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Abstract The NASA Solar TErrestrial RElations Observatory (STEREO) mission offered
the possibility to forecast the arrival times, speeds, and directions of solar transients from
outside the Sun–Earth line. In particular, we are interested in predicting potentially geoeffec-
tive interplanetary coronal mass ejections (ICMEs) from observations of density structures at
large observation angles from the Sun (with the STEREO Heliospheric Imager instrument).
We contribute to this endeavor by deriving analytical formulas concerning a geometric cor-
rection for the ICME speed and arrival time for the technique introduced by Davies et al.
(Astrophys. J., 2012, in press), called self-similar expansion fitting (SSEF). This model as-
sumes that a circle propagates outward, along a plane specified by a position angle (e.g., the
ecliptic), with constant angular half-width (λ). This is an extension to earlier, more simple
models: fixed-� fitting (λ = 0°) and harmonic mean fitting (λ = 90°). In contrast to previ-
ous models, this approach has the advantage of allowing one to assess clearly if a particular
location in the heliosphere, such as a planet or spacecraft, might be expected to be hit by the
ICME front. Our correction formulas are especially significant for glancing hits, where small
differences in the direction greatly influence the expected speeds (up to 100 – 200 km s−1)
and arrival times (up to two days later than the apex). For very wide ICMEs (2λ > 120°),
the geometric correction becomes very similar to the one derived by Möstl et al. (Astrophys.
J. 741, 34, 2011) for the harmonic mean model. These analytic expressions can also be used
for empirical or analytical models to predict the 1 AU arrival time of an ICME by correcting
for effects of hits by the flank rather than the apex, if the width and direction of the ICME
in a plane are known and a circular geometry of the ICME front is assumed.
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1. Introduction

Predicting the effects of solar eruptions at the Earth is a scientific art in the making.
Many different approaches have been developed worldwide, using analytical, numerical,
or empirical techniques, to better understand the physics behind interplanetary coronal
mass ejections (ICMEs), which should ultimately lead to space weather predictions on
a routine basis with reasonable accuracy. The NASA Solar TErrestrial RElations Ob-
servatory (STEREO, Kaiser et al., 2008), launched in 2006 and consisting of two ob-
servatories leading and lagging the Earth’s orbit by 22.5° per year, plays a major role
in these efforts. STEREO has been designed to enhance our ability to forecast ICME
arrival times at Earth through more precise determination of ICME speeds and direc-
tions with both stereoscopic and single-spacecraft techniques, based on observations taken
from outside the Sun–Earth line to eliminate projection effects (Gopalswamy et al., 2001;
Schwenn et al., 2005) and filling the imaging gap between the Sun and 1 AU with the He-
liospheric Imagers (HI) instruments (Eyles et al., 2009). The latter has also been achieved
from within Earth’s orbit by the Solar Mass Ejection Imager (SMEI) instrument (Eyles
et al., 2003).

An idea originally introduced by Sheeley et al. (1999) was used to predict directions and
speeds of ICMEs (Davis et al., 2009) and corotating interaction regions (Rouillard et al.,
2008) from HI images. This method makes use of a simple geometrical fact, which can
be illustrated as follows: if someone throws a ball with constant velocity along a constant
direction, an observer measuring the angle between himself, the thrower, and the ball as
a function of time will notice deceptive decelerations or accelerations in the time-angle
profile. The form of this function depends on the speed and direction of the ball with respect
to the observer. Applied to ICMEs in any plane given by a position angle to solar north
(e.g., the ecliptic plane), these profiles, known analytically for either point-like (fixed-�, FP,
Sheeley et al., 1999; Kahler and Webb, 2007) or circular fronts (harmonic mean, HM, Lugaz,
Vourlidas, and Roussev, 2009; Howard and Tappin, 2009), can be inversely fitted through a
minimization process to observed profiles of the elongation angle of the ICME front from
the Sun (e.g. Rouillard et al. 2009; Davis et al., 2009; Howard and Tappin, 2009; Tappin and
Howard, 2009; Davies et al., 2009; Savani et al., 2009, 2010; Möstl et al., 2009, 2010, 2011;
Lugaz, 2010).

We denote the techniques as FPF and HMF (for FP- and HM-Fitting). The FPF technique
has been successfully applied in real time to an ICME in April 2010 (Davis et al., 2011), and
to some other recent real-time events, and is a candidate for a technique to be used routinely
on a future space weather mission at the L5 point in the Sun–Earth system (Gopalswamy
et al., 2011) or on Solar Orbiter. In comparison to a numerical simulation, some biases
have been found for FPF/HMF, mainly for cases where the ICME is either close to the
limb or heading toward the observer (Lugaz, Roussev, and Gombosi, 2011). Similarly to
the preceding techniques, stereoscopic versions exist for FP (Liu et al. 2010a) and HM
(Lugaz et al., 2010), relaxing the assumptions of constant speed and direction, though these
techniques have not yet revealed strong deviations from radial propagation far from the Sun.

