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Abstract. The solar energetic particle (SEP) populations of electrons and ions are highly 
variable in space and time, in intensity, energy, and composition. Over the last  ~20 years 
advanced instrumentation onboard many spacecraft (e.g. ACE, Coronas, GOES, Hinode, 
RHESSI, SAMPEX, SDO, SOHO, STEREO, TRACE, Ulysses, Yokoh, to name a few) 
extended our ability to explore the characteristics of solar energetic particles by in-situ 
measurements in interplanetary space and by observing their source characteristics near the 
Sun by remote-sensing observation of electromagnetic emission over a wide frequency range. 
These measurements provide crucial information for understanding the sources of the particle 
populations and the acceleration and propagation processes involved. We are now able to 
measure intensity-time profiles and anisotropies, energy spectra, elemental and isotopic 
abundances, and the ionic charge of particles over an extended energy range of  0.01 to several 
100 MeV/nuc and for a large dynamic range of particle intensities. Furthermore, multi-
spacecraft in-situ observations at different solar longitudes and latitudes provide new insight 
into the acceleration and propagation processes of SEPs near the Sun and in interplanetary 
space. In this paper we present an overview of SEP observations, their implications for SEP 
acceleration and propagation processes, and discuss open questions. 

1.  Introduction 
The solar energetic particle (SEP) populations of electrons and ions as observed in interplanetary 
space are highly variable in space and time, in intensity, energy, and composition. Over the last  ~20 
years advanced instrumentation onboard many spacecraft (e.g. ACE, Coronas, GOES, Hinode, 
RHESSI, SAMPEX, SDO, SOHO, STEREO, TRACE, Ulysses, Yokoh, to name a few) extended our 
ability to explore the characteristics of solar energetic particles by in-situ measurements in 
interplanetary space and by observing their source characteristics near the Sun by remote-sensing 
observation of electromagnetic emission over a wide frequency range. In their intensity-time 
variations, anisotropies, energy spectra, elemental, isotopic, and ionic charge composition these 
particle populations carry fundamental information on the source population of the particles, and their 
acceleration and propagation processes. These new measurements improved our understanding of 
SEPs and showed that the scenario developed in the 70s to 90s needs modifications. In this scenario 
the SEPs were subdivided into 2 classes, impulsive and gradual, where impulsive events are related to 
solar flares and gradual events are related to the acceleration by coronal and interplanetary shocks, 
driven by coronal mass ejections (CMEs) and their interplanetary manifestations (ICMEs), 
respectively. Furthermore, multi-spacecraft in-situ observations at different solar longitudes and 
latitudes provide new insight into the acceleration and propagation of SEPs near the Sun and in 
interplanetary space. The observations at large separation distances as made available by the two 
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STEREO spacecraft provide, in combination with measurements near Earth, a sensitive tool for testing 
propagation models of SEPs. This paper provides an overview of SEP characteristics, emphasizing 
new SEP observations and their implications for SEP acceleration and propagation processes, and 
discusses open questions. 

2.  Impulsive and gradual solar energetic particle events 

 

 
 
 
 
 
 
Figure 1. Illustration of different sources of 
solar energetic particles: (1) particle acceleration 
at a CME-driven coronal and / or interplanetary 
shock ("shock accelerated particles"); (2) 
particle acceleration related to flares ("flare 
particles") in the corona (adopted from the 
Multimedia STEREO/ IMPACT web site at 
http://sprg.ssl. berkeley.edu/ impact/ 
multimedia.html). 

 
High-energy particles originating at the Sun were first reported about 65 years ago [1]. At that time 
there was little doubt that these particles were closely related to solar flares. Later it became clear that 
acceleration at coronal and interplanetary shocks is also an efficient mechanism for particle 
acceleration (e.g. [2]).  In the early 70s a new type of event was discovered that showed enhanced 3He 
abundances with 3He/4He>1 [3], while the corresponding ratio in the corona or solar wind is  ~5x10-4 
[4], [5]. Such events were later found to exhibit also enhancements of heavy ions by an order of 
magnitude relative to coronal abundances [6]. Based on these observations and on other characteristic 
differences (for example the electron to proton ratio, the intensity-time profiles, the distribution in 
solar longitude as observed from the near-Earth environment, and the mean ionic charge of heavy ions 
[7]) solar energetic particles (SEP) were classified as impulsive and gradual, following a classification 
of flares based on the duration of soft X-ray emission [8]. In this scenario impulsive SEP events were 
related to flares and the gradual SEP events were related to coronal mass ejection (CME) driven 
coronal and interplanetary shocks as schematically shown in figure 1 (e.g. [7], [9]). 

