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Abstract

The magnetic field in many astrophysical plasmas – such as the solar corona and Earth’s magnetosphere – has been shown to have a
highly complex, three-dimensional structure. Recent advances in theory and computational simulations have shown that reconnection in
these fields also has a three-dimensional nature, in contrast to the widely used two-dimensional (or 2.5-dimensional) models. Here we
discuss the underlying theory of three-dimensional magnetic reconnection. We also review a selection of new models that illustrate
the current state of the art, as well as highlighting the complexity of energy release processes mediated by reconnection in complicated
three-dimensional magnetic fields.
� 2011 COSPAR. Published by Elsevier Ltd. All rights reserved.

Keywords: Magnetic fields; Magnetic reconnection; Magnetohydrodynamics
Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1508
2. Magnetic topological and geometrical structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1509
3. Fundamental properties of 3D reconnection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1510
4. 3D magnetic reconnection regimes: non-null reconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1513
5. 3D magnetic reconnection regimes: null point reconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1514
0273-1

doi:10.

E-m
5.1. Kinematic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1514
5.2. Torsional spine and fan reconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1516
5.3. Spine–fan reconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1517
6. 3D magnetic reconnection regimes: separator reconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1517
7. 3D magnetic reconnection in simulations and observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1518
8. Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1519

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1520
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1520
1. Introduction

Magnetic reconnection is a fundamental process that is
ubiquitous in astrophysical plasmas. It facilitates the
177/$36.00 � 2011 COSPAR. Published by Elsevier Ltd. All rights rese
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release of energy stored in the magnetic field by permitting
a change in the magnetic topology in an almost ideal
plasma. As such, reconnection is universally accepted to
be a key ingredient in the behaviour of many astrophysical
plasmas, including the interiors and atmospheres of stars
such as the sun, planetary magnetospheres, accretion disks,
and pulsar magnetospheres.
rved.
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Fig. 1. Potential magnetic field line structure in the vicinity of (a) an
isolated 3D null point, and (b) a generic fan–fan separator.
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Much of the literature on reconnection focusses on the
two-dimensional problem, due to the theoretical and com-
putational simplifications that this allows. However, it is
now becoming clear that magnetic reconnection in an even
weakly three-dimensional (3D) setting is crucially different
from the planar 2D case. In this article, we review recent
advances in three-dimensional reconnection theory, and
the complex picture that is emerging of the possible regimes
of reconnection in 3D. This review is by necessity limited
and misses a number of important facets of reconnection
research. Complementary reviews include those by Priest
and Forbes (2000), Biskamp (2000), Zweibel and Yamada
(2009), Yamada et al. (2010). In Section 2 we introduce
some key measures and features of magnetic field structure
in 3D that are crucial to understanding where and how
reconnection operates in 3D, while in Section 3 we discuss
some fundamental differences between 2D and 3D recon-
nection. In Sections 4–6 we review the current picture of
the various different 3D reconnection regimes, and in Sec-
tion 7 we touch briefly on recent results from large-scale
numerical simulations and observations. We finish with a
summary in Section 8.

2. Magnetic topological and geometrical structures

Recent observations and analysis are revealing the com-
plex structure of the magnetic field in astrophysical plas-
mas. These studies have naturally focussed on solar
system plasmas – in particular the solar atmosphere and
Earth’s magnetosphere – because these are environments
that we can observe with relatively high spatial resolution.
However, it is very likely that this rich structure is present
also in other astrophysical bodies.

One crucial step in understanding the behaviour of astro-
physical plasmas is to determine just where magnetic recon-
nection may occur, and therefore what are the likely
locations of energy release. Whether in a collisional or colli-
sionless plasma, magnetic reconnection requires the pres-
ence of a current sheet. So in order to determine the
locations where reconnection can facilitate the release of
energy in the plasma, we must understand where current
sheets form. (Note: in this article we use the term ‘current
sheet’ to refer to any intense, localised current layer – rather
than, as is sometimes the case, reserving the term for singular
current structures.) In two dimensions, it is well established
that reconnection occurs at magnetic X-points, which are
prone to collapse to form current layers. However, with
the loss of two dimensional symmetry, the number of pro-
posed sites of current sheet formation and reconnection is
greatly increased. These proposed sites can be broadly
divided into two classes, being either topological or geomet-

rical features of the magnetic field. A topological feature is
preserved by an arbitrary smooth deformation of the mag-
netic field, while we will refer to any property that is not
preserved by all such deformations as a geometrical feature.

One natural extension from the 2D X-point collapse pic-
ture is the idea of current sheet formation at 3D null points
– points in space at which the magnetic field strength falls
to zero. Null points are topological features of the mag-
netic field, and their structure has been studied by a num-
ber of authors (Fukao et al., 1975; Lau and Finn, 1990;
Parnell et al., 1996) – a typical configuration is shown in
Fig. 1(a). Since $ � B = 0, magnetic null points must be of
hyperbolic type. Their structure is characterised by a pair
of field lines that asymptotically approach (or recede from)
the null from opposite directions, forming the spine (or c-
line) of the null, while field lines recede from (or approach)
the null in a surface known as the fan (or R) plane. This
surface is a separatrix surface – it separates topologically
distinct volumes of magnetic flux.

Another proposed site of current sheet formation in 3D
is a separator line – a field line that runs from one null
point to another. In dynamical systems theory this would
be called a heteroclinic orbit. Such a field line is defined
by the transverse intersection of the fan planes of the two
nulls (Fig. 1(b)) and is therefore topologically stable. Nulls
and separators were first suggested as possible sites of cur-
rent sheet formation due to the discontinuous jump in field
line connectivity at their associated separatrix structures.
Therefore, if one considers the implications of an ideal flow
across these separatrix structures in a kinematic model, sin-
gularities in the electric field result (Lau and Finn, 1990;
Priest and Titov, 1996). It is worth noting that these con-
siderations apply equally to closed magnetic field lines, as
discussed by Lau and Finn (1990). These closed field lines
play a crucial role in laboratory plasmas – however, since
the magnetic field in astrophysical plasmas is usually con-
sidered to be anchored at the surface of the neighbouring
star or planet, closed field lines do not typically take centre
stage here.

