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Abstract The speed [v(R)] of coronal mass ejections (CMEs) at various distances from
the Sun is modeled (as proposed by Vršnak and Gopalswamy in J. Geophys. Res. 107,
2002, doi:10.1029/2001/JA000120) by using the equation of motion adrag = γ (v − w) and
its quadratic form adrag = γ (v − w)|v − w|, where v and w are the speeds of the CME and
solar wind, respectively. We assume that the parameter γ can be expressed as γ = αRβ ,
where R is the heliocentric distance, and α and β are constants. We extend the analysis
of Vršnak and Gopalswamy to obtain a more detailed insight into the dependence of the
CME Sun–Earth transit time on the CME speed and the ambient solar-wind speed, for dif-
ferent combinations of α and β. In such a parameter-space analysis, the results obtained
confirm that the CME transit time depends strongly on the state of the ambient solar wind.
Specifically, we found that: i) for a particular set of values of α and β, a difference in the
solar-wind speed causes larger transit-time differences at low CME speeds [v0], than at high
v0; ii) the difference between transit times of slow and fast CMEs is larger at low solar-
wind speed [w0] than at high w0; iii) transit times of fast CMEs are only slightly influenced
by the solar-wind speed. The last item is especially important for space-weather forecast-
ing, since it reduces the number of key parameters that determine the arrival time of fast
CMEs, which tend to be more geo-effective than the slow ones. Finally, we compared the
drag-based model results with the observational data for two CME samples, consisting of
non-interacting and interacting CMEs (Manoharan et al. in J. Geophys. Res. 109, 2004). The
comparison reveals that the model results are in better agreement with the observations for
non-interacting events than for the interacting events. It was also found that for slow CMEs
(v0 < 500 km s−1), there is a deviation between the observations and the model if slow-wind
speeds (≈ 300 – 400 km s−1) are taken for the model input. On the other hand, the model
values and the observed data agree for both the slow and the fast CMEs if higher solar-wind
speeds are assumed. It is also found that the quadratic form of the drag equation reproduces
the observed transit times of fast CMEs better than the linear drag model.
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1. Introduction

Coronal mass ejections (CMEs) are large-scale magnetized plasma structures most often
ejected from the active regions on the Sun. The measured speeds in the plane of sky range
from tens of km s−1 up to 3000 km s−1 with an average value of ≈ 450 km s−1 (Gopal-
swamy et al., 2000, 2001, 2005; Yashiro et al., 2004). The apparent angular width of CMEs
ranges from a few degrees to more than 120 degrees, with an average value of ≈ 47 degrees
(Gopalswamy, 2004).

Coronal mass ejections and their interplanetary counterparts (interplanetary CMEs or
ICMEs) are the main source of major geomagnetic storms (e.g. Gosling et al., 1990;
Bothmer and Schwenn, 1995; Tsurutani and Gonzalez, 1998; Zhang et al., 2003; Koskinen
and Huttunen, 2006). Consequently, one of the central points of space-weather forecasting
is the prediction of ICME arrival at Earth, utilizing coronagraphic observations of CMEs.

After take-off, during their propagation in interplanetary space, ICMEs accelerate/decelerate
depending on their speed relative to the solar wind: slow CMEs are accelerated by the
solar wind, whereas fast CMEs are decelerated (e.g. Gopalswamy et al., 2001; Vrš-
nak, Magdalenic, and Zlobec, 2004; Vršnak, Vrbanec, and Calogovic, 2008 and refer-
ences therein). Such behavior indicates that “aerodynamic drag” plays an essential role
in the propagation of ejections (e.g. Vršnak, 2001; Cargill, 2004; Manoharan, 2006;
Borgazzi et al., 2009).

In the simplest form, kinematical models used for the arrival-time predictions employ
an effective constant acceleration whose value depends on the ICMEs take-off speed (most
often taken to be the mean speed of a CME in the coronagraph field of view). The transit
time is then calculated by assuming that such an acceleration acts up to a certain heliocentric
distance, beyond which the ICME travels at constant speed (e.g. Manoharan et al., 2004;
Michalek et al., 2004).

The goal of this article is to improve the accuracy of the ICME arrival-time predictions
by applying kinematical modeling of the ICME propagation, where the acceleration is ex-
pressed more realistically than in the previously mentioned method. In other words, we
analyze the propagation of ICMEs by solving the model equations numerically, to examine
the evolution of the ICME speed. This enables evaluation of the ICME Sun–Earth transit
time for various characteristics of the ambient solar wind, which is more reliable than the
simple constant-velocity or constant-acceleration approach.