An improvement to the single-spacecraft techniques has been introduced by Davies et al.
(2012; further called DA12), called self-similar expansion or SSE to convert elongation to
distance. This is based on model 2 by Lugaz et al. (2010); DA12 made it suitable as a
prediction tool through inverse fitting (SSEF). This model has great appeal because it solves
some problems (see discussion by Möstl et al., 2011, further: MO11) which are intrinsic to
the point-like or very wide front assumptions of FP and HM, respectively. It is especially
useful for considerations of when and with what speed the ICME front will hit a planet,
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resulting in possible magnetic storms, or a spacecraft which makes in situ observations of
the solar wind plasma and magnetic field parameters.

This short report aims to clarify the calculation of arrival times and speeds at a particular
position in the heliosphere with the SSE model (DA12) or its stereoscopic version, model
2 in Lugaz et al. (2010). The assumption is that the ICME front can be approximated by a
circle with constant angular width (see Figure 1). Our term “front” allows one to investigate
either the speed and arrival time of the interplanetary shock wave or the front boundary of
the magnetic flux rope or ejecta driving the shock. Given the position of a spacecraft with
respect to the direction of the ICME apex (the point along the front with greatest heliospheric
distance from the Sun), this model will lead to later arrival times and lower speeds, or even
to no hit at all. In this way, we extend the work of MO11, who derived a similar arrival
time correction for the HM model, which is a limiting case of SSE for large ICME width.
The FP model can also easily be understood as the limiting case of SSE for negligible
width. Clearly, in the real solar wind environment these idealized conditions may not even be
roughly met, and distortions of the fronts will be likely. Also note that a spherical expanding
front centered on the Sun (called “Point-P” by various authors) has the same heliocentric
distance, everywhere, and corrections to speed and arrival time are not needed. However,
to derive geometrically consistent arrival times and speeds with SSE or its triangulation
version, it is necessary to use the formulas derived in this paper.

The analytical considerations we present here are not restricted to techniques used on HI
instruments, but they provide a simple framework to assess the effects of an ICME hitting a
target with its apex or flank. If the direction of an ICME is known from stereoscopic obser-
vations close to the Sun from various techniques (Thernisien, Vourlidas, and Howard, 2009;
Tappin and Howard, 2009; Temmer, Preiss, and Veronig, 2009; de Koning, Pizzo, and
Biesecker, 2009; Mierla et al., 2010; Byrne et al., 2010; Rodriguez et al., 2011), an ed-
ucated guess can be made regarding the difference in heliospheric longitude between the
ICME apex and the spacecraft or planet. A model for ICME propagation can then be used
to extrapolate the arrival time and speed of the ICME apex to 1 AU (see, e.g., Gopalswamy
et al., 2001; Vršnak and Gopalswamy, 2002; Schwenn et al., 2005; Siscoe and Schwenn,
2006; Vršnak et al., 2010; Maloney and Gallagher, 2010; Vršnak et al., 2012, this issue),
which can subsequently be corrected for the longitude difference using the formulas pre-
sented here, given that the width of the ICME is known, or simply assumed.

The average width of a CME in coronagraph observations is about 50° (Yashiro et al.,
2004) with considerable scatter around this value. Direct comparison of STEREO/HI movies
to a rendered three-dimensional (3D) density model of a loop-like ICME revealed a true
(deprojected) width of 70° (Wood, Howard, and Socker, 2010) for one event. However, we
are interested here in the angular extent of the ICME front along the line of sight (LOS) in
a given plane (such as the ecliptic). Stereoscopic modeling assuming such a geometry by
Lugaz et al. (2010) revealed half (full) widths in the ecliptic from 25 – 45° (50 – 90°), and
observations of interplanetary shocks and their solar sources point to extents of up to 100°
(Richardson and Cane, 1993). Note also that the ICME angular extent along the LOS should
depend upon its orientation with respect to the ecliptic plane (see, e.g., Liu et al., 2010b;
Kilpua et al., 2011; Möstl et al., 2011).