A question that naturally arises is: do such null points
and separators exist in space plasmas? New observations
and theoretical studies suggest that they are abundant.
Recent analyses of in-situ observations by the Cluster mis-
sion show the presence of both single nulls and collections
of nulls located in the current sheet of the Earth’s magneto-
tail (e.g. Xiao et al., 2006; Deng et al., 2009). Furthermore,
the standard model of the magnetosphere contains two null
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points in the cusp regions joined by separator lines, while
clusters of nulls (expected to be joined by separators) have
been found in the global magnetosphere simulations of
Dorelli et al. (2007). Turning our attention to the solar
atmosphere, the lack of magnetic field measurements in
the corona renders direct detection impossible at present.
However, increasingly detailed magnetograms at the level
of the photosphere permit extrapolation of the field into
the corona. Such extrapolations in quiet sun regions show
an abundance of 3D nulls to be present, with a high density
at chromospheric levels, falling off exponentially with
height (e.g. Régnier et al., 2008; Longcope and Parnell,
2009). Nulls have also been inferred to be present in many
flaring and erupting active regions, as discussed later.

Nulls and separators are, however, not the end of the
story. In 3D, current sheet formation and magnetic recon-
nection may also occur in the absence of nulls. However,
one still requires some mechanism to generate intense cur-
rent layers in the plasma. In the case of the Earth’s magne-
tosphere, the system is being continually driven by the
incident solar wind. This leads to large-scale current struc-
tures both at the dayside magnetopause and in the mag-
netotail (though what triggers these current layers to thin
resulting in the onset of fast reconnection is still an open
question). In the solar atmosphere, however, the driving
of the system is less direct, occurring at the photospheric
footpoints, and the question of how this photospheric driv-
ing maps eventually to the creation of coronal current
sheets is not straightforward to answer. There are certain
magnetic field structures that appear to encourage the for-
mation of current layers. One such topological structure is
a region of braided magnetic field – in which field lines are
non-trivially linked with one another. A recent series of
papers has demonstrated that the small scales associated
with the field line mapping in braided fields may lead to
a loss of equilibrium, leading to the formation of multiple
small-scale current layers (Wilmot-Smith et al., 2009a,b,
2010; Pontin et al., 2011). However, current layers may also
form in topologically simple fields, for example as the result
of some ideal instability. Browning et al. (2008), Hood
et al. (2009) have followed the evolution of a kink-unstable
flux tube in resistive MHD simulations and found a com-
plex array of current layers to form during the subsequent
relaxation.

The structure of a magnetic field may in general be char-
acterised by the mapping generated by the connectivity of
magnetic field lines within the domain. In the absence of
null points this mapping is continuous. However, it has
been proposed that if sufficiently strong gradients are pres-
ent in this mapping then intense current layers will in gen-
eral form when the field is perturbed by plasma motions.
(e.g. Longcope and Strauss, 1994; Priest and Démoulin,
1995). These gradients in the connectivity are characterised
by the so-called squashing factor, Q (Titov et al., 2002;
Titov, 2007), and regions with high values of Q are usually
termed quasi-separatrix layers (or QSLs). The name
stems from the fact that a true separatrix surface may be
considered as the limit obtained when a QSL approaches
zero thickness and infinite Q. For a detailed review of these
ideas, see Démoulin (2006).

A further proposition, originally put forward to explain
the heating of the solar corona by Parker (1972), is that any
generic footpoint motion will naturally lead to current
sheet formation in the corona. This has been investigated
by a number of authors using various numerical simula-
tions, without any clear consensus being reached about
the nature of the current structures formed (in particular
whether they are singular in the ideal limit) or whether they
could account for the heating of the solar corona at realis-
tic coronal plasma parameters (e.g. van Ballegooijen, 1985;
Longcope and Strauss, 1994; Hendrix and van Hoven,
1996; Galsgaard and Nordlund, 1996; Ng and Bhattachar-
jee, 1998; Rappazzo et al., 2008).

Here we have given a short (and certainly not exhaus-
tive) introduction describing some possible sites and mech-
anisms of current sheet formation in 3D magnetic fields.
The main focus of this article, however, is not on where

magnetic reconnection may take place in 3D, but rather
on the properties of the reconnection process when it does
take place.

3. Fundamental properties of 3D reconnection

Under what conditions does magnetic reconnection
occur in 3D? To answer this question we first require a def-
inition of reconnection in 3D. The most general approach,
the one that we follow here, was put forward by Schindler
et al. (1988), Hesse and Schindler (1988) in the framework
of general magnetic reconnection. Within this framework
magnetic reconnection is defined by a breakdown of mag-
netic field line and flux conservation, or in other words a
breakdown in the magnetic connection between plasma ele-
ments. This was shown to occur in three dimensions in gen-
eral when a component of the electric field parallel to the
magnetic field (Ek) is spatially localised in all three dimen-
sions. The change of connectivity, or reconnection rate, is
quantified by the maximal value (over all field lines) of:

U ¼
Z

Ekds; ð1Þ

where the integral is performed along magnetic field lines
from one side of the diffusion region (region within which
Ek – 0) to the other.

It is now being appreciated that the fundamental prop-
erties of 3D reconnection are crucially different from the
simplified 2D picture. These new properties can be under-
stood by considering the implications of the following
equation:

@B

@t
�r� ðw� BÞ ¼ 0; ð2Þ

which describes the ideal evolution of a magnetic field,
where w is a flux-conserving velocity or flux transport
velocity (which in ideal MHD is simply the fluid velocity



Fig. 2. Reconnection of two representative flux tubes in the magnetic field B = (y,k2x, 0), with k = 1.2. A localised diffusion region (shaded surface) is
present around the X-point.

