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Abstract

Cosmic rays and solar energetic particles may be accelerated to rela-

tivistic energies by shock waves in astrophysical plasmas. On the Sun,

shocks and particle acceleration are often associated with the erup-

tion of magnetized plasmoids, called coronal mass ejections (CMEs).

However, the physical relationship between CMEs and shock particle

acceleration is not well understood. Here, we use extreme ultraviolet,

radio and white-light imaging of a solar eruptive event on 22 September

2011 to show that a CME-induced shock (Alfvén Mach number 2.4+0.7
−0.8)

was coincident with a coronal wave and an intense metric radio burst

generated by intermittent acceleration of electrons to kinetic energies

of 2–46 keV (0.1–0.4 c). Our observations show that plasmoid-driven

quasi-perpendicular shocks are capable of producing quasi-periodic ac-

celeration of electrons, an effect consistent with a turbulent or rippled

plasma shock surface.
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Coronal mass ejections (CMEs) are spectacular eruptions of magnetized

plasma from the low solar atmosphere into interplanetary space [1, 2]. With

kinetic energies of ∼1025 J [3], they are the most energetic explosive events

in the solar system and are often associated with plasma shocks and the

acceleration of particles to relativistic speeds [4, 5]. However, the under-

lying mechanism relating CMEs, shocks, and particle acceleration is still a

subject of intense debate [6]. By clarifying the inherent characteristics of

these phenomena we learn not only about the nature of explosive plasma

events but also about how they drive shocks and accelerate particles to high

energies. Such processes are ubiquitous in the universe, playing a role in the

acceleration of cosmic rays in supernovae and active galactic nuclei shocks

[7].

CME-associated shocks are often observed over a variety of spectral

bands. At radio frequencies, high intensity (∼108 Jy) emissions, known as

type II and type III bursts, are associated with coronal shocks and acceler-

ated particles in the solar corona [8, 9]. Fine structure in these radio bursts

can often reveal a ‘bursty’ nature to the shock particle acceleration [10],

which can reveal details of the internal shock structure [11, 12]. At extreme

ultraviolet (EUV) wavelengths, the shock or pressure pulse response of the

corona to an eruption may be imaged as a bright pulse propagating across

the entire solar disk at typical velocities of 200–400 km s−1 [13]. These ‘coro-

nal bright fronts’ (CBFs) are a regular feature of solar eruptive events and

often display wave-like properties such as reflection [14], refraction [15] and

pulse broadening [16]. Like CMEs, CBFs are often accompanied by type II

and type III radio bursts, with EUV and radio images revealing a spatial link

between the phenomena that is suggestive of a common origin [17, 18, 19].

It has been proposed that the common origin for these myriad phenom-

ena may be a CME-driven shock [5, 20]. In this scenario, the CME eruption

drives a pressure pulse, observable in the low corona as a propagating wave-

like CBF. Higher in the corona this same pulse forms a shock, accelerating

particles and producing type II and III emission. However, much debate sur-

rounds the suggestion that (i) the CBF is a plasma pressure wave driven by

a CME, and (ii) the radio bursts, generated by accelerated particles, result
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from this same wave/shock system. The contention has arisen from at-

tempts to explain non-wave kinematics of CBFs [21]. Pseudo-wave theories

are employed to describe this behavior, where the erupting CME produces

a large-scale restructuring of the coronal magnetic field, which results in a

propagating bright pulse (via Joule plasma heating) that is not actually a

driven wave [22]. In this scenario, any relationship with shock observables

is indirect. Further confusion is added by the possibility that high energy

particles in association with the eruption may be a consequence of magnetic

reconnection in the flaring active region, and not the result of a shock [23].

Collectively, CMEs, CBFs and radio bursts provide direct measures of

both shock kinematics and the characteristics of the accompanying accel-

erated particles. However, a common theory explaining these phenomena

has yet to be verified. This lack of clarity can be ascribed to an EUV

imaging cadence that was unable to match the fast time sampling of radio

imaging and spectroscopy. Now, using the high image cadence of the Solar

Dynamics Observatory [SDO; 24], combined with fast time sampling radio

images and spectra, we can reveal previously unseen characteristics of the

relationship between these phenomena, proving that a CME-driven shock

is the feature unifying these observations and that this shock is responsible

for bursty electron acceleration. This greatly advances our understanding

of the close relationship between solar eruptions, plasma shocks and their

resulting EUV, radio and particle acceleration signatures.

