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ABSTRACT

Context. Magnetic clouds (MCs) are “magnetized plasma clouds” moving in the solar wind. MCs transport magnetic flux and helicity
away from the Sun. These structures are not stationary but experience temporal evolution. Simplified MC models are usually consid-
ered.
Aims. We investigate the dynamics of more general, radially expanding MCs. They are considered as cylindrically symmetric mag-
netic structures with low plasma β.
Methods. We adopt both a self-similar approach method and a numerical approach.
Results. We demonstrate that the forces are balanced in the considered self-similarly evolving, cylindrically symmetric magnetic
structures. Explicit analytical expressions for magnetic field, plasma velocity, density, and pressure within MCs are derived. These
solutions are characterized by conserved values of magnetic flux and helicity. We also investigate the dynamics of self-similarly evolv-
ing MCs by means of the numerical code “Graale”. In addition, their expansion in a medium of higher density and higher plasma β is
studied. It is shown that the physical parameters of the MCs maintain their self-similar character throughout their evolution.
Conclusions. After comparing different self-similar and numerical solutions, we are able to conclude that the evolving MCs are quite
adequately described by our self-similar solutions – they retain their self-similar, coherent nature for quite a long time and over large
distances from the Sun.
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1. Introduction

It is well-known that coronal mass ejections (CMEs) are one
of the most significant forms of solar activity. They carry enor-
mous masses of plasma threaded by the magnetic field away into
the interplanetary medium. Further away from the Sun, these
large-scale, dynamical plasma structures are commonly called
interplanetary coronal mass ejections (ICMEs). Magnetic clouds
(MCs) form a subset of ICMEs (Klein & Burlaga 1982; Burlaga
1991; Farrugia et al. 1995). Spacecrafts crossing the central parts
of these MCs provide valuable information about their phys-
ical characteristics. It turns out that MCs have a strong mag-
netic field, low proton temperatures (low plasma β, compared to
the ambient solar wind with the same speed) and they exhibit
a substantial and smooth rotation of the magnetic field vector.
These three features of MCs are selected as signatures of MCs
(Nakwacki et al. 2008). The MCs are also characterized by a
coherence of the magnetic field (low level of fluctuations). The
radial dimension of a MC is typically ≈0.25 AU (at 1 AU).

These in situ observations of the physical properties of MCs
are considered important steps towards the prediction of the geo-
physical effectiveness of their interaction with the Earth’s mag-
netosphere, for space weather forecasts and related issues.

Different models for the structures of magnetic clouds
have been proposed. There is no general agreement about the

large-scale structure of MCs. The local structure of MCs are of-
ten assumed to follow of cylindrically symmetric force-free con-
figurations (Burlaga 1988, 1991; Demoulin & Dasso 2009). It is
often suggested that the ends of MCs connect to the surface of
the Sun, while, according to other models, MCs are described as
tori (Vandas et al. 2006, 2009; Romashets et al. 2006, 2007). In a
number of studies, MCs are assumed to be force-free, static, axi-
ally symmetric flux ropes and their magnetic field is constructed
on the basis of Lundquist’s model (Burlaga 1988; Lepping et al.
1990; Farrugia et al. 1993). Observations show, however, that
MCs do not stay static but expand while propagating in the solar
wind and they continue to expand well beyond 1 AU (Burlaga
1991; Demoulin 2008; Demoulin & Dasso 2009; Bothmer &
Schwenn 1998). In a vast majority of the cases it is observed that
the frontal parts of the MCs propagate at larger velocities than
their back regions. This illustrates that, with respect to the MC’s
own cylindrical set of coordinates, the radial size of those cylin-
drical MCs increases (Nakwacki et al. 2008). Theoretical mod-
els including the effect of radial expansion have been proposed
before (Osherovich et al. 1995; Farrugia et al. 1993; Nakwacki
et al. 2008). In these models, only the radial expansion is taken
into account and solutions have been found for all plasma pa-
rameters. There are other studies (Shimazu & Vandas 2002;
Demoulin & Dasso 2009), however, where the axial expansion
is also included.
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Previous studies demonstrated that inside MCs the density
drops as d−2.4 (Bothmer & Schwenn 1998), i.e., the volume of
MC increases as d2.4, where d denotes the distance from the Sun.
The radius of the MCs, denoted by (R), was found to increased
and at a rate that varied with the distance, viz. as: R ∼ d0.8

(Bothmer & Schwenn 1998). Since the surface of the MC’s
cross-section perpendicular to its axis increases as R2 ∼ d1.6,
and the MC’s volume increases as d2.4, the MC’s longitudinal
size should increase as d0.8. Therefore, according to Bothmer &
Schwenn’s data, the MCs are radially expanding and also show
an extension along their axis.

