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Abstract Halo coronal mass ejections (HCMEs) are a major cause of geomagnetic storms,
hence their three-dimensional structures are important for space weather. We compare
three cone models: an elliptical-cone model, an ice-cream-cone model, and an asymmetric-
cone model. These models allow us to determine three-dimensional parameters of HCMEs
such as radial speed, angular width, and the angle [γ ] between sky plane and cone axis.
We compare these parameters obtained from three models using 62 HCMEs observed by
SOHO/LASCO from 2001 to 2002. Then we obtain the root-mean-square (RMS) error be-
tween the highest measured projection speeds and their calculated projection speeds from
the cone models. As a result, we find that the radial speeds obtained from the models are well
correlated with one another (R > 0.8). The correlation coefficients between angular widths
range from 0.1 to 0.48 and those between γ -values range from −0.08 to 0.47, which is much
smaller than expected. The reason may be the different assumptions and methods. The RMS
errors between the highest measured projection speeds and the highest estimated projection
speeds of the elliptical-cone model, the ice-cream-cone model, and the asymmetric-cone
model are 376 km s−1, 169 km s−1, and 152 km s−1. We obtain the correlation coefficients
between the location from the models and the flare location (R > 0.45). Finally, we discuss
strengths and weaknesses of these models in terms of space-weather application.
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1. Introduction

Coronal mass ejections (CMEs) are magnetized plasma ejected from the Sun. CMEs whose
bright clouds surround the entire Sun are called halo coronal mass ejections (HCMEs),
which were first reported by Howard et al. (1982). The HCMEs propagating toward (or away
from) the Earth are called frontside (backside) ones. The frontside HCMEs are accepted as
the main cause of geomagnetic storms (Gosling et al., 1991; Brueckner et al., 1998; Cane,
Richardson, and St. Cyr, 2000; Gopalswamy et al., 2000; Webb et al., 2000; Wang et al.,
2002). Therefore, determining the kinematic and geometric parameters of HCMEs such as
the radial velocity, angular width, and source location is important for space-weather fore-
casting (Taktakishvili et al., 2009; Falkenberg et al., 2010; Taktakishvili, MacNeice, and
Odstrcil, 2010).

The HCMEs have been mainly observed by single-spacecraft coronagraph observation
such as the Large Angle Spectroscopic Coronagraph (LASCO: Brueckner et al., 1995) on-
board the Solar and Heliospheric Observatory (SOHO). Single-spacecraft coronagraph ob-
servations are subject to projection effects. From this we can only identify the information
about HCMEs projected on the plane of the sky: an apparent angular width and an apparent
speed. In the coronagraph images, the CMEs near the limb appear as a cone shape with a ra-
dial propagation and a constant angular width (Webb et al., 1997). From these observations,
several authors have proposed cone models to estimate the 3D parameters of HCMEs (e.g.
Howard et al., 1982; Fisher and Munro, 1984; Leblanc et al., 2001; Zhao, Plunkett, and Liu,
2002; Michalek, Gopalswamy, and Yashiro, 2003; Xie, Ofman, and Lawrence, 2004; Xue,
Wang, and Dou, 2005; Michalek, 2006).

Zhao, Plunkett, and Liu (2002) developed a cone model based on the coordinate trans-
formation between the heliocentric coordinate system and the cone coordinate system. In
this model, the parameters are determined with a visual fitting method until the modeled
halo fits the observed CME halo. Xie, Ofman, and Lawrence (2004) proposed an analytical
method using the relation of the cone and its elliptical projection (we call this model the
elliptical-cone model here) to achieve unambiguous results and save on computational time.
Xue, Wang, and Dou (2005) presented an ice-cream-cone model assuming that the structure
of the CME resembles a symmetrical ice-cream cone, combining a cone with a sphere. This
model can be applied to both halo CMEs and normal CMEs. Michalek (2006) reported an
asymmetric-cone model, assuming that the structure of the CME is a cone with an elliptical
cross section.

