanied by a flare arcade observed by SOHO/EIT 
(03:48:11 UT). (right) The associated CME (03:00 UT) with prominence core (P) and the GOES soft 
X-ray light curve showing a weak flare (B5.0).   
 

2.1 Statistical Associations 
 

A high degree of association between PEs and CMEs was recognized soon after the dis-
covery of CMEs (Munro et al. 1979; Webb and Hundhausen, 1987; St. Cyr and Webb, 1991). 
Munro et al. (1979) found that 70% of CMEs are associated with PEs. The result was similar 
in studies starting with PEs and connecting them to CMEs (Gilbert et al. 2000; Hori and 
Culhane, 2002; Gopalswamy et al. 2003b):  72% of PEs were associated with CMEs, when 
all events automatically detected (Shimojo et al. 2006) from the Nobeyama Radioheliograph 
(NoRH) images were used.  When PEs with radial trajectories were used, the association be-
tween PEs and CMEs increased to 83%. A closer examination of the PEs without CMEs re-
vealed that the PEs generally had transverse (parallel to the solar surface) trajectories, or they 
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were stalled while moving in the radial direction. These PEs were the slowest and attained the 
lowest height (~1.2 Rs from the Sun center on the average). There were also intermediate 
cases in which transverse PEs attaining slightly larger heights and stalled radial eruptions re-
sulting in detectable changes in the overlying streamers (Gopalswamy et al. 2004a). Some of 
these streamer-change events may indicate weakening of the pre-eruption configuration be-
cause they were followed by PEs and CMEs from the same region. The failed eruptions 
(Moore et al. 2001; Ji et al. 2003; Guo et al. 2010) are likely to be the “stalled radial PEs”.  

Small-scale energy release often takes place as a precursor to filament eruptions in the 
form of compact heating observed in EUV and X-rays (Gopalswamy 1999; Chifor et al. 
2007; Sterling et al. 2011a) or nonthermal particles inferred from compact radio bursts 
(Marque et al. 2001). These signatures indicate reconnection-favoring flux emergence and/or 
cancelation in the vicinity of filaments that lead to tether cutting (Feynman and Martin 1995; 
Wang and Sheeley 1999; Chen and Shibata 2000; Gopalswamy et al. 2006). A good example 
was presented in Gopalswamy et al. (2006). It must be noted that filament eruptions do occur 
without flux emergence, so there must be other ways in which the filament with its overlying 
structure gets destabilized and erupts (Schmieder et al. 2013; Aulanier 2014). 

 

 
Figure 2. Solar-cycle variation of CME rate (black), PE rate (blue), and sunspot number (SSN - gray). 
PE rates from the northern and southern hemispheres are distinguished by the green and pink curves, 
respectively. The start time coincides with the start of operations of NoRH, which is used for the auto-
matic detection of PEs. The PE daily rate is computed as follows. The observed number of PEs in each 
Carrington Rotation period is multiplied by a factor of three to account for NoRH duty cycle (~8 h per 
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day). The resulting number is divided by 27.3 days to get the daily rate. The daily rate is then multiplied 
by a factor of 5 to bring into the scale of the Figure. The CME rate is averaged over Carrington rotation 
periods. 

   
2.2 Solar Cycle Variations 
 
An overall correlation between the variation of PEs and CMEs over solar cycles has been 

reported earlier (Webb and Howard 1994). Figure 2 presents a long-term comparison of the 
three manifestations of solar activity: PE rate, CME rate, and sunspot number (SSN). There is 
a clear drop in SSN between cycles 23 and 24, indicating that the cycle is weak. On the other 
hand, the PE rates are roughly the same between the two cycles, very similar to what is ob-
served in the CME rates (see also Shimojo 2013;Gopalswamy et al. 2014). The PE rates show 
a clear north-south asymmetry, with the activity peaking first in the northern hemisphere and 
then in the south during cycle 23 with a similar trend in cycle 24. A similar asymmetry has also 
been reported in SSN (Svalgaard and Kamide 2013). The PE rate has a closer similarity to the 
CME rate than to SSN. This is consistent with the fact that PEs are the most common CME-
associated phenomenon at the Sun (Munro et al. 1979).  Hundhausen (1993) emphasized the 
tighter association between “larger-scale” activity such as filaments and helmet streamers on 
the one hand and CMEs on the other mainly based on similar latitudinal distribution and the 
long-term variation of that distribution. Hundhausen discounted the importance of “smaller-
scale” phenomena such as sunspots, flares, and active regions for CMEs. However, it is neces-
sary to point out that both these large- and small-scale features represent closed magnetic field 
regions, which can produce CMEs if free energy (the energy available for powering the erup-
tion) can be stored in them.  In fact, the most energetic CMEs originate mainly from active 
regions because large amounts of energy can be stored in active regions. The amount of free 
energy is roughly given by the potential field energy (volume x B2/8π) (Mackay et al. 1997), 
which can be very large in active regions because of the high magnetic field strength (B).  The 
special populations of CMEs that have significant space weather implications generally origi-
nate from the active region belt (see e.g. Gopalswamy et al. 2010a).  Filaments are part of active 
regions too. Active region filaments are thin and short, but can attain much higher speeds sim-
ilar to the CMEs. The famous backside solar energetic particle (SEP) event with a ground level 
enhancement (GLE) in cycle 23 on 2001 April 18 was produced by a fast CME (~2500 km/s) 
and the prominence core had a speed of ~1650 km/s (Gopalswamy, 2006a; Gopalswamy et al. 
2012a).  Filament eruptions have also been associated with some large SEP events, although 
of softer spectrum (Kahler et al. 1986). Finally, we emphasize that flares are not exclusively 
an active region phenomenon. Two-ribbon flares can occur from quiescent filament regions 
(see, e.g., Fig. 1).  
   The flares considered by Hundhausen (1993) are generally confined to the sunspot latitudes 
because he compiled them from the Solar Geophysical Data that lists flare locations from H-
alpha observations when available. However, if we define flares by soft X-ray enhancements, 
every filament eruption has such an enhancement, observed as PEAs (see McAllister et al. 
1996 for a good example). In fact, Gopalswamy et al. (2010a) plotted the locations of all 
flares from GOES Soft X-ray Imager and found flare locations extending to latitudes above 
60o for the period 2004–2007 (see their Fig. 10). On the other hand, when the locations of 
GOES soft X-ray flares with size >C3.0 (i.e., 3.0 x 10-6 Wm-2) alone were plotted, the loca-
tions were confined to sunspot latitudes, clearly following the sunspot butterfly diagram. 
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Thus, there is really no clear separation between flare and filament eruption events. The aver-
age speeds of CMEs associated with the so-called filament eruption and flare events do differ 
(Gosling et al. 1976; Sheeley et al. 1999; Moon et al. 2002). Based on CME height-time pro-
files, MacQueen and Fisher (1983) had suggested that CMEs associated with prominence 
eruptions and flares may have different acceleration mechanisms.  Another way to look at 
this is that the amount of free energy available in the source regions may be different, but the 
eruption mechanism may be the same. Fast CMEs (>1000 km/s) associated with quiescent 
filament eruptions are not uncommon: Song et al. (2013) reported on 13 eruptions from cycle 
23, which they referred to as “flareless CMEs”. As we noted above, such eruptions do have 
PEAs in soft X-ray and EUV, which become particularly clear when the intensity in a small 
area around the filament is monitored: the intensity gradually increases similar to other grad-
ual flares, although the intensity is low. 
 