In the present study, we consider self-similarly expanding
cylindrical MCs that are able to expand in both the radial and
longitudinal directions. We consider the problem in the frame of
the MC and in cylindrical coordinates related to the MC, i.e. with
a longitudinal axis Z that coincides with the MC’s axis. Overall
cylindrical symmetry of the MC is assumed. Based on these as-
sumptions, we derive the appropriate full set of non-stationary
MHD equations and find their analytical solutions. The logical
and natural consequence of the assumptions of self-similarity
and cylindrical symmetry is that the dynamic forces acting upon
the MCs are balanced. The solutions include expressions for the
plasma magnetic field, velocity, mass density, and thermal pres-
sure.

An important feature of our model is that certain significant
characteristics of the MCs – magnetic flux and helicity – are
conserved. We also separately consider the particular case of a
MC that is allowed to expand only in the radial direction. It can
be shown that in this case, the MHD equations do not have any
physical, self-similar solution.

2. Self-similar expanding MC models

2.1. General equations and self-similar expansion

To perform an analytic study of the dynamics of magnetic
clouds, we have to start from the full set of MHD equations

� ·B = 0, (1)

∂t B = ∇ × [V × B] , (2)

∂t� + ∇ · (�V) = 0, (3)

�[∂t + (V · ∇)]V = (1/4π)(�× B) × B − ∇ · p. (4)

In these equations, p denotes the thermal plasma pressure, � is
the density, V is the velocity field, and B denotes the magnetic
field.

In a number of previous studies, the MCs were considered
as cylindrical magnetic structures, characterized by axial sym-
metry. In the present consideration, both symmetry along the Z
axis (∂z = 0) and the azimuthal symmetry (∂ϕ = 0) are assumed.
The axially symmetric magnetic field can then be expressed as

B ≡ [0, Bϕ, Bz], (5)

where Bϕ = Bϕ(r, t) and Bz = Bz(r, t). We note that this represen-
tation satisfies the solenoidal condition.

The self-similar approach, adopted here, implies that the
temporal evolution of the physical functions is controlled by the
self-similar variable

ξ =
r
Φ(t)
, (6)

where Φ(t) denotes a function of time. Let us search solutions of
the MHD equations in the following form (in analogy with Low
1982):

Bϕ = Φ
δQϕ(ξ), (7a)

Bz = Φ
σQz(ξ), (7b)

� = Φαρ̃(ξ), (7c)

p = Φβ p̃(ξ). (7d)

One can see that, the type of solutions introduced by Eqs. (7a)–
(7d) evolve self-similarly and are characterized by a particular
time-scaling. Here Qϕ, Qz, ρ̃, and p̃ are functions of the self-
similar variable ξ, andΦδ, Φσ, Φα, andΦβ show the time scaling
of the azimuthal and longitudinal components of the magnetic
field, the plasma density, and the plasma pressure, respectively.

2.2. Solution of the induction equation

We consider both a radial and a longitudinal expansion of the
MC but no motion in the azimuthal direction. In this case, the
Eulerian velocity field of the plasma, V, can be expressed as

V = [Vr, 0, Vz], (8)

where, we assume that the radial component of the velocity Vr =
Vr(r, t), and the z−component Vz = Vz(z, t), i.e. we assume that
the MC maintains its cylindrical shape during its evolution.

After substitution of Eq. (8) in Eq. (2), we derive

∂tBz +
1
r
∂r(rVrBz) = 0 · (9a)

After taking into account Eqs. (6), (7b) and the Eqs. (A.1)
and (A.2) given in the appendix, Eq. (9a) can be rewritten as

Qz

[
σΦ̇ +

Vr

ξ
+ Φ∂rVr

]
+ Q′z

[
Vr − ξΦ̇

]
= 0, (9b)

where Q′z corresponds to dQz(ξ)/dξ. Equation (9a) (hence
Eq. (9b)) is satisfied for arbitrary Qz only when

Vr − ξΦ̇ = 0, (10a)

and

σΦ̇ +
Vr

ξ
+ Φ∂rVr = 0. (10b)

From Eqs. (10a) and (10b), we can infer that the radial compo-
nent of the Eulerian plasma velocity is described as

Vr = rΦ̇/Φ, (11)

and

σ = −2, (12)

where Φ is the function of time mentioned in Eq. (6).
One can check that for σ = −2 the longitudinal magnetic

flux φz is conserved. Nakwacki et al. (2008) analyzed different
MC models and derived expressions for the magnetic flux, the
magnetic helicity, and the magnetic energy per unit length along
the flux tube. The models that are in good agreement with ob-
servations are characterized by the conservation of φz (see also
Berdichevsky et al. 2003).