However, new results with advanced instrumentation from several missions (e.g. WIND, 
SAMPEX, SOHO, ACE) have shown that this picture was oversimplified. New composition and ionic 
charge measurements show that enrichments in 3He are also common in interplanetary shock 
accelerated populations [10], that enrichments in heavy ions are often observed in large events at high 
energies (e.g. [11]), and that high charge states of Fe are also observed in events usual classified as 
gradual [12], [13]. Therefore, the classification into two distinct types of events is presently in 
question and the relative contributions of flares and coronal / interplanetary shocks to the energetic 
particle intensities observed in interplanetary space are under debate. In this chapter we will 
summarize some of the previous and new observations and their implications. 

2.1.  Impulsive events 
The large enrichments of 3He and heavy ions found in event-integrated abundances of 3He- and heavy 
ion-rich events have been used as one of their defining characteristics as impulsive events. Although  
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some of the characteristics (e.g. enrichment of 3He relative to solar wind and coronal abundances, see 
section 2.2) are observed to some extend also in large (gradual) events, several signatures of the 3He-  
and heavy ion-rich events are unique, suggesting a different acceleration process. Characteristics 
typical for impulsive events will be discussed in the following subsections. 

2.1.1.  Correlation of Electron Events and 3He-rich events. One of the characteristics of impulsive 
events, first observed with ISEE-3 [14], is a strong correlation of 3He enhancements with electron 
events, as can be seen (figure 2) from the new high-sensitivity measurements of helium ions onboard 
ACE. Figure 2 shows mass spectrograms of helium in four energy ranges between 0.2 and 16 
MeV/nuc and electron fluxes at 45 and 235 keV. During the time period 12 April to 9 May 2000 
several impulsive injections of electrons and 3He, most pronounced at low energies, have been 
observed. These many injections of 3He result in an almost continuous presence of 3He in the inner 
heliosphere during solar maximum [15].  

2.1.2.  Characteristics of electron events.  The intensity-time profiles, energy spectra and anisotropies 
of electrons provide valuable information on their acceleration and propagation processes. The typical 
electron energy spectra (figure 3) show a break below ~100 keV, with the spectra steepening at higher 
energies [16]. Furthermore, very often the spectra show a power law to energies of 1 keV and below. 
This places the acceleration region at sufficiently high altitudes where energy loss processes in the 
ambient corona are not important – otherwise the spectra would bend over to low energies [17]. 

The electron pitch angle distributions (PAD) in these impulsive evens show early in the event a 
large field aligned and energy dependent anisotropy. A typical example is given in figure 4 showing 
for electrons at 1.3 and 108 keV a PAD half width of 26° and 66° respectively [18]. This implies that 
there is not much scattering of electrons in interplanetary space during he onset phase of these events. 

2.1.3.  Time dispersion of SEP ions. The high sensitivity of new instrumentation provides un-
precedented statistics also for small events. Figure 5 shows as an example the energy versus time 
profile for several events in August 1998 as observed with the ULEIS experiment onboard ACE [19]. 
This type of display, plotting the arrival time of individual ions versus their energy, shows velocity  

 

 
 
 
 
 
 
Figure 2. Mass spectrograms of 
helium in four energy ranges 
(panels 1-4), and electron fluxes 
at 45 keV and 235 keV (panel 5, 
EPAM/ACE) as observed 
during 12 April to 9 May 2000 
(solar maximum conditions). 
The energy ranges of the He 
mass spectrograms are (from 
top to bottom): 0.2-0.4, 0.4-1.0 
MeV/n (ULEIS/ ACE), 4.5-7.6, 
and 7.6-16 MeV/n (SIS/ACE). 
The figure is adopted from the 
ACE webpage 
http://www.srl.caltech.edu/ 
ACE/ASC/DATA/level3/sis/he
plots.html. 
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Figure 3. Electron peak flux energy 
spectrum of the 4 April 2000 SEP event, 
observed with the 3D plasma experiment 
onboard WIND.  The thin black lines give 
an estimate of the background [16]. 

