Current standing of Space Weather forecasting Eva Robbrecht Royal Observatory of Belgium

Thanks to: Luciano Rodriguez, Spiros Patsourakos and Manolis Georgoulis for useful discussions

Flare forecasting

Let's focus on the BIG flares ...

It's not *that* hard to do a moderately good job

Prediction for tomorrow (and all the coming days): No >M-class X-ray flare will occur during the next 24 hr

90% success rate! simply because, 90% of the Active Regions don't produces flares of >M-class

Barnes & Leka, ApJL107 (2008)

Central question is: Can we do better?

Yes, we can!

But it's damn hard!

Big flares need ARs with enough magnetic complexity Künzel et al. (1960)

Necessary condition: 100% of >X4-flares occur in β γ δ82% of all X-flares occur in β γ δ

Sufficient condition? Large $\beta \gamma \delta$ groups have only 40% chance to produce X flare.

Sammis et al. (2000) Mount-Wilson classification

McIntosh Sunspot classification

Fko 25% M-flare

Ekc 52 % M-flare

McIntosh (1966, 1990)

McIntosh vs flares

well developed ARs

Large area of strong field

Asymmetric sunspot Magnetically complex (delta)

Strong gradient

(shear)

McIntosh (1990) Gallagher (2002) Norquist (2011)

Modern variations on the theme

- Total unsigned flux: traditional parameter
- R-value (Schrijver 2007)
- Bipole region separation (Chumak 1987; Guo 2006)
- PIL length (AR complexity)
- GWILL (Mason & Hoeksema, 2010)
- non-potentiality index (Falconer)
- degree of polarity

R-value

Schrijver (2007)

80% sure about ~1% of ARs

FIG. 1.—Left: Example of a SOHO MDI magnetogram (cutout of 160 \times 160 pixels of 2" square) around the time of the M4.6 flare on 2005 September 14 10 UT (log R = 5.03). Right: Magnetogram multiplied with the weighted map W of the field near high-gradient, strong-field, polarity-separation lines, which, after summing their absolute values, yields R.

FLARE PROBABILITIES									
	Probability								
CLASS	log <i>R</i> ≈ <3.0 (%)	$\log R \approx 3.0$ (%)	$\log R \approx 3.5$ (%)	$\log R \approx 4.0$ (%)	$\log R \approx 4.5$ (%)	$\log R \approx 5.0$ (%)			
>M1		2	5	12	50	~80			
>M3		~0	<1	3	20	35			
>X1		0	~0	~1	10	20			
>X3		0	0	~0	1	1-2			
Maximum	<c9< td=""><td><m1< td=""><td><m4< td=""><td><x1< td=""><td><x4< td=""><td><x10< td=""></x10<></td></x4<></td></x1<></td></m4<></td></m1<></td></c9<>	<m1< td=""><td><m4< td=""><td><x1< td=""><td><x4< td=""><td><x10< td=""></x10<></td></x4<></td></x1<></td></m4<></td></m1<>	<m4< td=""><td><x1< td=""><td><x4< td=""><td><x10< td=""></x10<></td></x4<></td></x1<></td></m4<>	<x1< td=""><td><x4< td=""><td><x10< td=""></x10<></td></x4<></td></x1<>	<x4< td=""><td><x10< td=""></x10<></td></x4<>	<x10< td=""></x10<>			

NOTES.—Likelihood of major (X or M) flares within 24 hr of the determination of the unsigned, weighted magnetic flux R within 15 Mm of high-gradient, strong-field polarity-separation lines. Also listed is the maximum expected flare class.

Success rates

Barnes & Leka (2008)

SUCCESS RATES AND SKILL SCORES FOR THE SAMPLE PARAMETERS

Parameter	Success	Heidke	Climatological
	Rate	Skill Score	Skill Score
Climatology	0.908	0.000	0.000
Φ_{tot}	0.922	0.153	0.197
total excess energy.	0.916	0.081	0.231
<i>R</i>	0.922	0.144	0.242
Effective connected B field	0.913	0.072	0.220

Leka & Barnes (2003) Schrijver (2007) Georgoulis & Rust (2007)

Gradient weighted PIL length

GWILL:

PIL length ⊗ gradient across it

Include change in time!

Long PIL \rightarrow complex magnetic field Strong field gradient \rightarrow shear or twist

Heidke Skill score = 0.69 Mason & Hoeksema (2010)

Alternative methods: fractals

Probabilistic or deterministic?

Flare energy is drawn randomly from a power-law that extends up to a maximum value set by the available energy

Or

Flare energy = f(p)

Schrijver (2007)

Coronal Mass Ejections

Are halo CMEs special?

Yes

<u>Yashiro (2004):</u> Averaged, observed halo CMEs are ~2 x faster than normal CMEs.

Fainshtein (2006): Averaged, observed halo CMEs are wider than normal CMEs.

No

Zhang Q.M. (2010): Slow CMEs are less bright and thus not observable as halo.

Zhang Q.M. (2010): Wider CMEs are (1) closer to plane-of-sky and thus better detectable, (2) detected closer to the photosphere

STEREO

Robbrecht (2009); Ma (2010)

1/3 stealth CME during past solar minimum CME Speeds < 300 km/s

geoeffectiveness of CMEs

Richardson & Cane (2011)

CME travel times

Owens & Cargill (2004)

Possible sources of error:

- CME initial speed (projection effects)
- Constant background SW speed
- ICME sheath

Tests:

- Quadrature observations / onset time
- Use actual SW speed
- sheath region vs travel time

CME travel times

Poomvises (2010)

Exponential function approaching asymptotic value around 60 Rsun

Predicting "Bz"

Bothmer & Schwenn (1998)

CMEs can rotate

Direct observation of CME rotation beyond 15 Rsun

Vourlidas (2011)

Ambient corona defines final tilt angle *Yurchychyn (2008)*

CMEs can rotate

"Sigmoidality" defines rate and amount of rotation

Lynch (2009)

Conclusions

Combine flare probability methods

Flares

- Barnes & Leka (2007): predictive capability based on longitudinal magnetograms is not very strong
- Pre- and post-flare changes in photosphere are limited, even for X-class flares
 - Estimate thickness of ICME sheath regions

- CME trajectory: difficult without stereo observations
- CME rotation: predict Bz