We now analyze the ϕ-component of the induction equation,
Eq. (2)

∂t(Bϕ) + Bϕ∂zVz + ∂r(VrBϕ) = 0. (13)
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The combination of Eqs. (11) and (13) leads to the important
relation

(δ + 1)Φ̇/Φ + ∂zVz = 0. (14)

After taking into account Eqs. (5) and (8) in addition with the
assumption of azimuthal symmetry, one can see that the radial
component of the induction equation, Eq. (2), is automatically
satisfied and does not lead to any additional restrictions.

2.3. Self-similar solutions

After inserting the expressions for the plasma density given by
Eq. (7c), the velocity introduced by Eq. (8), and the radial com-
ponent of velocity defined in Eq. (11), into the mass conservation
law given by Eq. (3), we obtain another important relation, viz.

(α + 2)Φ̇/Φ + ∂zVz = 0. (15)

To ensure consistency between Eqs. (14) and (15), one should
obviously have α + 2 = δ + 1.

The z-component of the equation of motion, Eq. (4), helps
us to derive an expression for the z-component of the plasma
velocity

∂tVz + Vz∂zVz = 0. (16a)

We try to solve the partial differential equation in Eq. (16a) by
using the variable separation technique, i.e. we assume that

Vz(z, t) = Z(z)T (t). (16b)

Substitution of Eq. (16b) in Eq. (16a) yields:

ṪZ + ZT 2Z′ = 0, (17a)

where Ḟ ≡ ∂tF denotes the first-order time derivative of a func-
tion F. Hereafter we use, to indicate second order derivatives,
the notation F̈ ≡ ∂2

t F, Where Z′ presents dZ/dz.
It follows from Eq. (17a) that

− Ṫ
T 2
= Z′ = const. (17b)

Equation (17b) can be decomposed into two ODEs, viz.

− Ṫ
T 2
= λ, (17c)

and

Z′ = λ, (17d)

where, λ is an arbitrary constant.
After solving the ODEs (17c)–(17d) with the assumption

that, at the surface z = 0, Vz = 0, we derive the expressions

T =
T0

1 + λT0t
, (18a)

and

Z = λz, (18b)

where λ and T0 are constants.
After inserting Eqs. (18a)–(18b) into Eq. (16b), we obtain

our desired expression for Vz:

Vz =
zk

1 + kt
, (19)

where, k ≡ λT0.
We assumed that locally the MC could be described as a

cylindrical structure. We investigate the evolution of the length
L of this cylindrical structure. For this purpose, we describe the
temporal evolution of the z-coordinate of the plasma element lo-
cated at the position z = L at time t. The Lagrangian velocity of
this element coincides with the Eulerian velocity of the plasma
flow at time t and z = L. If at a certain time the coordinate of this
element is L, then its Lagrangian velocity is

VL =
dL
dt
· (20a)

From Eq. (19), we then have that

dL
dt
=

Lk
1 + kt

· (20b)

The solution of this ordinary differential equation in Eq. (20b)
gives an expression for the longitudinal size of the considered
cylindrical structure of

L = L0(1 + kt), (20c)

where L0 is the length of the cylinder at t = 0.
The radial component of the equation of motion, in combi-

nation with the expressions for the magnetic field, the velocity,
and the plasma density lead to

ΦαξΦ̈ρ̃ = Fr, (21)

where, Fr denotes the radial component of the total force. In
terms of p̃, Qϕ,z, and ξ, this force component can be expressed
as (details of the derivation are given in the appendix)

Fr = − 1
4π

⎡⎢⎢⎢⎢⎢⎣ 1
Φ5

Q′zQz + Φ
δ−3

⎛⎜⎜⎜⎜⎜⎝Q2
ϕ

ξ
+ Q′ϕQϕ

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ −Φβ−1 p̃′, (22)

where Q′ϕ,z = dQϕ,z/dξ and p̃′ = d p̃/dξ. To self-consistent time
scaling for all terms in Eq. (22), one has to assume that δ = −2
and β = −4. By a comparising of Eqs. (14) and (15), we find that
if δ = −2, then α = −3.