Coronal Bright Front and Radio Source

On 22 September 2011 at 10:29 UT, an X-ray flare (GOES class X1.4) began

in an active region located on the east limb of the Sun (NOAA active re-

gion 11302; N13E78). Approximately 11 minutes after the flare start time,

a bright wave-like front (CBF) was observed propagating away from the

southern edge of the active region in SDO/Atmospheric Imaging Assembly

[AIA; 25] 21.1 nm passband images. The CBF then propagated along the

east limb from ∼15◦ south to ∼50◦ south of the equator (Fig. 1). During

the same period of the CBF propagation, a bright 150.9 MHz source formed
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above the CBF, imaged using the Nançay Radioheliograph [NRH; 26] (con-

tours Fig. 1). In each image the contours range from Tpeak to 0.95Tpeak,

where Tpeak is the peak brightness temperature at the time of the image;

the intensity of the contours is indicated by the colour bar on the right.

Initially, both the erupting structure seen in the AIA image and the radio

source had the same spatial extent over latitude (Fig. 1a), showing they

belong to a common structure. After this, the most southern part of the

radio source reached an extremely high brightness temperature (∼109 K)

and closely followed the propagation of the CBF southward until it eventu-

ally diminished into the thermal background at 10:56 UT. Another emission

source at 150.9 MHz was also observed at ∼0◦ latitude on the east limb at

a height of 1.1–1.3R� (Fig. 1c,d,e,f); while this source was clearly associ-

ated with the eruptive active region, any link between it and the CBF is

secondary, as it shows no temporal relationship with the start and stop time

of the bright front. Similar radio source motion is observed at 173, 228

and 270 MHz, however any co-propagation of these radio sources with the

CBF is of much shorter duration. A movie showing the co-propagation of

the CBF and 150 MHz radio source can be found in Supplementary Movie

1. For a movie and discussion of the multi-thermal nature of the CBF see

Supplementary Movie 2.

To compare the motion of the CBF and radio source, the position angle

(PA) trajectories were analyzed (Fig. 2). Both the CBF and radio source

clearly show common kinematics, with the two features having a consistent

progression southward around the east limb. The solid lines show a fit of

θ(t) = θ0 + ωt to the data, where θ0 is the starting PA, ω is the angular

velocity, and t is time. The slope of each line gives ω, from which the velocity

of the source may be obtained using v = rω, where r is the distance of the

source from Sun center. For the CBF, an angular velocity of 4.1 ± 0.4 ×
10−4 rad s−1 was obtained, resulting in a velocity of 283±40 km s−1 at 1R�.

At 1.27R�, the CBF was found to have an angular velocity of 5.4 ± 1.3 ×
10−1 rad s−1, resulting in v = 480±115 km s−1. The 150 MHz source had an

angular velocity of 6.2±0.1×10−4 rad s−1; the value for r of this source was

estimated by directly converting frequency fp to electron density ne, using
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the methods described in Supplementary Material. This gave a height of

1.27+0.06
−0.09R� for the radio source, resulting in a velocity of 548+34

−48 km s−1.

This velocity is larger than the CBF velocity at 1R�, but is comparable to

the CBF velocity at 1.27R� (Fig. 2). The similar speeds and trajectories of

the CBF and radio source suggest that they belong to a common propagating

structure in the corona. Finally, the radio source motion speed was used

to estimate its Alfvén Mach number MA = v/vA, where vA is the Alfvén

speed determined from magnetic field and density measurements at the radio

source height (see Supplementary Material). With vA = 225+85
−35 km s−1,

the Alfvén Mach number of the radio source is 2.4+0.7
−0.8, showing that the

source travelled in excess of the local wave speed in the corona. Finally, we

note that a potential field source surface extrapolation (PFSS) reveals the

presence of open and radial field in the south east quadrant of the corona

(see Supplementary Figure 2), revealing that the propagation was transverse

to the magnetic field. This is an important aspect of quasi-perpendicular

shock orientation that we discuss in the last section.