These models don’t have been compared in great depth. In this study, we consider three
cone models: the elliptical-cone model, the ice-cream-cone model, and the asymmetric-cone
model. We apply these models to 62 HCMEs observed in the years 2001 to 2002. Then we
compare the model parameters (e.g. the radial velocity, angular width, and source location).
The article is organized as follows: Section 2 describes the data and the cone models, Sec-
tion 3 presents the results obtained from these models, and the discussion. A brief summary
and conclusion are given in Section 4.

2. Data and Method

We used frontside full HCMEs in the SOHO/LASCO CME catalog (//cdaw.gsfc.nasa.gov/
CME_list/) from 2001 to 2002. During this period, 75 frontside full HCMEs were recorded
out of 115 full HCMEs. Because 13 events are only observed in the C2 field of view or are
too faint to measure their projection speeds, we selected 62 well-observed HCMEs. Figure
1 shows one of these HCMEs.

//cdaw.gsfc.nasa.gov/CME_list/
//cdaw.gsfc.nasa.gov/CME_list/
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Figure 1 The halo CME
observed by LASCO C3
coronagraph at 11:18 UT, on
24 September 2001.

We considered three cone models with the coordinate transformation between the he-
liocentric coordinate system [xh, yh, zh] and the cone coordinate system [xc, yc, zc]. These
models have the same four assumptions: i) the structure of the CME is a cone, ii) the apex
of the cone is located at the center of the Sun, iii) the propagation of the CME is radial, and
iv) the radial velocity and the angular width are nearly constant.

Using these models, we can obtain the parameters describing the HCMEs: the radial ve-
locity [V ], the angular width [α in Figure 2], the source location [colatitude θ , and longitude
φ in Figure 2], and the angle between the plane of the sky and the central axis of the cone
[γ in Figure 2, sinγ = sin θ cosφ].

To obtain the model parameters, we first measured the projection speeds of the CMEs by
using the running-difference images of the LASCO-C3 observation. For this, we recorded
the front edges of the CME on different azimuthal angles (every 15◦, 24 points) at a given
time. Then the projection speeds were estimated from a linear fitting between time and
height.

2.1. Elliptical Cone Model

The elliptical-cone model (Xie, Ofman, and Lawrence, 2004) is an extension of the cone
model developed by Zhao, Plunkett, and Liu (2002). This model considers that the shape
of the CMEs is a symmetrical circular cone, the projection of which is an ellipse. Figure
2(a) shows the structure of the elliptical-cone model. The xh-axis points to the Earth and the
yh–zh plane defines the sky plane. The zc-axis is the cone axis, and the xc–yc plane is parallel
to the base of the cone. The cone axis is defined by the longitude angle φ, the colatitude angle
θ , and the angular width of the cone α. To obtain the parameters of a HCME, first the model
determines the CME angular width and source location [colatitude θ , longitude φ] using the
geometric parameters of the elliptic projection such as major and minor axes,

sinγ = a

b
, (1)

tan
α

2
= b

h
cosγ, (2)
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tan
π

2
− θ = cosγ sin ε

((cosγ cos ε)2 + (sinγ )2)
1
2

(3)

tanφ = cosγ cos ε

sinγ
, (4)

where a is the semi-minor radius, b is the semi-major radius, h is the distance of the center
of the elliptic projection from the center of the Sun, ε is the angle between the projection
of the cone axis and yh-axis, and γ is the angle between cone axis [zc] and the plane of
the sky [yh–zh plane]. Then the radial velocities are estimated with Equations (10) – (13) by
Xie, Ofman, and Lawrence (2004) from the projection speeds measured at different position
angles.

2.2. Ice-Cream-Cone Model

The ice-cream-cone model (Xue, Wang, and Dou, 2005) assumes that the shape of CMEs
is a symmetrical ice-cream cone, combining a cone with sphere. The structure of the ice-
cream cone is described in Figure 2(b). The xh-axis points to the Earth and the yh–zh plane
defines the plane of the sky. The zc-axis is the cone axis, and the xc–yc plane is parallel to the
base of the cone. θ and φ are the colatitude and longitude, and α is the angular width. This
model considers three steps to determine the parameters. First, the possible source location
of a HCME is restricted to a region near the flare location or active region. Second, the
projection speeds measured at different position angles are determined by using the linear
fitting method between height and time. Finally, we find the best-fit parameters by using the
least-squares fitting method of the measured projected speeds and the estimated projected
speeds using the following equations:

Vp = V cos δ, (5)

sin δ =
cos α

2 cosφ sin θ ± A

√
cos2 φ sin2 θ + A2 − cos2 α

2

cos2 φ sin2 θ + A2
, (6)

A = cosψ sinφ sin θ + sinψ cos θ, (7)

where Vp is the projection speed, V is the radial velocity, δ is the angle between an arbitrary
generatrix on the cone surface and the plane of the sky, and ψ is the azimuthal angle of a
cone generatrix’s projection in the plane of the sky.