Figure 4. Electron pitch angle distributions (PAD) 
measured at 1.34 keV (dots) and 108 keV (crosses) 
during the time of peak intensity of the impulsive event 
on 20 October 2002. The arrows indicate the half width 
of the PADs [18]. 

 
dispersion that can be compared with scatter-free propagation along the interplanetary magnetic field, 
and allows the identification of individual injections at the Sun.  This display also demonstrates that to 
correctly evaluate ion spectra and elemental and ionic charge composition in these events, start and 
stop times for the averaging of data need to be energy dependent, as indicated by the "boxes" 
enclosing individual injections. Figure 5 also demonstrates that some events exhibit a sudden intensity 
cut off. This is due to a loss of magnetic connection to the injection location at the Sun. These well 
defined injection profiles can also be used to infer large-scale diffusion parameters of ions in the 
heliospheric magnetic field [20], [21]. 

2.1.4.  Ion energy spectra and elemental abundances. In a survey of energy spectra of ions in 3He-rich 
events in the mass range He to Fe and in the energy range 80 keV/nuc to 15 MeV/nuc two classes of 
events have been identified [22]. Class 1 events exhibit power laws that often steepen above 
~1MeV/nuc; in some cases the major species 3He, 4He, O, Fe have similar spectral slopes, while in 
other cases the 3He slope below ~1 MeV/nuc is distinctly harder than the others. Class 2 events show 
curved 3He and Fe spectra at low energies, while 4He has power law spectra. As a consequence of the 
different spectral shapes of 3He and 4He the 3He/4He-ratio in Class 2 events is strongly energy 
dependent; also the largest 3He/4He-ratios are observed in this class of events [22].  

It is also known since the early measurements of heavy ion composition in 3He-rich events that 
these events can exhibit an enrichment in heavy ions by an order of magnitude (for Fe), relative to 
coronal abundances, although not all 3He-rich events show enhancements of heavy ion abundances 
([7], [23], [24]) and vice versa. With advanced instrumentation onboard the Wind and ACE spacecraft 
the measurements of heavy ions in these events has been extended to trans-iron elements and it has 
been shown that the enhancement factors are monotonically increasing from ~1 at mass 12 to ~200 in 
the mass range of ~240 [25], [26]. An estimate of the mean ionic charge of the ultra-heavy ions shows 
that the enhancement factor is also ordered by mass per charge ([26], [27]).   
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In addition to information on the composition of heavy ions by particles escaping from the 

acceleration site in the corona into interplanetary space, γ-ray line observations provide information on 
the composition of heavy ions interacting with the ambient corona. It was found that the composition 
of interacting heavy ions is similar to the abundances in 3He-rich SEP events as observed in 
interplanetary space [28]. 

2.1.5.  Ionic charge states. Direct measurements and indirect determinations of heavy ion charge states 
at 1 MeV/nuc in the 70’s showed in events that we would in retrospect identify as gradual for iron 
ions a mean ionic charge <QFe> in the range of <QFe> ~10-14 [29], [30]. However, for an average over 
several 3He-rich events (for individual events the counting statistic was not sufficient) at the same 
energy a significantly higher mean charge of <QFe> ~19-20 was obtained [31], [32]. From this it was 
concluded that the ions in 3He-rich events originate in a region of significantly higher temperature of 
~107 K. However, new measurements of ionic charge states with instruments of improved sensitivity 
over a wide energy range (ACE, SOHO) have shown that this picture was oversimplified. The new 
measurements are now available for many individual impulsive events at lower energies (figure 6) and 
show a systematic increase of the mean ionic charge of Fe from ~11-15 at 100 keV/nuc to ~16-20 at 
550 keV/nuc ([33]-[35], see also [36] for a recent review).  

This large increase of the mean ionic charge of iron with energy above ~100 keV/nuc can be 
qualitatively explained in terms of impact ionization by protons and electrons in a dense environment 
in the low corona (e.g. [34], [37], [38]). However, for a quantitative description more realistic models, 
including the effect of stochastic acceleration, coulomb energy loss, and charge changing processes 
during acceleration, in combination with energy loss by adiabatic deceleration during interplanetary 
transport are needed to reproduce the observed strong energy dependence of the heavy ion ionic 
charge states [39].   Figure 7 shows as an example the mean ionic charge of Fe computed with such a 
model that simultaneously fits the intensity-time and anisotropy-time profiles, the heavy ion energy 
spectra and the mean ionic charge as a function of energy [40]. The mean ionic charge at low energies 
is essentially determined by the electron temperature. At energies above ~100 keV/nuc charge 
stripping effects are dominating and result in a strong increase of the mean ionic charge of Fe with 
energy [37].  