From Eqs. (15) and (19), we find that

Φ̇

Φ
=

k
1 + kt

· (23)

Equation (23) is an ordinary differential equation (ODE) in terms
of Φ(t). After solving this ODE, we find the explicit expression
for Φ(t)

Φ = Φ0(1 + kt), (24)

where Φ0 is a constant parameter.
The substitution of expression Eq. (24) into Eq. (21) leads

to an important conclusion: calculating the magnetic and pres-
sure gradient forces, we see that for the self-similarly evolv-
ing, cylindrical, axially-symmetric structure, the magnetic force
Fm ≡ 1/(4π)(�× B)× B and the thermal pressure gradient force
Fp ≡ − � ·p are exactly balanced, i.e.,

Fr = Fm + Fp = 0. (25)

If we associate the value ξ0 of the self-similar variable ξ with the
boundary of the MC, then the expression of the MC Lagrangian
velocity is given by (Low 1982):

Vs =
dR
dt
= ξ0

dΦ
dt
· (26)
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After substituting Eq. (24) for Φ into Eq. (26), we can derive a
time-dependent solution for the MC radius:

R = R0(1 + kt). (27)

We note that the form of this expression coincides with the one
given by Nakwacki et al. (2008).

2.4. Plasma and force-free field evolution

The remaining solutions readily follow from the derived equa-
tions, yielding

Vr =
rk

1 + kt
, (28a)

� =
�̃

(1 + kt)3
, (28b)

and

p =
p̃

(1 + kt)4
, (28c)

where, �̃ and p̃ are arbitrary functions of ξ = r/Φ.
After analyzing of the expressions for pressure and density

given by Eq. (28b), (28c), one can check that, for systems char-
acterized by entropy conservation, the entropy conservation law
is satisfied only if the polytropic index γ = 4/3. This is indeed a
common feature of all different self-similar systems (Low 1982;
Farrugia et al. 1995; Finn et al. 2004).

From various observations, it is known that MCs are char-
acterized by low plasma β’s (Burlaga et al. 1981; Burlaga 1991;
Bothmer & Schwenn 1998). The thermal pressure term in the
total force could be neglected and this implies that we have
to construct a force-free magnetic field that evolves in a self-
similar way. The cylindrically symmetric force-free structure of
the MC’s magnetic field is indeed advocated by a number of
studies (Burlaga 1988; Lepping et al. 1990; Farrugia et al. 1993;
Farrugia et al. 1995; Nakwacki et al. 2008; Demoulin & Dasso
2009). A force-free magnetic field complies with the relation

� ×B = μB. (29)

If we rewrite the vectorial equation in Eq. (29) for each compo-
nent of vectors, taking in to account Eqs. (7a), (7b), and (12), we
obtain

− Q′z = μΦQϕ, (30a)

Q′ϕ +
Qϕ
ξ
= μΦQz, (30b)

where Q′ϕ,z stands for dQϕ,z/dξ. If we take the derivative of both
terms of Eq. (30a) with respect to the variable ξ, we get

− Q′′z = μΦQ′ϕ, (30c)

where it is assumed that μ does not depend on ξ. In general,
however, μ could be a function of ξ.

If we take in to account Eqs. (30a) and (30c), we can derive
from Eq. (30b) an ordinary differential equation for Qz

Q′′z +
Q′z
ξ
+ μ2Φ2Qz = 0. (31a)

With the following transformation of variables x = μΦξ, we can
rewrite Eq. (31a) as

d2Qz

dx2
+

1
x

dQz

dx
+ Qz = 0. (31b)

Actually Eq. (31b) being a Bessel equation of zero order, with
the solution

Qz = J0(x) = C0 J0(μΦξ), (32a)

where J0(x) is the Bessel function of the first kind and C0 is a
constant parameter. We note that the solution that is not charac-
terized with a singularity at x = 0 has been chosen. The substi-
tution of Eq. (32a) into Eq. (30a) leads to an expression for Qϕ

Qϕ = J1(x) = C0J1(μΦξ), (32b)

where J1(x) is the Bessel function of the first kind.
From Eqs. (32a), (32b), we see that Qϕ and Qz are functions

of μΦξ. Since we assumed above that μ is not a function of ξ, that
Φ is only a function of t (Eq. (6)), and that Qϕ,z are functions only
of ξ (Eqs. (7a), (7b)), it follows that μΦ = const. The substitu-
tion of Eqs. (32a), (32b), (24), and (6) into Eqs. (7a) and (7b),
respectively, taking into account that δ = σ = −2, leads to the
following expressions for the components of the magnetic field

