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ABSTRACT

The graduated cylindrical shell (GCS) model developed by Thernisien et al. has been used with the goal of studying
the three-dimensional morphology, position, and kinematics of coronal mass ejections observed by coronagraphs.
These studies focused more on the results rather than the details of the model itself. As more researchers begin to
use the model, it becomes necessary to provide a deeper discussion on how it is derived, which is the purpose of
this paper. The model is built using the following features and constraints: (1) the legs are conical, (2) the front is
pseudo-circular, (3) the cross section is circular, and (4) it expands in a self-similar way. We derive the equation of
the model from these constraints. We also show that the ice-cream cone model is a limit of the GCS when the two
legs overlap completely. Finally, we provide formulae for the calculation of various geometrical dimensions, such
as angular width and aspect ratio, as well as the pseudo-code that is used for its computer implementation.
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1. INTRODUCTION

The graduated cylindrical shell (GCS) is an empirical model
to represent the flux rope structure of some coronal mass ejec-
tions (CMEs). CMEs are expulsions of plasma in the solar
corona which are regularly recorded by white-light corona-
graphs such as the Large Angle and Spectromeric Coronagraph
Experiment (LASCO; Brueckner et al. 1995) on board the
Solar and Heliospheric Observatory (SOHO) mission
(Domingo et al. 1995), and SECCHI (Howard et al. 2008) on
board the STEREO mission (Kaiser et al. 2008). After decades
of CME observations and classification based on their mor-
phological similarities (e.g., Howard et al. 1985), the flux rope
morphology is emerging as the most typical three-dimensional
shape we can use to represent CMEs. For example, Chen et al.
(1997) used an idealized flux rope model to successfully repro-
duce the main features of a CME observed with LASCO.

Another important property of CMEs is that they tend to
expand self-similarly (Chen et al. 1997, 2000; Cremades &
Bothmer 2004; Chen et al. 2006). The GCS model is developed
to integrate both the self-similar expansion and the flux rope
three-dimensional morphology. Thernisien et al. (2006) used it
to fit a sample of 34 CMEs observed with LASCO and 26 CMEs
observed with STEREO–SECCHI (Thernisien et al. 2009). They
showed that coronagraph observations of CMEs, even from
different viewpoints, could be reproduced to the first order with
this type of morphology. They also showed that the model can be
used to obtain estimations of parameters such as CME position,
direction, three-dimensional extent, true speed, and even, but
with a smaller confidence, its orientation (see Thernisien et al.
2009; Liu et al. 2010).

Since its introduction, the GCS has been employed in many
other studies. For example, Poomvises et al. (2010) determined
the kinematics and expansion speed of four events from 5 R�
to 80 R� using the STEREO/SECCHI COR2 and Heliospheric
Imager instrument fields of view. Lynch et al. (2010) used it to
determine the flux rope orientation and rotation in coronagraph
images and then compared the results to flux rope fitting using
in situ data. Liu et al. (2010) compared the GCS modeling of
two CME events with flux rope reconstruction using in situ

measurements at 1 AU. Finally, Patsourakos et al. (2010) used
it on SECCHI EUVI images to study the three-dimensional
evolution and expansion of a cavity that later lead to a CME
event and the formation of a post-CME current sheet from multi-
viewpoint observations (Patsourakos & Vourlidas 2011).

Our two original studies (Thernisien et al. 2006, 2009) re-
stricted much of the discussion to scientific results, giving little
space to the details of the model construction and implementa-
tion. As more researchers begin to use the model, it becomes
necessary to provide a deeper discussion of its derivation, which
is the purpose of this paper. The goal is to give a reference for
any author that has used or plans to use the model.