One of the important parameters obtained from fitting the observed charge spectra with the model 
is the product NpτA, with proton density Np and acceleration time scale τA. With NpτA ~1010-1011 s cm-3 
[40] and assuming acceleration time scales of ~1-10 s, this corresponds to densities of ~109-1011 cm-3 
at the acceleration site. This is similar to the density range of (0.6-10) x1010 cm-3 inferred from radio 
and electron measurements for the density of the acceleration region of electrons ([41], and references  

 

 
 
 

 

 

 

Figure 5. Ion energy–time spectro-
gram for 17–19 August 1998 from 
ACE / ULEIS showing several  injec-
tions of 3He, 4He, O and Fe at the Sun. 
Thin lines: Event “boxes” indicating 
individual ion injection events [19]. 
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therein), i.e. it indicates acceleration in the low corona, at altitudes ≤ 0.2 solar radii above the 
photosphere. 

2.1.6.  Acceleration processes and enrichment of 3He and heavy ions. In order to cope with the large 
enrichments of 3He and heavy ions by up to factors of 104 (for 3He) and ~10 (for Fe) various processes 
have been proposed. Such scenarios include selective heating by resonant wave-particle interactions as 
a first step (e.g. [42], [43]), followed by a second step that could involve stochastic acceleration [44]-
[46]. Curved spectra at low energies as observed for 3He and Fe in Class 2 events can arise from 
stochastic acceleration processes by Alfvén turbulence [22]. At low energies these processes have 
been shown to provide good fits to the data. However, the spectra reported by [22] are much harder at 
high energies (e.g. above ~1 and 10 MeV/nuc for Fe and 3He, respectively) than obtained with a 
stochastic acceleration model. Models based on cascading MHD turbulence ([22], [47], and references 
therein), and stochastic acceleration by parallel propagating Alvén waves [48] provide promising fits 
to the spectra of heavy ions [22], and of 3He and 4He [48], respectively. However, in all these models 
charge stripping effects that are essential for explaining the energy-dependent charge states of heavy 
ions and adiabatic energy loss during interplanetary propagation that could change the spectra at 
energies below a few hundred keV/nuc significantly, are not yet included. 

2.2.  Gradual events 
Solar energetic particle events with long duration showing intensity increases of many orders of 
magnitudes and lasting up to several days are usually classified as gradual. These events are often 
accompanied by CME driven coronal and interplanetary shocks. However, whether ICME or 
interplanetary shock characteristics can be observed in the plasma and SEP signatures depends on the 
relative position of the spacecraft, the ICME and the interplanetary shock. For reviews on ICME 
signatures and characteristics of gradual SEP events, see for example, [49] and [50], respectively.    

2.2.1.  Intensity-Time Profiles. The intensity-time profiles of energetic particles in SEP events depend 
on the magnetic connection of the acceleration site with the observer.  Therefore,  the  large variability  

 

 
 

Figure 6. Mean ionic charge of Fe for several 
impulsive events showing the typical increase of 
the mean ionic with energy (adopted from [35]). 

Figure 7.  Calculated mean ionic charge of Fe 
as a function of energy at the Sun (injection 
spectrum, dashed line), and at 1 AU (solid line). 
For details of the model see [40]. 
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Figure 8.  Hourly averages of the oxygen 
intensity between ~0.15 and 50 MeV/nuc 
measured onboard ACE during 22 – 27 
November 2001 [53]. 

Figure 9.  Energy spectra of H to Fe during a 6h 
period following an interplanetary shock on 29 
October 2003, with a fit by two power-laws, 
showing the variation of the spectral break with 
energy for different elements [58]. 

of the intensity-time profiles and the longitude distributions of SEP events can qualitatively be 
explained by the extended longitudinal range of CME-driven interplanetary shocks and by the relative 
location of the observer to the presumed source location of the CME [51], [52].  

Correlated with the arrival of the interplanetary shock, the particle intensities can increase by up to 
several orders of magnitude, dependent on energy. A typical example of oxygen ion intensities in the 
energy range 0.14 to 51 MeV/nuc as observed on ACE is shown in figure 8 [53]. 