1 For interpretation of colour in Fig. 2, the reader is referred to the web
version of this article.
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v). If for a given magnetic field evolution a smooth flow w
exists then the magnetic flux is frozen into the flow w, and
the topology of the magnetic field is preserved – this being
guaranteed by the condition that w be smooth and contin-
uous. (Note that strictly speaking, the topology is still pre-
served if the right-hand side of Eq. (2) is a non-zero term
parallel to B, say kB where k is some scalar field – see Hor-
nig and Schindler, 1996.) Using Faraday’s law and ‘uncur-
ling’ Eq. (2):

Eþ w� B ¼ R; R ¼ rW;

where W is a free function. In 2D, the conditions on the
existence of w are straightforward. Assuming that the mag-
netic and plasma flow fields (B and v) are 2D, then we must
have E � B = 0 and R � B = 0, so we can write R = dw � B,
say, which leads to:

Eþ w� dwð Þ � B ¼ 0:

So in 2D a flux transporting flow exists everywhere, and is
given by (see Hornig, 2001 for a more detailed exposition):

w ¼ dwþ E� B

B2
:

It is clear that this velocity is smooth everywhere except at
null points (at which B = 0) where it is singular unless
E = 0 there. The above derivation of an explicit expression
for w relies crucially on the condition that E � B = 0. How-
ever, in 3D reconnection by definition E � B – 0 (see
above), and the conditions under which magnetic topology
conservation, field line conservation, and magnetic flux
conservation hold are much more subtle – the reader is
referred to the papers by Schindler et al. (1988), Hornig
and Schindler (1996), Hornig (2001, 2007a,b).

As demonstrated above, in 2D a smooth flux transport-
ing velocity exists everywhere with the possible exception
of magnetic nulls. The magnetic null may be of O-type or
X-type: for an O-point with non-zero electric field there is
annihilation (or creation) of magnetic flux at the null, while
for an X-point there is reconnection of magnetic flux. The
singularity of w at magnetic X-points in 2D is a signature of
the fact that the reconnection process involves magnetic
field lines being cut and rejoined at the X-point. In other
words, the field line connectivity changes in a discontinu-
ous manner at the null. Since w is smooth and continuous
everywhere except at the X-point, field lines evolve as if
they are reconnected at this point only. Hence, the recon-
nection of magnetic field lines occurs in a one-to-one pair-
wise fashion at a single point. This 2D reconnection
scenario is demonstrated in Fig. 2, where some representa-
tive flux tubes are plotted (from ideal comoving footpoints
marked grey (green online1) and black). The images in the
figure show snapshots from an animation of flux tubes
reconnecting in a kinematic steady-state solution with
B = (y,k2x, 0) and a localised diffusion region around the
X-point.

Perhaps surprisingly, it turns out that none of the above
properties of 2D reconnection carry over into three dimen-
sions. In general, in the presence of a localised non-ideal
region (i.e. localised region within which E � B – 0), a flux
transporting velocity w does not exist anywhere in the



Fig. 3. Reconnection of two representative flux tubes in the magnetic field B = (y,k2x,1), with k = 1.2. The flux tubes are traced from ideal comoving
footpoints (marked black), and the solid sections move at the local plasma velocity (outside D), while the transparent sections correspond to field lines that
pass through the diffusion region. A localised diffusion region (shaded surface in the first frame) is present around the origin.
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vicinity of the diffusion region (for a proof, see Priest et al.,
2003). The result is that, if one follows magnetic field lines
from footpoints comoving in the ideal flow, they appear to
split as soon as they enter the non-ideal region, and their
connectivity changes continually and continuously as they
pass through the non-ideal region (see Fig. 3). In other
words, between any two neighbouring times t and t + dt,
every field line threading the non-ideal region experiences
a change in connectivity. Consequently, magnetic field lines
are not reconnected in a one-to-one fashion as in 2D. To
illustrate, let us consider two field lines which are about
to enter the diffusion region, one of which connects plasma
elements labelled A and B, the other of which connects
plasma elements labelled C and D (as in Fig. 3). Then if
the field lines are chosen such that after reconnection A

connects to C, then B will not be connected to D. This
property has profound implications for the way in which
the magnetic flux is restructured by the three-dimensional
reconnection process – we can no longer think of a simple
cut and paste of field line pairs.

The above properties are demonstrated in Fig. 3. Repre-
sentative flux tubes are traced from four cross sections,
chosen such that at the initial time they form a pair a flux
tubes. The plots are based on the steady-state kinematic
solution of Hornig and Priest (2003), with B = (y,k2x, 1)
and a diffusion region, D, localised around the origin. Note
that in this solution the resistivity has been localised in
order to obtain an analytical solution – however, the
above-described topological properties of the flux evolu-
tion are not dependent on this localisation, and are still
present when the non-ideal region is self-consistently local-
ised through the formation of a localised current layer (as
discussed later). As the flux tubes enter the diffusion region,
they immediately begin to split, with field lines from cross-
sections A and B (say) no longer being coincident. In
frames 2–5 of the figure, the apparent ‘flipping’ (or ‘slip-
running’) of field lines is demonstrated. The solid sections
of the flux tubes are traced from ideal comoving footpoints
(marked black) and move at the local plasma velocity (out-
side D), while the transparent sections correspond to field
lines traced into and beyond the diffusion region, and
appear to flip past one another at a velocity that is different
from the local plasma velocity (until they exit the non-ideal
region). Note that while in the initial state we began with
two flux tubes, in contrast to the 2D case (shown in
Fig. 2), after reconnection (final frame, Fig. 3) the four
cross-sections do not match up to form two unique flux
tubes.