2. DERIVATION OF THE MODEL

2.1. Description of the Model

The GCS is often called the “hollow croissant” because of
its shape. Figure 1 gives the schematic of the model: the left
panel shows a planar cut of the croissant viewed face-on, while
the right panel shows a planar cut of the same croissant viewed
edge-on. The electron density is placed only on the outer shell
(or skin) of the croissant and the inside of the structure is hollow.
The two legs are conical and the front is reminiscent of a torus
with its cross-section radius increasing with height. We use an
orthonormal and direct coordinate system noted (O, x, y, z).
The origin O is in the plane of both views. In practice, O
corresponds to the center of the Sun. Note that the planes
(O, x, y) and (O, y, z) are both planes of symmetry, and (O, y)
is an axis of symmetry. Figure 2 shows a white-light rendering
of the model using Thomson scattering (Billings 1966). The left
and right panels present the same face-on and edge-on views as
in Figure 1.

2.2. Derivation of the Model

The model consists in two shapes: the conical legs and the
curved front. The derivation of the conical legs is straightforward
since it is a well-known geometrical shape. The derivation of the
curved front is a little more elaborated, but still consists in using
simple constraints and basic geometry. Hereafter, we describe

1

http://dx.doi.org/10.1088/0067-0049/194/2/33


The Astrophysical Journal Supplement Series, 194:33 (6pp), 2011 June Thernisien

R(β=π/2 )

(C)

C1 C1

δ
δ

α

D

G

Q

O

y

B

A

H

C

y

H

A

O

B
β

M

P

x z

(a) (b)

Figure 1. Schematic of the GCS model. The left panel shows a (O, x, y) planar cut of the croissant viewed face-on. The z-axis points toward the reader. The right
panel shows a cut in the (O, y, z) plane where the croissant is viewed edge-on. In this view, only the circle (solid line) is in the (O, y, z) plane.

Figure 2. Rendered white-light images of the GCS model obtained by line-of-sight integration and using Thomson scattering (Billings 1966). The model orientations
are the same as in Figure 1. Left: GCS model seen face-on. Right: GCS model seen edge-on.

the parameters of the model, then we define the constraints upon
which the model is built. We follow with the calculation of the
different parameters that permit us to construct the model.

We note (OD) the axis of the right leg as shown in Figure 1(a).
The apex of the cone is at the origin O. The half-angle of the
cone is noted δ, but we will use its sine κ:

κ = sin δ. (1)

We call κ the aspect ratio of the model, as in Thernisien et al.
(2006, 2009). This parameter sets the rate of expansion versus
the height of the CME, so the structure expands in a self-similar
way. The second parameter is the full height of the cone, which
is the distance OD:

OD = h. (2)

The third and last parameter, α, is the angle between the axis
of the leg and the y-axis. α is called the half-angle. The three
parameters κ, h, and α suffice to fully define the geometry of
the model.

By definition, the cross section of the conical legs is circular.
Let Q be a point on the leg axis and M a point on the cone so
that

−−→
QM is a radius of the cross section of the cone at the height−−→

OQ. This way, we can write

‖−−→QM‖ = κ‖−−→OM‖, (3)

which is the self-similarity equation for the legs.
The front, and curved part of the model, is reminiscent of

a torus with its cross-section radius varying with height. BC
could be compared to the major radius of the torus, and R would
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be the minor radius. The definition of the front is based on the
following set of four constraints.

1. The circle (C) with center B and radius BD, in the plane
(O, x, y), is used as the generating line.

2. The points on the shell should follow the self-similarity
equation.

3. The cross section of the shell is circular in the planes
(B,

−→
BG, z), with G a point on (C).

4. The center of the shell cross section is in the (O, x, y)
plane.

These constraints not only define the shape of the front, but
also ensure first-order continuity at the junction with the legs.

The first constraint is set with the circle (C) of radius ρ = BD
and center B in the plane (O, x, z). B is the intersection between
the plane containing the conical base, centered on D, and the
y-axis. The coordinates of B are (0, b, 0), with

b = h/ cos α. (4)

If G is a point on (C), the vector
−→
BG can be written as

−→
BG =

(
ρ cos β
ρ sin β

0

)
, (5)

where β is the angle between the x-axis and
−→
BG, and with

ρ = h tan α. (6)

The self-similarity constraint for the front part can be written as

‖−→GP ‖ = κ‖−→
OP ‖, (7)

where P is a point of the shell having for coordinates (x, y, z).
Note that in Figure 1, P is plotted in the (O, x, y) plane, but in
reality, it is not bound to be in that plane: the coordinate z does
not have to be zero.