Early in the event, much before the shock arrival, many large SEP events show a maximum-
intensity plateau not exceeding (for protons) several 100 protons per (cm2 s sr MeV/amu) at 1 MeV. 
This plateau level can be explained by the scattering of escaping particles by proton-amplified waves, 
limiting the intensity of escaping particles (the 'streaming limit') to a specific value (e.g. [54], and 
references therein). 

2.2.2.  Energy Spectra. The energy spectra as observed in interplanetary space are the result of 
acceleration and propagation processes between the acceleration site and the observer. In the ideal case 
of an infinite and planar shock geometry and steady state conditions, the particle differential intensity 
dJ/dE can be described by a power law: dJ/dE ~ E-- γ, where γ is related to the shock compression ratio 
(e.g. [55], [56]). However, because coronal and interplanetary shocks are not planar, and because only 
a limited time is available for acceleration, steady state will not be reached, in particular at high 
energies. Thus, non steady-state conditions [57] and losses due to particle escaping upstream will 
result in a roll-over of the fluxes at high energy. Therefore, fluence spectra in large (gradual) events 
can often be fitted with power laws with exponential roll-over (dJ/dE ~ E−γ exp(-E/E0) ([58], [59]) or 
with double power laws ([60], [61]), with the e-folding energy (E0) or the spectral break (at energy EB) 
systematically varying with mass per charge ([59]-[61]). This mass per charge dependence of E0 and 
EB may be approximated by a power-law dependence (e.g. EB ~(Q/M)α), where α depends on the 
angle between shock normal and magnetic field. The observed values of the exponent α are in the 
range ~0.7-1.75 ([59]-[62]), similar to the range predicted by SEP acceleration and transport models at 
quasi-parallel and quasi-perpendicular shocks [63]. If the energy spectra of heavy ions are available  
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2.2.3.   

  
Figure 10. Shock to upstream abundance ratios 
relative to oxygen as a function of average M/Q ratio 
in the gradual SEP event of 6 July 1999 [73]. 

Figure 11 Correlation of the Fe/O-ratio with 
mean charge states of Si and Fe at > 10 
MeV/nuc for several large (gradual) SEP 
events [78]. 

for a sufficiently large energy range, then the Q/M dependence of E0 or EB can be used to infer the 
mean ionic charge <Q> of heavy ions  ([59], [64]). 

2.2.4.  Fractionation Effects.   When comparing SEP abundances with photospheric abundances it has 
been realized since many years that both coronal and SEP abundances show a dependence on the first 
ionization potential (FIP) or first ionization time [65]-[67], suggesting ion-neutral separation in the 
chromosphere as an important fractionation mechanism (see [68], for a recent review). Furthermore, 
abundances in individual large SEP events show fractionation effects that monotonically depend on 
mass (M) or mass per charge (M/Q), usually approximated as a power law in M/Q [69]. This M/Q 
fractionation is observed for both elemental and isotopic abundances (e.g. [70]) and the correlation 
between isotopic and elemental abundances in individual events has been used to infer the abundance 
of the coronal source [71].  

Mass per charge dependent fractionation has also been used to relate the elemental abundances 
observed at ~0.4 MeV/nuc at interplanetary shocks to their source. The observations show that the 
average abundances as observed at many interplanetary shocks are different from solar wind 
abundances. Furthermore the relative abundances of SEP particles around the shock passage do not 
show a monotonic dependence on mass per charge, as it would be expected from fractionation 
processes [72]. This provides evidence that the bulk solar wind is not the source of the accelerated 
heavy ion population. On the other hand, when compared with the upstream pre-event suprathermal 
population, a monotonic dependence of the abundance ratios on M/Q is observed, both for individual 
SEP events (figure 9) [73], and for the average of many shock events [72], supporting the evidence of 
acceleration of a remnant suprathermal component by the interplanetary shock. 