The above 3D reconnection properties hold regardless
of the topology of the magnetic field in the vicinity of the
reconnection region: for further details, the reader is
referred to the papers by Schindler et al. (1988), Hornig
(2001, 2007a,b), Priest et al. (2003). However, there are
some profound differences that do occur when different
magnetic field topologies are considered, so that as a result
we may consider that there are a number of different
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ig. 4. Potential drop around a closed circuit for the non-null reconnec-
ion solution of Hornig and Priest (2003).
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magnetic reconnection regimes in 3D. These regimes can be
split into non-null reconnection (including reconnection in
QSLs), null point reconnection (which has recently been
categorised in a new way (Priest and Pontin, 2009) in
response to new numerical experiments), and separator
reconnection. In the following sections, we go on to con-
sider each of these regimes in turn.

4. 3D magnetic reconnection regimes: non-null reconnection

As discussed above, in three dimensions, magnetic
reconnection may occur in current layers which are not
associated with magnetic nulls. The continuous change of
connectivity of field lines traced from comoving footpoints
has led to such reconnection being termed variously mag-

netic flipping (Priest and Forbes, 1992) or slip-running

reconnection (if the virtual flipping velocity exceeds some
threshold, Aulanier et al., 2006). As discussed above, there
are many different mechanisms by which the current layers
may form. However, some basic properties of the resulting
reconnection process will be universal.

A major step in understanding the properties of 3D non-
null reconnection has been made by Hornig and Priest
(2003). They considered the kinematic problem in which
Ohm’s law and Maxwell’s equations are solved but the
equation of motion is neglected (although it turns out that
the solution solves the equation of motion in the limit of
slow flows). The solution is obtained by imposing a
steady-state magnetic field and plasma resistivity, and solv-
ing Ohm’s law for the electric field and plasma velocity via:

U ¼
Z

gJ � Bds; E ¼ �rU; v? ¼
ðE� gJÞ � B

B2
; ð3Þ

where v\ is the plasma velocity perpendicular to the mag-
netic field – the parallel component being arbitrary in this
approximation. In order to obtain an analytical solution,
the magnetic field and resistivity profiles must then be cho-
sen in combination such that the first equation may be
integrated.

Hornig and Priest (2003) chose a magnetic field consist-
ing of a hyperbolic X-point plus a uniform field, specifically
B = B0(y,k2x, 1)/L. This linear magnetic field has the
advantage that the field line mapping and its inverse can
be expressed in closed form – a property that makes it pos-
sible to find closed-form solutions. Since the magnetic field
is linear, the current within the volume is uniform:
J = (0,0,B0(k2 � 1)/Ll0). Since the authors’ aim was to
study an isolated 3D reconnection process – the generic
case in astrophysical plasmas – the resistivity was chosen
to be localised around the origin. The resulting electric
and velocity fields are therefore fully 3D, and magnetic
field lines can be traced from ideal footpoints on either side
of the diffusion region, since the product gJ is localised.

Solving Eq. (3), one can show that the plasma flow
required to maintain this steady state configuration is a
counter-rotational flow. More precisely, the flow is con-
fined to field lines which thread the non-ideal region, with
field lines above and below the non-ideal region (with
respect to the direction of B) rotating in opposite senses.
One can demonstrate that this is a necessary property of
the solution that follows directly from the presence of a
3D-localised parallel electric field within a region of non-
vanishing magnetic field. That is, this property is indepen-
dent of the specific choice of spatial profiles of B and g, or
indeed the fact that g rather than J is localised (a localisa-
tion of the current would be a more physically plausible
way to localise Ek, but is not compatible with the method
of solution). This is clear if one considers the potential drop
around the closed loop displayed in Fig. 4, which must be
zero since $ � E = 0. Now, E � B – 0 along the central field
line and since E does not change sign along that line then
there must be a potential drop along C1. Since E � B = 0
for any field line lying wholly outside the non-ideal region,
there is no potential drop along C4. It is therefore clear
from the figure that it is necessary to have non-zero poten-
tial drops along the radial lines marked C2 and C3 (of
opposite signs than on C1). This implies a radial electric
field component of opposite sign on C2 and C3. Since this
particular choice of loop is not unique, we conclude that
there must be an electric field component along any such
radial line, and the combination of a radial electric field
with a vertical component of the magnetic field implies that
there must be an azimuthal flow within this envelope of flux
that threads the non-ideal region.

As a consequence of the counter-rotational flows, field
lines followed from the ideal region above and below the
non-ideal region appear to undergo a ‘rotational slippage’
with respect to one another. This rotational slippage is
quantified by the reconnection rate calculated in Eq. (1).
It is worth emphasising that this characteristic flow struc-
ture for 3D non-null reconnection is very different to the
classical 2D reconnection picture in which the characteris-
tic flow structure is of stagnation type. The counter-rota-
tional flows are a signature of the helicity production
(decay) in 3D reconnection: if one writes down an evolu-
tion equation for the magnetic helicity then E � B appears
F
t
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as a source term. The solution of Hornig and Priest, 2003
allows for the addition of an ideal flow via the constant
function of integration in the integral in Eq. (3). This func-
tion must be independent of s, i.e. constant along field
lines, but may vary from one field line to another. The
authors considered the effect of adding a flow with a hyper-
bolic structure in the xy-plane to transport magnetic flux
into and out of the diffusion region (by adding a term pro-
portional to x0y0 to U, where (x0,y0) is the point of inter-
section of a field line with the z = 0 plane). The result is
that field lines are brought into the non-ideal region, are
split apart by the counter-rotational flows, and exit differ-
ently connected in opposite quadrants of the flow. The evo-
lution of a particular pair of flux tubes for one of these
solutions is shown in Fig. 3.