In order to express these constraints in terms of the model
parameters, we write the vector

−→
GP as

−→
GP = −→

GB +
−→
BO +

−→
OP ,

so that its vector components are

−→
GP =

( −ρ cos β + x
−ρ sin β − b + y

z

)
. (8)

We can take the square of Equation (7) without changing the
equality:

GP2 = κ2OP2. (9)

By rewriting this equation in terms of the vector coordinates,
we end up with the following equation:

(x2 + y2 + z2)(1 − κ2) − 2xρ cos β − 2y(ρ sin β + b)

+ ρ2 + b2 + 2ρb sin β = 0. (10)

Finally, the last two constraints consist of forcing the equation
of the shell to have the form of the equation of a circle in the
(B,

−→
BG, z) plane and having its center, C, in the (O, x, y) plane.

Toward this goal, we rewrite Equation (10) in the coordinate
system (C, X ′, Y , z), using the following coordinate transforms.

1. Translation of the origin from O to B. The coordinate y can
be expressed as a function of the new coordinate y ′:

y = y ′ + b, (11)

so that Equation (10) can be rewritten as

(x2 + y ′2 + z2)(1 − κ2) − 2xρ cos β − 2y ′(ρ sin β + bκ2)

+ ρ2 − b2κ2 = 0. (12)

2. Rotation around the axis (B, z) by an angle β, so that the
new X-axis is aligned with

−→
BG:

{
x = X cos β − Y sin β

y ′ = X sin β + Y cos β
, (13)

so Equation (12) becomes

(X2 + Y 2 + z2)(1 − κ2) − 2X(ρ + bκ2 sin β)

− 2Ybκ2 cos β + ρ2 − b2κ2 = 0. (14)

3. Translation from B to C:

X′ = X + X0, (15)

so finally Equation (14) becomes

(X′2 + Y 2 + z2)(1 − κ2) − 2X′(ρ + bκ2 sin β − X0(1 − κ2))

− 2Ybκ2 cos β + X2
0(1 − κ2) − 2X0(ρ + bκ2 sin β)

− b2κ2 + ρ2 = 0. (16)

In order for the circular cross section to have its center at C and
to be in the (C, X ′, z) plane (Y = 0), Equation (16) should have
the form of the equation of a circle centered at the origin of
the coordinate system. This equation has the simple following
form:

X′2 + z2 = R2, (17)

where R is the radius of the circle. If we identify the terms of
Equations (16) and (17), we see that X0 must be expressed as

X0 = ρ + bκ2 sin β

1 − κ2
. (18)

After some more, but still basic algebra, we can express R2 as a
function of X0 and known parameters:

R2 = −X2
0(1 − κ2) + 2X0(ρ + bκ2 sin β) + b2κ2 − ρ2

1 − κ2

= −X2
0(1 − κ2) + 2X0(1 − κ2)X0 + b2κ2 − ρ2

1 − κ2
(19)

= X2
0 +

b2κ2 − ρ2

1 − κ2
.

The expression of X0 and R as a function of the three model
parameters α, κ, and h suffice to define the geometry of the GCS
model. The construction of the conical legs is straightforward
and the front part can easily be constructed with a computer
program, which is given as a pseudo-code in the Appendix.
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Figure 3. Schematic of the GCS model showing the dimensions given in Table 1.

2.3. Limiting Case: Ice-cream Cone when α → 0

We show here that the GCS model becomes equivalent to
the well-known ice-cream cone model (Fisher & Munro 1984)
when α tends toward 0. For example, this approach has been
used by Patsourakos et al. (2010) to fit CMEs very close to the
surface.