 
 

Figure 3. (top) A CME with three-part structure observed on 2001 December 20 by SOHO/LASCO.  
(bottom)  Height-time measurements of the CME, prominence in the NoRH FOV and the prominence 
core in the LASCO FOV.  

 
2.3 CME and PE kinematics 
 
Eruptive prominences are observed as the brightest section of CMEs located in the interior 

of the CME structure. Soon after the discovery of white-light coronal mass ejections, it was 
realized that “analysis of eruptive prominence only or coronal mass ejection only would be 
incomplete without the other” (Schmahl and Hildner 1977). Comparing the kinematics of a 
CME and its prominence core, Webb and Jackson (1981) concluded that they moved out in a 
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self-similar way.  Figure 3 shows a recent example illustrating how the prominence core and 
the CME move together. The height-time plot shows the measurements close to the Sun made 
from NoRH images and then in the LASCO FOV.  Within the NoRH FOV the prominence was 
still accelerating (~2.8 m/s2) when it left the FOV and appeared as the CME core in the LASCO 
FOV. The CME was accelerating in the LASCO FOV (average acceleration ~14 m/s2). The 
CME had an average speed of ~770 km/s in the LASCO FOV. The combined height-time plot 
shows that the prominence core closely followed the CME with a speed of ~660 km/s. Statis-
tical analyses comparing the PE properties from below 2 Rs and CME properties in the coro-
nagraphic FOV (above 2 Rs) for ~100 events yielded the following results (Gopalswamy et al. 
2003a): 1. The CME core speed (average ~348 km/s) is always greater than the PE speed (av-
erage ~81 km/s) because of the continued acceleration.  2. Faster the PEs, the faster are the 
white-light cores. 3. The CME LE speeds are larger than the core speeds by ~43% (Maričić et 
al. 2009 found ~30% higher LE speed, but only for 18 events).  

 

 
 
Figure 4. (a) Typical height-time profiles of eruptive prominences observed by NoRH. (b) Average 
accelerations derived from the height-time plots using quadratic fit). (c) The height-time profile of the 
2000 November 24 prominence, which had an average acceleration of 117 m/s2. (d) Time variation of 
the acceleration of the event in (c) when acceleration was computed taking 3–4 consecutive data points 
at a time. 

  
The acceleration of PEs shows a lot of variations, as can be seen from the typical height-

time plots shown in Fig. 4. The first two profiles in Fig. 4(a) in which the height continues to 
increase correspond to PEs that generally leave the Sun and become part of CME cores. The 
profile with decreasing height at later times corresponds to transverse PEs that do not get very 
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far from the Sun. Tandberg-Hanssen et al. (1980) made a similar comparison between the 
height-time history of flare sprays and eruptive prominences. They pointed out the height-time 
plots are similar except that the initial acceleration phase is too quick to be observed. Engvold 
(1980) showed a number of height-time profiles representing the full range of accelerations 
and decelerations. Within ~2 Rs, the prominences have accelerations and decelerations as 
shown by the histogram in Fig. 4(b). CMEs with acceleration close to zero attain constant speed 
quickly, while those with positive acceleration continue to accelerate. PEs with a transverse 
trajectory and failed eruptions typically show deceleration. Deceleration is also observed when 
the end part of an eruption is captured; the material falling back shows a decrease in height 
with time. Fig. 4(c) shows the height-time profile of one of the PEs (2000 November 24) with 
a high acceleration in Fig. 4(b). This event also illustrates the quadratic fitting used in order to 
get the average acceleration values plotted in Fig. 4(b). The real acceleration is of course time 
dependent, as shown in Fig. 4(d) for the 2000 November 24 event. The maximum acceleration 
was ~133 m/s2, only slightly higher than the average acceleration (~117 m/s2). These values 
fall in the range of CME leading edge (LE) accelerations (Wood et al. 1999; Gopalswamy and 
Thompson 2000; Zhang et al. 2001; Zhang and Dere 2006; Vršnak et al. 2007; Maričić et al. 
2009; Bein et al. 2011; Gopalswamy et al. 2012a). Maričić et al. (2009) showed that the CME 
LE acceleration was higher than that of the prominence core by a factor of ~2. The duration of 
the acceleration phase was about the same for the cores and CME LEs. The peak acceleration 
had an anti-correlation with the duration of acceleration for both components. The acceleration 
maximum was also attained around the same time for cores and LEs. The kinematic comparison 
between the CME core and the LE suggests that they evolve as a single structure moving away 
from the Sun. These observations are thus consistent with a flux rope with entrained cool ma-
terial as a model for CMEs. 