2. Method

Generally, the net force acting on the ICME can be written (Vršnak, 2006) as

F = m(aL − adrag − g), (1)

where aL is the acceleration due to the Lorentz force or some other driving force, adrag is the
acceleration due to solar-wind drag, and g is the acceleration due to the solar gravity.

Typically, beyond ten solar radii (R > 10, where R = r/rs is the heliocentric distance
expressed in solar radii) the acceleration due to the Lorentz force and gravity become negli-
gible. Thus, the equation of motion reduces to

F = madrag. (2)
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Vršnak and Gopalswamy (2002) proposed that the acceleration caused by the drag can be
expressed in an approximate form as

a
drag
1 = γ1(v − w), (3)

where v is the ICME speed, w is the distance-dependent solar-wind speed, and γ1 is the
drag parameter. In this form, the drag is proportional to the relative speed. As found from
observational data, the quadratic expression in velocity

a
drag
2 = γ2(v − w)|v − w| (4)

might be more appropriate, so we will consider also this quadratic-form option. Finally, we
will assume that γ1,2 decreases with the heliocentric distance as

γ1,2 = α1,2R
−β, (5)

where α and β are constants (for details, see Vršnak and Gopalswamy, 2002).
Thus, considering that the driving force and the gravity are much weaker than the drag

force, the interaction with the ambient solar wind can be modeled by using a simple ex-
pression for the equation of motion (Vršnak and Gopalswamy, 2002), which in linear form
reads

dv/dt = −α1R
−β(v − w). (6)

Taking into account v = rs dR/dt , where rs is the solar radius, and dv/dt = (dv/dR)(dR/dt)

= (dv/dR)v, one finds

dv/dR = −rsα1R
−β(1 − w/v). (7)

Repeating the same procedure for the quadratic form, the equation of motion becomes

dv/dR = −rsα2R
−β(1 − w/v)|v − w|. (8)

We solved Equations (7) and (8) numerically by taking for the solar-wind speed the
empirical expression proposed by Sheeley et al. (1997):

w(R) = w0(1 − e−(R−2.8)/8.1)1/2, (9)

where w0 is the asymptotic value of the solar-wind speed. In this way we obtained the
ICME speed as a function of heliocentric distance [v(R)], which also provides v(t) and,
consequently, R(t).

3. Results and Discussion

3.1. ICME Speed as a Function of Distance

First, we calculated the ICME speed as a function of heliocentric distance by considering the
values α1 = 2 × 10−3 s−1, β = 1.5, and w0 = 400 km s−1. The ICME take-off speed is taken
to be 1000 km s−1, 600 km s−1, 400 km s−1, and 200 km s−1 and the outcome is plotted in
Figure 1. It is clearly seen in the figure that fast ICMEs (v > w) decelerate, whereas slow
ICMEs (v < w) accelerate.
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Figure 1 ICME speed versus
heliocentric distance for different
take-off speeds (cross –
1000 km s−1, triangle –
600 km s−1, square – 400
km s−1, diamond – 200 km s−1)
calculated applying
α1 = 2 × 10−3 s−1, β = 1.5, and
w0 = 400 km s−1.

Figure 2 ICME speed [km s−1]
versus heliocentric distance for
different values of α1 (diamond –
1 × 10−3 s−1, square –
2 × 10−3 s−1, triangle –
3 × 10−3 s−1), calculated
applying the take-off speed of
1000 km s−1, β = 1.5, and
w0 = 400 km s−1.

Next, the evolution of ICME speed is determined for three different values of α1 (1 ×
10−3,2×10−3,3×10−3 s−1), by keeping the ICME take-off speed as 1000 km s−1, β = 1.5
and w0 = 400 km s−1. This is important because the ambient conditions may vary from one
event to another. The results are plotted in Figure 2, and it is seen that at large distances,
the ICME speed decreases from roughly 800 km s−1 to 600 km s−1 when α1 increases from
1 × 10−3 to 3 × 10−3 s−1, respectively.

The same calculations are repeated for different values of β (1, 1.5, 2), applying the take-
off speed 1000 km s−1, α1 = 2 × 10−3 s−1, w0 = 400 km s−1. The outcome is presented in
Figure 3. At large distances, the ICME speed increases from approximately 400 km s−1 to
900 km s−1 when β increases from 1 to 2.