One should note that the idea of a localised region of
non-zero Ek being associated with a rotation in the plane
perpendicular to the field has been described before by
e.g. Hesse, 1991. The above solution has been refined and
put on a firm footing by solving the full system of MHD
equations using an expansion scheme (Wilmot-Smith
et al., 2006, 2009c; Al-Salti and Hornig, 2009), and the
properties of the solution were also verified in a resistive
MHD simulation (Pontin et al., 2005a). The solution
describes the properties of a generic 3D reconnection pro-
cess in a steady-state magnetic field in the absence of null
points. In recent years various numerical simulations have
explored the effects of 3D reconnection in more or less
Fig. 5. Reconnection of two representative flux tubes in the magnetic field B

directed parallel to the spine (with j = 1). A localised diffusion region is present
tubes are traced from four ideal comoving footpoints, with their extensions th
complicated magnetic field configurations. Notably, Linton
et al. (2001) and Linton and Priest (2003) have investigated
the interaction of magnetic flux tubes in an otherwise field-
free environment, and discovered different possible interac-
tions (‘merge’, ‘bounce’, ‘tunnel’ and ‘slingshot’) depending
on the relative orientations of the tubes. In addition, recent
simulations have shown that the local structure of the
reconnection site during a non-null reconnection process
need not necessarily be hyperbolic, but may also be elliptic
(e.g. Wilmot-Smith et al., 2010).

5. 3D magnetic reconnection regimes: null point reconnection

5.1. Kinematic models

As discussed above, 3D magnetic null points have been
proposed as possible sites of magnetic reconnection, due to
the singularities that appear there in ideal kinematic mod-
els. The tendency of 3D null point structures to collapse (in
the same way as 2D X-points) to generate currents locally
has been studied by a number of authors (e.g. Klapper
et al., 1996; Bulanov and Sakai, 1997; Mellor et al.,
2003). Furthermore, investigations by Pontin and Craig
(2005) suggest that current singularities are a natural con-
sequence of an ideal MHD evolution in the vicinity of a
line-tied 3D null.

Early models for 3D null point reconnection were pro-
posed by Priest and Titov (1996) who considered the ideal
= (r, jr/2,�2z) in cylindrical polar coordinates, corresponding to current
around the null point, shown by the shaded surface in the first frame. Flux
at pass through the diffusion region rendered as transparent, as in Fig. 3.



Fig. 6. Interpretation of the reconnection rate for null point reconnection
with a spatially-uniform spine-aligned current (kinematic solution with
B = (r, jr/2,�2z) in polar coordinates, j = 1). Heavy black lines are
magnetic field lines, the grey cylinder represents the diffusion region, and
the arrows show the plasma flow in two representative planes of z = const.
Magnetic flux is transported through surfaces ‘A’ and ‘B’ at different rates.
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kinematic limit and a current-free magnetic null. However,
Pontin et al. (2004, 2005b) showed that the possible mag-
netic flux evolutions are very different when a localised dif-
fusion region is included around the null point. They
performed a similar kinematic analysis to that of Hornig
and Priest (2003), again imposing a steady-state magnetic
field and resistivity profile, and solving for the correspond-
ing electric field and plasma flow. It was found that the nat-
ure of the magnetic reconnection is crucially dependent on
the orientation of the electric current at the null point.
Fig. 7. Reconnection of two representative flux tubes in the magnetic field B =
(with j = 1). A localised diffusion region is present around the null point, show
ideal comoving footpoints, with their extensions that pass through the diffusio
If the current is directed parallel to the spine of the null,
then there are counter-rotational flows, centred on the
spine (Pontin et al., 2004; Wyper and Jain, 2010). The
change of connectivity that results from the reconnection
process therefore takes the form of a rotational slippage
similar to that discovered in the non-null case described
above (see Fig. 5). Importantly, there is no flux transport
across either the spine or fan. In the simple model of Pontin
et al. (2004) the reconnection rate is given by the integrated
parallel electric field along the spine (by symmetry). The
reconnection rate so determined quantifies the rotational
slippage. Specifically, it measures the difference between
the rate of (rotational) flux transport in the ideal region
on either side of the diffusion region – i.e. the difference
in the rate of flux transport through the two surfaces (‘A’
and ‘B’) shown in Fig. 6.

By contrast, when the current is directed parallel to the
fan surface (and is non-zero at the null itself), plasma flows
cross both the spine and fan of the null, transporting flux
both through/around the spine line, and across the fan sep-
aratrix surface (Pontin et al., 2005b), as shown in Fig. 7. In
this case, the reconnection rate can be shown to quantify
the rate at which magnetic flux is transported across the
separatrix surface in the ideal region – an interpretation
that more closely resembles the two-dimensional picture.

The above described solutions suggest two main modes
of magnetic reconnection at 3D nulls. However, in these
kinematic models the diffusion region was artificially
localised. The question still remains as to what types of
(x,y � jz,�2z), corresponding to current directed parallel to the fan plane
n by the shaded surface in the first frame. Flux tubes are traced from four
n region rendered as transparent, as in Fig. 3.



Fig. 8. Schematic diagram of torsional spine reconnection at an isolated
null. Black and grey lines are magnetic field lines, the shaded surface is a
current density isosurface, the grey arrows indicate the direction of the
current flow, while the black arrows indicate the driving plasma velocity.

Fig. 9. Schematic diagram of torsional fan reconnection at an isolated
null. Black and grey lines are magnetic field lines, the shaded surface is a
current density isosurface, and the black arrows indicate the driving
plasma velocity.
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current concentrations form self-consistently at 3D nulls
in the dynamic regime. This has been investigated in a
series of numerical simulations (Rickard and Titov, 1996;
Galsgaard et al., 2003; Pontin and Galsgaard, 2007; Pontin
et al., 2007a). The results have led Priest and Pontin (2009)
to propose a new categorisation of 3D null point reconnec-
tion regimes, as follows.