Setting α = 0, then we have ρ = 0 and b = h from
Equations (6) and (4), and Equation (10) becomes

(x2 + y2 + z2)(1 − κ2) − 2yh + h2 = 0. (20)

If we translate the origin of the coordinate system of a distance
y0 along the y-axis,

y = y ′ + y0, (21)

then Equation (20) becomes

(x2 + y ′2 + z2)(1 − κ2) − 2y ′[h − y0(1 − κ2)] + h2 − 2y0h

+ y2
0 (1 − κ2) = 0. (22)

For this equation to be the equation of a sphere centered on the
origin of this coordinate system, we need

y0 = h

1 − κ2
(23)

with the radius of the sphere being

Rs = hκ

1 − κ2
. (24)

This way, we have shown that constraining Equation (20) to
be a sphere when α = 0 gives a non empty set of points that
we call S2. But, since we have not used the same constraints
as the more general case presented in Section 2.2, we need to
show that S2 is equivalent to the set of points, S1, described
by Equation (16) when α = 0. For this purpose, we write the
equation of the sphere S2 in the (O, x, y, z) coordinate system:

x2 + (y − y0)2 + z2 = R2
s , (25)

and then we apply the same coordinate transforms as in
Section 2.2. In (O, X ′, Y , z), the equation becomes

X′2 + Y 2 + z2 − 2X′ [(y0 − h) sin β − X0] − 2Y (y0 − h) cos β

+ h2 + y2
0 − 2hy0 + X′

0
2 − 2X′

0(y0 − h) sin β = R2
s . (26)

As in Section 2.2, by constraining this equation to have the form
of the equation of a circle of radius R′ in the Y = 0 plane, we
find X′

0 ≡ X0(α = 0) and R′ ≡ R(α = 0) from Equations (18)
and (19), respectively. Therefore, S1 ≡ S2, and the front part of
the GCS model is spherical when the half-angle is zero.

2.4. Important Remark Concerning 2006 and
2009 Publication Notation

For the sake of simplicity in the publications of 2006 and
2009, the cross-section radius noted a is stated to be equal to
κr , in Equation (1), with r the distance from the origin to a point
of the shell. The parameter r is equivalent to OP in this present
publication. Compared to Equation (7) in this present paper, a is
not equal to the cross-section radius noted R, but it is equivalent
to GP.

2.5. Formulae to Calculate Some of the
Dimensions of the Model

The utility of the model is not restricted to the visual agree-
ment with observations. One can derive several parameters that
can be compared with physical measurements. Such parameters
include, but are not restricted to, height of the leading edge,
angular width, and shell cross-section radius.

The formulae are given in Table 1. Figure 3 shows the
corresponding dimensions on the model schematic. Note that
the face-on width, WFO, could not be expressed analytically, but
it is possible to compute it numerically. The vector components
of

−→
BP can be expressed as a function of β when P is bound to

be in the (O, x, y) plane:

−→
BP = −→

BC +
−→
CP = (X0 + R)

(
cos β
sin β

0

)
, (27)
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Table 1
Formulae Giving Some of the GCS Model Dimensions

Description Expression

Heliocentric distance of the apex center OC1 = b + X0(β = π
2 ) = b + ρ

1 − κ2 (28)

Cross-section radius of apex R(β = π
2 ) = κ(b + ρ)

1 − κ2 (29)

Heliocentric height of the leading edge hfront = OH = b + ρ
1 − κ

(30)

Face-on angular width ωFO = 2(α + δ) (31)

Edge-on angular width ωEO = 2δ (32)

Edge-on width WEO = 2R(β = π
2 ) (33)

Foot point separation on the surface of the sun dFP = 2α R� (34)

Aspect ratio at apex κ = OC1
R(β = π/2) (35)

with X0 and R from Equations (18) and (19), respectively. Know-
ing that the half face-on width corresponds to the maximum of
the x coordinate of

−→
BP , WFO can be estimated by finding the

zero of the derivative of the x coordinate with respect to β.

3. CONCLUSION

In this paper, we have given the details of the GCS model
derivation. The important aspects of the geometry are summa-
rized here.