Nonthermal radio bursts that indicate plasma motion in the corona are closely associated 
with heated prominence material (Robinson 1978; Stewart et al. 1982; Gopalswamy and Kundu 
1989). Imaging observations find that the moving type IV sources are located at the leading 
edge of eruptive prominences (see e.g., Gopalswamy and Kundu, 1989). The range of speeds 
derived from moving type IV bursts is roughly the same as that of prominence cores noted 
above (see also Robinson 1978). Since nonthermal electrons with energies of ~50 keV are 
needed to produce the moving type IV bursts, it is clear that particles accelerated during flare 
reconnection have access to the prominence structure and the surrounding flux ropes. In an-
other case, nonthermal microwave emission was observed from the core and CME in a very 
fast event on 2001 April 18 (Gopalswamy 2006a). Hard X-ray emission from the prominence 
core was also observed in this event (Hudson et al. 2001). The heated plasma from flare recon-
nection also enters flux ropes, observed in situ as the high-charge state plasma.  
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Figure 5. Three snapshots of the CME-prominence core system for the 2013 September 29 CME. In the 
image (c), part of the CME leading edge (LE) has left the LASCO FOV.  

 
2.4 Prominences in the Heliosphere and Their Earth Impact 
 
   Even though significant amount material drains along the legs of eruptive prominences, one 
can track prominence cores readily to the edge of the LASCO FOV. In many cases, the cores 
retain their initial shape throughout the LASCO FOV. Figure 5 shows an eruptive prominence 
that became the core of the 2013 September 29 CME. The core maintained its shape all the 
way to the edge of the LASCO FOV (~32 Rs) and probably beyond. The north end of the core 
left the LASCO FOV at ~5 UT, while the south end moved out of the FOV ~ 7 h later.  
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Figure 6. (top) Average Fe charge state (<QFe>)  and the ratio of low-to-high Fe charge states (QFe7+–

8+/QFe12+–20+ ratio - red) during 17–19 August 2003 interplanetary CME (ICME) as observed by 
ACE/SWICS. The shock (green) and ICME (blue) times are marked. The narrow structure within the 
ICME (arrow) with low charge states is likely to be prominence material. (bottom) Individual ion 
charge state abundance (relative to the total abundance of Fe), from which the top curves were de-
rived.  Heavy ion charge states connect solar and in-situ observations.   

Early observations indicated that prominence material remained at low temperatures to large 
distances. From H-alpha observations of a prominence core, Schmahl and Hildner (1977) re-
ported that the core was at a temperature of only ~2x104 K at a distance of ~3 Rs. In some 
cases, the filament gets heated to coronal temperatures much sooner (Webb and Jackson, 1981). 
When filaments erupt, the microwave brightness temperature typically increases to ~104 K 
from ~8000 K, and remains roughly the same near the Sun. This should make the filament 
disappear because the quiet Sun at 17 GHz has a brightness temperature of ~104 K (decreased 
contrast). However, when the heated “invisible” filament moved over a nearby plage, it ob-
scured the plage for the duration of the transit of the filament over the plage (Hanaoka and 
Shinkawa, 1999).  Similarly, Gopalswamy and Yashiro (2013) reported that a heated eruptive 
filament obscured the PEA of a nearby flare. These observations suggest that the core of the 
filament remains at ~8000 K but the outer sheath is heated to transition region temperatures 
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(~105 K). Since the sheath plasma is optically thin, it contributes only a few times 1000 K to 
the microwave brightness temperature, which explains the observed 104 K.  These observations 
suggest that a slow evaporation of the prominence occurs at least during the early phase of the 
eruption.   

CMEs are observed throughout the heliosphere as flux ropes (see e.g. Richardson et al. 
2006). One would certainly expect prominence material to be found inside the interplanetary 
CMEs (ICMEs).  Prominence material is often observed at 1 AU inside interplanetary CMEs 
along with flare material (Burlaga et al. 1998; Gopalswamy et al. 1998; Lepri and Zurbuchen 
2010; Gilbert et al. 2012; Gruesbeck et al. 2012).  Figure 6 shows the high and low charge 
states within a magnetic cloud (MC) observed by Wind on 2003 August 19. The interval of 
elevated Fe charge states corresponds to the flare plasma. In the middle of the enhanced charge 
state region, there is a small interval (12–18 UT on August 18) where the average Fe charge 
state drops to +10. In order to further explore this interval, we examined the lower Fe charge 
states. To make it definitive, we compared the high (≥+12) and low (+7 and +8) Fe charge 
states during the interval around the MC. The low-to-high Fe charge state ratio (QFe7+–-

8+/QFe12+–-20+) exceeds 1 in the narrow interval where the Fe charge state dropped to +10 (see 
the bottom panel of Fig. 6). The charge state observations confirm the basic CME morphology: 
frontal structure, coronal void (flux rope), and prominence core; a shock in addition if the CME 
is fast (as is the case in Fig. 6). 
   Sharma and Srivastava (2012) reported a similar depression in ion charge states and ele-
vated He+/He2+ ratio in intervals identified as filament material at the rear of two MCs.  One 
of the MCs was from the rise phase of solar cycle 24 and the other from the declining phase 
of cycle 23, but they showed similar filament signatures.  Identifying the filament material 
using elevated He+/He2+ ratio, Kozyra et al. (2013) reported that the filament material in the 
2005 January 21 CME reached the magnetosphere, allowing the formation of  a cold dense 
plasma sheet from within the magnetosphere from that material (see also Sharma et al. 2013; 
Dmitriev et al. 2014). 