2.3. Asymmetric Cone Model

The asymmetric-cone model (Michalek, 2006) assumes that the shape of an HCME is an
asymmetric cone and its cross section is an ellipse. Figure 2(c) shows the structure of the
asymmetric cone. The xh-axis points to the Earth, and the yh–zh plane defines the plane of
the sky. The zc-axis is the cone axis, and the xc–yc plane is parallel to the base of the cone.
θ and φ are the colatitude and longitude, and α is the angular width. This model determines
the cone-model parameters on the basis of the following process. First, using the linear fit
method between height and time, the projection speeds at the different position angles are
determined. Second, the parameters are obtained by using numerical simulation through
minimizing the root-mean-square [RMS] error between the measured projected speeds and
the estimated projected speeds. In this step, the Equation (5) – (7) of Section 2.2 is also used.
This model estimates the different angular widths at the different position angles (24 points)
due to the elliptic cross section. The highest value of the angular widths [α in Figure 2(c)]
is used to compare with those from the other cone models.
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Figure 2 The structure of the
cone models and the relationship
between the heliocentric
coordinate system (xh, yh, zh)
and the cone coordinate system
(xc, yc, zc). (a) is the
elliptical-cone model (Xie,
Ofman, and Lawrence, 2004),
(b) is the ice-cream-cone model
(Xue, Wang, and Dou, 2005), and
(c) is the asymmetric-cone model
(Michalek, 2006).
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3. Results and Discussion

We determined the cone-model parameters of HCMEs for three cone models and compared
the parameters for the following three pairs: (a) the elliptical-cone model and the ice-cream-
cone model, (b) the elliptical-cone model and the asymmetric cone model, and (c) the ice-
cream-cone model and the asymmetric-cone model.

Figures 3(a) – (c) show the comparison of the radial velocities for the three pairs men-
tioned above. Correlation coefficients of the radial velocities are CC = 0.80 for pair (a),
CC = 0.82 for pair (b), and CC = 0.86 for pair (c). The radial velocities determined from
these models are well correlated.

It is not possible to confirm whether the radial velocities obtained from the models are
similar to the observations, as we do not know the actual radial velocity because of the
projection effect. Therefore we compared the measured projected speeds obtained from the
observations with the estimated projected speeds determined from the models. Figure 4(a) –
(c) presents the comparison of the highest measured project speeds with their project speeds
obtained from the three cone models. The correlation coefficients are CC = 0.71 for the
elliptical-cone model, CC = 0.94 for the ice-cream-cone model, and CC = 0.94 for the
asymmetric-cone model. We also calculated the mean absolute errors and the RMS errors
between the highest values. The mean absolute error and the RMS error of the asymmetric-
cone model (117 km s−1 and 152 km s−1) are smaller than other models (the elliptical-cone
model: 297 km s−1 and 376 km s−1, the ice-cream-cone model: 138 km s−1 and 169 km s−1).
As a result, the asymmetric-cone model has smaller errors than the other models. However,
we cannot state that the asymmetric-cone model is better than the other models, because the
methods for estimating the radial velocities are different from each other.

Figures 5(a) – (c) present the comparison of the angular widths for the same pairs. The
correlation coefficients of the angular widths are CC = 0.10 for pair (a), CC = 0.27 for
pair (b), and CC = 0.48 for pair (c). The average angular widths are 108◦ for the elliptical-
cone model, 88◦ for the ice-cream cone model, and 92◦ for the asymmetric-cone model.
Figures 6(a) – (c) show the comparison of the γ -values for the same pairs. The correlation
coefficients of the angle γ are CC = −0.08 for pair (a) and CC = 0.07 for pair (b). For
pair (c), the correlation coefficient (CC = 0.47) is higher than that of the other two pairs.
The correlation coefficients of the angular widths and the γ -values are much smaller than
expected. The reason is probably the different assumptions of these models.