1. The GCS is constrained to expand in a self-similar way.
2. The front part is not circular, though it has been built using

a circular generating line.
3. The cross section of the front part is a circle in the planes

(B,
−→
BG, z).

4. The front of the GCS becomes spherical when the half-
angle parameter is zero. In that case, it is equivalent to a
hollow ice-cream cone.

We have also given different formulae for the calculation of
various dimensions of the structure, as well as the pseudo-code
for its implementation.

Most of the studies using the GCS have shown good agree-
ment with CMEs observed in the SOHO LASCO C2-C3
(2.2–30 R�) and SECCHI COR2 (3–20 R�) fields of view.
Patsourakos et al. (2010) used it in the EUVI field of view
and found that by not restraining O to be at the center of the
Sun, it allowed a better fitting of the events they studied. Above
30 R�, observational evidences (Kahler & Webb 2007) as well
as theoretical models (Riley & Crooker 2004) seem to show
that the front of flux rope CMEs get distorted because of in-
teractions with the ambient solar wind. The GCS model is not
capable of reproducing such behavior, but we are considering
ways to improve the model and account for this effect. This is
one example of features that could be added to the model in
future development.

I thank R. A. Howard for having the original idea of the GCS
model. I also thank R. C. Colaninno for her careful reading and
for checking the math, and A. Vourlidas and T. Nieves-Chinchil
for their comments that greatly improved this manuscript. This
work was supported by NASA.

APPENDIX

IMPLEMENTATION

The following pseudo-code gives the implementation of the
GCS model. The input

−→
OP = (x, y, z) is a point in space

where we want to evaluate the electron density. α, κ, h are the
three parameters that define the geometry of the GCS model.
Finally, σt , σl , and Ne are the parameters related to the electron
density profile of the shell. As defined in Thernisien et al. (2006,
2009), we use a profile that is made of two half-Gaussian shaped
functions:

Ne(d) = Ne exp

[
−

(
R − d

σs

)2
]
,

with σs =
{
σt , if d < R,

σl, if d � R
. (A1)

The pseudo-code is given here:
Require: x, y, z, α, κ, h, σt , σl, Ne

if y < 0 then
return 0
end if
b ← h/ cos α
ρ ← h tan α
testside ← y + x tan α − b
if testside < 0 then
{Leg side}−−→
OQ ← orthoproj((0, 0, 0), (sin α, cos α, 0), (x, y, z))
R ← ‖−−→OQ‖κ/

√
1 − κ2

‖−→
QP ‖ ← ‖−→

OP − −−→
OQ‖

if (R − ‖−→
QP ‖) � 0 then

σ ← σt

else
σ ← σl

end if

return Ne exp − (R−‖−→
QP ‖)2

σ 2

else
{Front side}
β ← atan2(y − b, x)
X0 ← (ρ + bκ2 sin β)/(1 − κ2)−→
OC ← (X0 cos β, b + X0 sin β, 0)
‖−→CP ‖ ← ‖−→

OP − −→
OC‖

R ←
√

X2
0 + (b2κ2 − ρ2)/(1 − κ2)

if (R − ‖−→CP ‖) � 0 then
σ ← σt

else
σ ← σl

end if

return Ne exp − (R−‖−→CP ‖)2

σ 2

end if
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The function orthoproj calculates the projection of a point on
a straight line. This is computed using this expression:

−−→
OQ = −−→

OM +
1

	u2
[(

−→
OP − −−→

OM) · 	u]	u. (A2)

The function takes three arguments: the first is a point of the
straight line, noted M in Equation (A2). The second is a vector
direction of that straight line, noted 	u. The third argument is the
point in space, noted P, we want to determine the projection
on the straight line. The function returns the position of the
projected point, noted Q.

An implementation of this code has been done in C++ and in
IDL. The software, named scraytrace, is available in SolarSoft
(Freeland & Handy 1998), under the SECCHI branch.

REFERENCES

Billings, D. E. 1966, A Guide to the Solar Corona (New York: Academic)
Brueckner, G. E., et al. 1995, Sol. Phys., 162, 357
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