The above results reveal that the evolution of speed of ICMEs in interplanetary space
strongly depends on the ambient solar-wind medium (Vršnak and Gopalswamy, 2002;
Vršnak and Zic, 2007). According to a recent study by Temmer et al. (2011) of three events
by comparing the measured CME kinematics with the solar-wind models, the CME speed
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Figure 3 ICME speed versus
heliocentric distance for different
values of β (diamond – β = 1,
square – β = 1.5, triangle
−β = 2), calculated applying the
take-off speed of 1000 km s−1,
α1 = 2 × 10−3 s−1, and
w0 = 400 km s−1.

becomes adjusted to the solar-wind speed at different heliospheric distances: from below
30rs to beyond 1 AU, depending on the CME and ambient solar-wind characteristics.

3.2. Transit Time as a Function of Take-off Speed

The ICME Sun–Earth transit time [T1AU] is obtained as follows. The initial heliocentric
distance from which we release the ICME with a given take-off speed [v0] is provisionally
taken as R = 10. The Sun–Earth transit time was then found as T1AU = T 1 + t1, where T 1 is
the travel time obtained by integrating Equation (7) or (8), whereas t1 is the time the CME
needs to travel from R = 1 to R = 10 by assuming a constant-speed propagation.

Equations (7) and (8) were integrated numerically to determine the model transit times
[T1AU] of ICMEs as a function of the initial velocity [v0]. The initial velocity range v0 =
200 – 1500 km s−1 was considered. The solar-wind speed w(R) described by Equation (9)
was applied, taking w0 = 300, 400, 500, and 600 km s−1. A set of values for α (1×10−3,2×
10−3,3 × 10−3 s−1) and β (1, 1.5, 2) was used.

The results of calculations based on Equation (7) are presented in Table 1, for a range
of initial speeds v0 = 200 – 1400 km s−1 and asymptotic wind speeds ranging from 300 to
600 km s−1, with β = 1.5 and α1 = 1 × 10−3 s−1. At w0 = 300 km s−1, the transit time
decreases from 6.58 days for an initial speed of 200 km s−1, to 1.38 days for an initial speed
of 1400 km s−1. At w0 = 600 km s−1, the transit time decreases from 4.29 days for an initial
speed of 200 km s−1, to 1.32 days for an initial speed of 1400 km s−1. Thus, at these values
of α1 and β , the difference is large at low v0, whereas there is practically no difference at
high v0. Note also that the difference between transit times of slow and fast ICMEs is larger
at low w0 than at high w0.

This is also illustrated in Figure 4: for a particular initial speed of a CME, say 400 km s−1,
the ICME takes 4.77, 4.25, 3.87, and 3.57 days to reach the Earth for wind speeds of 300,
400, 500, and 600 km s−1, respectively. On the other hand, at high v0, there is practically no
difference.

The same calculations were repeated for a different value of α (α1 = 2 × 10−3 s−1) and
the results are given in Table 2 and graphs are presented in Figure 5. The results are similar
to those described earlier. However, the merging of all curves is not seen in this graph as in
Figure 4.

The ICME transit times were also calculated for the quadratic velocity dependence by
employing Equation (8). The outcome for α2 = 5 × 10−6 km−1, and β = 1.5 is presented in
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Table 1 Transit times calculated for β = 1.5 and α1 = 1 × 10−3 s−1.

v0 [km s−1] w0 = 300 w0 = 400 w0 = 500 w0 = 600

[km s−1] [km s−1] [km s−1] [km s−1]

T1AU [days] T1AU [days] T1AU [days] T1AU [days]

200 6.58 5.50 4.80 4.29

400 4.77 4.25 3.87 3.57

600 3.39 3.17 2.99 2.83

800 2.53 2.43 2.34 2.26

1000 1.99 1.94 1.89 1.85

1200 1.63 1.60 1.57 1.55

1400 1.38 1.36 1.34 1.32

Figure 4 Sun–Earth transit time
versus the ICME take-off speed
calculated employing Equation
(7) with α1 = 1 × 10−3 s−1, and
β = 1.5, for different values of
solar-wind speed (diamond –
300 km s−1, square –
400 km s−1, triangle –
500 km s−1, cross –
600 km s−1).