From Figure 6(a), we can find that the values of γ representing the source location of
the elliptical-cone model are all below 80◦. Accordingly, the source locations obtained from
this model are not located near the center of the Sun (γ → π

2 ). This model assumes that the
projection of the cone is an ellipse. If the projection of the cone is a circle and the center of
the projection is located at the center of the Sun (a = b, and h = 0, in Equations (1) and (2)),
the solution is degenerate since the angular width is not unique. These cases occur when the
cone axis is aligned with the line of sight (θ = π

2 and φ = 0, see Xie, Ofman, and Lawrence,
2004). Thus, the source locations of the elliptical-cone model have a tendency to avoid the
center of the Sun to estimate the angular width with a unique solution. If the projection of
the cone is a circle (a = b, in Equation (1)), we obtain cosγ = 0. In this case (tan α

2 = 0,
in Equation (2)), the angular width α is 2π . This means that the structure of the CME is a
sphere.

In our results, the correlation coefficients of the angular widths and the values of γ be-
tween the ice-cream-cone model and the asymmetric-cone model are larger than others. A
possible reason is that these models use the same relation between the projection speed and
the radial speed (Equation (5) and Equation (6)) to estimate the parameters. Nevertheless,
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Table 1 Characteristics of the models.

Formula Characteristic

Elliptical-cone model
(symmetrical cone)

sinγ = a
b

tan α
2 ∝ cosγ

tan π
2 − θ and tanφ ∝ cosγ

a ∼ b

sinγ → 1 ∴ cosγ → 0
θ → π

2 , φ → 0, α = 0 or 2π

⇒ α may not be reasonable
when a ≈ b

Ice-cream-cone model
(symmetrical cone)

Equation (6)
cos α

2 ≤ sin θ cosφ

γ → π
2 ⇒ 0 ≤ α ≤ π

γ → 0 ⇒ α → π
2

α: only one value
⇒ γ has fewer constraints than
the asymmetric cone model

Asymmetric cone model
(asymmetric cone)

α → π ⇒ π
2 − α

2 ≤ γ ≤ π
2

α → 0 ⇒ γ → π
2

α : 24 values
⇒ all values have to satisfy
the condition
⇒ as αmin decreases,
γ increases
γ may be overestimated

the angular width and the angle γ of these models are quite different because of their differ-
ent assumptions.

Equation (6), estimating the parameters in the ice-cream-cone model and the asymmetric-
cone model, has a real root for any position angle, if cos α

2 ≤ sin θ cosφ = sinγ (Xue, Wang,
and Dou, 2005). If γ → α

2 (the source location is close to the Sun), the angular width [α] has
any value between 0 and π to satisfy the above condition. As γ → 0 (the source location is
close to the limb), the angular width α approaches π . As α → π , the angle γ has any value
between π

2 − α
2 and π

2 , and if α → 0, the angle γ has a value close to α
2 .

From Figure 6(c), we can find that the values of γ of the asymmetric cone model are all
higher than 60◦. This means that the source locations obtained from the asymmetric cone
model are located near the center of the Sun. The asymmetric-cone model assumes that the
structure of a CME is an elliptical cone. Thus the angular widths measured at different posi-
tion angles have different values. To obtain the real roots from the Equation (6), all angular
widths have to satisfy the above condition. Since the minimum angular width, which may be
small, satisfies the condition, angle γ has a higher value. On the other hand, the ice-cream-
cone model assumes that the structure of a CME is a circular cone with a sphere. Therefore
the angular width of this model is only a value that provides a much lower constraint of γ

than that of the asymmetric cone model. Consequently, this model has a wide range of γ