 
2.5  High Latitude Prominences and Prominence Eruptions 
 
The latitude distribution of filaments is intimately connected to solar activity and hence 

important in understanding the long-term behavior of solar magnetism. In particular the high-
latitude filaments that form the polar crown are of interest because they occur only during the 
maximum phase of solar cycles (see e.g., Ananthakrishnan 1952). Disappearance of the bipo-
lar regions of the polar crown is essential for the sign reversal at the poles. This can happen 
when the polar crown filaments (PCFs) erupt as part of polar CMEs (Gopalswamy et al. 
2003a), providing a way to track the PCFs without observing all of them (see below for an 
update). The polar CMEs are also important in understanding the eruption mechanism for 
CMEs because their source regions are purely bipolar regions. The PCF situation is similar to 
that of quiescent filament regions at lower latitudes. Thus CME eruption mechanisms appli-
cable to low-latitude quiescent filament regions (e.g. Moore and Sterling, 2006) are likely to 
be valid for the polar CMEs also. The same mechanism may be applicable for active region 
CMEs as well because these regions also contain filaments overlying polarity inversion lines 
(see e.g., Vemareddy et al. 2012). Mechanisms that require multipolar configuration (e.g. An-
tiochos et al. 1999) may not apply to eruptions from bipolar regions.  
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Figure 7. Several indicators of solar cycle phases. (1) The 17 GHz brightness temperature (contours) 
averaged longitudinally for each Carrington rotation and stacked together to see the time variation (the 
Microwave butterfly diagram). (2) The locations of PEs (red circles) detected automatically from NoRH 
images. These are limb events, so the projection effects are minimal and hence the eruption latitudes 
are known. (3) The tilt angle of the heliospheric current sheet (blue line) obtained from the Wilcox Solar 
Observatory. The vertical dashed lines denote the start times of cycles 23 (May 1996) and 24 (December 
2008).  

 
2.5.1. Signatures of the Rush to the Pole Phenomenon  
 
The rush to the poles (RTTP) phenomenon refers to filaments that appear in the 40-50o lat-

itude just before sunspot minimum and then systematically move toward the poles in both 
hemispheres (Lockyer 1931). RTTP was graphically demonstrated by Ananthakrishnan 
(1952) for the period from 1905 to 1950 (for cycles 14–18). Waldmeier (1960) and Hyder 
(1965) demonstrated the synchronism between the high-latitude filaments and the sign rever-
sal at solar poles (see also Howard and Labonte 1981; Fujimori 1984; Lorenc et al. 2003; 
McIntosh 2003).  The PCF disappearance lagged the reversal by several months, while the 
redevelopment of polar coronal holes (PCH) lagged by a few additional months.  

Figure 7 illustrates the relationship among polar eruptions (PEs and CMEs), PCH and the 
tilt angle of the heliospheric current sheet. The distinct bright patches in microwaves at the 
poles (contour and gray-scale) correspond to PCH (Kosugi et al. 1986; Gopalswamy et al. 
1999; 2012b; Shibasaki 2013). The polar microwave brightness enhancement is proportional 
to the polar magnetic field strength and corresponds to the chromosphere inside PCHs (Go-
palswamy et al. 2012b). The disappearance of polar microwave emission corresponds to solar 
maximum phases.  The low-latitude emission patches correspond to the active region emis-
sion (the microwave butterfly diagram). High tilt angles (>60o) correspond to the solar maxi-
mum phases.  Note that the cycle 23/24 minimum is much extended and the onset of cycle 24 
is delayed with respect to the time of peak polar brightness. In the north, the maxima of cycle 
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23 and 24 can be readily discerned. In the south, the cycle 23 maximum is bracketed by the 
end of cycle-22 maximum and the beginning of cycle-24 maximum. The locations of PEs red 
circles plotted on the chart are locations of prominence eruptions detected automatically from 
microwave images. PEs at latitudes >60o occur mainly during the maximum phase (indicated 
by high tilt angles), which is a representation of the RTTP phenomenon, except that we are 
tracking PEs rather than filaments or prominences.  The cessation of PE activity at high lati-
tudes marks the polarity reversal and the end of the maximum phase. There is clear north-
south asymmetry in RTTP and polar sign reversal (see also Altrock 2014; Wang et al. 2002).  
In cycle 21 the PCF disappearance occurred first in the north, a trend that continued in cycles 
22-24. Svalgaard and Kamide (2013) examined the hemispheric sunspot numbers since 1945 
and concluded that the asymmetric polar sign reversal is a consequence of the hemispheric 
asymmetry in the sunspot activity: the hemisphere with dominant activity before the SSN 
maximum reverses first. Note that the sunspot asymmetry switched in cycle 20 (Svalgaard 
and Kamide, 2013), while the reversal asymmetry occurred in cycle 21. It is not clear why the 
switch in the reversal asymmetry happens with a lag of one cycle and what implications it 
may have for dynamo models (Leighton 1969). 
 

2.5.2 Polar CMEs vs. Regular CMEs 
 
Helmet streamers, coronal cavities, and filament channels are all related entities that define 

the pre-eruption environment of a prominence (see Engvold, 1989).  Helmet streamers overlie 
cavities containing filaments as seen in eclipse pictures (e.g., Saito and Tandberg-Hanssen 
1973). PCFs are no exception. When polar prominences appear at high latitudes, streamers 
can be found overlying them. Hansen et al. (1969) showed that the white-light brightness 
peak of the corona migrated from 50o to 80o during 1964-1967, consistent with the RTTP 
phenomenon (see Zhukov et al. 2008 for a polar streamer observed by SOHO/LASCO). In 
Kleczek’s (1964) catalog of PEs, there were eruptions from various latitudes, including one 
from the polar zone that reached the largest height (>2 Rs).  