Radio Dynamic Spectra

The 150 MHz source observed by NRH had a brightness temperature of

∼109 K, indicating coherent plasma emission. Such emission is generated via

plasma oscillations that are due to instabilities in the presence of high veloc-

ity electron beams [27]. The presence of electron beams was independently

verified and revealed in detail using radio dynamic spectra. At ∼10:40 UT

the fundamental and harmonic bands of a type II burst shock signature was

observed at 45 and 90 MHz (Fig. 3b), respectively, using the Nançay Deca-

metric Array [NDA; 28]. Type III bursts begin at the same time as the type

II (Fig. 3a,b), observed using NASA’s STEREO-B/WAVES instrument [29].

The frequency drift of these type III radio bursts provide a measure of veloc-

ity of the electrons causing the radio emission. Converting frequency-time

measurements to height-time via a coronal density model (see Supplemen-

tary Material), the beam speed was estimated to be ≤0.4 c (46 keV), where

c is the speed of light. This is a clear signature of relativistic electron ac-

5



celeration in association with the shock. These particles were eventually

detected in-situ by the STEREO-B spacecraft (see Supplementary Figure

3).

More striking evidence for shock-accelerated electrons is in the form of

‘herringbone’ emission, observed using the eCallisto spectrometers [30] at

the Rosse Solar Terrestrial Observatory [RSTO; 31] (Fig. 3c). The her-

ringbones result from individual beams of shock-accelerated electrons [10],

traveling towards and away from the Sun i.e., to higher and lower frequen-

cies. Similar features occur between 100–200 MHz (Fig. 3b), showing the

same characteristics as herringbones (a bursty nature and decreasing inten-

sity with respect to time). In a similar manner to the type III bursts, the

beam velocity of herringbone electrons was estimated to be 0.15 c, again

showing the presence of near-relativistic electron acceleration in association

with the presence of a shock. While their structure in frequency reveal how

fast these beams travel, their behavior in time can reveal detailed temporal

characteristics of the shock acceleration process. A wavelet analysis using

a derivative of a Gaussian wavelet performed on a time series at 54 MHz

reveals periodicity at 2–11 seconds (see Supplementary Figure 1). Previous

authors have attributed this bursty nature to rippling and inhomogeneity

along the shock front, possibly revealing some level of instability or shock

turbulence in the acceleration region [12, 32]; we discuss this in the last sec-

tion. We note that the features at 100–200 MHz appear to be the extension

of the herringbones into higher frequencies. These features in particular

show good temporal correspondence with the radio source i.e., they have a

start-stop time comparable to the radio source. This is particularly apparent

for the group of bursts at 10:52–10:56 UT (Supplementary Movie 1).

The radio emission in the dynamic spectra have all the hallmarks of

shock generation with particle acceleration closely tied to the process. The

association of shock radio activity with the imaged 150 MHz source suggests

that the two observables have a common origin in a plasma shock. Overall,

the position of the radio source at the southern flank of the CME, the

transverse motion of the source (propagation parallel to the surface) and

the zero frequency-drift of the herringbones is suggestive of a shock driven
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parallel to the surface by the flank expansion, similar to the assertion by

[33] and [34]. Indeed the association of the CBF with this radio activity

is corroborative evidence of the wave/shock system at the flank. Further

evidence of a shock having occurred in the corona was obtained through

white-light observations, allowing us to study the position of this shock

relative to the CME.

White-light CME and Shock

A CME associated with this event was observed by the Large Angle Spec-

troscopic Coronagraph [LASCO; 35], first appearing at 10:46 UT, with an

apex heliocentric distance of ∼2.6R� (Fig. 1c). The next available image

shows the bright CME front with a fainter, secondary front at the south-

ern flank (Fig. 4b). This ‘two-front’ morphology is a common occurrence

in white-light CME structure and constitutes a reliable signature of a CME

front associated with a stand-off shock [36]. In order to distinguish be-

tween the CME front and shock front, we performed a 3D reconstruction of

the CME using the elliptical tie-pointing method described in [1] (Fig. 4d).