5.2. Torsional spine and fan reconnection

Rickard and Titov (1996) and Pontin and Galsgaard
(2007) investigated the propagation of disturbances
towards symmetric 3D null points (where the fan eigen-
values are equal). In both studies, a general disturbance
was decomposed into rotations (in planes perpendicular
to the spine) and shearing motions. Rotational motions
were found to behave in an essentially Alfvénic manner:
they propagate along field lines, and accumulate around
the spine line or fan plane. The locations of the spine and
fan themselves remain undisturbed from their orthogonal
potential configuration. These results are analogous to
the properties of Alfvén wave propagation towards 2D
X-points, summarised by McLaughlin et al. (2010). In each
case, due to the hyperbolic geometry of the magnetic field,
the current intensifies as the length scales perpendicular to
the spine or fan become shorter. This intensification ceases
once these length scales become sufficiently short that diffu-
sion becomes important.

Torsional spine reconnection occurs in response to a rota-
tional disturbance of the fan plane. The disturbance prop-
agates to the spine, around which an extended tube of
current forms. This current tube is generated by a twisting
of the magnetic field lines locally around the spine line, and
as such the current vector is directed parallel to the axis of
the tube, i.e. parallel to the spine, see Fig. 8. Due to the ori-
entation of the current, the magnetic reconnection that
occurs within the current layer takes the form of a rota-
tional slippage, as discussed above. In a continuously dri-
ven system, a quasi-steady state will be reached when the
rotational advection that increases the twist of the mag-
netic field around the spine – and thus the current – is bal-
anced by this rotational slippage.

Torsional fan reconnection occurs in response to a rota-
tional disturbance around the spine. The perturbation
propagates as a helical Alfvén wave towards the fan, where
a planar current layer develops (Galsgaard et al., 2003), as
shown in Fig. 9. While away from the null the current is
dominated by its components parallel to this plane, it flows
through the null parallel to the spine. Therefore a rota-
tional slippage of magnetic flux is expected from the kine-
matic models, and indeed this is the form that the
reconnection takes. Again, a quasi-steady current layer
would be expected to form once the increased twisting of
field lines is balanced by this rotational slippage.



Fig. 10. Schematic diagram of spine–fan reconnection at an isolated null.
Black and grey lines are magnetic field lines, the shaded surface is a current
density isosurface, the grey arrows indicate the direction of the current
flow, while the black arrows indicate the driving plasma velocity.

Fig. 11. Cartoon showing field lines before (left) and after (right)
reconnection at a separator in the simplified kinematic picture. Black
circles mark the nulls and arrows indicate the direction of plasma/field line
motion. Lower images show the view looking along the direction of the
separator from above.

D.I. Pontin / Advances in Space Research 47 (2011) 1508–1522 1517
5.3. Spine–fan reconnection

The torsional spine and torsional fan reconnection
modes discussed above require a rather organised rota-
tional driving motion – and it is thus anticipated that the
most common regime of reconnection to occur at 3D nulls
is the spine–fan reconnection mode. This mode of reconnec-
tion occurs within a current sheet that is localised in all
three dimensions around the null. Such a current concen-
tration is found to form when a shear disturbance of either

the spine or the fan occurs (Pontin et al., 2007a). Since in
this case the disturbance propagates across magnetic field
lines as it localises at the null, its behaviour has the prop-
erties of a magnetoacoustic wave. The current layer at
the null is formed by a local collapse of the magnetic field
– the spine and fan collapse towards one another, with the
current sheet locally spanning them both, as depicted in
Fig. 10. The plane in which the spine and fan collapse is
selected by the plane of the shear disturbance, and in
this plane the spine, fan, and current layer together form
a Y-type structure. The current flows through the null per-
pendicular to this shear plane, and thus parallel to the fan
surface. As the null point collapses, magnetic flux is trans-
ported through both the spine and the fan, as predicted by
the kinematic model due to the current orientation.
Although the majority of previous studies considered the
perturbation of a symmetric null point, Al-Hachami and
Pontin (2010) have demonstrated that when a generic
non-symmetric null is considered, while the qualitative
properties of the reconnection process are preserved, the
dimensions of the diffusion region and reconnection rate
can vary strongly.

It is worth noting the relation of the spine–fan reconnec-
tion regime to the steady-state mathematical models
proposed by Craig et al. (1995), Craig and Fabling
(1996). These are exact solutions of the incompressible
MHD equations, and are often termed ‘reconnective
annihilation’ models, since they involve current layers that
extend to infinity along either the spine or the fan. The
solutions are constructed by super-imposing 1D or 2D
disturbances consisting of infinite, straight field onto a
background potential null. The solutions involving a
planar current layer in the fan have been demonstrated
to be dynamically accessible (Craig and Fabling, 1998).
However, in order to maintain the planar nature of the
current layer (which is imposed by the restrictive but
necessary choice of low-dimensionality disturbance fields),
a large pressure gradient is required within the current sheet.
It has been shown in MHD simulations that when the incom-
pressibility condition is relaxed, the pressure gradient is not
able to balance the Lorentz force acting within the current
layer, whereupon the magnetic field collapses to form a
localised current layer at the null as described above (Pontin
et al., 2007b). On the other hand, indications are that the
spine reconnective annihilation models are not dynamically
accessible (Titov et al., 2004; Pontin et al., 2007b).
6. 3D magnetic reconnection regimes: separator reconnection

In addition to reconnection at isolated 3D null points
and in their absence, reconnection may also occur in a con-
figuration containing multiple magnetic nulls connected by
one or more separator field lines. The form of current lay-
ers at such separator field lines has been investigated by
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Longcope and Cowley (1996), while Longcope (1996) has
proposed that currents will naturally focus at separator
lines during relaxation processes in the solar corona. Early
kinematic models in current-free magnetic fields predicted
that separator reconnection would involve a simple cut-
and-paste of field line pairs at the separator line (Lau
and Finn, 1990; Priest and Titov, 1996). In the absence
of any current, the magnetic field in a plane orthogonal
to the separator has a perpendicular X-type structure,
and the reconnection was envisaged – projected on such a
2D plane – as being much like 2D X-point reconnection,
as depicted in Fig. 11. Such a picture was qualitatively
backed up in numerical simulations by Galsgaard et al.
(2000). However, new results throw serious doubts on these
simplified pictures.