  Sheeley et al. (1980) were the first to report on a high-latitude CME observed by the Sol-
wind coronagraph on board the P78-1 satellite on 1979 September 27. Sheeley et al. also 
speculated that there should be more such high-latitude CMEs citing the RTTP phenomenon. 
However, they were not able to find a solar source —neither a flare nor a prominence erup-
tion—so they suggested that a change in the magnetic field configuration might have caused 
this CME.  Sterling and Moore (2003) reported on a soft X-ray arcade from Yohkoh during 
the 1999 February 2 PCF eruption, although they did not study the CME association. Our ex-
amination revealed a relatively fast CME (average speed ~853 km/s). The acceleration was 
high (~60 m/s-2) in the LASCO FOV so the speed exceeded ~1000 km/s before the CE left 
the coronagraph FOV. Details of this polar CME can be found in: 
http://cdaw.gsfc.nasa.gov/CME_list/UNIVERSAL/1999_02/htpng/19990209.013005.p049s.h
tp.html.  
 

http://cdaw.gsfc.nasa.gov/CME_list/UNIVERSAL/1999_02/htpng/19990209.013005.p049s.htp.html
http://cdaw.gsfc.nasa.gov/CME_list/UNIVERSAL/1999_02/htpng/19990209.013005.p049s.htp.html
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Figure 8.  PCF eruption on 2012 March 12 (a-c) and the associated CME (d-f) from STEREO, NoRH 
and SOHO observations. The STEREO/EUVI 304 Å images show that it is truly from the polar crown. 
The prominence (P) becomes CME core in the outer corona as observed by STEREO/COR1 and 
LASCO/C2. Movies can be found in the CME catalog (Gopalswamy et al. 2009c)  
(http://cdaw.gsfc.nasa.gov/ CME_list/daily_movies/2012/03/12/). 
 
   The solar source of the 2012 March 12 CME is shown in Fig. 9. The PEA as observed by 
SDO/AIA (193 Å) is in the southeast quadrant because the filament extended beyond the east 
limb and appeared as a long east-west eruption in STB/EUVI (195 Å) FOV. The variations of 
the intensity (I) and its derivative dI/dt show the familiar pattern of gradual flares, except that 
the intensity is very low. The peak acceleration of the CME and core agree with the first dI/dt 
peak. The acceleration profile of the CME core is similar to that of the LE, but the magnitude 
is slightly smaller. The CME observation ended before the second peak. The I and dI/dt varia-
tions of the PEA are in good agreement between SDO and STB images. The acceleration of 
the CME LE peaked at ~200 m/s2. The peak acceleration occurred when the CME LE was at a 
heliocentric distance of ~2.3 Rs, which is similar to the statistical value obtained by Bein et al. 
(2011) for a set of ~100 CMEs from low latitudes. 
   Gopalswamy (2013) showed that polar CMEs do have near-surface signatures such as two-
ribbon flare structure and PEA. High-latitude eruptions started occurring in late 2010 for cycle 
24, so we have scores of polar CMEs that can be compared with low-latitude CMEs (see Fig. 
7). In addition to SOHO, we now have the Solar TErrestrial RElations Observatory (STEREO) 
and Solar Dynamic Observatory (SDO) observations to study polar CMEs and identify their 
solar sources unambiguously. One such PCF eruptions (2012 March 12) from Gopalswamy 
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(2013) is shown in Fig. 8. The eruption occurred in the south polar zone near the east limb in 
Earth view as seen in the NoRH 17 GHz image.  The prominence was also observed by 
SDO/AIA at 304 Å (not shown). At the time of the eruption, the STEREO-Behind (STB) space-
craft was located at E117. Therefore, the eruption was observed as a disk event close to the 
south pole in STB view.  It was a backside event in STEREO-Ahead (STA) and the filament 
can be seen moving straight south in STA/EUVI 304 Å images. The CME was observed in the 
STB’s inner coronagraph (COR1) FOV with a clear 3-part structure. The PEA formed at the 
initial location of the PCF as is evident from the STB/EUVI image superposed on the COR1 
image. The CME appeared in the LASCO FOV at 01:26 UT and was observed until it crossed 
the FOV about half a day later. The CME was accelerating (~9 m/s2) in the LASCO FOV and 
had an average speed of ~640 km/s. At the time of leaving the LASCO FOV, the CME had a 
speed of ~715 km/s. In the outer coronagraph (COR2) images, the CME is viewed broadsided 
and hence shows the full extent. The CME appearance is similar in STB/COR1 and COR2 
images. 

 
 

Figure 9. The post-eruption arcade (a,b) of the 2012 March 12 polar CME as imaged by SDO/AIA and 
STB/EUVI. The heights and speeds of the CMEs and the prominence core as measured from NoRH, 
SDO and STEREO images are in (c). The intensity I and its derivative dI/dt are compared with the 
acceleration profiles of the CME leading edge (LE) and the prominence core in (d). The intensity was 
computed as the average data number (DN) within the boxes drawn in (a) and (b). 