Br = 0, (33a)

Bϕ =
B0

(1 + kt)2
J1

(
r

r0(1 + kt)

)
, (33b)

and

Bz =
B0

(1 + kt)2
J0

(
r

r0(1 + kt)

)
, (33c)

where B0 and r0 are constants, and C0/Φ
2
0 has been substituted

by B0 and μξ/Φ0 is substituted by 1/r0.)
From Eqs. (33a)–(33c), we can calculate important expres-

sions for the magnetic flux and the helicity (Nakwaci et al. 2008)
associated with the MC

Φz =
2π
χ

R
B0

(1 + kt)2
J1(χR), (34a)

Φϕ =
1
χ

B0

(1 + kt)2
L(1 − J0(χR)), (34b)

and

H =
2π
χ

R2 B2
0

(1 + kt)4
L
(
J2

1(χR) − J0(χR)J2(χR) + J2
0(χR)

)
, (34c)

where χ ≡ 1/(r0(1 + kt)).
According the their physical meanings, Φz is the magnetic

flux across the surface perpendicular to the axis of a MC, while
Φϕ is the magnetic flux across the surface defined by the mag-
netic axis and the radial direction. Moreover, R denotes the ra-
dius of the MC and L is the longitudinal length of the cylindrical
structure. By inserting into Eqs. (34a)–(34c) the corresponding
expressions for R and L, we find

Φz = 2πR0r0B0J1

(
R0

r0

)
= const., (35a)

Φϕ = B0r0L0

[
1 − J0

(
R0

r0

)]
= const., (35b)

and

H=2πr0R2
0B2

0L0

[
J2

1

(
R0

r0

)
−J0

(
R0

r0

)
J2

(
R0

r0

)
+J2

0

(
R0

r0

)]
=const.

(35c)

From these results, it follows that the obtained solutions ensure
the conservation of magnetic flux and helicity inside the cylin-
drical MC described by our model.
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3. Radially expanding MCs

We now attempt to find solutions for the physical variables when
only the radial size of the MC increases. One can see that the so-
lutions in this case do not remain self-similar, although initially
a self-similar expansion is assumed in the radial direction.

We consider MCs that are expanding only radially i.e., for
which Vz = 0. In this case, Eq. (14) implies that Φ̇ = 0 or δ = −1.
The case with Φ̇ = 0 corresponds to the stationary state, which is
trivial. We consider the case when Φ̇ � 0 but δ = −1. To provide
a consistent time-scaling of all terms in Eq. (22), we have to
satisfy

QϕQ
′
ϕ +

Q2
ϕ

ξ
=

Qϕ
ξ
∂ξ(ξQϕ) = 0. (36a)

An analysis of Eq. (6) (ξ = r/Φ(t)), Eq. (7a) (Bϕ = ΦδQϕ(ξ)),
and Eq. (36a) leads to the expression

1
r
∂r(rBϕ) = 0, (36b)

where, it is taken into account that ∂r = ∂ξ/Φ(t).
From Eq. (36b), we can conclude that

Bϕ =
C
r
, (36c)

where C = const.
We note that the expression for Bϕ is characterized by a sin-

gularity along the axis (r = 0). It seems reasonable to conclude
that, if we do not consider the axial stretching of self-similarly
evolving MCs, we cannot obtain a physically valid solution for
the Bϕ− component along the axis of the MC.

4. Numerical study: higher density and higher
plasma β case

We investigate the evolution of MCs in a medium by applying
the model described in Sect. 2. For this purpose, the Lagrangian
numerical MHD code “Graale” (Finn et al. 2004) is used, which
enables us to check whether the aforementioned solutions main-
tain their self-similarity when they propagate in a medium. In
the numerical code, we assume azimuthal and cylindrical sym-
metries and that the magnetic structure expands uniformly in the
longitudinal direction, in other words that Vz = zL̇/L, where L is
the length of the cylinder. An analysis of Eqs. (20a)–(20c) and
Eq. (19) shows that the derived expression for the longitudinal
velocity coincides with the one implemented in the code.