We start by deriving the formulas in Section 2 and discussing them in comparison to the
former FP and HM models. We then plot the effects on arrival time and speed predictions and
discuss their significance in Section 3, and then conclude with comments on our assumptions
and future work.
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2. Derivation of Arrival Time and Speed for SSE

Figure 1 shows the geometry introduced by Lugaz et al. (2010) and elaborated by DA12. It
is assumed that an observer looks along the tangent to a circular front propagating radially
away from the Sun with constant angular width. The elongation-to-distance conversion for
SSE can be derived as:

RSSE = do sin(ε(t))(1 + sinλ)

sin(ε(t) + φ) + sinλ
(1)

with do the radial distance of the observing spacecraft (called O) from the Sun, ε(t) the
measured elongation angle as function of time, λ the angular half-width of the ICME, an-
gle φ the propagation direction as measured from the observer, and RSSE the heliocentric
distance of the ICME apex. For the large and small triangles in Figure 1 we can write:

sin ε(t)

RSSE + a
= sin(π − ε − φ)

do

, (2)

sin(π − ε − φ) = r

r + a
. (3)

We further need a relation between RSSE and r , the radius of the circle. Using RSSE = r + c

and r = c sinλ leads to:

r(RSSE, λ) = RSSE sinλ

(1 + sinλ)
, (4)

and can be understood as a radius of curvature, which is, however, coupled to the width λ. It
also is a function of the apex position, and thus time, because the circle expands as the front
propagates outwards. Using Equation (4) in Equation (3) and solving for a allows one to put
a into Equation (2), and after some rearranging, Equation (1) is obtained. For completeness,
the circle’s central heliocentric distance is:

c = RSSE(t)

(1 + sinλ)
. (5)

By comparison, the HM model assumes a circle which is attached to the Sun at all times
(Lugaz, Vourlidas, and Roussev, 2009; Howard and Tappin, 2009), and this simply corre-
sponds to Equation (1) for the case of λ = 90°:

RHM = 2do sin ε(t)

sin(ε(t) + φ) + 1
. (6)

If the width is negligible (λ = 0°), the FP conversion for elongation to distance follows from
Equation (1) (Sheeley et al., 1999):

RFP = do sin ε(t)

sin(ε(t) + φ)
. (7)

We now ask ourselves: How far does the apex of the ICME front need to travel away
from the Sun until the front hits the in situ spacecraft or planet I? Clearly, for a circular
front this will always be greater than I ’s heliocentric distance, di . As seen from Figure 2,
the ICME apex is separated at an angle � to I , so we make the following ansatz:

sin�

r
= sinα

c
, (8)

sin�

r
= sin(π − α − �)

di

. (9)
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Figure 1 The geometry of the
SSE model. An observer looks
along the tangent to a circular
front at an elongation ε(t) to Sun
center. The circle expands with
constant angular half-width λ

along a constant ICME
propagation direction φ. Note
that the full width of the ICME
is 2λ.

Figure 2 Similar to Figure 1, but now with an in situ spacecraft I situated at a heliocentric distance di and
at an angle � with respect to the ICME apex.

Using r = c sinλ in Equation (8) results in:

α = arcsin

(
sin�

sinλ

)
. (10)

Substituting Equations (10) and (4) into Equation (9) leads to:

RiSSE(�,λ, di) = di sin�(1 + sinλ)

sin(arcsin(sin�/ sinλ) + �) sinλ
(11)



416 C. Möstl, J.A. Davies

Using trigonometric identities, this can be simplified to:

RiSSE(�,λ, di) = di(1 + sinλ)

cos� +
√

sin2 λ − sin2 �
(12)

We designated this special distance as RiSSE, because it is the heliocentric distance of the
ICME apex at the arrival time ta when the spacecraft is hit by the front, as illustrated in
Figure 2. Again, for HM with λ = 90°, Equation (12) indeed reduces to:

RiHM = di

cos�
, (13)

similar to the one used by MO11. For FP, one may assume that a small spherical front is
centered around the assumed point, so we simply have RiFP = di .

2.1. Arrival Time

If we further assume that the ICME front travels with constant speed VSSE for all times when
RSSE(t) > di , we can express the arrival time correction tcSSE > 0 as:

tcSSE = RiSSE(�,λ, di) − di

VSSE
. (14)

This formula states how long the ICME apex must travel, after it has passed di , until I is
hit by the front. Here, VSSE can also be seen as an asymptotic speed given by an ICME
propagation model.