 
There is another aspect of this eruption worth mentioning. The filament in the 2012 March 

12 CME actually started rising towards the end of the previous day. SDO/AIA images taken 
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before the filament rise show the lower part of the prominence cavity. Figure 10 shows the 
evolution of the cavity and prominence in three 171 Å SDO/AIA images.  The LASCO/C2 
images show the pre-eruption streamer overlying the cavity and prominence and two snapshots 
of the CME. The erupted cavity is seen in the LASCO images with the CME LE flattened. The 
fine thread-like feature near the outer edge of the cavity going over the prominence core of the 
CME is indicative of the flux rope structure. Such threads have been identified as field-line 
bundles that make up the flux rope (cavity) in white-light images (Chen et al. 1997). The flux 
rope was deformed somewhat between the 02:00 and 03:12 UT images. The cavity and prom-
inence extended into the plane of the figure curving to the right  
 

 
 
Figure 10. (top) SDO/AIA images at 171 Å showing the pre-eruption prominence and cavity (March 
11, 13:58 UT), the slowly-rising cavity and prominence (March 11 22:59 UT) and the prominence leg 
after the cavity has left the FOV (March 12 01:29 UT). (bottom) Three LASCO/C2 images showing the 
polar streamer (March 12 00:00 UT), the early phase of the CME when the prominence core is still 
below the occulting disk (02:00 UT) and the whole CME with all the substructures: Leading edge (LE), 
cavity, and prominence core (03:12 UT). The fine thread that crosses the CME in the latitudinal direc-
tion is likely to be a bundle of field lines indicating the flux rope structure. The prominence core is the 
lateral section of the long filament that extends into the plane of the figure, curving to the right because 
it was observed so in STB view. 
  
as evidenced by the long east-west filament that erupted as observed by STB/EUVI images 
(see Fig. 10b). A similar prominence/cavity eruption was reported by Régnier et al. (2011), 
who concluded that the prominence is located at the bottom of the flux rope. It is now confirmed 
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that cavities are ubiquitously found in quiescent filament regions and in the polar zone (Low 
and Hundhausen 1995; Gibson et al. 2010) and only occasionally in active regions. Detailed 
discussion on cavities and their relationship to prominences and CMEs can be found in Chapter 
13. 
   In summary, the polar CME of 2012 March 12 has all the classical features like any other 
CME associated with a prominence eruption demonstrating the following points. 1. The polar 
CMEs also have the three-part morphology. 2. The polar CME originates in a helmet streamer 
overlying the PCF. 3. A PEA is formed in each case, with its feet located on either side of the 
pre-eruption location of the filament (two-ribbon structure). 4. The CME speeds in the LASCO 
FOV are slightly above the average value (~475 km/s) of the general population of CMEs. 5. 
The peak value of the acceleration is typical of prominence associated CMEs (>100 m/s2). 6. 
The CME attains the peak acceleration at a height of ~2.3 Rs, which is typical of most low-
latitude CMEs. 
   Figure 11 further emphasizes the similarity between polar and low-latitude CMEs by show-
ing the speed and width distributions. The CMEs were all associated with NoRH PEs listed in 
Gopalswamy et al. (2003b). The CMEs were divided into polar (latitude >60°) and low-latitude 
(≤40°) CMEs. CMEs in the latitude range 40-60° were omitted to make sure the events are 
truly from polar and low-latitude regions and not because of projection effects. The speeds and 
widths are quite similar suggesting that there is no significant difference between the two pop-
ulations. The few higher-speed and wider CMEs are likely to be associated with active region 
filaments. 

 

 
 
Figure 11. Speed and width distributions of cycle-23 polar CMEs (top) and low-latitude CMEs (bot-
tom). Data from Gopalswamy et al. (2003b).  
.   

These observational facts confirm that the polar CMEs are similar to low-latitude CMEs, 
and contradict the suggestion that CMEs associated with polar crown filaments should not be 
considered as CMEs (Antiochos et al. 1999).  These authors suggested that polar CMEs are 
similar to the blobs originating in helmet streamers at a heliocentric distance of about 3-4 Rs 
and accelerating slowly (~4 m/s2) from ~150 km/s at 5 Rs to 300 km/s at ~25 Rs (Sheeley et 
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al. 1997).  Clearly, the peak acceleration of polar CMEs is larger by two orders of magnitude 
(see Fig. 9), unlike the Sheeley blobs, and similar to regular CMEs. Karpen et al. (2012) con-
cluded that CMEs do occur even without flare reconnection, but the eruption will be slow, more 
like a streamer blowout (e.g., Sheeley et al. 1997) than a fast CME. They predicted a clear 
difference in the early acceleration profile between CMEs with and without impulsive flares. 
The observations presented here do indicate that the acceleration profile and magnitude are 
similar to that of regular CMEs (see also Joshi and Srivastava 2011). The polar CMEs are also 
associated with flare reconnection as evidenced by the PEAs. Thus polar CMEs carry mass, 
kinetic energy, and helicity from the source region into the interplanetary medium and remove 
the “PCF barrier” leading to the completion of the polarity reversal.  

 

 
 
Figure 12. Deflection of the 2009 November 08 CME and prominence from the southwest initial di-
rection (blue arrow) to the west (white arrow). The red arrow (11° away from the blue one) represents 
the CME position angle before it left the COR1 FOV. The images are from STA/EUVI, COR1, and 
COR2. Total deflection was by ~19° over a period of ~5 h.  
 

3. Non-radial Motion of Eruptive Prominences and CMEs 
 
A systematic equatorward deflection of CMEs observed during 1973–1974 by ~2° in the 

inner corona was reported by Hildner (1977), who concluded that (i) there must be a nonradial 
(equatorward) force acting on the CMEs and (ii) this must result in an enhanced effect of CMEs 
on the near-ecliptic IP medium. MacQueen et al. (1986) confirmed the deflection (average ~2°, 
maximum ~10°), but dismissed the possibility that it may have enhanced CME impact on the 
near-ecliptic IP medium. Decades of CME observations have confirmed the importance of 
CME deflection in understanding the propagation and geo-impact of CMEs.  

Prominences were also found to have nonradial motion (Gopalswamy et al. 2000; Gopals-
wamy and Thompson, 2000; Simnett 2000).  Gopalswamy and Thompson (2000) found that 
both the prominence and the CME showed the deflection, suggesting that the CME deflected 
as a whole. The initial position angle of the prominence eruption was 120° (or S30 in latitude). 
When the CME was observed in the LASCO/C3 FOV, both the CME and the prominence were 
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at the position angle PA = 90° (at the equator). Thus the equatorward deflection was ~30°, 
which is the PA offset between the initial PE location and the CME nose.  