The assumptions of cylindrical and azimuthal symmetries
and and the prescription of the particular character of the lon-
gitudinal motions infer the one dimensional numerical sim-
ulations. In the numerical runs, the units of the physical
parameters are chosen to be the unit length Lunit = 0.1 AU =
15 × 106 km (which is the order of the MC’s radius at 1 AU),
the unit magnetic field Bunit = 3 nT, and the unit number density
nunit = 10 cm−3. After taking into account that the proton mass
mp ≈ 1.7×10−27 kg, one finds that the unit mass density is ρunit =

mpn0 = 0.8 × 10−14 kg/m3. The unit speed is the Alfvén speed
corresponding to ρunit and Bunit i.e., Vunit = V0A = 20.5 km s−1,
which is of the order of the MC’s edge expansion velocity in
the frame of the MC (Vandas et al., 2009), and the unit time
tunit =

Lunit
Vunit
= 200 h. A domain with Rmin = 0 and Rmax = 10 is

discretised into 2000 grid cells. The time step used in the simu-
lations is Δt = 5 × 10−7 (where Rmin, Rmax, and Δt are given in

units introduced above i.e., Lunit and tunit). Open boundary con-
ditions are applied. Inside the calculation domain, we introduce
initial conditions for the physical variables in the two different
regions of inside and outside the MC.

The solutions inside and outside the magnetic structure ev-
idently should satisfy the following jump conditions across the
surface of any MC

[�υr] = 0, (37a)
[
�υ2

r + p +
1

8π
B2

]
= 0. (37b)

[
1
2
�υ3

r + (
γp
γ − 1

+
1

4π
B2)υr

]
= 0, (37c)

and finally

[�υrυt] = 0. (37d)

Where [·] denotes the jump of the quantity between the brackets
across the surface of the MC and υr = Vr − Vs, where Vr and
Vs are the plasma and the MC’s surface velocity, respectively,
while υt denotes the plasma velocity tangential to the surface
of the MC. Equations (28a) and (26) show that υr = 0, which is
logical for ideal MHD. Equations (37a), (37c), (37d) are satisfied
for arbitrary values of the plasma density and Eq. (37b) leads to
the condition[

p +
1

8π
B2

]
= 0. (38)

We know that the plasma mass density inside the MCs is lower
than outside them and the plasma β within a MC is lower than in
the ambient plasma. We therefore consider β ∼ 1 in the ambient
environment and β ∼ 0.1 inside the MC. For the magnetic field
within the MC, we use the solution expressed by Eqs. (33a)–
(33c). For the magnetic field outside the MC, we assume that the
azimuthal component of the magnetic field Bϕout = 0, while the
longitudinal component Bzout is uniform. We also assume that
the mass density and the thermal pressure are uniform in both
regions of the computational domain.

Bearing in mind these assumptions and the jump condi-
tions in Eqs. (37)–(38), one can find explicit expressions for the
plasma pressure and magnetic field outside the MC.

Figure 1 represents the numerical solutions for the plasma
mass density and velocity, while Fig. 2 shows solutions for the
magnetic field components at different moments in time. In pan-
els a and b, we plotted the dimensionless values of the density,
velocity, and magnetic field. On panels c and d, we present the
dependence of the modified values of the physical parameters on
the self-similar variable is presented.

The dependence of the modified mass density, velocity, and
dependence of the modified magnetic field components on the
self-similar variable clearly shows that our solutions maintain
their self-similarity in the course of the MC expansion.

5. Discussion and conclusions

We have presented a detailed derivation of a class of self-
similar analytic solutions of the MHD equations for both ra-
dially and axially expanding MCs and a numerical investiga-
tion of these solutions. The usage of the self-similar approach is
quite common for the modeling of various kinds of solar plasma
structures, flows, and eruptions (Low 1982; Osherovich 1993;
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Fig. 1. Snapshots of the evolution of the plasma density and velocity field. Panel a) represents the dependence of the plasma density on the radial
coordinate for four moments in time; panel b) shows the dependence on the plasma velocity on the radial coordinate for four time moments; panel c)
and panel d) illustrate the dependence of the modified density and the modified velocity, respectively, on the self-similar variable. Parameter values
for this case are k = 2, B0 = 1, �out = 3�in, βin = 0.1, βout = 1, and Φ0 = 1. Black line corresponds to t = 0, red line represents the moment
t = 0.5/3, green line shows the time moment 1/3, and blue line corresponds to the moment t = 0.5.
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Fig. 2. Snapshots of the evolution of the magnetic field components. Panel a) represents the dependence of the azimuthal component of the
magnetic field on the radial coordinate for four time moments; panel b) shows the dependence of the z-component of the magnetic field on the
radial coordinate for four time moments; panels c) and d) illustrate the dependence of the modified azimuthal and z-components of the magnetic
field, respectively, on the self-similar variable. Parameter values for this case are k = 2, B0 = 1, �out = 3�in, βin = 0.1, βout = 1, r0 = 1, and Φ0 = 1.
Black line corresponds to t = 0, red line represents the moment t = 0.5/3, the line indicating the time moment 1/3, and blue line corresponds to
the moment t = 0.5.