Table 2 Transit times calculated for β = 1.5 and α1 = 2 × 10−3 s−1.

v0 [km s−1] w0 = 300 w0 = 400 w0 = 500 w0 = 600

[km s−1] [km s−1] [km s−1] [km s−1]

T1AU [days] T1AU [days] T1AU [days] T1AU [days]

200 6.07 4.84 4.08 3.56

400 5.15 4.26 3.69 3.29

600 4.00 3.48 3.11 2.84

800 3.04 2.77 2.56 2.39

1000 2.34 2.23 2.10 2.00

1200 1.91 1.83 1.76 1.69

1400 1.59 1.54 1.49 1.45

Figure 6, where one can see that the results are slightly different from the results obtained
by the linear approximation especially for v0 > 500 km s−1.
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Figure 5 Sun–Earth transit time
versus the ICME take-off speed
calculated employing Equation
(7) with α1 = 2 × 10−3 s−1, and
β = 1.5, for different values of
solar-wind speed (diamond –
300 km s−1, square –
400 km s−1, triangle –
500 km s−1.

Figure 6 Sun–Earth transit time
versus the ICME take-off speed
calculated employing Equation
(8) with α2 = 5 × 10−6 km−1,
and β = 1.5, for different values
of solar-wind speed (diamond –
300 km s−1, square –
400 km s−1, triangle –
500 km s−1, cross –
600 km s−1).

Transit times are calculated again applying α2 = 5 × 10−6 km−1, and β = 2, and the
results are plotted in Figure 7. Here, the difference between transit times for different solar-
wind speeds reduces very rapidly as the CME’s initial speed increases: the transit time is
almost independent of the wind speed when the initial speed is beyond 400 km s−1.

3.3. Transit Time as a Function of Wind Speed

The calculations performed above also provide direct information on the dependence of
the ICME transit time on the solar-wind speed. The results are presented in Figure 8. As
can be seen in the graph, the ICME transit time clearly reduces when the solar-wind speed
increases. For example, with an initial speed of 200 km s−1, a CME takes nearly six days to
reach the Earth in a solar-wind speed of 300 km s−1. But the same CME reaches the Earth
in 3.5 days in a solar-wind speed of 600 km s−1. The transit time of a high-speed CME
(1400 km s−1) is only slightly influenced by the solar-wind speed, i.e. about T1AU = 1.6 days
when the wind speed is 300 km s−1, whereas, it reduces to T1AU = 1.5 days when the wind
speed is 600 km s−1. It is a similar result to Vršnak and Gopalswamy (2002) that the effect
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Figure 7 Sun–Earth transit time
versus the ICME take-off speed
calculated employing Equation
(8) with α2 = 5 × 10−6 km−1,
and β = 2, for different values of
solar-wind speed (diamond –
300 km s−1, square –
400 km s−1, triangle –
500 km s−1, cross –
600 km s−1).

Figure 8 Sun–Earth transit time versus the wind speed calculated employing Equation (7) with
α1 = 2 × 10−3 s−1, and β = 1.5, for different values of ICME take-off speed.

of solar-wind drag is greater in the case of CMEs with low v0 than for CMEs with high v0.
As suggested by Vršnak et al. (2010), the shortest transit times and accordingly the highest
1 AU velocities are related to narrow and massive ICMEs propagating in high-speed solar-
wind streams. On the other hand, wide ICMEs of low masses adjust to the solar-wind speed
close to the Sun, so the transit time is determined primarily by the solar-wind speed.

3.4. Comparison with Observations

We consider a set of 90 events employed by Manoharan et al. (2004) and the ICME initial
speeds and transit times estimated therein. Out of 90 events, 25 events were classified as
interacting events. Hence, we have separated the events into non-interacting and interacting
ICMEs, and compared the values from Manoharan et al. (2004) with the results based on
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Figure 9 Comparison of the
model results (Equation (7) with
α1 = 1 × 10−3 s−1, and β = 1.5)
with the observed values (cross
symbol) of non-interacting
CMEs. A polynomial fit to the
observed values is also drawn as
black solid line. Thin lines
joining the symbols are the same
as in Figure 4 (diamond –
w0 = 300 km s−1, square –
w0 = 400 km s−1, triangle –
w0 = 500 km s−1, circle –
w0 = 600 km s−1).

the model presented herein (Figures 9 and 10). Figure 9 shows that the model values are
in a quite good agreement with the observations for low-speed as well as for high-speed
ICMEs (v0 = 300 – 2000 km s−1). There are slight deviations for the initially slow CMEs
(v0 < 500 km s−1) that are traveling in the slow solar wind (≈ 300 – 400 km s−1). If we
increase the speed of the solar wind, then both results (model values and observed values)
agree for both the low and the high initial speed CMEs. In the same way, as shown in
Figure 10, there are no large deviations between the model and observational results in the
case of interacting events. However, a large scatter of points can be seen in this case, which
may be attributed to the fact that the interacting CMEs change their trend (Manoharan et al.,
2004), and they do not behave according to aerodynamic drag.