(30◦ – 90◦) as shown in Figure 6.
It is well known that major CMEs are associated with flares. If a CME is radially ejected

near the flare site, we expect that both locations are similar to each other. To confirm this, we
compared the longitude estimated from the models with the longitude of the flare locations.
Figures 7(a) – (c) show the relationship between the longitudes from the flare locations and
those from the cone models. The correlation coefficients of the three cone models are CC =
0.45 for the elliptical-cone model, 4 CC = 0.76 for the ice-cream-cone model, and CC =
0.77 for the asymmetric-cone model. For all models, the estimated longitudes agree to within
50 degrees, which may be due to our selection of full halo CMEs. The longitudes of the ice-
cream-cone and asymmetric-cone models are more inclined to the solar-disk center than
those of the associated flares, which seems to be explained by the characteristics of γ and
angular widths that are discussed above (for a summary see Table 1). The longitudes of the
elliptical-cone model are somewhat scattered, which may be caused by the solution of its
source location, which avoids the solar center.
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Comparison of Cone Models

Figure 3 Comparison of the
radial velocities from the three
cone models. Diamond symbols
represent the results obtained
from the models, the solid line is
a linear fit to all data points, and
the dashed line is a diagonal line
with a slope of one.

The cone-model parameters of the 62 HCMEs from this study are summarized in Table 2.
The first four columns give the information of each CME: date, time of first appearance in
the LASCO field of view, apparent speed from the SOHO/LASCO catalog, and flare location
from the NOAA/NGDC. Columns 5 – 8 are the radial velocity, the angular width, the source
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Figure 4 Comparison of the
highest values of the measured
projection speeds and the
estimated projection speeds from
the cone models. Diamond
symbols represent the estimated
values in terms of the measured
values, the solid line is a linear fit
to all data points, and the dashed
line is a diagonal line with a
slope of one.

location, and the angle [γ ] obtained by the elliptical cone-model. Columns 9 – 12 and 13 – 16
are the same parameters derived from the ice-cream-cone model and the asymmetric-cone
model, respectively.



Comparison of Cone Models

Figure 5 Comparison of the
angular widths from the three
cone models. Diamond symbols
represent the results obtained
from the models, the solid line is
a linear fit to all data points, and
the dashed line is a diagonal line
with a slope of one.

4. Summary and Conclusion

To forecast geomagnetic storms, it is important to determine the kinematic and geometric
parameters of HCMEs (e.g. the radial velocity, the angular width, and the angle γ ). We
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Figure 6 Comparison of the
angle between the cone axis and
the plane of the sky from the
three cone models. Diamond
symbols represent the results
obtained from the models, and
the dashed line is a diagonal line
with a slope of one.

considered three cone models (elliptical-cone model, ice-cream-cone model, asymmetric-
cone model).

The results show that the radial velocities determined from the cone models are well
correlated with one another. The reason is that these models used the same projection speeds
to estimate the radial velocity.



Comparison of Cone Models

Figure 7 Comparison of the
longitudes of the flare location
and those of the source location
estimated from the cone models.
Diamond symbols represent the
estimated values in terms of the
observed values, the solid line is
a linear fit to all data points, and
the dashed line is a diagonal line
with a slope of one.

The results of the angular width and the angle γ are somewhat different. The reason
is probably the different assumptions of these models for the structure of a CME. The
elliptical-cone model assumes a circular cone and an elliptical projection, the ice-cream-
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cone model assumes a circular cone with a spherical top, and the asymmetric-cone model
assumes an asymmetric cone with an elliptic cross section (see Table 1).

Strengths and weaknesses of the three models from this study can be summarized in
terms of space weather application as follows. For the source location, the results of the
elliptical cone model are not located near the solar center. The asymmetric-cone model tends
to estimate the source location to be near the center. For the angular width, the elliptical-cone
model tends to estimate larger values than those of other two models. For the radial velocity,
the results of the three cone models are similar to each another. The ice-cream-cone model
has the advantage that it can be applied to partial-halo CMEs (Kim et al., 2013).

According to our results, the radial velocities obtained from the cone models can be ap-
plied to space-weather forecast. For example, the WSA/ENLIL cone model (Taktakishvili
et al., 2009; Falkenberg et al., 2010; Taktakishvili, MacNeice, and Odstrcil, 2010) requires
input parameters from a cone model. The values of the angular width are only poorly corre-
lated. Therefore it is still necessary to study the parameters.
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