Separator reconnection is perhaps the least well-under-
stood 3D reconnection regime. One major unknown prop-
erty is the typical distribution of the current along the
separator, and therefore whether separator reconnection
shares more in common with the null or non-null reconnec-
tion regimes. Reconnective annihilation models for incom-
pressible plasmas suggest that reconnection may be
focussed either at the nulls or between them along the sep-
arator (Craig et al., 1999; Pontin and Craig, 2006). One
thing that is clear is that the picture of cut-and-paste
one-to-one rejoining of field lines at the separator line is
over-simplified. When a localised current layer forms
around a separator, the reconnection within the associated
diffusion region must conform to the properties described
in Section 3. Therefore there will be a continuous reconnec-
tion of field lines within the volume surrounding the sepa-
rator. Indeed, as demonstrated by Parnell et al. (2010), the
structure of the magnetic field in the vicinity of the diffu-
sion region may be significantly more complex than previ-
ously expected. The authors investigated in detail the
evolution of the magnetic field in a simulation in which
Fig. 12. Field lines for the magnetic field defined by Eq. (4), with z0 = 2
and (a) j = 0.1 and (b) j = 0.4. The separator runs along the z-axis between
the two disks which represent the nulls (red online). Grey field lines are
traced from footpoints near the spines of the nulls, while black field lines
are traced from a circle around the separator, centred at the origin in the
z = 0 plane. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
two patches of opposite polarity magnetic flux on the
boundary were driven past one another (see also, Haynes
et al., 2007). While there were only two isolated, uncon-
nected nulls in the initial configuration, during the evolu-
tion a number of separators were formed, around which
the current was found to be focussed. Although a separator
must have a hyperbolic field (in the plane locally perpendic-
ular to the field) near the nulls, it can have hyperbolic as
well as elliptic structure away from the nulls. In the simu-
lation, changes of the structure both along the separator
as well as in time were found. It is natural that an elliptic
field such as this be present in the vicinity of a strong cur-
rent along the separator. This is demonstrated in Fig. 12.
Field lines are plotted for a magnetic field consisting of a
potential component defining a separator structure plus a
component that defines a line current. Specifically, the
magnetic field is

B ¼ xðz� 3z0Þ; yðzþ 3z0Þ; z2
0 � z2 þ 1

2
ðx2 þ y2Þ

� �

þ j �40ye�20x2�20y2

; 40xe�20x2�20y2

; 0
� �

; ð4Þ

which contains nulls at x = y = 0, z = ±z0, with a separa-
tor located at �z0 < z < z0. Part (a) shows the case of a rel-
atively weak current, j = 0.1, for which the magnetic field
around the separator is hyperbolic. However, when the
current is increased (j = 0.4, shown in part (b)), the field
lines spiral around the separator. Clearly, reconnection at
a separator with elliptic local magnetic field must be rather
different to the simple early models. Indeed, Parnell et al.
(2010) identified the presence of counter-rotating flows
around the separator on either side of localised enhance-
ments in the parallel electric field, a signature of the non-
null reconnection described in Section 4.

7. 3D magnetic reconnection in simulations and observations

Magnetic reconnection is a key ingredient for many
astrophysical processes, from the collapse of accretion
disks through to stellar dynamos and flares. Identification
of the 3D magnetic reconnection regimes described above
has assisted with the diagnosis of results from – and been
motivated by – observations and numerical simulations.
Those observations and simulations that invoke specific
3D reconnection models tend to come from the study of
the solar atmosphere and Earth’s magnetosphere, as com-
paratively well-resolved data is available for these
environments.

3D reconnection in the absence of null points is seen, for
example, in 3D simulations of the Parker coronal heating
scenario (e.g. Hendrix and van Hoven, 1996; Galsgaard
and Nordlund, 1996; Rappazzo et al., 2008). While the
topology of the magnetic field in the vicinity of the recon-
nection sites is not determined in these studies, the presence
of a strong background ‘guide’ field ensures the absence of
topological features within the domain. In the solar atmo-
sphere, observed sites of energy release are often taken as
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signatures of a local magnetic reconnection process. While
the magnetic field in the corona cannot be directly mea-
sured, many studies have attempted to determine the local
magnetic field structure around the reconnection site by
extrapolation from vector magnetograms. A number of
these studies find the locations of energy release to be
well-correlated with the locations of quasi-separatrix layers
within the coronal volume (e.g. Démoulin et al., 1994;
Démoulin et al., 1997; Mandrini et al., 2006; Titov et al.,
2008). Furthermore, numerical modelling of the loss of sta-
bility and subsequent eruption of flux ropes has implicated
reconnection in a QSL beneath the flux rope (Titov and
Démoulin, 1999; Kliem et al., 2004; Titov et al., 2008). A
new technique for quantifying the reconnection rate in such
simulations using so-called ‘slip-squashing factors’ has
recently been proposed (Titov et al., 2009). Observations
of the solar corona give strong indications that the contin-
uous change of connectivity associated with 3D reconnec-
tion truly occurs there. Aulanier et al. (2007) reported
observations by the X-ray telescope onboard the Hinode

satellite of slippage of coronal loops which implicated
non-null (slip-running) reconnection in a QSL. Further evi-
dence was presented by Masson et al., 2009 who described
TRACE (Transition Region And Coronal Explorer) obser-
vations of propagating bright sources along a flare ribbon
associated with the fan surface of a coronal null point,
related to the flipping of field lines during spine–fan recon-
nection at the null.