Figure 12 illustrates a CME deflection event observed in full detail by the STEREO corona-
graphs COR1 and COR2.  The prominence erupted at a position angle of 256° at 01:50 UT. In 
the next two hours, the CME nose and the eruptive prominence had a significant movement 
toward the equator to PA~267°. Finally, the CME was near the equatorial plane (PA~275o) by 
06:54 UT as observed by STEREO/COR2. The latitudinal movement of the CME can be quan-
tified as 3°.75 per hour. This is typical of CMEs deflected toward equator in the rise phase of 
cycles 23 and 24.  One of the consequences of this deflection is that relatively more magnetic 
clouds are observed near Earth during the rise phase of solar cycles resulting in intense geo-
magnetic storms (Gopalswamy et al. 2008).  
   Figure 13 shows the CME and prominence deflection in the 1998 January 25 event close to 
the Sun because SOHO’s inner coronagraph LASCO/C1 was still operating.  In the 14:54 UT 
frame, only the CME LE was observed. In the 15:14 UT frame, both the CME and the promi-
nence core were visible. Between these two frames, the CME was deflected by ~12°. The 
CME was further tracked in the FOV of LASCO/C2 and C3, which indicated that the deflec-
tion ceased by ~16:00 UT, with a total deflection of ~ 17°. Figure 13 shows the PA of the 
CME nose as a function of time (t, measured in h from 13:30 UT). The e-folding time for tra-
jectory change is ~1.2 h in the early phase. 
 

 
 

Figure 13. Two SOHO/LASCO/C1 images (left, middle) of the corona showing the 1998 January 25 
CME deflecting toward the equator from a position angle of ~55° (solid arrow) to ~61° (dashed arrow). 
(right) Variation of the CME central position angle as a function of time. Circles, crosses, and squares 
represent measurements, respectively from C1, C2, and C3 coronagraphs of SOHO/LASCO. The solid 
line is the fit to the data points, showing that the nonradial motion stopped within a time T~2 h from 
the beginning of the eruption. 
    
Plunkett et al. (2001) reported that the initial location of eruptions observed in EUV was also 
offset poleward of the associated CMEs. They considered 135 CMEs during April-December 
1997 and found a bimodal distribution for eruption latitudes in EUV, while the corresponding 
CME latitudes were unimodal. These observations also indicated an average offset of ~30°.  
Gopalswamy et al. (2003b) investigated more than 200 PEs detected by NoRH, which revealed 
offsets as large as ~40° (see their Fig. 12). The offset was systematically poleward of the asso-
ciated CMEs in the rise phase. The offset was not systematic during the maximum phase as 
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was noted by MacQueen et al. (1986). The systematic offset found for the rise phase of cycle 
23 is again confirmed in the rise phase of cycle 24 as shown in Fig. 14 (see also Gopalswamy 
et al. 2012b).   

 

 
Figure 14. The latitude offset between PE (NoRH) and CME (LASCO). PEs originating in the northern 
and southern hemispheres are distinguished. The vertical dashed lines mark the times when the system-
atic poleward offset of CMEs with respect to the PEs ended. The shaded region corresponds to the time 
when cycles 23 and 24 overlapped (updated from Gopalswamy et al. 2012b). 
 
   Now we examine why Hildner (1977) and MacQueen et al. (1986) observed much smaller 
deflection.  One possibility is that these authors measured the deflection in the narrow radial 
range of 2-3 Rs.  In order to see if the deflection increases with radial distance, we have plotted 
the CME position angle as it moved out. Figure 15 shows the change in the PA of the CME 
nose as a function of the CME heliocentric distance (H) for two CMEs: the 1998 January 25 
CME from cycle 23 (Fig. 14) and the 2009 May 5 CME from cycle 24.  Clearly the PA changes 
until the CME reaches a certain height and then becomes stable. The PA vs. H curves have the 
form, PA = A – B exp (-H/H*) where A and B are constants and H* is the e-folding distance. 
In the 1998 January 25 case, the maximum PA was attained when H was ~5 Rs (H* ~1.2 Rs). 
On the other hand, the deflection occurred over a much larger height and gradually (H* ~5 Rs) 
in the 2009 May 5 event. 
   The large deflections noted above support the original suggestion by Hildner (1977) that the 
deflection may have implications for the plasma in the equatorial region. The deflection to-
wards the equator has been suggested as the reason for the relative higher rate of detection of 
magnetic clouds during the rise phase of solar cycle 23 (Gopalswamy, 2006b; Riley et al. 2006; 
Gopalswamy et al. 2008).  All CMEs are likely to have a flux rope structure (i.e., magnetic 
cloud) and are observed so at 1 AU only when the observing spacecraft passes through the 
central part of the flux rope. The equatorward deflection during the rise phase thus allows 
CMEs to be detected as flux ropes at 1 AU. 
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Figure 15. CME Position angle (PA) at various heliocentric distances (H). (a) The 1998 January 25 
event with data points from SOHO/LASCO telescopes C1 (circles), C2 (crosses) and C3 (squares). (b) 
The 2009 May 5 event with data points from STEREO COR1 (crosses) and COR2 (diamonds). The 
solid curves are fits to the data points in the form PA = A - B exp (-H/H*), where A, B, and H* are 
coefficients of the fit given in the plots.  