Farrugia et al. 1995; Nakwacki et al. 2008; Shapakidze et al.
2010). In most previous studies, however, only the radial expan-
sion of the MCs was considered. In the present study, we have
taken into account also the axial stretching of the MCs, which
is a common observed feature of at least some MCs. We have
obtained explicit analytical expressions for the magnetic field,
the plasma velocity, the density, and the plasma pressure. Our
solutions essentially maintain their self-similar nature during the
course of their evolution and propagation through the solar wind.
These solutions are complete and well-defined, fully analytic,
and, moreover, in the absence of the longitudinal expansion, our
solutions self-consistently match the analytic solutions derived
by other authors (Farrugia et al. 1995).

For the class of solutions introduced by Eqs. (7a)–(7d), the
assumptions of self-similarity and both axial and azimuthal sym-
metry lead imply that Φ(t) is a linear function of time (where

Φ(t) is the time-dependent function of the self-similar variable
ξ = r/Φ(t)). In this case, the forces within the MCs are bound
to be balanced. We can thus conclude that the case in which the
magnetic structures are characterized by a low plasma-β, cor-
responds to the force-free magnetic field case. This result also
agrees with the conclusion of previous studies. We therefore be-
lieve that this is a correct and proper time-dependent generaliza-
tion of the widely used stationary Lundquist model (Lundquist
1950). Vandas et al. (2006, 2009) compared the generalized
Lundquist model with observations and found good agreements
between this classic model and the experimental data.

It must be emphasized that our study is not the only one in
which the axial stretching of the MCs is taken into account to-
gether with their radial expansion. As a matter of fact, Shimazu
& Vandas (2002) also considered MCs with similar properties. In
this particular paper, the authors used the mathematical approach
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introduced by Osherovich et al. (1995). To separate the time-
dependent parts of the solutions from multiplicative functions of
the self-similar variable only, Shimazu & Vandas (2002) adopted
a so-called “separable magnetic” field, which was introduced
in Osherovich et al. (1995). The approach of Osherovich et al.
(1995), was found to be quite restrictive because it requires an ad
hoc relation between the different components of the magnetic
field. To separate the time-dependent part from the coordinate-
dependent parts of the momentum equation, in addition to the
polytropic law, the authors introduced a specific mathematical
expression for the thermal pressure (see Eq. (17), Osherovich
et al. 1995). The aforementioned expression relates pressure and
mass density (see Eqs. (13)–(17) in Osherovich et al. 1995). In
contrast, in our study, we used Low’s approach (1982) and re-
quired a similar time-scaling for all parts of the Lorentz force
and the force caused by the gradient of the thermal pressure. We
argue that our approach is more general and places less non-
physical restrictions upon the physical parameters.

Another difference of the results presented here with those of
Shimazu & Vandas (2002) is with the temporal expansion scal-
ing. Shimazu & Vandas assume that the longitudinal and radial
expansions have the same time scaling, while in our work this
is not assumed but rather logically follows as the by-product of
the accurate solution of the MHD equations. In their paper, the
time-dependent function of the self-similar variable is charac-
terized by a linear dependence on time only when the thermal
pressure is zero, while we have derived an explicit expression
of this time-dependent function of the self-similar variable and
demonstrating thatΦ is a linear function of the time variable and
does not depend on the character of the pressure function.

Nevertheless another difference between the results pre-
sented here and those of Shimazu & Vandas (2002) is related to
the structure of the MC magnetic field. To derive explicit expres-
sions for the magnetic field, Shimazu & Vandas assumed that the
magnetic structure of the MC is described by a force-free mag-
netic flux rope. In our study, however, we found an explicit ex-
pression for the magnetic field. We have derived ordinary differ-
ential equations (Eqs. (30a)–(30b)) for the functions describing
the components of the magnetic field, after solving the equation
of motion for the case corresponding to a low plasma β within
the MC. For a particular type of parameters, we have found ex-
plicit, analytical solutions for the components of the magnetic
field (Eqs. (33a)–(33c)). We note that these expressions are a
time-dependent generalization of the well-known Lundquist so-
lutions (Lundquist 1950; Burlaga 1988).

Our model implies the conservation of magnetic flux and he-
licity by design, which is satisfactory and in good agreement
with previous investigations (Nakwacki et al. 2008; Demoulin
& Dasso 2009; Kumar & Rust 1996).