Extrapolations of magnetic fields in solar active regions
indicate that different magnetic reconnection modes are
important for different flare events. In particular, while
the references above found no 3D magnetic nulls in the
vicinity of energy release events, there are also a number
of observations which suggest that null points are a com-
mon feature in flaring or eruptive locations in active
regions and the quiet sun (e.g. Fletcher et al., 2001; Mand-
rini et al., 2006; Luoni et al., 2007; Ugarte-Urra et al., 2007;
Török et al., 2009; Masson et al., 2009). Furthermore,
while nulls are by no means found to be associated with
all solar eruptions, a statistical study by Barnes (2007)
showed that active regions containing nulls are more sus-
ceptible to yield eruptions. 3D null point reconnection,
via the spine–fan reconnection mode, has been proposed
as a mechanism for polar jets (Pariat et al., 2009) as well
as for CMEs via the ‘magnetic breakout’ model (Antiochos
et al., 1999; Lynch et al., 2008).

The hypothesis that current accumulates naturally at
separator lines has been backed up by various numerical
simulations (Galsgaard and Nordlund, 1997; Galsgaard
et al., 1997; Haynes et al., 2007). Longcope et al. (2005)
have inferred the presence of separator reconnection in
the corona based on observations of the emergence of a
new active region in the vicinity of a pre-existing active
region. One of the great difficulties in diagnosing the recon-
nection mechanism in 3D numerical simulations has been
to determine the topology of the magnetic field in the vicin-
ity of the reconnection site. However, great progress has
recently been made with the development of new algo-
rithms to effectively determine the topological ‘skeleton’
of complex 3D magnetic fields (Haynes and Parnell,
2007, 2010). While many observational signatures of recon-
nection in the Earth’s magnetosphere have been treated as
quasi-2D and interpreted as such, it is now clear that 3D
topology is also of crucial importance there. Examining
the magnetic topology of global magnetospheric simula-
tions (with Northward IMF, clock angle 45�), Dorelli
et al. (2007) discovered clusters of nulls in the cusp regions
connected on the dayside by a separator line. Furthermore,
the presence of multiple 3D magnetic nulls in the tail cur-
rent sheet connected by webs of separators has been
inferred from in-situ observations made by the Cluster
spacecraft (Xiao et al., 2007; Deng et al., 2009), suggesting
that some kind of complex 3D tearing-like process may be
occurring there.

8. Summary and outlook

Magnetic reconnection is a universal process in astro-
physical plasmas. It facilitates the release of stored mag-
netic energy by permitting changes of magnetic topology
(or just changes of field line connectivity for reconnection
in the absence of topological structures) and as such is a
key ingredient of many energetic processes in these envi-
ronments. It is only in recent years that the rich geometrical
and topological structure of these astrophysical plasmas
has begun to be appreciated, following great advances in
observations.

In 3D, the qualitative properties of reconnection are
much richer than in 2D, where reconnection occurs only
at magnetic X-type null points. There are many topological
and geometrical features of a magnetic field that may be
favourable sites for current growth. 3D reconnection pro-
cesses in different magnetic field structures have different
characteristic properties, and as such can be classified into
separate regimes. Reconnection may occur in the absence
of any null points, with the presence of counter-rotational
flows on either side of the diffusion region being a charac-
teristic feature. Reconnection may also occur at isolated
null points, with ‘torsional spine’, ‘torsional fan’ and
‘spine–fan’ reconnection modes thus far identified. The
most common of these – spine–fan reconnection – involves
a local collapse of the null to form a current sheet (focussed
at the null) that locally spans both the spine and fan, with
flux transfer through spine line and fan (separatrix) surface.
Furthermore, reconnection may occur at separator lines
connecting pairs of nulls, in which the properties of the
reconnection process may share some properties with null
or non-null reconnection modes. While each of the recon-
nection modes has its own characteristics, they all share
some fundamental properties that make them distinct to
2D (E � B = 0) reconnection. In particular, the non-exis-
tence of a unique flux-conserving velocity anywhere within
the diffusion region (i.e. for any field lines threading the dif-
fusion region), which implies that reconnection occurs
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throughout the diffusion region, not at a single point as in
2D. As a result, there is no one-to-one cut-and-paste rejoin-
ing of field lines.

While we are now beginning to understand some of the
properties of 3D reconnection, there is much left to dis-
cover. Future advances are likely to be led by large-scale
MHD simulations being developed alongside fundamental
theory. Many important open questions remain, such as:

� What are the quantitative properties of the different 3D
reconnection regimes? Thus far the vast majority of our
knowledge is of a qualitative nature, and quantitative
studies are required to probe, for example, the diffusion
region dimensions. What is the range of possible recon-
nection rates in each regime, and what determines the
reconnection rate? How do these numbers scale with dif-
ferent plasma parameters? While 3D reconnection stud-
ies have so far (by necessity) used the MHD
approximation, it will be important in the future to
investigate the implications of including additional
physics such as Hall and electron pressure tensor electric
fields in Ohm’s law, to better model the physics within
the diffusion region.
� What is the relationship between null, non-null, and sep-

arator reconnection?
� Which of these modes of reconnection is most important

in more realistic (complex) magnetic fields – when the
local models discussed above are embedded within glo-
bal magnetic field configurations? One step towards
answering this question would be to determine the
observational signatures of the different reconnection
regimes.
� What are the most common mechanisms of current

sheet formation in complex 3D magnetic fields? How
does the reconnection influence the global evolution of
the magnetic field? (This may be more complex than pre-
viously appreciated – recent MHD simulations have
shown that the distribution of reconnection sites may
be highly complex and flux may be reconnected multiple
times in generic 3D MHD evolutions Parnell et al., 2008;
Pontin et al., 2011)
� How is the magnetic energy transferred to other forms,

and ultimately dissipated, in 3D reconnection? This
includes the important question of the pattern and effi-
ciency of particle acceleration in each 3D reconnection
regime.
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