For the SSE fitting technique (DA12), which results in constants for λ, φ, VSSE, and the
launch time t0SSE, the arrival time at the spacecraft I can be expressed as:

taSSE = t0SSE + RiSSE(�,λ, di)

VSSE
. (15)

One must understand that the launch time t0SSE is not determined from chromospheric or low
coronal observations, but that it is rather a backprojection to the center of the Sun (where
ε(t) = 0) to obtain a time of reference for calculating taSSE (see also MO11). It is assumed
here that the speed VSSE is a constant for the range of elongation angles for which the time-
elongation track, which is fitted with SSEF, is extracted from HI observations. Any earlier
accelerations or decelerations of the CME closer to the Sun do not affect the calculation
of taSSE. However, the launch time t0SSE will consequently be only a rough estimate of the
real launch time of the CME in the corona.

Similarly, for the HM model the arrival time calculation can be written as:

taHM = t0HM + RiHM(�,di)

VHM
, (16)

which reduces with Equation (13) to an expression consistent with MO11 (their Equa-
tion B7).

Note that for SSE, not only is the arrival time well defined, but the prediction of whether
or not a spacecraft or planet is hit by an ICME is given by the conditions λ > � (hit) and
λ < � (no hit). This is much more precise compared to FP, where, strictly, a point never hits
another point. Also, for HM, which corresponds to SSE for λ = 90◦, the circle will always
hit if the in situ spacecraft is inside the half-space given by φ ± 90◦.
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Figure 3 Illustration of five SSE
fronts with different angular
half-widths λ. The in situ
observing spacecraft is
positioned at an angle � to the
ICME apex.

2.2. Arrival Speed

Additionally, for an expanding circular front, every point along the front moves with a slower
speed compared to the apex. Thus a prediction of a corrected arrival time should always in-
clude a corrected speed (see MO11). Because we assume radial propagation, the component
of the velocity is always the radial component away from the Sun, and the others are zero.
For self-similar expansion (SSE), the following relation must be valid because the speed
must be proportional to distance along the front, so the shape does not change with time:

di

RiSSE
= ViSSE

VSSE
, (17)

Rearranging and substituting RiSSE from Equation (12) shows that the front at an angle � to
the ICME apex moves with the following speed (ViSSE < VSSE) away from the Sun:

ViSSE = VSSE
cos� +

√
sin2 λ − sin2 �

(1 + sinλ)
. (18)

Again, for λ = 90°, Equation (18) reduces to:

ViHM = VHM cos(�) (19)

as stated by MO11 for the HM case.

3. Plots for Arrival Time and Speed Corrections

In this section we explore the significance of the previously derived formulas by plot-
ting the corrections for arrival time and speed for spacecraft positions along the ICME
flank, for different sets of parameters. In Figure 3 we introduce five SSE fronts with
angular half-widths of λ = [10,25,40,60,90]°. These values correspond to a radius of
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curvature which is equal to the radius r of the circle as given by Equation (4), of r =
[0.086,0.211,0.321,0.433,0.5] AU for an apex distance of RSSE = 1 AU. We will also
use VSSE = [400,600,800,1000] km s−1, covering typical ICME speeds observed in situ at
1 AU throughout a solar cycle (Richardson and Cane, 2010).

3.1. Arrival Time

In Figure 4a, we plot the arrival time correction tcSSE given by Equation (14) as a function
of � for an ICME speed of VSSE = 400 km s−1 and the in situ spacecraft at Earth distance
(di = 1 AU). This is done similarly to MO11 (their Figure 8b), but these authors restricted
themselves to the HM case (λ = 90°), which is the blue solid curve in Figure 4a. The func-
tions for λ = [10,25,40,60]◦ each stop at the equivalent value for �, though only seen in
the plot for λ=10°. This is because for � > λ the ICME does not hit the spacecraft, and tcSSE

becomes imaginary. For smaller values of λ, a few degrees difference in � can lead to large
differences in the arrival time, whereas for large λ values the curves become increasingly
flatter. Also note that for λ = 60◦ there is already almost no difference to HM, so the formu-
las mainly affect cases where small values of λ are combined with a � close to λ; i.e., the
case for glancing encounters of ICMEs which are of small angular extent along the LOS.
This is either the case for intrinsically narrow ICMEs or elongated flux-rope-like ICMEs
which have a high inclination of their axis to the ecliptic plane.

Figure 4 (a) The arrival time correction tcSSE assuming the ICME parameters VSSE = 400 km s−1 and the
in situ observer situated at di = 1 AU, for different values of the ICME half-width λ. (b) Similar to above,
but for VSSE = 600 km s−1, (c) VSSE = 800 km s−1, (d) VSSE = 1000 km s−1.
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Figure 5 (a) The corrected ICME speed ViSSE at a longitudinal separation � between the ICME apex and
the in situ target, assuming the ICME parameters VSSE = 400 km s−1 and the given angular half-widths λ.
(b) Similar to above, but for VSSE = 600 km s−1, (c) for VSSE = 800 km s−1, (d) for VSSE = 1000 km s−1.