Similarly, we have compared the model results from the quadratic speed dependence cal-
culations with the observed values and they are shown in Figure 11. As seen in these graphs,
the model results are in better agreement with the observed values for non-interacting events
of both low and high initial speed. The difference of transit-time curves for different wind
speeds at the high initial-speed region (in contrast to the merging of all the transit-time
curves obtained using the linear drag equation, Figures 11 and 12) covers a wide range
the observed data points. Similarly, the observed values for interacting CMEs match with
the model results when (v0 > 500 km s−1) and differ slightly from the model results when
(v0 < 500 km s−1).

4. Conclusion

The speed of a CME as a function of the heliocentric distance [v(R)] is modeled using
the equations of motion proposed by Vršnak and Gopalswamy (2002). A CME is acceler-
ated or decelerated depending upon its initial speed [v0] and the speed of the ambient solar
wind. Eventually, the speed of the CME becomes constant, around 400 km s−1, which is the
asymptotic solar-wind speed. If the initial speed of the CME is around 400 km s−1, it moves
at nearly a constant speed. We extended the analysis of Vršnak and Gopalswamy (2002) and
obtained more details on the dependence of the CME Sun–Earth transit time on the CME
speed and the ambient solar-wind speed, for different combinations of α and β .

We obtained v(R) dependencies for different values of α and β for particular values of
v0. By varying the values of α and β , for fast CMEs we found that when α increases, the
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Figure 10 Comparison of the
model results (Equation (7) with
α1 = 1 × 10−3 s−1, and β = 1.5)
with the observed values (cross
symbol) of interacting CMEs. A
polynomial fit to the observed
values is also drawn as black
solid line. Thin lines joining the
symbols are the same as in Figure
4 (diamond – w0 = 300 km s−1,
square – w0 = 400 km s−1,
triangle – w0 = 500 km s−1,
circle – w0 = 600 km s−1).

Figure 11 Comparison of the
quadratic model results with the
observed values (cross symbols:
non-interacting CMEs). A
polynomial fit to the observed
values is shown as a thick line.
Thin lines joining the symbols
are the same as in Figure 6
(diamond – w0 = 300 km s−1,
square – w0 = 400 km s−1,
triangle – w0 = 500 km s−1,
circle – w0 = 600 km s−1).
α2 = 5 × 10−6 km−1, and
β = 1.5.

v(R) curve shifts to lower speeds and when β increases, the v(R) curve shifts to higher
speeds. Also we have evaluated the transit time of the CMEs to reach the Earth. As a first
result, we see that when the initial speed is high, the CME takes less time to reach the Earth.
When α increases, the transit time increases, and when β increases, the transit time of CME
decreases.

It is also found that when the wind speed is higher, the transit time of the CME is lower.
When the CME initial speed is greater than 1000 km s−1, the effect of solar wind on the
CME transit time becomes less important.

When the model results are compared with the observed values of non-interacting CMEs,
we found that they are consistent from low up to high initial speeds. Especially, it is found
that the quadratic model results are in better agreement with the observations. For inter-
acting CMEs, the deviations between the model and observed values are larger than for
non-interacting CMEs, which may be attributed to the momentum transfer between the two
interacting CMEs. In such a case, the propagation can be modeled in two stages, i.e. before
and after interaction.
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Figure 12 Comparison of the
quadratic model results with the
observed values (circles:
interacting CMEs). A polynomial
fit to the observed values is
shown as a thick line. Thin lines
joining the symbols are the same
as in Figure 6 (diamond –
w0 = 300 km s−1, square –
w0 = 400 km s−1, triangle –
w0 = 500 km s−1, circle –
w0 = 600 km s−1).
α2 = 5 × 10−6 km−1, and
β = 1.5.
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