To confirm the validity of our solutions, we investigated the
dynamics of magnetic clouds numerically. In the numerical code
“Graale”, we have introduced our self-similar solutions as ini-
tial conditions. The numerical results obtained have shown that
during the evolution and propagation of these MCs, their phys-
ical variables maintained their self-similar character. This cir-
cumstance was illustrated by Figs. 1 and 2.

The class of solutions found in this paper is obviously quite
idealized. The assumptions about the self-similar evolution and
the consideration of a cylindrical symmetric structure are quite
well-justified, but real MCs show self-similar coherence and
cylindrical symmetry only approximately. Hence, in a future
study it would be reasonable and interesting to consider more
realistic configurations. There are several issues related to the

model that should be tested and generalized in any forthcoming
study:

1. Our assumptions, as in previous investigations (Low 1982;
Farrugia et al. 1995; Finn et al. 2004; Shapakidze et al.
2010), for the systems where entropy is conserved, restrict
the value of the polytropic index γ = 4/3. We would like to
develop a model that helps us to avoid this restriction.

2. Our model describes the plasma dynamics only inside the
MC. In the near future, we plan to investigate the interaction
of an MC with its environment by constructing consistent
solutions of the MHD equations outside the MC.

3. We investigated the obtained analytical solutions numeri-
cally using a 1D MHD code and a simple model for the flow
outside the MC was implemented. In any future study we
also study the MC evolution with 3D numerical codes, where
a more complicated and realistic background flow could be
implemented (in preparation). In this case the derived so-
lutions could be used as the initial state of the 3D numer-
ical simulation codes. We would like to study the different
possible boundary conditions on the surface of the magnetic
cloud.

Acknowledgements. These results were obtained in the framework of the
projects GOA/2009-009 (K.U. Leuven), G.0304.07 (FWO-Vlaanderen) and
C 90347 (ESA Prodex 9). Financial support by the European Commission
through the SOLAIRE Network (MTRN-CT-2006-035484), Georgian National
Science Foundation grant GNSF/ST06/4-096 and funding from the European
Commission’s Seventh Framework Programme (FP7/2007–2013) under the
grant agreement SOTERIA (project n 218816, www.soteria-space.eu) are
gratefully acknowledged. AR acknowledges support of the Abdus Salam ICTP
through the Senior Associate Member reward and support of the “Belgian
Science Policy” (BELSPO) through a 2009 Fellowship To Non-EU Researchers.

Appendix A:

We provide some more details of derivation of Eqs. (21)
and (22).

During the process of derivation, we found the

∂r =
1
Φ
∂ξ, (A.1)

∂t = − ξ
Φ
Φ̇∂ξ. (A.2)

These relations follow from Eq. (6).
Equation (21) is the radial component of the equation of mo-

tion in Eq. (4). In cylindrical coordinates, the left term of Eq. (4)
can be written as follows

ρ [∂t + (V · ∇)Vr] = ρ [∂tVr + Vr∂rVr] . (A.3)

If we take into account Eq. (6) and expression for Vr Eq. (11),
we obtain the expressions

∂tVr = r
Φ̈

Φ
− r

(
Φ̇

Φ

)2

, (A.4)

Vr∂rVr = r

(
Φ̇

Φ

)2

. (A.5)

After substitution of Eqs. (A.4) and (A.5) into Eq. (A.3), we get:

ρ [∂t + (V · ∇)Vr] = ρξΦ̈. (A.6)

If we combine of Eqs. (7c) and (A.6) we obtain

ρ [∂t + (V · ∇)Vr] = ΦαξΦ̈ρ̃, (A.7)
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which is the left term of Eq. (21).
To derive the first part of the right term of Eq. (22), we intro-

duce the notation

∇ × B ≡ J . (A.8)

After taking into account the expressions for the magnetic field
in Eqs. (7a), (7b) with σ = −2, we get

Jr =
1
r
∂ϕBz − ∂zBϕ = 0, (A.9)

Jϕ = ∂zBr − ∂rBz = −∂rBz = −Q′z
Φ3
, (A.10)

and

Jz=
1
r
∂r(rBϕ) − 1

r
∂ϕBr =

1
r
∂r(rBϕ)=

QϕΦδ−1

ξ
+ Q′ϕΦ

δ−1. (A.11)

Since we know expressions for vector J , we can derive the vec-
torial product of J and B, which represents the first part of the
right term of Eq. (22).

Combining Eq. (A1) with the expression for pressure given
in Eq. (7d) leads to the expression of the second part of the right
term of Eq. (22).
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