This reconstruction reveals that the bright front outlined in the C2 corona-

graph (ellipse in Fig. 4b) corresponds to the faint front outlined as a halo in

STEREO-B COR1 (ellipse in Fig. 4c). Furthermore, the observations reveal

that the secondary and extremely faint front at the southern edge of the

CME (as imaged in LASCO/C2, Fig. 4b) cannot be considered as part of

the CME structure, but is actually an associated shock front. We note that

white-light shocks have been reported in the past, occurring both in the low

corona as well as out to ∼0.5 A.U. [36, 37]. Here, we have employed a 3D re-

construction from multi-viewpoint observations to qualitatively confirm the

presence of a shock at the southern flank of the CME, in the same region as

the CBF and radio burst.
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Plasma Shocks and Bursty Particle Acceleration

There has been much debate surrounding the assertion that CBFs are a wave

phenomenon [13], with numerous authors suggesting a pseudo-wave theory

[22]. In the past, the association of CBFs with type II and type III bursts

has been used as evidence against this pseudo-wave interpretation and more

in favor of the MHD wave paradigm [5, 20]. This study reveals that the

CBF in this event was indeed closely associated with shock radio activity

positioned on the flanks of an expanding CME. This kind of behavior has

been suggested before, but never directly imaged [18, 38, 39]. It shows how a

combination of radio and EUV imaging can reveal the evolution of plasmoid

driven shocks in the solar atmosphere [40].

Of further interest in this study is the likelihood of a quasi-perpendicular

orientation of the shock, as revealed by the PFSS extrapolation. Quasi-

perpendicularity is an essential aspect of the shock drift acceleration (SDA)

mechanism [41], a process believed to be responsible for particle acceleration

in planetary magnetospheres [42] and solar radio bursts [43]. This mecha-

nism involves an adiabatic reflection of particles from the shock, with the

energy gain sourced in the V×B electric field, where V and B are the up-

stream flow speed and magnetic field, respectively. A single reflection from

the shock has limited energy gain, however multiple reflections may produce

relativistic energies, which is particularly important for low Mach number

shocks such as that reported here (MA = 2.4+0.7
−0.8) and in [44]. This multiple

reflection process may be explained by inhomogeneity in the shock front, a

characteristic usually known as ‘rippling’ [11, 45]. 2D hybrid simulations

show that rippling is brought about by an instability [32] and resembles a

standing-wave mode of the shock surface [46]. The presence of ripples can

lead to a quasi-sinusoidal variation in shock-normal orientation with respect

to the upstream magnetic field. Since the efficiency of SDA requires quasi-

perpendicularity, there will be sites on the shock front that provide efficient

acceleration and sites that do not − a structure that may lead to mag-

netic trapping and multiple reflections [11], hence producing higher energy

particle acceleration.
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The presence of ripples can produce quasi-periodic herringbones in three

ways. Firstly, it makes SDA more efficient and capable of producing the

observed herringbone energies, especially when particle scattering is con-

sidered [32]. Secondly, the periodic spatial variation in the acceleration

efficiency of the shock could explain the bursty and quasi-periodic nature of

the herringbones (Supplementary Figure 1). [12] suggest that shock front in-

homogeneity brought about by MHD turbulence is a possible explanation of

bursty herringbones. [34] produced a detailed model of SDA from a rippled

shock, specifically on the flanks of an expanding CME. Their results suggest

that herringbones could be produced by accelerated electrons at spatially

intermittent regions of quasi-perpendicularity on a rippled shock surface.