2.2.5.  Ionic Charge States. At interplanetary shocks the mean ionic charge of Fe, <QFe>, at low 
energies (<250 keV/nuc) is usually ~ 9 – 11, independent of energy [74], similar to solar wind charge 
states [75]. The event integrated mean ionic charge of Fe at energies <1 MeV/nuc is also mostly 
constant, only in a view events increases with energy by up to 4 charge units have been observed  [76], 
[77]. At higher energies a large variability is observed. At energies above ~10 MeV/nuc, the mean 
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ionic charge is often observed to be significantly larger than at low energies, with <QFe> ~ 15-20 ([12], 
[13], [78]-[80]). Furthermore, at E ≥ 10 MeV/nuc high mean charges of Si and Fe are strongly 
correlated with high Fe/O abundances (figure 11, [78]), similar to the observation in impulsive events.  
These results indicate that the earlier interpretation of heavy ion charge states being solely related to 
the plasma temperature was too simplistic, and multiple sources contributing to gradual events may 
have to be considered (see below). 

2.2.6.  The Observation of 'Flare' material in gradual events. Increased abundances of 3He and heavy 
ions relative to solar wind abundances and high charge states of heavy ions at high energies have now 
been also observed in gradual events or at interplanetary shocks. At sub-MeV energies, small and 
moderate enhancements of 3He relative to 4He, with 3He/4He in the range of 10-3 to 0.2 have been 
observed in 12 large gradual events [81] and at interplanetary shocks [10]. At higher energies (> 5 
MeV/nuc) 3He/4He a factor of 10 larger than in the solar wind has been observed [82], and a statistical 
survey using daily averages of 3He and 4He fluxes in the energy range 15-30 MeV/nuc as measured by 
the ERNE experiment onboard SOHO showed for the years 1999 to 2002 an average value of 3He/4He 
~0.015, also significantly higher than in the solar wind or corona [83]. 

Furthermore, large abundance enhancements of Fe at energies of ~1 MeV/nuc [84] and at energies 
of 12-60 MeV/nuc [85] and 25-80 MeV/nuc [11] have been observed in many large events. Also, high 
mean charge states of Fe with <QFe> ~20 at energies >10 MeV/nuc, another tracer for ions accelerated 
in impulsive events close to the Sun, are not uncommon (see above). Apparently, the previous 
classification of SEP events into two distinct classes, i.e. impulsive and gradual, needs to be 
reconsidered and possible scenarios are discussed in the following paragraphs.   

As a possible source of 3He in large, interplanetary shock related events remnant suprathermal 
particles from previous impulsive events have been suggested [81], serving as seed particles for the 
injection at the interplanetary shock. In this scenario, high (and variable) heavy ion abundances (e.g. 
Fe/C, Fe/O) could be interpreted as a mixture of two sources: suprathermal heavy ions from previous 
impulsive events and from gradual events. This suggestion is also supported by the finding that the 
interplanetary particle composition during quiet times shows enhancements in the 3He/4He and heavy 
ion composition: enhancements by a factor of ~10 over the coronal value were found for Fe/O in the 
energy range  ~1-10 MeV/nuc during quiet times [86], and during times of moderate interplanetary 
fluxes 3He/4He (4-15 MeV/ nuc) and Fe/C (8-20 MeV/nuc) were found to be enhanced by two orders 
of magnitude and by a factor of ~8, respectively [87]. The observational evidence that the 
interplanetary shock related heavy ion population at energies of ~1MeV/nuc is not accelerated out of 
the bulk solar wind, as discussed above, would also support this view. 

Scenario 1: In this scenario the large variability of spectral, compositional, and ionic charge state 
features at high energies (i.e. above 10s of MeV/nuc) in large gradual SEP events arises from the 
interplay of two factors: shock geometry and the mixture of two seed populations with coronal / solar 
wind composition and  'flare' composition, i.e. a composition as observed in 3He- and heavy ion-rich 
events, respectively.  In this scenario the shock geometry plays an important role. It is, in particular, 
assumed that quasi-perpendicular shocks require a higher initial speed of the ions for effective 
injection and therefore preferentially accelerate suprathermal seed particles from flares, whereas quasi-
parallel shocks can draw their seed particles from the corona / solar wind suprathermals. In this 
scenario the shock geometry - via the injection threshold  - and the mixing ratio determine which of 
the two components dominates and thus determines spectral shapes, heavy ion abundances and ionic 
charge states at high energies [88] - [90]. 