Figures 4b, 4c, 4d show similar plots for VSSE = [600,800,1000] km s−1, which allow
one to quickly see (also useful for real-time assessments) how long the flank might be de-
layed for a given set of ICME parameters. As an example, one sees that, for an average
width of an ICME shock front (a full width of 80° corresponding to λ = 40°), the arrival
time correction stays low (<10 hours) for encounters within � < 25°, but it quickly rises
when � > 25° and may easily delay the front arrival by one or even two days. We thus
conclude that the arrival time for an ICME front approximated by SSE is increasingly hard
to pinpoint at its flanks, where small errors in � may lead to large errors in the arrival time
prediction.

3.2. Arrival Speed

For Figure 5 we repeated this analysis for the speed corrections. We use the same sets of
parameters as in the previous section to insert in Equation (18). Note that ViSSE does not
depend on di , because the front always moves with constant speed, regardless of the helio-
spheric distance of I . Again, where � > λ the ICME does not hit the spacecraft. Clearly, the
functional forms are governed by the same correction factor as compared to the arrival time
in the previous section. Again, these plots are meant to be useful for looking up the effect of
a glancing encounter for given parameters. For cases where � > 30°, the arrival speed can
be slower in the order of 100 – 200 km s−1 compared to the apex, showing that, for geomet-



420 C. Möstl, J.A. Davies

rically consistent calculations of arrival times and speeds, one must include these formulas
because they lead to significant deviations from those inferred from the ICME apex.

4. Conclusions

Our aim was to show how arrival times and speeds can be analytically calculated for self-
similar expanding (SSE) circular fronts with constant angular width. We have shown plots
of the corrections for speeds and arrival times for an observer at 1 AU and typical ICME
speeds at 1 AU. Clearly, this is useful for techniques which assume this geometry for ap-
plication to observations by a single-spacecraft heliospheric imager (HI) instrument (SSEF,
Davies et al., 2012) or two HIs (Lugaz et al., 2010), to forecast the effects of interplane-
tary coronal mass ejections at the Earth and other planets. However, it is also useful for any
empirical/analytical technique which is used to calculate arrival times of ICMEs (summary
by Siscoe and Schwenn, 2006; see also Vršnak et al., 2012, this issue, for the drag-based
model). Assuming the SSE geometry leads to the following results: for glancing encounters
of an ICME with a planet or spacecraft, the flank parts of an ICME might be delayed by
one or – in extreme cases – two days, and speeds can be affected in the order of 100 to
200 km s−1. These corrections are both significant, given that arrival time predictions are
usually in the order of ±12 hours (see, e.g., Davis et al., 2011), and geoeffects of ICMEs
are thought to be determined by the reconnection electric field −Vr × Bz, depending on the
plasma radial velocity component Vr and the southward magnetic field component Bz (see,
e.g., Burton, McPherron, and Russell, 1975).

Further assumptions we used for the derived corrections are that after the apex of the
front passed the heliocentric distance of the planet or spacecraft, i) the ICME propagates
radially away from the Sun, and ii) it does so with constant speed. Clearly, in a structured
solar wind, the ICME front might easily become distorted by the heliospheric current sheet,
corotating interaction regions, or other ICMEs; thus one always must remember that the
geometry used here is a highly idealized one. We also note that, in the SSE framework, the
curvature of the front is coupled to the full width, leading to a rather rigid description of its
shape. De-coupling the width from the curvature would be possible in an elliptical model
(or a related geometry used by Savani et al., 2011), at the cost of introducing another free
parameter. We leave these ideas for future studies.

Nevertheless, the expressions presented here allow one to check the results of SSEF
against ICME in situ observations. Our aim is to use the presented formulas in connection
with the SSEF technique and its limiting cases (FPF and HMF) to test the efficacy of using
HIs as a prediction tool for real-time space weather forecasting by studying a larger num-
ber of events. To do so in a geometrically consistent way, the derived corrections will be
applied to comparisons between ICME arrival times and speeds derived from STEREO/HI
with SSEF and those observed in situ by various spacecraft, extending other studies using
elongation-fitting techniques and their stereoscopic versions (Davis et al., 2009; Liu et al.,
2010a, 2010b, 2011; Möstl et al., 2009, 2010, 2011; Lugaz et al., 2012).
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