Thirdly, [32] also predicts that, if rippling is present, the upstream and

downstream electron beams should have similar energies, which is not pre-

dicted for a uniform or ‘smooth’ shock. A sample of the oppositely drifting

herringbones in Fig. 3c shows that positive and negative frequency drifts are

both ∼5 MHz s−1, revealing that the upstream and downstream populations

have similar energies (although we note the possibility that both positive

and negative drifting herringbone features may be accelerated upstream, as

suggested by the schematic of [11]). There is also the possibility that the

herringbones may be associated with a termination shock of a reconnection

outflow occurring behind the CME [47]. In such a scenario, this shock would

have a more indirect relationship with the CME propagation. However,

the imaged radio source shows a good temporal correspondence with the

shock activity in the dynamic spectra, especially between 10:52−10:56 UT,

suggesting the particle acceleration indicated in the spectra shares a close

relationship with the propagating source.

Our observations reveal the need for a more detailed modeling of her-

ringbone solar radio bursts. The quasi-periodic behavior of herringbones

provides a possible direct measure of shock inhomogeneity and the spatial

scales over which the magnetic field varies in the shock and ambient corona;

it may also provide a measure of the turbulence in these plasma flows [12]. In

the future, high cadence EUV imaging from SDO, combined with sensitive

radio imaging-spectroscopy observations from instruments such as the Low
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Frequency Array [LOFAR; 48], will reveal unprecedented detail of plasma

shocks and their role in particle acceleration. This may reveal the funda-

mental nature of a plasma shock process that is universal, but currently

impossible to directly observe in any other area of astrophysics.
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Figure 1: AIA 21.1 nm images over-plotted with NRH 150.9 MHz contours.
a-f show that the 150 MHz source follows closely the coronal bright front
(CBF) as it propagates around the east limb, indicating they belong to a
common structure. The intensity of the radio source is indicated by the
colour bar on the right, showing the brightness temperature of the source
ranges between ∼107–109 K. Such high intensities are indicative of coherent
plasma emission produced via high energy electron beams. c reveals the
role of the CME in the event, as observed by the LASCO C2 coronagraph.
The combination of the white-light coronagraph (C2) and the EUV images
(AIA) reveal the full spatial extent of the CME bubble i.e., the frontal
structure in white-light has clear extensions back toward the solar surface,
imaged at EUV. The location of the radio source and CBF show they clearly
have a relationship with the southward CME flank. The dashed pink lines
indicate the predicted height range of the radio emissions observed in the
NDA dynamic spectrum (Fig. 3b). A movie of this figure is available in
Supplementary Movie 1.
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Figure 3: Radio dynamic spectra from STEREO-B/WAVES (0.01–16 MHz),
Nançay DA (20–90 MHz), and RSTO eCallisto (10–400 MHz). The type II
radio burst is indicated in b, with both fundamental and harmonic emission
observable. This shock signature is characterized by two emission bands
drifting slowly (∼-0.2 MHz s−1) toward lower frequency over time. Negative
frequency drift in dynamic spectra is a result of plasma emission occurring
at decreasing density with respect to time. This is due to the emission ex-
citer traveling to larger heights (lower densities) in the solar atmosphere; as
the density drops, so too does the frequency of plasma emission. The type
III bursts are indicated in a,b, while herringbones are shown in c. Each
herringbone or ‘spike’ is indicative of an electron beam traveling away from
the shock. Note that all of the radio activity from a-c is indicative of either
particle acceleration or a plasma shock in the corona. The start and stop
times of this radio activity in these dynamic spectra show good temporal
correspondence with the start/stop times of the activity in Fig. 1. This is es-
pecially apparent for the features between 100–200 MHz; the correspondence
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Supplementary Movie 1
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the northern and southern flanks of the CME. c, Base difference image of
the CME from the COR1-B coronagraph, with a corresponding ellipse fit
and EUVI 19.5 nm image inset. The red lines are the red asterisk points in
b projected as lines-of-sight across the COR1 field of view. d 3D reconstruc-
tion of the CME with the white light shock indicated on the plane of sky
(only 2D information is available for this feature). The red dotted lines are
the projected points from the ellipse on the C2 image, and the blue dotted
lines are the projected points from the ellipse on the COR1 image. The
black ellipses are those inscribed in the resulting quadrilateral slices via the
elliptical tie-pointing method for 3D CME reconstruction, as described in
[1].
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