Scenario 2: In an alternative scenario, direct injection of the particles, accelerated in the CME 
related flare, has been proposed  (e.g. [9], [11], [91]). In this scenario, gradual events generally consist 
of two populations: (1) a population at low energies predominantly accelerated at the coronal / 
interplanetary shock, and (2) a high energy component (above ~10s of MeV/nuc), probably flare 
generated, with composition and charge states similar to impulsive events, possibly re-accelerated in 
the CME related shock. The relative intensity of the two components as observed at Earth will vary 
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from event-to-event, dependent on the shock parameters, the flare size and location, and the magnetic 
connection between the acceleration site and the observer. However, in this scenario the second 
component usually dominates at high energies, giving rise to the heavy ion enrichment and high 
charge states at high energies ([11], [92]). 

3.  Interplanetary Propagation 
Multi-spacecraft observations of electrons and ions accelerated near the Sun, in combination with 
model calculations of their interplanetary transport, provide ideal tools for improving our 
understanding of transport processes near the Sun and in interplanetary space. With the two STEREO 
spacecraft at large separation distances [93] and the observations at L1 by ACE and SOHO, there are 
now in-situ ([94] [95]), and remote-sensing measurements of many SEP events in 3 widely separated 
locations available. An example is shown in figure 12 [96]. On 17 January 2010 at 3:49 UT a flare  
was detected  with the EUVI instrument onboard STEREO-B, at a location of E59S25 as seen from 
STEREO-B. A schematic of the longitudinal configuration of the flare, the two STEREO spacecraft 
and Earth, and the electron and proton intensities observed on the STEREO spacecraft is provided in 
figure 12. The longitudinal separation between the flare position and the spacecraft magnetic footpoint 
was about 113° for STEREO-B and 117° for STEREO-A. Despite this large separation distance, both 
STEREO-A and STEREO-B observed large intensity increases of electron and protons.  

The intensity – time profiles observed at STEREO-A and STEREO-B have been compared with 
two model calculations (1) a 1D model describing the particle propagation in a flux tube along the 
magnetic field [97] and (2) by a 3D propagation model including perpendicular diffusion [98]. While 
both models are capable of reproducing the observations, model 1 requires an injection function at the 
Sun of several hours. Unfortunately the pitch angle coverage is insufficient during this event, therefore 
the anisotropy cannot be used as an independent test for the injection duration. Model 2 reveals a 
relatively high value of 0.3 for the ratio between perpendicular to parallel diffusion, i.e. in this model 
the observations can be explained by significant lateral transport in the solar wind.  
 

 
Figure 12. Schematic of the longitudinal configuration of Earth, the STEREO spacecraft and the flare 
on 17 January 2010. Also shown are electron (top panels) and proton (bottom panels) measurements 
by SEPT, LET and HET on board STEREO-A (right) and STEREO-B (left) [96]. 

4.  Summary 
Although there is considerable progress in our understanding of SEPs, there are a number of open 
questions that need to be addressed in the future. There are, for example, promising model calculations 
on various aspects of impulsive events, as 3He-enrichment, heavy ion enrichment, and energy 
dependent charge states of heavy ions. However, the models for 3He and heavy ion enrichment do not 
include energy loss during interplanetary transport that is probably important at these low energies, 
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whereas the charge stripping models can explain the energy dependent charge states below 1 
MeV/nuc, but so far do not attempt to include the heavy ion enrichment. 

Further improvement in our understanding will also require more modeling efforts of gradual 
events. In particular, three dimensional simulation of CMEs and ICMEs, including the effect of 
particle acceleration in the dynamically evolving magnetic field configuration with parallel and 
perpendicular shock geometries could provide important clues for the understanding of the 
observations in large events, related to CME / ICME driven interplanetary shocks. Also, by a 
systematic study of composition and energy spectra of energetic particles of different sources (e.g. 
solar wind / suprathermals, pickup ions), unfolding injection and acceleration processes might be 
possible and thus provide a better understanding of the fractionation effects observed in elemental and 
isotopic abundances. 

Significant progress in our understanding of SEP propagation and acceleration can also be expected 
from a more systematic comparison of multispacecraft measurements, combining, for example, 
measurements from the two STEREO spacecraft separated in longitude by now up to 180°, with near-
Earth measurements from SOHO and ACE. 

Future missions like the Solar Orbiter (e.g. [99]-[101]) with perihelion distances of ~0.28 AU, or 
the Solar Probe Plus with several perihelion passes as close as  ~9.5 solar radii [102], will provide a 
close-up look at CMEs and solar active regions and allow a much better correlation of the 
electromagnetic signatures at the Sun and the characteristics of ions and electrons, because 
interplanetary propagation effects are minimal at this distance. 
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