 
Both Hildner (1977) and MacQueen et al. (1986) attributed the nonradial motion to the 

global pattern of magnetic field and flow in the corona, which are distinct during solar minima 
and maxima.  Filippov et al. (2001) proposed a simple axisymmetric model of the global mag-
netic field configuration with embedded flux rope to explain the nonradial motion of a promi-
nence reported in Gopalswamy et al. (2000).  During the minimum phase, PCHs are prominent 
and contain open magnetic fields of high strength. Active regions emerge at higher latitudes 
(~40o) during this phase, so CMEs erupt in the vicinity of the PCHs. The current thinking is 
that the magnetic field in coronal holes is responsible for CME deflection toward the equator. 
Coronal holes also occur at low latitudes, so similar deflection should happen when a CME 
erupts near low-latitude coronal holes.  Gopalswamy et al. (2004b, 2005) reported coronal-hole 
influence on CMEs, with deflections toward and away from the Sun-Earth. Cremades et al. 
(2006) considered the area and distance to the eruption region of coronal holes (but not the 
magnetic field) to quantify the influence on CMEs. Gopalswamy et al. (2009a) introduced the 
photospheric magnetic field (B) inside coronal holes as another key parameter in determining 
the coronal hole influence on CMEs. They were able to show that many disk-center CMEs did 
not arrive at Earth because of deflection by large coronal holes located near the eruption region. 
However, the shocks associated with these CMEs did arrive at Earth and were called “driverless 
shocks” because the observing spacecraft did not intercept the CMEs. Gopalswamy et al. 
(2010b) found that B2, rather than B, is a better representation of the force acting on the CMEs 
from the coronal holes. More quantitative investigations involve magnetic pressure gradient 
between the eruption region and the coronal hole (Gui et al. 2011; Panasenco et al. 2013; Kay 
et al. 2013), but the derived extent of deflection is similar to the previous work. Deflection 
from a high-field region can also occur in active regions, when the eruption occurs near large 
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sunspots as described by Sterling et al. (2011b) for the 2006 December 13 CMEs. We also 
would like to point out that systematic nonradial motion can also be found in over-and-out 
CMEs that do not involve major PEAs (Moore and Sterling, 2007).  

The deflections to the extent of 20–30° away from the Sun-Earth line are adequate to make 
the CMEs behave like limb CMEs and miss Earth (Gopalswamy et al. 2010b). Such driverless 
shocks were mostly observed during the declining phase of solar cycle 23, consistent with the 
abundance of low-latitude coronal holes in this phase. When the deflection is less severe, disk-
center CMEs arrive at Earth as non-cloud ICMEs because the observing spacecraft pass 
through the edges of the flux ropes due to deflection by coronal holes (Gopalswamy et al. 2013; 
Xie et al. 2013; Mäkelä et al. 2013). So far we discussed the deflection of prominences and 
CMEs, which correspond to the main body of CMEs. Coronal holes can also deflect the shock 
surrounding the CMEs, which may be observed as reflected waves in EUV (Long et al. 2008; 
Gopalswamy et al. 2009b; Olmedo et al. 2012).  Coronal hole deflection can also result in the 
lack of alignment between the ejecta and shock (Wood et al. 2012).  

 
4. Implications for Models 
 
The observations presented in this chapter indicate that eruptive prominences are an integral 

part of CMEs and typically occupy a small volume compared to the entire CME. Therefore, 
prominence eruptions need to be modeled along with the CME flux rope in which the promi-
nence is embedded. There have been many observational signatures that confirm that almost 
all CMEs in the interplanetary medium have the flux rope structure. Therefore, the flux rope 
structure is fundamental to CMEs. When the flux rope is fast enough, it can drive a shock from 
certain distance in the corona. This has something to do with the interaction of the flux rope 
with the ambient medium. Observations of high and low charge states in flux ropes at 1 AU 
point to the intimate connection to the hot (flare) and cool (prominence) plasma originating 
near the Sun.  The high charge state material is a characteristic of the IP flux rope irrespective 
of the primary near-surface feature (flare or prominence eruption). The approximate equality 
between flare reconnection flux and the azimuthal magnetic flux of IP flux ropes (Qiu et al. 
2007) point to formation of flux ropes as part of the eruptive process. On the other hand, the 
presence of prominence cavity also indicates the presence of a flux rope, probably formed in a 
non-eruptive manner. The example shown in section 2.4 indicates that the cavity rises and 
leaves the Sun as a flux rope. This means an initial flux rope with some added flux seems to be 
the best possible scenario. Different proportions of existing and eruptive components of the 
flux are expected in different flux ropes in the IP medium.  

The free energy that can be stored in closed magnetic regions on the Sun accounts for the 
observed range of CME speeds (<100 km/s to >3000 km/s) and accelerations (up to ~10 km/s2). 
The acceleration can vary by two orders of magnitude from (100s of m/s2 for eruptions from 
quiescent filament regions to >1 km/s2 for active region eruptions). Thus the lowest CME ac-
celeration is of the order of surface gravity of the Sun, which is negligible for the most energetic 
eruptions. Given the observed CME mass of up to 1016 g, these accelerations give an idea of 
the magnitude of the force involved in the eruptions. 

The fact that polar CMEs behave like any other CMEs is an important factor that can help 
defining models. The polar CMEs originate from purely bipolar regions formed by the ap-
proaching of insurgent and incumbent fluxes in the polar zone. The bipolar nature of quiescent 
filament regions at low latitudes is no different. Many active regions also have bipolar structure 
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and so produce CMEs. Models that require bipolar regions have the universal appeal, while 
those requiring multipolar configuration may work only in certain regions. 

Finally propagation models need to account for deflections by other large-scale structures in 
the corona and IP medium. This is especially important for Earth-directed CMEs because the 
deflection can channel a CME toward or away from the Sun-Earth line. What is important is 
the deflection close to the Sun, which may not be properly taken into account by models such 
as ENLIL (Odstrcil and Pizzo 2009) whose inner boundary is at ~21 Rs. By the time CMEs 
reach this distance, the deflection effect might have disappeared.  
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